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SUMMARY

MicroRNA (miRNA) trans-regulates the stability of many mRNAs and controls their expression levels.
Reconstruction of the miRNA-mRNA interactome is key to the understanding of the miRNA regulatory
network and related biological processes. However, existing miRNA target prediction methods are
limited to canonical miRNA-mRNA interactions and have high false prediction rates. Other experi-
mental methods are low throughput and cannot be used to probe genome-wide interactions. To
address this challenge, the Cross-linking Ligation and Sequencing of Hybrids (CLASH) technology
was developed for high-throughput probing of transcriptome-wide microRNA-mRNA interactions
in vivo. The mapping of duplex reads, chimeras of two ultra-short RNA strands, poses computational
challenges to current mapping and alignment methods. To address this issue, we developed CLAN
(CrossLinked reads ANalysis toolkit). CLAN generated a comparable mapping of singular reads to other
tools, and significantly outperformed in mapping simulated and real CLASH duplex reads, offering a po-
tential application to other next-generation sequencing-based duplex-read-generating technologies.

INTRODUCTION

MicroRNA (miRNA) is a class of important regulator non-coding RNA that interacts with its target mRNAs
through sequence complementarity (often observed at the 3 UTR of the mRNA), subsequently regulating
the corresponding mRNAs’ translation level by degrading the targeted mRNAs (Bartel, 2009). Mature miRNA
has a length between 21 and 25 nucleotides (nts), usually with the 28" nucleotide perfectly complementing its
target MRNA, serving as the seed region of the binding. The miRNA-mRNA binding and subsequent mRNA
degradation are facilitated by the RNA-induced silencing complex (RISC), a microRNA ribonucleoprotein
complex. The Argonaute protein (AGO) within RISC contains two RNA-binding domains (PAZ and PIWI)
thatbind the miRNA and mRNA, respectively, and plays key roles in facilitating the miRNA-mRNA interaction.
The biological function of the miRNA is often understood through the function of its targeted mRNAs. For
example, cancer-causing miRNA point mutations or aberrant expression can lead to the positive regulation
of the targeted cancer-causing genes or the negative regulation of the targeted cancer-repressing genes
(Zhang et al., 2006; Volinia et al., 2006; Calin and Croce, 2006). As a result, elucidating the miRNA target is
key to the understanding of miRNA function and its regulating biological processes.

MicroRNA targets can be identified in three ways primarily. First, they can be predicted computationally
through models (Wang, 2016) that summarize, e.g., the sequence complementarity (Agarwal et al., 2015)
and site accessibility (Kertesz et al., 2007) information. Although computational approaches have success-
fully recovered many genuine miRNA targets, their false-positive rates remain high. Second, the next-

'Department of Electrical
generation sequencing (NGS)-based CLIP (Crosslinking Immunoprecipitation)-seq on the AGO protein Engineering and Computer

is capable of probing the potential miRNA-binding sites across the entire genome, but fails in specifying E;f:::c'euEée()rzgiguKsaAnsas'
the targets of a specific miRNA family (Chi et al., 2009). Finally, experimental approaches can be used to ' '

. i . . . . . ?Department of Computer
validate a specific miRNA-mRNA interaction, yet in a low-throughput manner (Jin et al., 2013). Science, University of Central

Florida, Orlando, FL 32816,
USA

Recently, the Cross-linking Ligation and Sequencing of Hybrids (CLASH) technology was developed for
3Lead Contact

high-throughput genome-wide probing of in vivo miRNA-mRNA interactions (see Figure 1). CLASH (Kudla

et al., 2011; Helwak and Tollervey, 2014) first pulls down the interacting miRNA-mRNA strands through *Ci"es’gfdegce:
ccznon u.equ
AGO immunoprecipitation, followed by the covalent cross-linking of the interacting miRNA-mRNA 7 ) o
. . L. https://doi.org/10.1016/j.isci.
strands, and eventually sequences the cross-linked miRNA-mRNA duplex. As the covalent cross-linking 2019.05.038
m .
e iScience 18, 11-19, August 30, 2019 © 2019 The Author(s). 1

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


mailto:cczhong@ku.edu
https://doi.org/10.1016/j.isci.2019.05.038
https://doi.org/10.1016/j.isci.2019.05.038
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.05.038&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

iIScience Cell

miRNA )
miRNA @ Contaminant
@ Proximity-induced
mRNA - @® * ligation - ®o— @ @
mRNA . miRNA mRNA
1:Immunoprecipitation 2:Crosslinking 3:Sequencing

Figure 1. Schematic lllustration of the Generation Process of the CLASH Reads

Step 1 (immunoprecipitation): the interacting miRNA and mRNA are enriched through immunoprecipitation of the Argonaute (AGO) protein. Step 2 (cross-
linking): the interacting miRNA and mRNA are covalently cross-linked through proximity-induced ligation. Potential contaminants (floating short nucleotide
fragments) could be incorporated at the terminus of the miRNA or mRNA. Step 3 (sequencing): the bound AGO protein is washed and the cross-linked
miRNA-mRNA duplex is subjected to standard library preparation and sequencing to generate the CLASH reads.

is proximity induced, the miRNA/mRNA strands could ligate to spatially adjacent free-floating nucleotide
fragments (red clouds in Figure 1) before being cross-linked to each other. These nucleotide fragments
could also be ligated to the terminus of the miRNA/mRNA strands. Intuitively, the mapping of the resulting
duplex reads will reveal direct evidence for the corresponding miRNA-mRNA interaction. In practice, the
inclusion of the random nucleotide fragment contaminants complicates the CLASH read mapping.

In the original CLASH analysis (Helwak et al., 2013; Helwak and Tollervey, 2014), BLAST (Altschul et al., 1997)
was used to map the CLASH reads, leading to a 2%-3% mapping rate. The same group further tested
BOWTIE2 (Langmead and Salzberg, 2012) as the aligner in a subsequent analysis pipeline called Hyb
(Travis et al., 2014). Although BOWTIE2 greatly improved the computational efficiency of the CLASH
read mapping, it was comparable with BLAST in terms of mapping sensitivity. The main reasons for the
low-sensitivity mapping of the CLASH reads are (1) random nucleotide fragment contaminants lack
apparent pattern and therefore are difficult to detect and can mislead the read mapping and (2) the
resulting CLASH reads can be very short (owing to the intrinsic length of the AGO-binding site). For
example, the average read length of a real CLASH dataset (SRR959751) is 20 nt (after adapter trimming),
corresponding to 10 nts per miRNA/mRNA strand.

In addition to BLAST and BOWTIE2, other read-mapping tools such as BWA-MEM (Li and Durbin, 2009),
STAR (Dobin et al., 2013), and HISAT2 (Kim et al., 2015), are expected to perform similarly because they
share a similar read-mapping objective. Subsequent analyses (such as Hyb, Travis et al., 2014) take the map-
ping results as the input and attempt to prioritize confident miRNA-mRNA interactions. However, they
cannot create new read mappings and hence cannot be used to tackle the low-sensitivity issue. A dedi-
cated CLASH reads aligner is in demand.

In consideration of the unique CLASH read layout and the limitations of the existing alignment and map-
ping tools, we provide a novel formulation for the CLASH read-mapping problem. We term a single
miRNA/mRNA an arm of the read, and we seek to find a single arm (when the miRNA-mRNA cross-linking
fails) or two non-overlapping arms (when the miRNA and mRNA cross-linking is successful) from a read such
that (1) each arm can be mapped to the reference database under a given sequence similarity threshold
and (2) the total length of the mapped single or two arms is maximized. This formulation assumes that,
under successful experimental conditions, bona fide miRNA/mRNA sequences should dominate contam-
inants in the CLASH reads. This problem is subsequently solved through efficient identification of the
set of all candidate arms through Burrows-Wheeler Transformation (BWT)-assisted searches against the
reference database, followed by a dynamic programming chaining algorithm to identify the arm(s) with
maximized total length.

We implemented the algorithm into a program called CLAN (the CrossLinked reads ANalysis toolkit). We
summarized the details of the CLAN algorithms in Figure ST and the Transparent Methods section of the
Supplemental Information. We benchmarked CLAN with popular alignment and mapping tools BLAST
(Altschul et al., 1997), BWA-MEM (Li and Durbin, 2009), STAR (Dobin et al., 2013), HISAT2 (Kim et al.,
2015), and BOWTIE2 (Langmead and Salzberg, 2012). All mapping tools are capable of handling spliced
alignments, which approximates the duplex mapping problem we are attempting to address here.

12 iScience 18, 11-19, August 30, 2019



iIScience Cell

Dataset Arm Length Total Length Contaminant Error Source
duplex.[l,].nolnsert I, 21, No Q30 miRBase, TargetScan
duplex.[l,].Insert I, I > 2l, Yes Q30 miRBase, TargetScan
singular.[f] | L No Q30 hg38 3'UTR

Table 1. The Simulated Benchmark Datasets
The variable I, represents the length of each arm in the corresponding dataset, with values of 10, 12, 15, 18, and 20. The
variable I represents the full length of each simulated read in the corresponding dataset.

On both simulated and real datasets, we have demonstrated that CLAN, BLAST, and BWA can satisfactorily
map duplex CLASH reads, with CLAN outperforming the other tools by >25% F-score (a comprehensive
measure of both sensitivity and specificity).

RESULTS

We constructed three test datasets to benchmark the performance of CLAN. The first dataset was gener-
ated by cross-linking in silico one arm randomly sampled from miRBase (Kozomara and Griffiths-Jones,
2011) and another from the TargetScan- (Agarwal et al., 2015) predicted targets. The lengths of each
RNA arm, i.e. I, took series values of 10, 12, 15, 18, and 20. If the selected mature miRNA or miRNA target
site has full length less than [, its complete sequence was taken. This dataset was thereafter referred to with
a pattern “duplex.[l;].nolnsert.” The second dataset further inserted random sequences to the cross-linked
reads to simulate experimental contaminants; the contaminants were randomly placed in between or at the
terminus of the two RNA arms. The total lengths of the resulted simulated reads, including the inserted
contaminants, took series values of 25, 30, 35, 40, and 45, corresponding to the RNA arm lengths of 10,
12,15, 18, and 20, respectively. This dataset was thereafter referred to with a pattern “duplex.[/,].Insert.”
Finally, to test CLAN's performance on mapping singular reads, the third dataset was generated by
sequencing in silico the human genome build 38 (hg38) 3' UTR with lengths |, which took values of 20,
30, 40, and 50. This dataset was thereafter referred to with a pattern “singular.[ll.” An error rate of 0.1%
(Q30) was introduced for all datasets described above. Each dataset contained 1 million reads. See Table
1 for the summary of these benchmark datasets.

We tested CLAN, BLAST (Altschul et al., 1997), BWA-MEM (Li and Durbin, 2009), STAR (Dobin et al., 2013),
HISAT2 (Kim et al., 2015), and BOWTIE2 (Langmead and Salzberg, 2012) on the simulated datasets, and
a real CLASH dataset (SRR959751). All experiments were run on an in-house server equipped with an
Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.10 GHz and 1 TB physical memory. Details regarding the parameters
chosen for each program can be found from the Supplemental Information. For each program, the same
set of parameters was used for mapping all simulated datasets (singular and duplex) and the real CLASH
dataset.

Mapping Performance of the Simulated Singular Reads

We selected CLAN, BLAST, BWA-MEM, STAR, HISAT2, and BOWTIE2 for the benchmark. To evaluate sin-
gular-read mapping, we define four mapping categories. The “perfect” category indicates that the read is
uniquely mapped to the correct location; the “"multi” category indicates that the read is mapped to
multiple locations, and at least one of the mapped locations is correct; the “wrong” category indicates
that the read is mapped, but none corresponds to the correct location; the “miss” category contains
reads that are not mapped. The mapping results for the simulated singular datasets are summarized in
Figure 2.

Among the programs that have been tested, BWA-MEM produced not only the highest number of perfect
mappings (blue bars in Figure 2) but also the highest number of wrong mappings. The other programs,
including CLAN, produced relatively more multi-mappings, but much fewer wrong mappings. Overall,
CLAN performed reasonably well by generating the second-largest number of perfect mappings (following
BWA) while maintaining a low level of wrong mapping rate.

We further analyzed the consistency among the reads perfectly mapped by CLAN, BLAST, and BWA-MEM
(see the Venn diagrams in Figure 3). The overall consistency is high among all three programs. CLAN and
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Figure 2. Performance of Different Programs when Mapping Simulated Singular Reads

From left to right: performance for simulated datasets singular.20, singular.30, singular.40, and singular.50.

BWA-MEM showed higher consistency when compared with BLAST, potentially because both of them
employed the BWT data structure for alignment seeding.

Mapping Performance of the Simulated Duplex Reads

We further benchmarked the performances of CLAN, BLAST (Altschul et al., 1997), BWA-MEM (Li and Dur-
bin, 2009), STAR (Dobin et al., 2013), HISAT2 (Kim et al., 2015), and BOWTIE2 (Langmead and Salzberg,
2012) on mapping the simulated duplex reads. The best and second-best hits (as measured by bit score)
of BLAST alignment were taken to allow the consideration of both arms. To measure the performance
of duplex read mapping, we define the following mapping categories: (1) perfect: both arms are
mapped correctly (>80% overlap with the ground-truth interval) and uniquely; (2) partial multi: one arm
is mapped correctly and uniquely, the other one is mapped to multiple locations, and the correct location
is included in the multi-mapping; (3) both multi: both arms are mapped to multiple locations, and both
correct locations are included in the multi-mappings; (4) partial wrong: one arm is mapped correctly
and uniquely, and the other one is mapped (disregarding whether the arm is unique- or multi-mapped)
but not to the correct location; (5) both wrong: both arms are mapped (disregarding whether the arm is
unique- or multi-mapped) but not to the correct locations; (6) partial miss: one arm is mapped correctly
and uniquely, and the other one is not mapped. (7) both miss: both arms are not mapped. The perfor-
mances of the programs are summarized in Figure 4.

We noted that CLAN, BLAST, and BWA-MEM produced satisfactory mappings in all datasets. CLAN
and BLAST performed robustly, whereas the performance of BWA-MEM seemed to be hampered
by the included sequence contaminants (comparing the top and bottom panels in Figure 4). In the
datasets with added sequence contaminants, CLAN topped the performance among all tested
programs.

We performed a similar analysis of the perfectly mapped duplex reads generated by CLAN, BLAST, and
BWA-MEM. The Venn diagrams of their overlaps are shown in Figure 5. Similar to the singular read data-
sets, all programs generated consistent mappings. CLAN and BWA-MEM also showed the highest consis-
tency for all datasets, except in duplex.18.Insert and duplex.20.Insert, where BWA-MEM seemed to be
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Figure 3. Venn Diagrams of the Perfectly Mapped Reads Generated by CLAN, BLAST, and BWA
From left to right: performances for simulated datasets singular.20, singular.30, singular.40, and singular.50.

hampered by the sequence contaminants. CLAN also mapped more duplex reads than the other aligners
when sequence contaminants were present (Figure 5, bottom panels).

As the uniquely mapped reads contain the most reliable and interpretable information, we further evalu-
ated the recall and precision of the uniquely mapped arms produced by CLAN, BLAST, and BWA-MEM.
We define TP (True-positive) as the number of arms that are mapped correctly, FP (False-positive) as the
number of arms that are mapped incorrectly, and FN (False-negative) as the number of arms that are
not mapped or multi-mapped. We further define Recall, Precision, and F-score as:

_IP " F_ score= 2 x Recall x Precision
TP+ FN TP+FP | %"= Recall+ Precision

The performance of CLAN and BLAST on the uniquely mapped reads for the simulated duplex read data-
sets are summarized in Table 2. CLAN demonstrated the best overall F-score in all datasets. CLAN also

Recall = Precision=

showed significantly higher recall and precision in mapping short CLASH reads (duplex.10.nolnsert and
duplex.10.Insert). For longer reads, BLAST showed the highest precision, followed by CLAN, which was
marginally lower. BWA-MEM performed the best in terms of recall when mapping long CLASH reads
without sequence contaminants. Taken together, the uniquely mapped reads produced by CLAN demon-
strated high recall and precision, outperforming either BLAST or BWA-MEM.

Mapping a Real CLASH Dataset

We further compared the mapping produced by CLAN, BLAST, BWA-MEM, STAR, HISAT2, and BOWTIE2
on a real CLASH dataset (SRR959751), which was generated from a human kidney cancer cell line (Helwak
et al., 2013). The first 2 million reads of the dataset (so that BLAST can finish within a reasonable amount of
time) were mapped to a comprehensive database consisting of miRBase- (Kozomara and Griffiths-Jones,
2011) and TargetScan- (Reczko et al., 2011) predicted targets. As there was no ground-truth knowledge
for the real dataset, we only considered reads that were mapped (either as singular or duplex reads) for
>60% of their total lengths. For reads that were mapped as duplexes, we required that the two arms overlap
for <4 nt (as recommended in Hyb). Furthermore, we required that one arm of duplex be mapped as
miRNA, and the other as mRNA 3’ UTR. The counts of the successfully mapped reads (those passed the
above filters) generated by different programs are summarized in Figure 6A.

The mapping results of the real CLASH dataset were largely consistent with the observation made from the
simulated datasets. CLASH mapped the highest number of duplex reads, twice the second-performing
mapper BWA-MEM (65,026 by CLAN and 31,598 by BWA-MEM, note that the y axis of Figure 6A is log
scaled). STAR, HISAT2, and BOWTIE2 could barely map any duplex reads (although not zero), but as ex-
pected performed well in mapping singular reads. We further analyzed the mapping consistency of
CLAN, BLAST, and BWA-MEM, and again, observed that the consistency was high among the three pro-
grams (see Figure 6B). Many reads were uniquely mapped by BLAST, with only their internal sequences
mapped, a mapping configuration rarely seen in real CLASH reads.

Speed Comparison

Last, we benchmarked the speed of CLAN, BLAST, BWA-MEM, STAR, HISAT2, and BOWTIE2 on the simu-
lated and real datasets. The wall-clock running time for the programs is summarized in Table 3. CLAN and
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Figure 4. Performance Summary of CLAN, BLAST, BWA-MEM, STAR, and HISAT2 on the Simulated Duplex Datasets
The y axis represents the number of reads, and the X axis represents different programs. Top panels: duplex.[/,].nolnsert. Bottom panels: duplex.[l,].Insert.
From left to right: [, with values of 10, 12, 15, 18, and 20.

BWA-MEM are much faster than BLAST, potentially because they utilize the BWT data structure to speed
up the search. STAR, HISAT2, and BOWTIE2 are comparably faster, but cannot properly map the CLASH
reads.

DISCUSSIONS

CLASH is an innovative NGS-empowered technology for high-throughput and unbiased in vivo probing of
the miRNA-mRNA interactome. CLASH read mapping is a challenging computational problem that limits
the broader applications of CLASH. Here we present a novel mapping algorithm, CLAN, for CLASH reads.

09 BLAST

22338

Figure 5. Venn Diagrams for the Perfectly Mapped Duplex Reads by CLAN, BLAST, and BWA
Top panels: duplex.[l,].nolnsert. Bottom panels: duplex.[/,].Insert. From left to right: I, with values of 10, 12, 15, 18, and 20.
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Datasets CLAN BLAST BWA
Re. Pre. o Re. Pre. F. Re.
duplex.10.nolnsert 0.44 0.89 0.59 0.04 0.79 0.07 0.28
duplex.15.nolnsert 0.88 0.99 0.93 0.69 1.00 0.82 0.91
duplex.20.nolnsert 0.90 0.99 0.94 0.71 1.00 0.83 0.93
duplex.10.Insert 0.42 0.69 0.52 0.03 0.62 0.05 0.26
duplex.15.Insert 0.87 0.98 0.92 0.69 1.00 0.82 0.81
duplex.20.Insert 0.85 0.96 0.91 0.68 1.00 0.81 0.73

Cell

0.93
0.27
0.90

0.92

0.93

0.27

0.86

0.82

Table 2. The Recall (Re.), Precision (Pre.), and F-score (F.) of the Uniquely Mapped Reads Generated by CLAN, BLAST, and BWA on Various Simulated

Duplex Datasets
The highest performances in each category are in bold.

Benchmark results on both simulated and real CLASH datasets showed that CLAN outperformed the other
major aligners and can map CLASH reads efficiently and accurately.

The important next step would be to reconstruct the miRNA-mRNA interactome from the CLAN mappings.
We note that the reference dataset we used in this study comprises miRBase miRNA and TargetScan mRNA
targets. This reference, however, does not allow the identification of novel miRNA-mRNA interactions. We
plan to further expand the reference with the miRNA targetome revealed by AGO-targeted CLIP-seq
experiments (Clark et al., 2014). Meanwhile, we also plan to incorporate additional miRNA-mRNA interac-
tion features, such as the accessibility of the target site, minimum free energy of the binding, and length of
the seed region, to compile high-confidence data on miRNA-mRNA interactions.

Recently, more NGS-based technologies that rely on the cross-linking of RNA strands have been devel-
oped, including CLASH (Kudla et al., 2011; Helwak and Tollervey, 2014), iPAR-CLIP (Jungkamp et al.,
2011), MARIO (Nguyen et al., 2016), hiCLIP (Sugimoto et al., 2015), RPL (Ramani et al., 2015), PARIS
(Lu et al., 2016), and LIGR-seq (Sharma et al., 2016). These technologies also generate duplex reads,
whose mapping can potentially be improved by CLAN. We will further test CLAN on these datasets
for a systematic and rigorous benchmark, to recommend technology-dependent best practices for
CLAN.

800K

N |.CLAN Weast [llswa  llsmar  llHisaT2 BOwTIE2

500K
|

50K
| |

1K 5K

duplex singular

Figure 6. The Mapping Results of a Real CLASH Dataset SRR959751 Generated by the Listed Programs
(A) The number of mapped duplex and singular reads produced by the listed programs. Note that the y axis is log scaled.
(B) The Venn diagram of the mapped reads produced by CLAN, BLAST, and BWA-MEM.
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Dataset CLAN BLAST BWA STAR
duplex.10.nolnsert 27 s 1Th19min41s 20s 14s
duplex.20.nolnsert 53s 2h24min30s 24s 28s
duplex.10.Insert 35s 1h33min01s 27 s 35s
duplex.20.Insert 1 min 2h44 mind4ds 38s 49 s
singular.20 1min49s 12 h 52 min 28 s 39s 3min48s
singular.50 2min48s 31h39min24s 1min09s Tmin49s
SRR959751 (1M reads) 14s 14 min 26 s 20s 28s

Table 3. Comparison of the Wall-Clock Running Time of the Programs on the Simulated Datasets

Limitations of Study

We would like to note that CLAN is designed for mapping duplex reads that resulted from cross-linking
experiments. To ensure high sensitivity, CLAN exhaustively looks for identical subsequences shared be-
tween the reads and the reference sequences to seed the alignment. This process is comparably slower
than the seeding process implemented in many of the other aligners on the market. Therefore the users
would expect slower running of CLAN when compared with the other tools (see Table 3 for running time
benchmark). As a real duplex read dataset may contain majorly singular reads (>90%, see Figure 6), we
recommend first using regular mapping tools to map and detect the singular reads, followed by mapping
the remaining duplex reads with CLAN. In this way, the majority of the singular reads can first be filtered out
using faster aligners, leaving much fewer reads to be aligned using CLAN.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

DATA AND SOFTWARE AVAILABILITY
CLAN is implemented in GNU C++, and is freely available from https://sourceforge.net/projects/clan-
mapping.

SUPPLEMENTAL INFORMATION
Supplemental Information can be found online at https://doi.org/10.1016/].is¢i.2019.05.038.
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Supplementary Figure

Duplex Read: ACCCTGTAGATCCGAATTTGTGAGGAATACTCGGGTGCCAAGGTCGTATGCCGT
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Figure S1: An overview of the CLAN algorithm with an artificial example. Related to Figure 2, Figure
3, Figure 4, Figure 5, and Figure 6.




Transparent Methods
The CLAN algorithm

We formulate the duplex read mapping problem as finding two non-overlapping arms whose total mapping

length is maximized (see Figure S1 for the high-level summary of the CLAN algorithm).

CLAN first identifies a set of seeds that satisfy: (1) at least r-nt long (default  =10); (2) mapped to less
than m reference locations (default m =100); (3) mapped to the reference database perfectly (no
mismatch/gap). To identify the seeds, CLAN constructs the Burrows-Wheeler Transformation (BWT) and
the corresponding Full-text index in Minute space (FM-index) from the reference database. Then, for a read
s with length I, CLAN exhaustively searches all of its prefixes backward against the indexed database
(Figure S1A), until a mismatch is encountered or the prefix/reference is exhausted (Figure S1B). The

perfectly mapped substring is called a seed.

The second step is to merge seeds that are potentially broken due to errors/SNP/indels, using a gapped-
BLAST-like two-hit strategy (e.g. the purple intervals in Figure S1C). We assume that each RNA arm can
be broken by no more than k such non-consecutive mismatches (by default k=1). To describe the merging
step, let an arbitrary seed s(i,j) be mapped to a set of genomic locations, with the xth denoted as
T(w*,z*). Here, T is the reference database, and w* and z* are the start and end of the mapped genomic
interval. For two non-overlapping seeds s(iy, j;) and s(i,, j,) (without loss of generality, assume i, > j;),
CLAN attempts to merge the seeds by looking for two adjacent mapped locations, i.e. T(wy, z{') and

T(w; ,z; ), such that:
(D1<i,—j;<h(2)1<w) —zf <hand3) |(wy —zF) — (i, —j)| < g.

The first two conditions ensure that the two seeds are adjacent in both the duplex read and the reference (at
most h-nt apart, default h=5); the third condition ensures that the gap (if any) for the corresponding
alignment is small (default value of g is set to 5). CLAN will exhaustively test all combinations of mapped
genomic locations, and merge both seeds into a candidate (i.e., s(iy, j,), with a new mapping location
T(wy, Z%/ ), see Figure S1C, the purple genomic interval in the second row) if all conditions are satisfied.
CLAN progressively iterates this merging process for k times to allow k mismatches. To maximize
sensitivity, the original set of seeds, disregarding whether they were subsequently merged, were kept in the

final candidate set.

The third step is to find f non-overlapping arms with maximized total mapping length (Figure S1D). Note

that the parameter f is reserved to allow future consideration of the crosslinking of more than two RNA



molecules, for example, the crosslinking of the small nuclear RNAs U1, U2, U4, U5, and U6 that corporate
in the spliceosome complex. (We note that this is not currently supported by CLASH.) For CLASH duplex
read mapping, f is set to 2. Conceptually, the candidates and their relationships can be represented by a
directed acyclic graph (DAG). In the graph, each node corresponds to a candidate (Figure S1D). Partially
order the candidates by the increasing order of their starting locations, and break ties in decreasing order of
their ending locations. Also, define two nodes as compatible if their corresponding candidates do not
overlap. For two arbitrary nodes u and v, a {u, v} edge (Figure S1D) is added if the following three
conditions are satisfied: (1) u is partially ordered before v; (2) u and v do not overlap; and (3) no node
exists between u and v and is simultaneous compatible with both of them. (For example, the red dotted
edges in Figure S1 do not exist because the corresponding nodes overlap with each other.) For each edge
(u,v), CLAN sets its length lp,, ;3 as follows: I, 3 = I, — c. The parameter c is the penalty (default c=2)
for including an additional arm in the solution set, which prioritizes the mapping as a singular read unless
necessary. Finally, a dummy node d succeeding every other node is included (Figure S1D), receiving an
incoming edge from each node u with an edge weight of [,, (Figure S1D, gray solid edges; we do not
include the penalty ¢ because d does not correspond a real candidate). In this case, the problem of finding
two non-overlapping candidates whose total length is maximized can be transformed as finding the longest

path in the DAG that involves no more than f edges.

CLAN solves this problem using a dynamic programming (DP) approach. Denote the resulting DAG as
G = (V,E), where V corresponds to the node set and E corresponds to the edge set. Also let L[v, f] record
the length of the longest path that ends with v and involves at most f edges. CLAN computes L[v, f] with

the following recursive functions:

max {L[u,f—1]+ l[u,v}} (ff >0)

w:{u,v}eE

L[v, f] = max max {L[u,f]}

u:{u,v}€E
0
The first condition considers cases where the path is extended from u to v with the candidate arm u taken.
The second condition considers the case that u is not taken into the solution. The third condition
corresponds to boundary cases where v is the starting node of the path. The final solution can be found in
L[d, f], where d is the dummy node. The output of the mapping contains the selected arms and their

corresponding locations in the duplex read and the reference (Figure S1E).

Finally, we analyze the time complexity of CLAN. Recall that [ is the length of a duplex read. Clearly, each
BWT search of an [-long sequence against the reference requires O (1) time. Because CLAN searches every

prefix of the duplex read and there are at most [ prefixes, the total time required for the exhaustive BWT



search step is thus O(1?). For candidate merging, CLAN tests the merging of every pair of candidate seeds
in the worst-case scenario, which leads to an O(m?1?) complexity, where m is the maximum number of
reference locations associated with each candidate (a constant default to 100). CLAN hashes the mappings
according to their genomic locations into a fixed number of bins, and only attempts to merge candidates
within the same bin. This makes the merging step practically efficient. Finally, for the DP-based chaining,
each node v has at most [ nodes that precede it; as a result, computing each value in L requires O(l) time.
Since there are O(f1) entries in L, and the total time required for the chaining step is thus O (f1?) (where f
is a constant). Taken together, CLAN requires O (I?) to map a single duplex read. Note that the duplex read
length [ is determined by the length of the miRNA-mRNA binding site, therefore can be viewed as a
constant. CLAN thus requires a constant time to map a single duplex read, and the overall running time is

linear with respect to the throughput of the experiment (or the number of reads in the dataset).

To summarize, we highlight the major algorithmic contributions of CLAN: (1) CLAN employs a DP-based
chaining step to detect duplex mappings with desirable configuration, which prevents the mapping of the
internal sequence of a read, while leaving long segments of prefix and suffix unmapped; (2) CLAN
exhaustively searches for all seeds, which maximizes the sensitivity that is currently lacking in CLASH
read mapping; and (3) CLAN accounts for mismatches through merging seeds, rather than directly
identifying imperfect seeds. This reduces the computational cost of CLAN’s seeding step and makes CLAN

efficient overall.



Parameters used for running different programs

(Parameters that are not listed here were used as the defaults.)

CLAN:
-p 2 -v 2 -m 100 -t 16 -c 0.6

BLAST:
-num_threads 16 -task blastn-short

BWA-MEM:
-k 10 -r 1 -L 0 -T 10 -t 16

STAR:

Indexing:

--runThreadN 16 --runMode genomeGenerate --genomeSAindexNbases 10

Align:

--outSAMattributes All -runThreadN 16 --outFilterMismatchNmax 999 --
alignIntronMax 1000000 --outFilterMatchNmin 8 --seedSearchStartLmax 10
--chimSegmentMin 10 --chimSegmentReadGapMax 10 -
chimScoreJunctionNonGTAG 0 --outFilterScoreMinOverLread 0 -—

outFilterMatchNminOverLread 0

HISAT?2:
-p 16 --score-min L,0,-1 --pen-noncansplice 0 --no-temp-splicesite --
min-intronlen 20 --max-intronlen 1000000 --pen-canintronlen G,0,0 --pen-

noncanintronlen G,0,0

BOWTIE2:
-D 20 -R 3 -N O -L 16 -k 20 --local -i S5,1,0.50 --score-min L,18,0 --ma
1 --np 0 --mp 2,2 --rdg 5,1 --rfg 5,1 -p 16
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