
Contents lists available at ScienceDirect

Computational Materials Science

journal homepage: www.elsevier.com/locate/commatsci

HOOMD-blue: A Python package for high-performance molecular dynamics
and hard particle Monte Carlo simulations
Joshua A. Andersona, Jens Glasera, Sharon C. Glotzera,b,c,⁎

a Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
bDepartment of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
c Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA

A R T I C L E I N F O

Keywords:
Python
Molecular dynamics
Monte Carlo
Molecular simulation
GPU
CUDA

A B S T R A C T

HOOMD-blue is a particle simulation engine designed for nano- and colloidal-scale molecular dynamics and hard
particle Monte Carlo simulations. It has been actively developed since March 2007 and available open source
since August 2008. HOOMD-blue is a Python package with a high performance C++/CUDA backend that we
built from the ground up for GPU acceleration. The Python interface allows users to combine HOOMD-blue with
other packages in the Python ecosystem to create simulation and analysis workflows. We employ software en-
gineering practices to develop, test, maintain, and expand the code.

1. Introduction

Molecular, nano-, and colloidal-scale simulations are powerful
tools to probe the structure and dynamics of materials. Simulations
can offer insight to the fundamental physics of a phenomenon and be
used to efficiently scan parameter space to find promising structures,
properties or behavior. Molecular dynamics (MD) is commonly used in
the biomolecular community with long established codes such as
AMBER [1], GROMACS [2], and NAMD [3]. LAMMPS [4] is a general
purpose MD engine with many capabilities designed for materials
science applications, and is also capable of biomolecular simulations.
Monte Carlo (MC) simulations of molecular systems are well suited for
determining phase equilibria and made possible by codes like Cas-
sandra [5], GOMC [6], and MCCCS Towhee [7]. Recent codes like FEN
ZI [8,9], HOOMD-blue [10], and OpenMM [11] were developed
around new functionalities or use cases not possible with the estab-
lished codes.

Over the past decade, Python has become a popular scripting lan-
guage for scientific computing in general [12] and the molecular si-
mulation community in particular. Many Python based tools are now
available for system initialization, trajectory analysis, and workflow
management such as mBuild [13], MDAnalysis [14], MDTraj [15],
pysimm [16], and signac [17]. Of the simulation engines mentioned,
only HOOMD-blue and OpenMM provide first-class Python application
programming interfaces (APIs).

This paper describes HOOMD-blue v2.6. HOOMD-blue is a
particle simulation engine designed for nano- and colloidal-scale si-
mulations. As a general-purpose tool HOOMD-blue is capable of
standard MD and biomolecular simulations, but we focus our efforts
on providing unique functionality that is not already available in
other codes.

HOOMD-blue has been under development for more than 10 years
(Section 2) as an open source code. It provides MD and hard particle MC
capabilities (Section 3). We implement HOOMD-blue as a Python
package (Section 4) that seamlessly interoperates with the scientific
Python ecosystem. The high level Python interface abstracts a high
performance backend (Section 5) that executes simulations on one or
many GPUs or CPUs. As an open source project (Section 6), users can
extend the code with new models and methods to enable their research.
We employ software engineering (Section 7) practices to design, im-
plement, and test the code.

2. History

HOOMD began development in March 2007 at Iowa State
University. The initial implementation consisted of algorithms and data
structures demonstrating high performance MD on the GPU for coarse-
grained polymer simulations [10], implemented in C++ and CUDA.
The second open source release in 2008 added a Python interface.
Research groups discovered HOOMD, contributed new functionalities

https://doi.org/10.1016/j.commatsci.2019.109363
Received 12 April 2019; Received in revised form 17 October 2019; Accepted 18 October 2019

⁎ Corresponding author at: Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, USA.
E-mail address: sglotzer@umich.edu (S.C. Glotzer).

Computational Materials Science xxx (xxxx) xxxx

0927-0256/ © 2019 Published by Elsevier B.V.

Please cite this article as: Joshua A. Anderson, Jens Glaser and Sharon C. Glotzer, Computational Materials Science,
https://doi.org/10.1016/j.commatsci.2019.109363

http://www.sciencedirect.com/science/journal/09270256
https://www.elsevier.com/locate/commatsci
https://doi.org/10.1016/j.commatsci.2019.109363
https://doi.org/10.1016/j.commatsci.2019.109363
mailto:sglotzer@umich.edu
https://doi.org/10.1016/j.commatsci.2019.109363

to the code, and published research papers using it [18–22]. In August
2009, HOOMD development moved to the University of Michigan and
the software became HOOMD-blue (HOOMD, blue edition). Develop-
ment on the project has continued with more than 10,000 commits by
68 contributors since inception. Two major milestones in HOOMD-blue
development were the releases of v1.0 in 2014, which added MPI do-
main decomposition [23], and v2.0 in 2016 which added Monte Carlo
[24,25] and discrete element method MD [26] for hard shapes. In ad-
dition to these major developments, the code has grown organically
with new capabilities and performance improvements through a pro-
cess of lazy refactoring [27]. As of September 2019, we are aware of
298 peer-reviewed research articles that made use of HOOMD-blue.

3. Capabilities

3.1. Molecular dynamics

Listing1 Molecular dynamics simulation

from hoomd import *
from hoomd import md
place particles
context.initialize ()
unitcell= lattice.sc (a=2.0, type_name=‘A’)
init.create_lattice (unitcell, n= 10)
define Lennard-Jones interactions
nl =md.nlist.cell ()
lj =md.pair.lj (r_cut= 2.5, nlist= nl)
lj.pair_coeff.set (‘A’, ‘A’, epsilon=1.0,sigma=1.0)
NVT integration
all = group.all ();
md.integrate.mode_standard (dt= 0.005)
nvt =md.integrate.nvt (group= all, kT= 1.2, tau=1.0)
nvt.randomize_velocities (seed= 1)
run the simulation
run (10e3)

HOOMD-blue has MD integrators for many different thermo-
dynamic ensembles including NVE, NVT, NPH, NPT, Langevin dy-
namics, Brownian dynamics, and dissipative particle dynamics, and
also supports FIRE [28] energy minimization. The NVT, NPH, and NPT
integrators are based on the Martyna-Tobias-Klein method [29]. All of
these support the integration of rotational degrees of freedom directly,
and are able to couple a single thermostat to a system consisting of
particles with and without rotational degrees of freedom. HOOMD-blue
also implements the multi-particle collision dynamics solvent model
[30]. Users can apply different integrators to distinct subsets of the
system.

The general-purpose MD engine in HOOMD-blue can apply many
different types of forces to particles. Users can employ any number of
these to achieve the desired model. Anisotropic potentials treat parti-
cles with extended shape and produce both forces and torques on
particles. HOOMD-blue implements DEM potentials for faceted shapes
[26], Gay-berne ellipsoids, and dipole potentials. Composite particle
constraints connect many constituent particles so that they move as a
rigid body [21,31]. HOOMD-blue supports the active matter commu-
nity with an active force module that can apply constant magnitude
forces or torques to particles. HOOMD-blue also supports commonly
used pair, bond, angle, dihedral, improper, special pair potentials, and
PPPM electrostatics [22]. We provide a wide variety of pair potentials
utilized in different fields including Buckingham, DLVO, DPD, Lennard-
Jones, Gaussian, Mie, WCA, Yukawa, and others. Users can also develop
and test custom potentials with tabulated pair, bond, angle and dihedral
potentials. HOOMD-blue includes EAM [20,32], Tersoff, and square
density many-body potentials as well as periodic, electric field, constant
force, and wall external potentials. Users can fix the bond length be-
tween pairs of particles with distance constraints [33,34], or constrain
particles to the surface of a sphere or an ellipsoid.

3.2. Monte Carlo

Listing2 Hard particle Monte Carlo simulation

from hoomd import *
from hoomd import hpmc
place particles
context.initialize ()
unitcell= lattice.sc (a= 2.0, type_name=‘A’)
init.create_lattice (unitcell, n=10)
hard particle Monte Carlo
mc =hpmc.integrate.convex_polyhedron(d= 0.1, a= 0.1, seed= 2)
cube_verts = [[-0.5,-0.5,-0.5], [0.5,-0.5,-0.5],
[-0.5,-0.5, 0.5], [0.5,-0.5, 0.5],
[-0.5, 0.5,-0.5], [0.5, 0.5,-0.5],
[-0.5, 0.5, 0.5], [0.5, 0.5, 0.5]]
mc.shape_param.set (‘A’, vertices= cube_verts)
run the simulation
run (10e3)

In addition to MD simulations, HOOMD-blue can perform hard
particle MC simulations [24] with the HPMC component. We have
implemented a wide variety of shape classes, including spheres, disks,
unions of spheres, convex spheropolygons, simple polygons, ellipsoids,
convex spheropolyhedra, unions of convex spheropolyhedra, faceted
spheres, and general triangle meshes. All particles in a simulation must
be of the same shape class, but may be of different particle types, where
each particle type has separate shape parameters. User-defined wall
constraints confine particles to particular regions of space. HPMC im-
plements trial moves that enable NVT, NPT, grand, and Gibbs en-
sembles. An implicit depletant algorithm [25] enables efficient simu-
lations of colloids with depletants. HPMC can sample the simulation
pressure in NVT ensembles [35,36,24] and the free volume available to
the system. We have also implemented the Frenkel-Ladd free energy
method [37].

In hard particle Monte Carlo, the energy of the system is infinite
when two particles overlap or zero when there are no overlaps. There
are research applications that apply attractive patchy interactions in
addition to the hard particle core. Each project customizes the form of
this enthalpic interaction to the specific research question. HOOMD
provides flexibility to the user while maintaining high performance
using just-in-time compilation. The user provides a C++ code snippet
in their script, which HPMC compiles at runtime with Clang [38] and
executes it with LLVM [39] when needed to determine the energy of
each interaction. We provide hooks for cutoff pair potentials, cutoff pair
potentials evaluated at the points of a sphere union shape, and external
potentials applied to each particle.

4. Python package

HOOMD-blue is a Python package. Through the imperative Python
API, a user can configure which capabilities are enabled, set para-
meters, and control the progression of the simulation run. Listing1
performs a simple MD simulation. It uses init.create_lattice to
initialize a simple cubic lattice of particles, md.pair.lj to define the
Lennard-Jones particle pair interaction potential, and md.inte-
grate.nvt to employ NVT ensemble integration. Listing2 performs a
simple MC simulation of hard cubes. It uses hpmc.inte-
grate.convex_polyhedron to specify HPMC integration of the
convex polyhedron shape class and sets the parameters for type A to the
vertices of a cube. In both examples run executes the simulation for the
given number of steps.

Users can use the Python API in a script, via job queue submission,
inside Jupyter notebooks, or by any other method one can use a Python
package. For example, HOOMD-blue can easily be used for workflow
steps in the signac framework [17]. Options passed to the device context
control whether the simulation executes on the CPU or the GPU.
Without modifications to the script, a user may execute a script on

J.A. Anderson, et al. Computational Materials Science xxx (xxxx) xxxx

2

many CPUs or GPUs by launching it as an MPI parallel job or on GPU
nodes with NVLINK (such as OLCF Summit) with the multiple GPU
device option gpu = 0,1,2.

We provide complete documentation [40] for HOOMD-blue, in-
cluding installation instructions, tutorials in Jupyter notebooks, over-
view documentation of general concepts, and a complete listing of
every API call along with the options and parameters they accept. Users
can browse static copies of the tutorials online or download the note-
books and execute them with Jupyter. Jupyter notebooks provide a
mixture of formatted text description, code, and output. The HOOMD-
blue example notebooks examine the simulation results and show re-
levant output, including plots of system quantities vs time and trajec-
tory visualizations. When running the notebooks, users can modify
parameters or introduce new commands, then re-execute the notebook
and see how the output changes. HOOMD-blue’s user and developer
community is available to answer questions on the hoomd-users
mailing list, which has 521 members as of September 2019.

HOOMD-blue runs on Linux and macOS. We provide binary
packages on the conda-forge [41] Anaconda channel and also in Docker
and Singularity [42] images. The Anaconda packages provide an in-
stallation mechanism suitable for testing jobs on a laptop or work-
station. However, there are limitations that prevent Anaconda packages
from taking full advantage of resources on HPC clusters. We provide
Singularity images with performance optimized builds of HOOMD for a
number of national HPC resources, including PSC Bridges, SDSC Comet,
and TACC Stampede2. Users can also build HOOMD-blue from source
using CMake, numpy, and Python. NVIDIA CUDA is optional, but re-
quired to enable GPU acceleration. An MPI library is optional, but re-
quired to enable execution in parallel on multiple nodes.

5. Performance

We optimize all capabilities in HOOMD-blue extensively so that it
runs nano- and colloidal-scale simulations as fast as possible. With very
few exceptions, all of the time-consuming operations in HOOMD-blue
can execute on the GPU, including all of the data structures, force
evaluations, integrators, and MPI communication. We have also par-
allelized the majority of HOOMD-blue capabilities with MPI for ex-
ecution on multiple GPUs or multiple CPU cores. The exceptions are
cases where particular methods are typically used for simulations where
GPUs and/or MPI simulations are not necessary or code paths that are
rarely called. The components that lack GPU support in v2.6 are ex-
ternal fields and user-defined pair potentials in HPMC, and the tem-
perature rescale and zero momentum updaters in MD. The components
that lack MPI support in v2.6 are active forces, the IMD (interactive
MD) communication protocol, the Berendsen integrator, and ellipsoid
constraints.

Simulation performance is highly dependent on the type of simu-
lation, particle sizes, force fields, system density, and other parameters.
Typical research-relevant MD simulations execute an order of magni-
tude faster on a single GPU than on all cores of a single CPU socket for
system sizes of four thousand particles per GPU or more [23]. Over the
years, we have continually re-tuned and rewritten the MD CUDA code
for each new generation of GPU hardware. The current version of the
code (v2.6) utilizes many optimization techniques standard in the
CUDA developer community, including multiple threads per particle
with warp-level reductions, atomic operations to build cell lists, auto-
tuning kernel parameters, and others which readers can find in the
HOOMD-blue source code. Recently, we added support for improved
intra-node scaling to many GPUs using NVIDIA’s NVLINK technology
[43] (this issue).

HOOMD-blue includes unique performance optimizations. In col-
loidal systems with large and small particle sizes, cell-list based
neighbor list algorithms do not operate efficiently. The cell list must
either be sized to the largest particle, or many hundreds of cells must be
traversed to find tens of neighbors. Bounding volume hierarchy (BVH)

data structures, commonly used in computer graphics and video games,
dynamically adapt to the density fluctuations with minimal memory
usage and high performance. HOOMD-blue provides a BVH method to
build neighbor lists with nlist.tree, contributed by Michael Howard
[44], which is faster than the cell list for size ratios of 2:1 or greater.
Howard is currently working to optimize this code path further with the
goal to make it faster than the standard cell list in all cases [45] (this
issue). Users choose which neighbor list implementation to use in their
simulations.

Hard particle Monte Carlo (HPMC) simulations also execute an
order of magnitude faster on a single GPU than on all cores of a single
CPU socket, but only when system sizes are larger than tens of thou-
sands of particles per GPU. We are actively working on further opti-
mizing this GPU code path for hard particle simulations smaller than
this. We have also spent considerable effort optimizing HPMC’s CPU
code path. HPMC uses BVH data structures and CPU vector intrinsics,
and executes many trial moves in parallel to attain the best possible
performance on the CPU. See Ref. [24] for complete details about the
HPMC component of HOOMD-blue.

To put these general performance statements into context, we in-
clude benchmarks for two representative cases: the Lennard-Jones li-
quid with =N 64, 000 particles at a number density of 0.382 3 in the
NVT ensemble with = =k T t m/ 1.2, 0.005 /B

2 and a cutoff dis-
tance =r 3.0cut [10]; and the hard hexagon hexatic phase with

=N 1, 048, 576 particles at a packing fraction of = 0.7P in the NVT
ensemble [46].

On a single 24-core Intel Xeon Platinum 8160 CPU (TACC
Stampede2), HOOMD-blue v2.6.0 performs the MD Lennard-Jones li-
quid benchmark at 16.1·106 particle time steps per second and the
HPMC hexagon benchmark at 20.8·106 trial moves per second. On a
single V100 GPU (PSC Bridges), performance increases to 275·106 mil-
lion particle time steps per second for the Lennard-Jones liquid
benchmark and 132·106 trial moves per second for the hexagon bench-
mark.

We recommend that users test their models with different numbers
of CPU cores and GPUs so that they can make informed choices on the
performance and efficiency tradeoffs specific to their systems. We urge
authors who wish to publish comparative benchmarks to build the
latest version of HOOMD-blue and perform direct comparisons on the
most current hardware available. The performance numbers we include
here are representative only of a single point in time. Manufactures
regularly produce new processors and developers frequently write new
code performance optimizations. As a case in point, compare the above
full double precision V100 performance of HOOMD-blue v2.6.0 to our
2008 publication, where HOOMD v0.6.0 performed the Lennard-Jones
liquid benchmark in single precision on a single G80 GPU at 12.9·106

particle time steps per second [10] and our 2015 publication where
HOOMD v1.0.0 performed the Lennard-Jones benchmark (with

=N 32, 000) in single precision on a single K20 GPU (OLCF Titan) at
64·106 particle time steps per second [23].

6. Open source

HOOMD-blue is available open source under the permissive 3-clause
BSD license. To implement changes, users can fork the HOOMD-blue
code and add new functionalities directly, or create a plugin in a se-
parate code repository and link it to HOOMD-blue at build time. Many
users have published papers and software frameworks using HOOMD-
blue with extensions they have developed. Six recent examples of this
include: raaSAFT, a framework enabling coarse-grained simulations
based on the SAFT- Mie force field [47]; reverse non-equilibrium
molecular dynamics simulation applied to transitions between lamellar
orientations in shear flow [48]; protracted colored noise dynamics ap-
plied to linear polymer systems [49]; epoxpy, a package that dynami-
cally adds bonds during DPD simulations to model expoxy curing [50];

J.A. Anderson, et al. Computational Materials Science xxx (xxxx) xxxx

3

accurate hydrodynamic interactions to study how surface heterogeneity
affects percolation and gelation of colloids [51]; and Hoobas, a highly
objected-oriented builder for molecular dynamics to generate complex
initial conditions for polymer and DNA-coated nanoparticle systems
[52].

As of September 2019, GitHub (https://github.com/glotzerlab/
hoomd-blue) facilitates the open source development of HOOMD-blue
(previously, we have hosted development on Assembla, Redmine, and
Bitbucket). The code repository houses the entire history of HOOMD-
blue’s development and allows many developers to simultaneously
work on changes to the code. Issue lists allow users to submit bug re-
ports and track their progress and developers to track planned feature
development. We encourage contributions to HOOMD-blue from the
community. Pull requests allow the community to review and discuss
proposed changes to the code. We merge pull requests into the main
line of development after they are reviewed and approved and pass all
tests.

7. Software engineering

HOOMD-blue v2.6 consists of 173,662 lines of code. While 68 in-
dividuals have contributed to the project over its lifetime, at any one
time a group of 2–3 developers maintains the code and improves core
functionalities. HOOMD-blue developers are researchers and do not
develop full-time. We automate processes and carefully consider library
dependencies, tools, and design patterns in order to provide the highest
quality code that will remain stable over a long time period with a
minimum of maintenance effort. For example, HOOMD-blue’s simula-
tion engine is written with a modular, isolated, object oriented design.
Each capability of the code is implemented in a separate class that
communicates with the core particle data structures and only with
other classes as necessary.

We implement simulation algorithms in C++ and CUDA, with MPI
for domain decomposition. CUDA and MPI are optional, but are needed
to provide GPU and parallel runs, respectively. The user-facing side
HOOMD-blue is written in Python. We use the pybind11 [53] library to
interface Python and C++ classes, and the CMake system to configure
builds. We also utilize a number of header-only libraries which we
embed with submodules so that users and developers do not need to
separately download them. HOOMD-blue’s documentation contains the
full list of all libraries utilized and their corresponding license notices.

7.1. Testing

We employ white box unit testing for every module in HOOMD-
blue. Each test is designed with knowledge of how the module is im-
plemented and sufficient cases are tested so as to exercise all of the
possible code paths that the module can take. The automated unit tests
can easily be executed for any build of HOOMD-blue to validate that all
capabilities are operating correctly.

For example, a unit test for the Lennard-Jones pair force class cre-
ates a system with six particles in it. Some of these interact across
periodic boundary conditions while others interact directly. It then sets
the potential parameters , , and rcut to different values and verifies
that the correct force, energy, and virial are computed each time. We
compute reference values independently (e.g. with a calculator) for
individual unit tests. A test passes only when all computed values are
within a tolerance of the reference.

We also perform black box system integration tests to ensure that
modules work together correctly. These validation tests assume no
implementation specific knowledge. The tests enter simulation para-
meters in a job script and analyze output files the same way a user
would run HOOMD-blue.

Automated validation tests must meet the following requirements.
The test simulation must be long enough to sample an average value
with reasonable error bars, but short enough that they complete in a

reasonable amount of time (ideally, individual tests should complete in
less than 10min). When available, we validate equations of state
against published reference values. For example, we use the pressure
and density of the hard disk fluid to validate HPMC [54] and the NIST
standard simulation reference [55] to validate Lennard-Jones simula-
tions in both HPMC and MD. In other cases, such references are not
available in the literature and we instead cross-validate multiple code
paths in HOOMD-blue. For example, one validation test compares MD
and MC simulations of WCA dimers, both performed by HOOMD-blue.

7.2. Continuous integration

We employ continuous integration practices to ensure code quality.
Scripts trigger on every commit to the HOOMD-blue source code re-
pository and on pull requests. These scripts compile that commit with a
selection of compilers, CUDA versions, Python versions, CMake ver-
sions, LLVM versions, and other build options. Then the script runs the
unit tests. Selected builds also run the longer validation tests. All of the
build output is captured and any failing builds or failing test are
flagged. The continuous integration testing system provides developers
with feedback on the test outcomes.

As of September 2019, we build Docker containers to provide the
build and test environment and execute tests on Microsoft Azure
Pipelines [56]. We execute CPU tests on Microsoft-Hosted cloud agents
and GPU tests on self-hosted agents we run locally. We also utilize the
readthedocs [57] service to automatically build and host HOOMD-
blue’s documentation when new commits are pushed to the repository.

8. Conclusions

HOOMD-blue is a particle simulation engine designed for nano- and
colloidal-scale simulations. It was built from the ground up for GPU
acceleration, and has been actively developed since March 2007 with
more than 10,000 commits and 68 contributors. As a general-purpose
code, it is used by researchers the fields of colloidal self-assembly, ac-
tive matter, coarse grained polymers, and others.

We develop the open source HOOMD-blue as a Python package with
a high performance C++/CUDA backend. HOOMD-blue’s Python API
allows users to define and execute simulations and combine them with
other tools in the scientific Python ecosystem. We optimize all core
functionalities to obtain the fastest possible performance on whatever
architecture (CPU or GPU) is best suited to the problem. This requires
us to continually refactor and rewrite the core kernels to ensure
HOOMD-blue performs well on the latest hardware. As an open source
package, users can modify and extend the code to meet their specific
needs.

We employ software engineering practices including unit tests,
system validation tests and continuous integration to ensure that the
code operates correctly. Collaborative development and code review
practices to ensure code meets standards set by the developers and to
give the community an opportunity to provide input on the develop-
ment process. HOOMD-blue is open source and we welcome contribu-
tions of new capabilities of interest to a wide audience of users.

We are impressed by the amazing science the research community is
able to accomplish using HOOMD-blue. We hope that more of this great
work continues, and that more developers contribute to make HOOMD-
blue a better simulation code for the community.

Data availability

HOOMD-blue source code is available on github:https://github.
com/glotzerlab/hoomd-blue.

CRediT authorship contribution statement

Joshua A. Anderson: Conceptualization, Investigation, Validation,

J.A. Anderson, et al. Computational Materials Science xxx (xxxx) xxxx

4

https://github.com/glotzerlab/hoomd-blue
https://github.com/glotzerlab/hoomd-blue
https://github.com/glotzerlab/hoomd-blue
https://github.com/glotzerlab/hoomd-blue

Writing - original draft, Writing - review & editing. Jens Glaser:
Conceptualization, Investigation, Validation, Writing - original draft,
Writing - review & editing. Sharon C. Glotzer: Conceptualization,
Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgments

Initial HOOMD development (v0.6-v0.8) was supervised by Alex
Travesset and funded by the National Science Foundation through
Grant DMR-0426597 and by DOE through the Ames lab under Contract
No. DE-AC02-07CH11358. HOOMD-blue development has been sup-
ported by the DOD/ASD (R&E) under Award No. N00244-09-1-0062
(2009-2014, early design and implementation, v0.9 – v1.x) and the
National Science Foundation, Division of Materials Research Award #
DMR 1409620 (2014–2018, especially DEM and HPMC capabilities in
v2.x). Software was validated and benchmarked on the Extreme Science
and Engineering Discovery Environment (XSEDE) [58], which is sup-
ported by National Science Foundation Grant No. ACI-1053575 (XSEDE
award DMR 140129); on resources of the Oak Ridge Leadership Com-
puting Facility which is a DOE Office of Science User Facility supported
under Contract No. DE- AC05-00OR22725; and through computational
resources and services provided by Advanced Research Computing at
the University of Michigan, Ann Arbor. Hardware provided by NVIDIA
Corp. is gratefully acknowledged. Any opinions, findings, and conclu-
sions or recommendations expressed in this publication are those of the
author(s) and do not necessarily reflect the views of the DOD/ASD(R&
E).

We would like to thank all HOOMD-blue contributors: Carl Simon
Adorf, Khalid Ahmed, James Antonaglia, Steve Barr, Joseph Berleant,
Isaac Bruss, Chengyu Dai, Kevin Daly, Avisek Das, Bradley Dice, Paul
Dodd, Chrisy Du, Åsmund Ervik, Jenny Fothergill, Grey Garrett, Eric
Harper, Mike Henry, Michael Howard, Alexander Hudson, M. Eric
Irrgang, Eric Jankowski, Kwanghwi Je, Bjørnar Jensen, Christoph
Junghans, Aaron Keys, Christoph Klein, Axel Kohlmeyer, Kevin
Kohlstedt, David LeBard, Andrew Mark, Ryan Marson, Tim Moore,
Shannon Moran, Igor Morozov, Pavani Medapuram Lakshmi
Narasimha, Richmond Newman, Trung Dac Nguyen, Sam Nola, Antonio
Osorio, Carolyn Phillips, James Proctor, Cong Qiao, Vyas
Ramasubramani, Malcolm Ramsay, Sumedh R. Risbud, Luis Y. Rivera-
Rivera, Ludwig Schneider, Benjamin Schultz, Peter Schwendeman,
Wenbo Shen, Kevin Silmore, Rastko Sknepnek, Brandon Denis Smith,
Ross Smith, Matthew Spellings, Ben Swerdlow, Erin Teich, Stephen
Thomas, Alex Travesset, Alyssa Travitz, Greg van Anders, Bryan
VanSaders, Lin Yang, Pengji Zhou, and William Zygmunt

References

[1] D. Case, I. Ben-Shalom, S. Brozell, D. Cerutti, T. Cheatham III, V. Cruzeiro,
T. Darden, R. Duke, D. Ghoreishi, M. Gilson, H. Gohlke, A. Goetz, D. Greene,
R. Harris, N. Homeyer, S. Izadi, A. Kovalenko, T. Kurtzman, T. Lee, S. LeGrand,
P. Li, C. Lin, J. Liu, T. Luchko, R. Luo, D. Mermelstein, K. Merz, Y. Miao, G. Monard,
C. Nguyen, H. Nguyen, I. Omelyan, A. Onufriev, F. Pan, R. Qi, D. Roe, A. Roitberg,
C. Sagui, S. Schott-Verdugo, J. Shen, C. Simmerling, J. Smith, R. Salomon-Ferrer,
J. Swails, R. Walker, J. Wang, H. Wei, R. Wolf, X. Wu, L. Xiao, D. York, P. Kollman,
AMBER (2018) 2018.

[2] M.J. Abraham, T. Murtola, R. Schulz, S. Páll, J.C. Smith, B. Hess, E. Lindahl,
GROMACS: high performance molecular simulations through multi-level paralle-
lism from laptops to supercomputers, SoftwareX 1–2 (2015) 19–25, https://doi.org/
10.1016/j.softx.2015.06.001.

[3] J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,
R.D. Skeel, L. Kalé, K. Schulten, Scalable molecular dynamics with NAMD, J.
Comput. Chem. 26 (2005) 1781–1802, https://doi.org/10.1002/jcc.20289.

[4] S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp.

Phys. 117 (1995) 1–19, https://doi.org/10.1006/jcph.1995.1039.
[5] J.K. Shah, E. Marin-Rimoldi, R.G. Mullen, B.P. Keene, S. Khan, A.S. Paluch, N. Rai,

L.L. Romanielo, T.W. Rosch, B. Yoo, E.J. Maginn, Cassandra: an open source Monte
Carlo package for molecular simulation, J. Comput. Chem. 38 (2017) 1727–1739,
https://doi.org/10.1002/jcc.24807.

[6] Y. Nejahi, M. Soroush Barhaghi, J. Mick, B. Jackman, K. Rushaidat, Y. Li,
L. Schwiebert, J. Potoff, GOMC: GPU optimized Monte Carlo for the simulation of
phase equilibria and physical properties of complex fluids, SoftwareX 9 (2019)
20–27 DOI: 10.1016/j.softx.2018.11.00.

[7] M.G. Martin, MCCCS Towhee: a tool for Monte Carlo molecular simulation, Mol.
Simul. 39 (2013) 1212–1222, https://doi.org/10.1080/08927022.2013.828208.

[8] N. Ganesan, B.A. Bauer, T.R. Lucas, S. Patel, M. Taufer, Structural, dynamic, and
electrostatic properties of fully hydrated DMPC bilayers from molecular dynamics
simulations accelerated with graphical processing units (GPUs), J. Comput. Chem.
32 (2011) 2958–2973, https://doi.org/10.1002/jcc.21871.

[9] M. Taufer, N. Ganesan, S. Patel, GPU enabled macromolecular simulation: chal-
lenges and opportunities, IEEE Comput. Sci. Eng. (CiSE) 15 (2013) 56–64, https://
doi.org/10.1109/MCSE.2012.42.

[10] J.A. Anderson, C.D. Lorenz, A. Travesset, General purpose molecular dynamics si-
mulations fully implemented on graphics processing units, J. Comput. Phys. 227
(2008) 5342–5359, https://doi.org/10.1016/j.jcp.2008.01.047.

[11] P. Eastman, V.S. Pande, Efficient nonbonded interactions for molecular dynamics
on a graphics processing unit, J. Comput. Chem. 31 (2010) 1268–1272, https://doi.
org/10.1002/jcc.21413.

[12] K.J. Millman, M. Aivazis, Python for scientists and engineers, Comput. Sci. Eng. 13
(2011) 9–12, https://doi.org/10.1109/MCSE.2011.36.

[13] C. Klein, J. Sallai, T.J. Jones, C.R. Iacovella, C. McCabe, P.T. Cummings, A
Hierarchical, Component Based Approach to Screening Properties of Soft Matter,
Foundations of Molecular Modeling and Simulation, 2016, pp. 79–92, , https://doi.
org/10.1007/978-981-10-1128-3_5.

[14] N. Michaud-Agrawal, E.J. Denning, T.B. Woolf, O. Beckstein, MDAnalysis: a toolkit
for the analysis of molecular dynamics simulations, J. Comput. Chem. 32 (2011)
2319–2327, https://doi.org/10.1002/jcc.21787.

[15] R.T. McGibbon, K.A. Beauchamp, M.P. Harrigan, C. Klein, J.M. Swails,
C.X. Hernández, C.R. Schwantes, L.-P. Wang, T.J. Lane, V.S. Pande, MDTraj: a
modern open library for the analysis of molecular dynamics trajectories, Biophys. J.
109 (2015) 1528–1532, https://doi.org/10.1016/j.bpj.2015.08.015.

[16] M.E. Fortunato, C.M. Colina, pysimm: a python package for simulation of molecular
systems, SoftwareX 6 (2017) 7–12, https://doi.org/10.1016/j.softx.2016.12.002.

[17] C.S. Adorf, P.M. Dodd, V. Ramasubramani, S.C. Glotzer, Simple data and workflow
management with the SIGNAC framework, Comput. Mater. Sci. 146 (2018)
220–229, https://doi.org/10.1016/j.commatsci.2018.01.035.

[18] C.L. Phillips, J.A. Anderson, S.C. Glotzer, Pseudo-random number generation for
Brownian dynamics and dissipative particle dynamics simulations on GPU devices,
J. Comput. Phys. 230 (2011) 7191–7201, https://doi.org/10.1016/j.jcp.2011.05.
021.

[19] B.G. Levine, D.N. Lebard, R. Devane, W. Shinoda, A. Kohlmeyer, M.L. Klein,
Micellization studied by GPU-accelerated coarse-grained molecular dynamics, J.
Chem. Theory Comput. 7 (2011) 4135–4145, https://doi.org/10.1021/ct2005193.

[20] I. Morozov, A. Kazennov, R. Bystryi, G. Norman, V. Pisarev, V. Stegailov, Molecular
dynamics simulations of the relaxation processes in the condensed matter on GPUs,
Comput. Phys. Commun. 182 (2011) 1974–1978, https://doi.org/10.1016/j.cpc.
2010.12.026.

[21] T.D. Nguyen, C.L. Phillips, J.A. Anderson, S.C. Glotzer, Rigid body constraints
realized in massively-parallel molecular dynamics on graphics processing units,
Comput. Phys. Commun. 182 (2011) 2307–2313, https://doi.org/10.1016/j.cpc.
2011.06.005.

[22] D.N. LeBard, B.G. Levine, P. Mertmann, S.A. Barr, A. Jusufi, S. Sanders, M.L. Klein,
A.Z. Panagiotopoulos, Self-assembly of coarse-grained ionic surfactants accelerated
by graphics processing units, Soft Matter 8 (2012) 2385–2397, https://doi.org/10.
1039/C1SM06787G.

[23] J. Glaser, T.D. Nguyen, J.A. Anderson, P. Lui, F. Spiga, J.A. Millan, D.C. Morse,
S.C. Glotzer, Strong scaling of general-purpose molecular dynamics simulations on
GPUs, Comput. Phys. Commun. 192 (2015) 97–107, https://doi.org/10.1016/j.cpc.
2015.02.028.

[24] J.A. Anderson, M. Eric Irrgang, S.C. Glotzer, Scalable metropolis Monte Carlo for
simulation of hard shapes, Comput. Phys. Commun. 204 (2016) 21–30, https://doi.
org/10.1016/j.cpc.2016.02.024.

[25] J. Glaser, A.S. Karas, S.C. Glotzer, A parallel algorithm for implicit depletant si-
mulations, J. Chem. Phys. 143 (2015) 184110, https://doi.org/10.1063/1.
4935175.

[26] M. Spellings, R.L. Marson, J.A. Anderson, S.C. Glotzer, GPU accelerated Discrete
Element Method (DEM) molecular dynamics for conservative, faceted particle si-
mulations, J. Comput. Phys. 334 (2017) 460–467, https://doi.org/10.1016/j.jcp.
2017.01.014.

[27] C.S. Adorf, V. Ramasubramani, J.A. Anderson, S.C. Glotzer, How to professionally
develop reusable scientific software? and when not to, Comput. Sci. Eng. (2018),
https://doi.org/10.1109/MCSE.2018.2882355 1–1.

[28] E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, P. Gumbsch, Structural relaxation
made simple, Phys. Rev. Lett. 97 (2006), https://doi.org/10.1103/PhysRevLett. 97.
170201.

[29] G.J. Martyna, D.J. Tobias, M.L. Klein, Constant pressure molecular dynamics al-
gorithms, J. Chem. Phys. 101 (1994) 4177–4189, https://doi.org/10.1063/1.
467468.

[30] M.P. Howard, A.Z. Panagiotopoulos, A. Nikoubashman, Efficient mesoscale hy-
drodynamics: multiparticle collision dynamics with massively parallel GPU

J.A. Anderson, et al. Computational Materials Science xxx (xxxx) xxxx

5

http://refhub.elsevier.com/S0927-0256(19)30662-7/h0005
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0005
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0005
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0005
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0005
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0005
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0005
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0005
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1016/j.softx.2015.06.001
https://doi.org/10.1002/jcc.20289
https://doi.org/10.1006/jcph.1995.1039
https://doi.org/10.1002/jcc.24807
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0030
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0030
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0030
http://refhub.elsevier.com/S0927-0256(19)30662-7/h0030
https://doi.org/10.1080/08927022.2013.828208
https://doi.org/10.1002/jcc.21871
https://doi.org/10.1109/MCSE.2012.42
https://doi.org/10.1109/MCSE.2012.42
https://doi.org/10.1016/j.jcp.2008.01.047
https://doi.org/10.1002/jcc.21413
https://doi.org/10.1002/jcc.21413
https://doi.org/10.1109/MCSE.2011.36
https://doi.org/10.1007/978-981-10-1128-3_5
https://doi.org/10.1007/978-981-10-1128-3_5
https://doi.org/10.1002/jcc.21787
https://doi.org/10.1016/j.bpj.2015.08.015
https://doi.org/10.1016/j.softx.2016.12.002
https://doi.org/10.1016/j.commatsci.2018.01.035
https://doi.org/10.1016/j.jcp.2011.05.021
https://doi.org/10.1016/j.jcp.2011.05.021
https://doi.org/10.1021/ct2005193
https://doi.org/10.1016/j.cpc.2010.12.026
https://doi.org/10.1016/j.cpc.2010.12.026
https://doi.org/10.1016/j.cpc.2011.06.005
https://doi.org/10.1016/j.cpc.2011.06.005
https://doi.org/10.1039/C1SM06787G
https://doi.org/10.1039/C1SM06787G
https://doi.org/10.1016/j.cpc.2015.02.028
https://doi.org/10.1016/j.cpc.2015.02.028
https://doi.org/10.1016/j.cpc.2016.02.024
https://doi.org/10.1016/j.cpc.2016.02.024
https://doi.org/10.1063/1.4935175
https://doi.org/10.1063/1.4935175
https://doi.org/10.1016/j.jcp.2017.01.014
https://doi.org/10.1016/j.jcp.2017.01.014
https://doi.org/10.1109/MCSE.2018.2882355
https://doi.org/10.1103/PhysRevLett. 97.170201
https://doi.org/10.1103/PhysRevLett. 97.170201
https://doi.org/10.1063/1.467468
https://doi.org/10.1063/1.467468

acceleration, Comput. Phys. Commun. 230 (2018) 10–20, https://doi.org/10.1016/
j.cpc.2018.04.009.

[31] J. Glaser, X. Zha, J.A. Anderson, S.C. Glotzer, A. Travesset, Pressure in Rigid Body
Molecular Dynamics, In Preparation (this issue), 2019.

[32] L. Yang, F. Zhang, C.-Z. Wang, K.-M. Ho, A. Travesset, Implementation of metal-
friendly EAM/FS-type semi-empirical potentials in HOOMD-blue: a GPU-ac-
celerated molecular dynamics software, J. Comput. Phys. 359 (2018) 352–360,
https://doi.org/10.1016/j.jcp.2018.01.015.

[33] M. Yoneya, H.J.C. Berendsen, K. Hirasawa, A non-iterative matrix method for
constraint molecular dynamics simulations, Mol. Simul. 13 (1994) 395–405,
https://doi.org/10.1080/08927029408022001.

[34] M. Yoneya, A generalized non-iterative matrix method for constraint molecular
dynamics simulations, J. Comput. Phys. 172 (2001) 188–197, https://doi.org/10.
1006/jcph.2001.6819.

[35] R. Eppenga, D. Frenkel, Monte Carlo study of the isotropic and nematic phases of
infinitely thin hard platelets, Mol. Phys. 52 (1984) 1303–1334, https://doi.org/10.
1080/00268978400101951.

[36] P.E. Brumby, A.J. Haslam, E. de Miguel, G. Jackson, Subtleties in the calculation of
the pressure and pressure tensor of anisotropic particles from volume-perturbation
methods and the apparent asymmetry of the compressive and expansive contribu-
tions, Mol. Phys. 109 (2011) 169–189, https://doi.org/10.1080/00268976.2010.
530301.

[37] D. Frenkel, A.J.C. Ladd, New Monte Carlo method to compute the free energy of
arbitrary solids. Application to the fcc and hcp phases of hard spheres, J. Chem.
Phys. 81 (1984) 3188–3193, https://doi.org/10.1063/1.448024.

[38] Clang: a C language family frontend for LLVM, 2019.https://clang.llvm.org/.
[39] C. Lattner, V. Adve, LLVM: A Compilation Framework for Lifelong Program Analysis

& Transformation, in: Proceedings of the International Symposium on Code
Generation and Optimization: Feedback-directed and Runtime Optimization, CGO
’04, IEEE Computer Society, Washington, DC, USA, 2004, pp. 75.

[40] HOOMD-blue documentation, 2019. https://hoomd-blue.readthedocs.io.
[41] Conda Forge, 2019. https://conda-forge.org/.
[42] G.M. Kurtzer, V. Sochat, M.W. Bauer, Singularity: scientific containers for mobility

of compute, PLOS ONE 12 (2017) e0177459, https://doi.org/10.1371/journal.
pone.0177459.

[43] J. Glaser, P. Schwendeman, J.A. Anderson, S.C. Glotzer, Unified memory in
HOOMD-blue for node-level strong scaling, In Preparation (this issue), 2019.

[44] M.P. Howard, J.A. Anderson, A. Nikoubashman, S.C. Glotzer, A.Z. Panagiotopoulos,
Efficient neighbor list calculation for molecular simulation of colloidal systems
using graphics processing units, Comput. Phys. Commun. 203 (2016) 45–52,
https://doi.org/10.1016/j.cpc.2016.02.003.

[45] M.P. Howard, A. Statt, F. Madutsa, T.M. Truskett, A.Z. Panagiotopoulos, Quantized

bounding volume hierarchies for neighbor search in molecular simulations on
graphics processing units, (this issue) (2019). http://arxiv.org/abs/1901.08088.

[46] J.A. Anderson, J. Antonaglia, J.A. Millan, M. Engel, S.C. Glotzer, Shape and sym-
metry determine two-dimensional melting transitions of hard regular polygons,
Phys. Rev. X 7 (2017) 021001, , https://doi.org/10.1103/PhysRevX.7.021001
URL: http://arxiv.org/abs/1606.00687.

[47] Å. Ervik, G.J. Serratos, E.A. Müller, raaSAFT: a framework enabling coarse-grained
molecular dynamics simulations based on the SAFT-γMie force field, Comput. Phys.
Commun. 212 (2017) 161–179, https://doi.org/10.1016/j.cpc.2016.07.035.

[48] L. Schneider, M. Heck, M. Wilhelm, M. Müller, Transitions between lamellar or-
ientations in shear flow, Macromolecules 51 (2018) 4642–4659, https://doi.org/
10.1021/acs.macromol.8b00825.

[49] A.J. Peters, B.D. Nation, D. Nicoloso, P.J. Ludovice, C.L. Henderson, Protracted
colored noise dynamics applied to linear polymer systems, Macromol. Theory
Simul. 27 (2018) 1700062, https://doi.org/10.1002/mats.201700062.

[50] S. Thomas, M. Alberts, M.M. Henry, C.E. Estridge, E. Jankowski, Routine million-
particle simulations of epoxy curing with dissipative particle dynamics, J.
Theoretical Computat. Chem. 17 (2018) 1840005, https://doi.org/10.1142/
S0219633618400059.

[51] G. Wang, J.W. Swan, Surface heterogeneity affects percolation and gelation of
colloids: dynamic simulations with random patchy spheres, Soft Matter 15 (2019)
5094–5108, https://doi.org/10.1039/C9SM00607A.

[52] M. Girard, A. Ehlen, A. Shakya, T. Bereau, M.O. de la Cruz, Hoobas: a highly object-
oriented builder for molecular dynamics, Comput. Mater. Sci. 167 (2019) 25–33,
https://doi.org/10.1016/j.commatsci.2019.05.003.

[53] W. Jakob, J. Rhinelander, D. Moldovan, pybind11 – Seamless operability between
C++11 and Python, 2017.

[54] E.P. Bernard, W. Krauth, Two-step melting in two dimensions: first-order liquid-
hexatic transition, Phys. Rev. Lett. 107 (2011) 155704, https://doi.org/10.1103/
PhysRevLett. 107.155704.

[55] V.K. Shen, D.W. Siderius, W.P. Krekelberg, H.W. Hatch, NIST Standard Reference
Simulation Website, NIST Standard Reference Database Number 173, National
Institute of Standards and Technology, Gaithersburg MD, 2017. https://doi.org/10.
18434/T4M88Q.

[56] Microsoft Azure Pipelines, 2019. https://azure.microsoft.com/en-us/services/
devops/pipelines/.

[57] readthedocs, 2019. https://readthedocs.org/.
[58] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood,

S. Lathrop, D. Lifka, G.D. Peterson, R. Roskies, J.R. Scott, N. Wilkens-Diehr, XSEDE:
accelerating scientific discovery, Comput. Sci. Eng. 16 (2014) 62–74, https://doi.
org/10.1109/MCSE.2014.80.

J.A. Anderson, et al. Computational Materials Science xxx (xxxx) xxxx

6

https://doi.org/10.1016/j.cpc.2018.04.009
https://doi.org/10.1016/j.cpc.2018.04.009
https://doi.org/10.1016/j.jcp.2018.01.015
https://doi.org/10.1080/08927029408022001
https://doi.org/10.1006/jcph.2001.6819
https://doi.org/10.1006/jcph.2001.6819
https://doi.org/10.1080/00268978400101951
https://doi.org/10.1080/00268978400101951
https://doi.org/10.1080/00268976.2010.530301
https://doi.org/10.1080/00268976.2010.530301
https://doi.org/10.1063/1.448024
https://clang.llvm.org/
https://hoomd-blue.readthedocs.io
https://conda-forge.org/
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1016/j.cpc.2016.02.003
http://arxiv.org/abs/1901.08088
https://doi.org/10.1103/PhysRevX.7.021001
https://doi.org/10.1103/PhysRevX.7.021001
https://doi.org/10.1016/j.cpc.2016.07.035
https://doi.org/10.1021/acs.macromol.8b00825
https://doi.org/10.1021/acs.macromol.8b00825
https://doi.org/10.1002/mats.201700062
https://doi.org/10.1142/S0219633618400059
https://doi.org/10.1142/S0219633618400059
https://doi.org/10.1039/C9SM00607A
https://doi.org/10.1016/j.commatsci.2019.05.003
https://doi.org/10.1103/PhysRevLett. 107.155704
https://doi.org/10.1103/PhysRevLett. 107.155704
https://doi.org/10.18434/T4M88Q
https://doi.org/10.18434/T4M88Q
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://azure.microsoft.com/en-us/services/devops/pipelines/
https://readthedocs.org/
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80

	HOOMD-blue: A Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations
	Introduction
	History
	Capabilities
	Molecular dynamics
	Monte Carlo

	Python package
	Performance
	Open source
	Software engineering
	Testing
	Continuous integration

	Conclusions
	Data availability
	CRediT authorship contribution statement
	mk:H1_15
	Acknowledgments
	References

