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SUMMARY

MicroRNA (miRNA) trans-regulates the stability of many mRNAs and controls their expression levels.

Reconstruction of themiRNA-mRNA interactome is key to the understanding of themiRNA regulatory

network and related biological processes. However, existing miRNA target prediction methods are

limited to canonical miRNA-mRNA interactions and have high false prediction rates. Other experi-

mental methods are low throughput and cannot be used to probe genome-wide interactions. To

address this challenge, the Cross-linking Ligation and Sequencing of Hybrids (CLASH) technology

was developed for high-throughput probing of transcriptome-wide microRNA-mRNA interactions

in vivo. The mapping of duplex reads, chimeras of two ultra-short RNA strands, poses computational

challenges to current mapping and alignment methods. To address this issue, we developed CLAN

(CrossLinked readsANalysis toolkit). CLANgeneratedacomparablemappingof singular reads toother

tools, and significantly outperformed inmapping simulatedand real CLASHduplex reads, offering apo-

tential application to other next-generation sequencing-based duplex-read-generating technologies.

INTRODUCTION

MicroRNA (miRNA) is a class of important regulator non-coding RNA that interacts with its target mRNAs

through sequence complementarity (often observed at the 30 UTR of the mRNA), subsequently regulating

the correspondingmRNAs’ translation level by degrading the targetedmRNAs (Bartel, 2009). MaturemiRNA

has a length between 21 and 25 nucleotides (nts), usually with the 28th nucleotide perfectly complementing its

target mRNA, serving as the seed region of the binding. The miRNA-mRNA binding and subsequent mRNA

degradation are facilitated by the RNA-induced silencing complex (RISC), a microRNA ribonucleoprotein

complex. The Argonaute protein (AGO) within RISC contains two RNA-binding domains (PAZ and PIWI)

that bind themiRNA andmRNA, respectively, and plays key roles in facilitating themiRNA-mRNA interaction.

The biological function of the miRNA is often understood through the function of its targeted mRNAs. For

example, cancer-causing miRNA point mutations or aberrant expression can lead to the positive regulation

of the targeted cancer-causing genes or the negative regulation of the targeted cancer-repressing genes

(Zhang et al., 2006; Volinia et al., 2006; Calin and Croce, 2006). As a result, elucidating the miRNA target is

key to the understanding of miRNA function and its regulating biological processes.

MicroRNA targets can be identified in three ways primarily. First, they can be predicted computationally

through models (Wang, 2016) that summarize, e.g., the sequence complementarity (Agarwal et al., 2015)

and site accessibility (Kertesz et al., 2007) information. Although computational approaches have success-

fully recovered many genuine miRNA targets, their false-positive rates remain high. Second, the next-

generation sequencing (NGS)-based CLIP (Crosslinking Immunoprecipitation)-seq on the AGO protein

is capable of probing the potential miRNA-binding sites across the entire genome, but fails in specifying

the targets of a specific miRNA family (Chi et al., 2009). Finally, experimental approaches can be used to

validate a specific miRNA-mRNA interaction, yet in a low-throughput manner (Jin et al., 2013).

Recently, the Cross-linking Ligation and Sequencing of Hybrids (CLASH) technology was developed for

high-throughput genome-wide probing of in vivomiRNA-mRNA interactions (see Figure 1). CLASH (Kudla

et al., 2011; Helwak and Tollervey, 2014) first pulls down the interacting miRNA-mRNA strands through

AGO immunoprecipitation, followed by the covalent cross-linking of the interacting miRNA-mRNA

strands, and eventually sequences the cross-linked miRNA-mRNA duplex. As the covalent cross-linking
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is proximity induced, the miRNA/mRNA strands could ligate to spatially adjacent free-floating nucleotide

fragments (red clouds in Figure 1) before being cross-linked to each other. These nucleotide fragments

could also be ligated to the terminus of the miRNA/mRNA strands. Intuitively, the mapping of the resulting

duplex reads will reveal direct evidence for the corresponding miRNA-mRNA interaction. In practice, the

inclusion of the random nucleotide fragment contaminants complicates the CLASH read mapping.

In the original CLASH analysis (Helwak et al., 2013; Helwak and Tollervey, 2014), BLAST (Altschul et al., 1997)

was used to map the CLASH reads, leading to a 2%–3% mapping rate. The same group further tested

BOWTIE2 (Langmead and Salzberg, 2012) as the aligner in a subsequent analysis pipeline called Hyb

(Travis et al., 2014). Although BOWTIE2 greatly improved the computational efficiency of the CLASH

read mapping, it was comparable with BLAST in terms of mapping sensitivity. The main reasons for the

low-sensitivity mapping of the CLASH reads are (1) random nucleotide fragment contaminants lack

apparent pattern and therefore are difficult to detect and can mislead the read mapping and (2) the

resulting CLASH reads can be very short (owing to the intrinsic length of the AGO-binding site). For

example, the average read length of a real CLASH dataset (SRR959751) is 20 nt (after adapter trimming),

corresponding to 10 nts per miRNA/mRNA strand.

In addition to BLAST and BOWTIE2, other read-mapping tools such as BWA-MEM (Li and Durbin, 2009),

STAR (Dobin et al., 2013), and HISAT2 (Kim et al., 2015), are expected to perform similarly because they

share a similar read-mapping objective. Subsequent analyses (such as Hyb, Travis et al., 2014) take themap-

ping results as the input and attempt to prioritize confident miRNA-mRNA interactions. However, they

cannot create new read mappings and hence cannot be used to tackle the low-sensitivity issue. A dedi-

cated CLASH reads aligner is in demand.

In consideration of the unique CLASH read layout and the limitations of the existing alignment and map-

ping tools, we provide a novel formulation for the CLASH read-mapping problem. We term a single

miRNA/mRNA an arm of the read, and we seek to find a single arm (when the miRNA-mRNA cross-linking

fails) or two non-overlapping arms (when themiRNA andmRNA cross-linking is successful) from a read such

that (1) each arm can be mapped to the reference database under a given sequence similarity threshold

and (2) the total length of the mapped single or two arms is maximized. This formulation assumes that,

under successful experimental conditions, bona fide miRNA/mRNA sequences should dominate contam-

inants in the CLASH reads. This problem is subsequently solved through efficient identification of the

set of all candidate arms through Burrows-Wheeler Transformation (BWT)-assisted searches against the

reference database, followed by a dynamic programming chaining algorithm to identify the arm(s) with

maximized total length.

We implemented the algorithm into a program called CLAN (the CrossLinked reads ANalysis toolkit). We

summarized the details of the CLAN algorithms in Figure S1 and the Transparent Methods section of the

Supplemental Information. We benchmarked CLAN with popular alignment and mapping tools BLAST

(Altschul et al., 1997), BWA-MEM (Li and Durbin, 2009), STAR (Dobin et al., 2013), HISAT2 (Kim et al.,

2015), and BOWTIE2 (Langmead and Salzberg, 2012). All mapping tools are capable of handling spliced

alignments, which approximates the duplex mapping problem we are attempting to address here.

Figure 1. Schematic Illustration of the Generation Process of the CLASH Reads

Step 1 (immunoprecipitation): the interacting miRNA and mRNA are enriched through immunoprecipitation of the Argonaute (AGO) protein. Step 2 (cross-

linking): the interacting miRNA and mRNA are covalently cross-linked through proximity-induced ligation. Potential contaminants (floating short nucleotide

fragments) could be incorporated at the terminus of the miRNA or mRNA. Step 3 (sequencing): the bound AGO protein is washed and the cross-linked

miRNA-mRNA duplex is subjected to standard library preparation and sequencing to generate the CLASH reads.
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On both simulated and real datasets, we have demonstrated that CLAN, BLAST, and BWA can satisfactorily

map duplex CLASH reads, with CLAN outperforming the other tools by >25% F-score (a comprehensive

measure of both sensitivity and specificity).

RESULTS

We constructed three test datasets to benchmark the performance of CLAN. The first dataset was gener-

ated by cross-linking in silico one arm randomly sampled from miRBase (Kozomara and Griffiths-Jones,

2011) and another from the TargetScan- (Agarwal et al., 2015) predicted targets. The lengths of each

RNA arm, i.e. la, took series values of 10, 12, 15, 18, and 20. If the selected mature miRNA or miRNA target

site has full length less than la, its complete sequence was taken. This dataset was thereafter referred to with

a pattern ‘‘duplex.[la].noInsert.’’ The second dataset further inserted random sequences to the cross-linked

reads to simulate experimental contaminants; the contaminants were randomly placed in between or at the

terminus of the two RNA arms. The total lengths of the resulted simulated reads, including the inserted

contaminants, took series values of 25, 30, 35, 40, and 45, corresponding to the RNA arm lengths of 10,

12, 15, 18, and 20, respectively. This dataset was thereafter referred to with a pattern ‘‘duplex.[la].Insert.’’

Finally, to test CLAN’s performance on mapping singular reads, the third dataset was generated by

sequencing in silico the human genome build 38 (hg38) 30 UTR with lengths l, which took values of 20,

30, 40, and 50. This dataset was thereafter referred to with a pattern ‘‘singular.[l].’’ An error rate of 0.1%

(Q30) was introduced for all datasets described above. Each dataset contained 1 million reads. See Table

1 for the summary of these benchmark datasets.

We tested CLAN, BLAST (Altschul et al., 1997), BWA-MEM (Li and Durbin, 2009), STAR (Dobin et al., 2013),

HISAT2 (Kim et al., 2015), and BOWTIE2 (Langmead and Salzberg, 2012) on the simulated datasets, and

a real CLASH dataset (SRR959751). All experiments were run on an in-house server equipped with an

Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.10 GHz and 1 TB physical memory. Details regarding the parameters

chosen for each program can be found from the Supplemental Information. For each program, the same

set of parameters was used for mapping all simulated datasets (singular and duplex) and the real CLASH

dataset.

Mapping Performance of the Simulated Singular Reads

We selected CLAN, BLAST, BWA-MEM, STAR, HISAT2, and BOWTIE2 for the benchmark. To evaluate sin-

gular-read mapping, we define four mapping categories. The ‘‘perfect’’ category indicates that the read is

uniquely mapped to the correct location; the ‘‘multi’’ category indicates that the read is mapped to

multiple locations, and at least one of the mapped locations is correct; the ‘‘wrong’’ category indicates

that the read is mapped, but none corresponds to the correct location; the ‘‘miss’’ category contains

reads that are not mapped. The mapping results for the simulated singular datasets are summarized in

Figure 2.

Among the programs that have been tested, BWA-MEM produced not only the highest number of perfect

mappings (blue bars in Figure 2) but also the highest number of wrong mappings. The other programs,

including CLAN, produced relatively more multi-mappings, but much fewer wrong mappings. Overall,

CLANperformed reasonably well by generating the second-largest number of perfect mappings (following

BWA) while maintaining a low level of wrong mapping rate.

We further analyzed the consistency among the reads perfectly mapped by CLAN, BLAST, and BWA-MEM

(see the Venn diagrams in Figure 3). The overall consistency is high among all three programs. CLAN and

Dataset Arm Length Total Length Contaminant Error Source

duplex.[la].noInsert la 2la No Q30 miRBase, TargetScan

duplex.[la].Insert la l R 2la Yes Q30 miRBase, TargetScan

singular.[l] l L No Q30 hg38 30UTR

Table 1. The Simulated Benchmark Datasets

The variable la represents the length of each arm in the corresponding dataset, with values of 10, 12, 15, 18, and 20. The

variable l represents the full length of each simulated read in the corresponding dataset.
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BWA-MEM showed higher consistency when compared with BLAST, potentially because both of them

employed the BWT data structure for alignment seeding.

Mapping Performance of the Simulated Duplex Reads

We further benchmarked the performances of CLAN, BLAST (Altschul et al., 1997), BWA-MEM (Li and Dur-

bin, 2009), STAR (Dobin et al., 2013), HISAT2 (Kim et al., 2015), and BOWTIE2 (Langmead and Salzberg,

2012) on mapping the simulated duplex reads. The best and second-best hits (as measured by bit score)

of BLAST alignment were taken to allow the consideration of both arms. To measure the performance

of duplex read mapping, we define the following mapping categories: (1) perfect: both arms are

mapped correctly (>80% overlap with the ground-truth interval) and uniquely; (2) partial multi: one arm

is mapped correctly and uniquely, the other one is mapped to multiple locations, and the correct location

is included in the multi-mapping; (3) both multi: both arms are mapped to multiple locations, and both

correct locations are included in the multi-mappings; (4) partial wrong: one arm is mapped correctly

and uniquely, and the other one is mapped (disregarding whether the arm is unique- or multi-mapped)

but not to the correct location; (5) both wrong: both arms are mapped (disregarding whether the arm is

unique- or multi-mapped) but not to the correct locations; (6) partial miss: one arm is mapped correctly

and uniquely, and the other one is not mapped. (7) both miss: both arms are not mapped. The perfor-

mances of the programs are summarized in Figure 4.

We noted that CLAN, BLAST, and BWA-MEM produced satisfactory mappings in all datasets. CLAN

and BLAST performed robustly, whereas the performance of BWA-MEM seemed to be hampered

by the included sequence contaminants (comparing the top and bottom panels in Figure 4). In the

datasets with added sequence contaminants, CLAN topped the performance among all tested

programs.

We performed a similar analysis of the perfectly mapped duplex reads generated by CLAN, BLAST, and

BWA-MEM. The Venn diagrams of their overlaps are shown in Figure 5. Similar to the singular read data-

sets, all programs generated consistent mappings. CLAN and BWA-MEM also showed the highest consis-

tency for all datasets, except in duplex.18.Insert and duplex.20.Insert, where BWA-MEM seemed to be

Figure 2. Performance of Different Programs when Mapping Simulated Singular Reads

From left to right: performance for simulated datasets singular.20, singular.30, singular.40, and singular.50.
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hampered by the sequence contaminants. CLAN also mapped more duplex reads than the other aligners

when sequence contaminants were present (Figure 5, bottom panels).

As the uniquely mapped reads contain the most reliable and interpretable information, we further evalu-

ated the recall and precision of the uniquely mapped arms produced by CLAN, BLAST, and BWA-MEM.

We define TP (True-positive) as the number of arms that are mapped correctly, FP (False-positive) as the

number of arms that are mapped incorrectly, and FN (False-negative) as the number of arms that are

not mapped or multi-mapped. We further define Recall, Precision, and F-score as:

Recall =
TP

TP + FN
; Precision=

TP

TP + FP
; F � score=

2 � Recall � Precision
Recall +Precision

:

The performance of CLAN and BLAST on the uniquely mapped reads for the simulated duplex read data-

sets are summarized in Table 2. CLAN demonstrated the best overall F-score in all datasets. CLAN also

showed significantly higher recall and precision in mapping short CLASH reads (duplex.10.noInsert and

duplex.10.Insert). For longer reads, BLAST showed the highest precision, followed by CLAN, which was

marginally lower. BWA-MEM performed the best in terms of recall when mapping long CLASH reads

without sequence contaminants. Taken together, the uniquely mapped reads produced by CLAN demon-

strated high recall and precision, outperforming either BLAST or BWA-MEM.

Mapping a Real CLASH Dataset

We further compared the mapping produced by CLAN, BLAST, BWA-MEM, STAR, HISAT2, and BOWTIE2

on a real CLASH dataset (SRR959751), which was generated from a human kidney cancer cell line (Helwak

et al., 2013). The first 2 million reads of the dataset (so that BLAST can finish within a reasonable amount of

time) were mapped to a comprehensive database consisting of miRBase- (Kozomara and Griffiths-Jones,

2011) and TargetScan- (Reczko et al., 2011) predicted targets. As there was no ground-truth knowledge

for the real dataset, we only considered reads that were mapped (either as singular or duplex reads) for

>60% of their total lengths. For reads that weremapped as duplexes, we required that the two arms overlap

for <4 nt (as recommended in Hyb). Furthermore, we required that one arm of duplex be mapped as

miRNA, and the other as mRNA 30 UTR. The counts of the successfully mapped reads (those passed the

above filters) generated by different programs are summarized in Figure 6A.

The mapping results of the real CLASH dataset were largely consistent with the observation made from the

simulated datasets. CLASH mapped the highest number of duplex reads, twice the second-performing

mapper BWA-MEM (65,026 by CLAN and 31,598 by BWA-MEM, note that the y axis of Figure 6A is log

scaled). STAR, HISAT2, and BOWTIE2 could barely map any duplex reads (although not zero), but as ex-

pected performed well in mapping singular reads. We further analyzed the mapping consistency of

CLAN, BLAST, and BWA-MEM, and again, observed that the consistency was high among the three pro-

grams (see Figure 6B). Many reads were uniquely mapped by BLAST, with only their internal sequences

mapped, a mapping configuration rarely seen in real CLASH reads.

Speed Comparison

Last, we benchmarked the speed of CLAN, BLAST, BWA-MEM, STAR, HISAT2, and BOWTIE2 on the simu-

lated and real datasets. The wall-clock running time for the programs is summarized in Table 3. CLAN and

Figure 3. Venn Diagrams of the Perfectly Mapped Reads Generated by CLAN, BLAST, and BWA

From left to right: performances for simulated datasets singular.20, singular.30, singular.40, and singular.50.
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BWA-MEM are much faster than BLAST, potentially because they utilize the BWT data structure to speed

up the search. STAR, HISAT2, and BOWTIE2 are comparably faster, but cannot properly map the CLASH

reads.

DISCUSSIONS

CLASH is an innovative NGS-empowered technology for high-throughput and unbiased in vivo probing of

the miRNA-mRNA interactome. CLASH read mapping is a challenging computational problem that limits

the broader applications of CLASH. Here we present a novel mapping algorithm, CLAN, for CLASH reads.

Figure 4. Performance Summary of CLAN, BLAST, BWA-MEM, STAR, and HISAT2 on the Simulated Duplex Datasets

The y axis represents the number of reads, and the X axis represents different programs. Top panels: duplex.[la].noInsert. Bottom panels: duplex.[la].Insert.

From left to right: la with values of 10, 12, 15, 18, and 20.

Figure 5. Venn Diagrams for the Perfectly Mapped Duplex Reads by CLAN, BLAST, and BWA

Top panels: duplex.[la].noInsert. Bottom panels: duplex.[la].Insert. From left to right: la with values of 10, 12, 15, 18, and 20.
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Benchmark results on both simulated and real CLASH datasets showed that CLAN outperformed the other

major aligners and can map CLASH reads efficiently and accurately.

The important next step would be to reconstruct themiRNA-mRNA interactome from the CLANmappings.

We note that the reference dataset we used in this study comprises miRBasemiRNA and TargetScanmRNA

targets. This reference, however, does not allow the identification of novel miRNA-mRNA interactions. We

plan to further expand the reference with the miRNA targetome revealed by AGO-targeted CLIP-seq

experiments (Clark et al., 2014). Meanwhile, we also plan to incorporate additional miRNA-mRNA interac-

tion features, such as the accessibility of the target site, minimum free energy of the binding, and length of

the seed region, to compile high-confidence data on miRNA-mRNA interactions.

Recently, more NGS-based technologies that rely on the cross-linking of RNA strands have been devel-

oped, including CLASH (Kudla et al., 2011; Helwak and Tollervey, 2014), iPAR-CLIP (Jungkamp et al.,

2011), MARIO (Nguyen et al., 2016), hiCLIP (Sugimoto et al., 2015), RPL (Ramani et al., 2015), PARIS

(Lu et al., 2016), and LIGR-seq (Sharma et al., 2016). These technologies also generate duplex reads,

whose mapping can potentially be improved by CLAN. We will further test CLAN on these datasets

for a systematic and rigorous benchmark, to recommend technology-dependent best practices for

CLAN.

Datasets CLAN BLAST BWA

Re. Pre. F. Re. Pre. F. Re. Pre. F.

duplex.10.noInsert 0.44 0.89 0.59 0.04 0.79 0.07 0.28 0.31 0.30

duplex.15.noInsert 0.88 0.99 0.93 0.69 1.00 0.82 0.91 0.91 0.91

duplex.20.noInsert 0.90 0.99 0.94 0.71 1.00 0.83 0.93 0.93 0.93

duplex.10.Insert 0.42 0.69 0.52 0.03 0.62 0.05 0.26 0.27 0.27

duplex.15.Insert 0.87 0.98 0.92 0.69 1.00 0.82 0.81 0.90 0.86

duplex.20.Insert 0.85 0.96 0.91 0.68 1.00 0.81 0.73 0.92 0.82

Table 2. The Recall (Re.), Precision (Pre.), and F-score (F.) of the UniquelyMapped Reads Generated by CLAN, BLAST, and BWA on Various Simulated

Duplex Datasets

The highest performances in each category are in bold.

Figure 6. The Mapping Results of a Real CLASH Dataset SRR959751 Generated by the Listed Programs

(A) The number of mapped duplex and singular reads produced by the listed programs. Note that the y axis is log scaled.

(B) The Venn diagram of the mapped reads produced by CLAN, BLAST, and BWA-MEM.
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Limitations of Study

We would like to note that CLAN is designed for mapping duplex reads that resulted from cross-linking

experiments. To ensure high sensitivity, CLAN exhaustively looks for identical subsequences shared be-

tween the reads and the reference sequences to seed the alignment. This process is comparably slower

than the seeding process implemented in many of the other aligners on the market. Therefore the users

would expect slower running of CLAN when compared with the other tools (see Table 3 for running time

benchmark). As a real duplex read dataset may contain majorly singular reads (>90%, see Figure 6), we

recommend first using regular mapping tools to map and detect the singular reads, followed by mapping

the remaining duplex reads with CLAN. In this way, themajority of the singular reads can first be filtered out

using faster aligners, leaving much fewer reads to be aligned using CLAN.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND SOFTWARE AVAILABILITY

CLAN is implemented in GNU C++, and is freely available from https://sourceforge.net/projects/clan-

mapping.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.05.038.
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Dataset CLAN BLAST BWA STAR HISAT2 BOWTIE2

duplex.10.noInsert 27 s 1 h 19 min 41 s 20 s 14 s 8s 2s

duplex.20.noInsert 53 s 2 h 24 min 30 s 24 s 28 s 7s 3s

duplex.10.Insert 35 s 1 h 33 min 01 s 27 s 35 s 8s 2s

duplex.20.Insert 1 min 2 h 44 min 44 s 38 s 49 s 6s 3s

singular.20 1 min 49 s 12 h 52 min 28 s 39 s 3 min 48 s 12s 12s

singular.50 2 min 48 s 31 h 39 min 24 s 1 min 09 s 1 min 49 s 6s 28s

SRR959751 (1M reads) 14 s 14 min 26 s 20 s 28 s 16s 3s

Table 3. Comparison of the Wall-Clock Running Time of the Programs on the Simulated Datasets
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Supplementary Figure 

 

 
Figure S1: An overview of the CLAN algorithm with an artificial example. Related to Figure 2, Figure 

3, Figure 4, Figure 5, and Figure 6.  



Transparent Methods 
The CLAN algorithm 

We formulate the duplex read mapping problem as finding two non-overlapping arms whose total mapping 

length is maximized (see Figure S1 for the high-level summary of the CLAN algorithm).   

CLAN first identifies a set of seeds that satisfy: (1) at least 𝑟-nt long (default 𝑟 =10); (2) mapped to less 

than 𝑚  reference locations (default 𝑚 =100); (3) mapped to the reference database perfectly (no 

mismatch/gap). To identify the seeds, CLAN constructs the Burrows-Wheeler Transformation (BWT) and 

the corresponding Full-text index in Minute space (FM-index) from the reference database. Then, for a read 

𝑠 with length 𝑙, CLAN exhaustively searches all of its prefixes backward against the indexed database 

(Figure S1A), until a mismatch is encountered or the prefix/reference is exhausted (Figure S1B). The 

perfectly mapped substring is called a seed. 

The second step is to merge seeds that are potentially broken due to errors/SNP/indels, using a gapped-

BLAST-like two-hit strategy (e.g. the purple intervals in Figure S1C). We assume that each RNA arm can 

be broken by no more than 𝑘 such non-consecutive mismatches (by default 𝑘=1). To describe the merging 

step, let an arbitrary seed 𝑠(𝑖, 𝑗)  be mapped to a set of genomic locations, with the 𝑥 th denoted as 

𝑇(𝑤., 𝑧.). Here, 𝑇 is the reference database, and 𝑤. and 𝑧. are the start and end of the mapped genomic 

interval. For two non-overlapping seeds 𝑠(𝑖0, 𝑗0) and 𝑠(𝑖1, 𝑗1) (without loss of generality, assume 𝑖1 > 𝑗0), 

CLAN attempts to merge the seeds by looking for two adjacent mapped locations, i.e. 𝑇(𝑤0., 𝑧0.) and 

𝑇(𝑤1
3, 𝑧1

3), such that:  

(1) 1 ≤ 𝑖1 − 𝑗0 ≤ ℎ, (2) 1 ≤ 𝑤1
3 − 𝑧0. ≤ ℎ, and (3) |9𝑤1

3 − 𝑧0.: − (𝑖1 − 𝑗0)| ≤ 𝑔. 

The first two conditions ensure that the two seeds are adjacent in both the duplex read and the reference (at 

most ℎ-nt apart, default ℎ=5); the third condition ensures that the gap (if any) for the corresponding 

alignment is small (default value of 𝑔 is set to 5). CLAN will exhaustively test all combinations of mapped 

genomic locations, and merge both seeds into a candidate (i.e., 𝑠(𝑖0, 𝑗1), with a new mapping location 

𝑇(𝑤0., 𝑧1
3), see Figure S1C, the purple genomic interval in the second row) if all conditions are satisfied. 

CLAN progressively iterates this merging process for 𝑘  times to allow 𝑘  mismatches. To maximize 

sensitivity, the original set of seeds, disregarding whether they were subsequently merged, were kept in the 

final candidate set.   

The third step is to find 𝑓 non-overlapping arms with maximized total mapping length (Figure S1D). Note 

that the parameter 𝑓 is reserved to allow future consideration of the crosslinking of more than two RNA 



molecules, for example, the crosslinking of the small nuclear RNAs U1, U2, U4, U5, and U6 that corporate 

in the spliceosome complex. (We note that this is not currently supported by CLASH.)  For CLASH duplex 

read mapping,	𝑓 is set to 2. Conceptually, the candidates and their relationships can be represented by a 

directed acyclic graph (DAG). In the graph, each node corresponds to a candidate (Figure S1D). Partially 

order the candidates by the increasing order of their starting locations, and break ties in decreasing order of 

their ending locations. Also, define two nodes as compatible if their corresponding candidates do not 

overlap. For two arbitrary nodes 𝑢  and 𝑣 , a {𝑢, 𝑣} edge (Figure S1D) is added if the following three 

conditions are satisfied: (1) 𝑢 is partially ordered before 𝑣; (2) 𝑢 and 𝑣 do not overlap; and (3) no node 

exists between 𝑢 and 𝑣 and is simultaneous compatible with both of them. (For example, the red dotted 

edges in Figure S1 do not exist because the corresponding nodes overlap with each other.) For each edge 

(𝑢, 𝑣), CLAN sets its length 𝑙{B,C} as follows:  𝑙{B,C} = 𝑙B − 𝑐. The parameter 𝑐 is the penalty (default 𝑐=2) 

for including an additional arm in the solution set, which prioritizes the mapping as a singular read unless 

necessary. Finally, a dummy node 𝑑 succeeding every other node is included (Figure S1D), receiving an 

incoming edge from each node 𝑢 with an edge weight of 𝑙B  (Figure S1D, gray solid edges; we do not 

include the penalty 𝑐 because 𝑑 does not correspond a real candidate). In this case, the problem of finding 

two non-overlapping candidates whose total length is maximized can be transformed as finding the longest 

path in the DAG that involves no more than 𝑓 edges.  

CLAN solves this problem using a dynamic programming (DP) approach. Denote the resulting DAG as 

𝐺 = (𝑉, 𝐸), where 𝑉 corresponds to the node set and 𝐸 corresponds to the edge set. Also let 𝐿[𝑣, 𝑓] record 

the length of the longest path that ends with 𝑣 and involves at most 𝑓 edges. CLAN computes 𝐿[𝑣, 𝑓] with 

the following recursive functions: 

𝐿[𝑣, 𝑓] = maxP
max

B:{B,C}∈S
T𝐿[𝑢, 𝑓 − 1] + 𝑙{B,C}V 	(if	𝑓 > 0)

max
B:{B,C}∈S

{	𝐿[𝑢, 𝑓]}

0

 

The first condition considers cases where the path is extended from 𝑢 to 𝑣 with the candidate arm 𝑢 taken. 

The second condition considers the case that 𝑢  is not taken into the solution. The third condition 

corresponds to boundary cases where 𝑣 is the starting node of the path. The final solution can be found in 

𝐿[𝑑, 𝑓], where 𝑑 is the dummy node. The output of the mapping contains the selected arms and their 

corresponding locations in the duplex read and the reference (Figure S1E).  

Finally, we analyze the time complexity of CLAN. Recall that 𝑙 is the length of a duplex read. Clearly, each 

BWT search of an 𝑙-long sequence against the reference requires 𝑂(𝑙) time. Because CLAN searches every 

prefix of the duplex read and there are at most 𝑙 prefixes, the total time required for the exhaustive BWT 



search step is thus 𝑂(𝑙1). For candidate merging, CLAN tests the merging of every pair of candidate seeds 

in the worst-case scenario, which leads to an 𝑂(𝑚1𝑙1) complexity, where 𝑚 is the maximum number of 

reference locations associated with each candidate (a constant default to 100). CLAN hashes the mappings 

according to their genomic locations into a fixed number of bins, and only attempts to merge candidates 

within the same bin. This makes the merging step practically efficient. Finally, for the DP-based chaining, 

each node 𝑣 has at most 𝑙 nodes that precede it; as a result, computing each value in 𝐿 requires 𝑂(𝑙) time. 

Since there are 𝑂(𝑓𝑙) entries in 𝐿, and the total time required for the chaining step is thus 𝑂(𝑓𝑙1) (where 𝑓 

is a constant). Taken together, CLAN requires 𝑂(𝑙1) to map a single duplex read. Note that the duplex read 

length 𝑙 is determined by the length of the miRNA-mRNA binding site, therefore can be viewed as a 

constant. CLAN thus requires a constant time to map a single duplex read, and the overall running time is 

linear with respect to the throughput of the experiment (or the number of reads in the dataset). 

To summarize, we highlight the major algorithmic contributions of CLAN: (1) CLAN employs a DP-based 

chaining step to detect duplex mappings with desirable configuration, which prevents the mapping of the 

internal sequence of a read, while leaving long segments of prefix and suffix unmapped; (2) CLAN 

exhaustively searches for all seeds, which maximizes the sensitivity that is currently lacking in CLASH 

read mapping; and (3) CLAN accounts for mismatches through merging seeds, rather than directly 

identifying imperfect seeds. This reduces the computational cost of CLAN’s seeding step and makes CLAN 

efficient overall. 

 



Parameters used for running different programs 
(Parameters that are not listed here were used as the defaults.) 

 

CLAN: 
-p 2 -v 2 -m 100 -t 16 -c 0.6 

 

BLAST: 
-num_threads 16 -task blastn-short 

 

BWA-MEM: 
-k 10 -r 1 -L 0 -T 10 -t 16 

 

STAR:  

Indexing: 
--runThreadN 16 --runMode genomeGenerate --genomeSAindexNbases 10 

Align: 
--outSAMattributes All -runThreadN 16 --outFilterMismatchNmax 999 --

alignIntronMax 1000000 --outFilterMatchNmin 8 --seedSearchStartLmax 10 

--chimSegmentMin 10 --chimSegmentReadGapMax 10 --

chimScoreJunctionNonGTAG 0 --outFilterScoreMinOverLread 0 --

outFilterMatchNminOverLread 0 

 

HISAT2: 
-p 16 --score-min L,0,-1 --pen-noncansplice 0 --no-temp-splicesite --

min-intronlen 20 --max-intronlen 1000000 --pen-canintronlen G,0,0 --pen-

noncanintronlen G,0,0 

 

BOWTIE2: 
-D 20 -R 3 -N 0 -L 16 -k 20 --local -i S,1,0.50 --score-min L,18,0 --ma 

1 --np 0 --mp 2,2 --rdg 5,1 --rfg 5,1 -p 16 
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