A Continually-Stepped Variable-Gain LNA in 65-nm CMOS Enabled by a Tunable-Transformer for mm-Wave 5G Communications

Sheikh Nijam Ali, Md Aminul Hoque, Srinivasan Gopal, Mohammad Chahardori, Mohammad Ali Mokri, Deukhyoun Heo

Abstract—This paper presents a new continually-stepped variable gain low-noise-amplifier (CSVG-LNA) for millimeter-wave (mm-wave) 5G communications. The proposed variable-gain functionality in a two-stage LNA is achieved by incorporating a tunable-transformer at the 2nd-stage. The tunability in coupling-coefficient of the transformer allows to change the output matching of the LNA in a continuous fashion thus enabling a design of CSVG-LNA. The proposed CSVG-LNA alleviates high power consumption and large noise-figure (NF) variation problems in traditional approaches. To validate the proposed idea, we fabricated a CSVG-LNA in 65-nm CMOS process. The CSVG-LNA achieves measured 6.2dB of gain-tunability range while producing 18.2dB of peak 28GHz and <4.1dB of NF 28GHz. Further, the NF variation is only ~0.2dB across the entire 6.2dB gain-tuning range. The 3dB bandwidth of CSVG-LNA is about 12GHz (22-34GHz) while it consumes only 9.8mW of dc power. The CSVG-LNA occupies a compact core area of 0.2mm2. The proposed CSVG-LNA achieves 1.5X improvement in FoM in comparison to state-of-the-arts mm-wave variable-gain CMOS LNAs.

Keywords—Low noise amplifier (LNA), 65nm CMOS, variable gain amplifier (VGA), noise figure (NF), low power, wideband, tunable transformer, tunable coupling coefficient, tunable inductor, tunable neutralization, 28GHz, 37GHz, 5G communications, receivers, mm-wave, phased-arrays.

I. INTRODUCTION

Concurrent fulfillment of low noise-figure (NF), low-power consumption and compact-chip area is critical for next-generation millimeter-wave (mm-wave) 5G phased-array receivers. Conventional receiver architecture employs a low noise amplifier (LNA) and a variable-gain amplifier (VGA) separately to control the overall gain of the receiver. Because of the use of two dedicated blocks, this approach increases the power consumption, area and design complexity in the receiver chain. In contrast, the integration of a variable-gain functionality in an LNA is an attractive choice to control the gain in a 5G phased-array receivers [1]–[3]. Because this approach can omit the need for a dedicated VGA in each phased-array receiver chains, thus, dramatically reducing power consumption, chip area and cost.

Recently demonstrated variable-gain LNAs at mm-wave frequencies use a coarse gain tuning mechanism by controlling bias supplies and/or tunable resistors [1]–[3]. These approaches are prone to frequency-shift across gain states and compromise NF in their low-gain configuration due to noise mismatches. In addition, they are susceptible to process-voltage-temperature (PVT) variations because of the change in bias conditions for various gain states.

II. PROPOSED CONTINUALLY-STEPPED VARIABLE-GAIN LNA

To achieve a variable-gain functionality in LNA without degrading NF or introducing additional design complexity, we present a new two-stage continually-stepped variable-gain LNA (CSVG-LNA) architecture as shown in Fig. 1 using compact low-loss tunable coupling-coefficient based transformers. The functionality of the tunable transformer (XVG) in the 2nd-stage is to achieve gain tunability while the tunable transformer (XTN) in the 1st-stage helps to enhance reverse isolation thus improvement in forward gain and NF. The proposed CSVG-LNA alleviates high power consumption and large NF variation problems in traditional approaches. The fabricated CSVG-LNA in 65-nm CMOS technology achieves measured 6.2dB of gain control while producing 18.2dB of peak gain and only 3.9-4.1dB of NF at 28GHz. The NF variation is only ~0.2dB across the entire gain-tunability range. The proposed CSVG-LNA achieves 1.5X improvement in FoM in comparison to state-of-the-arts mm-wave variable-gain CMOS LNAs.

![Fig. 1: Simplified circuit diagram of the proposed CSVG-LNA.](image)

Fig. 1 shows the simplified circuit diagram of the proposed two-stage CSVG-LNA where both stages utilize a commonsource (CS) configuration. The continually-stepped variable-gain functionality is achieved by incorporating a transformer (XVG) with a tunable coupling-coefficient (kVG) at the 2nd-stage. The primary coil (LPVG) of the transformer is connected to the device’s (M2) drain and supply (VD02) terminal while the secondary coil (LSVG) is connected to the output and ground terminal. The tunability of the coupling-coefficient in XVG...
allows to change the matching network in a continuous fashion at the 2nd stage, thus enabling continual variation in gain of the LNA. We used a switched substrate-shield layout technique to achieve a tunable coupling coefficient in VXG. The design methodology and the layout technique for the VXG with tunable coupling coefficient can be found in [4].

Further, the VXG generates a 180° phase shift of the signal as similar in the differential design with a cross-coupled capacitive feedback to the gate [5]. An additional feedback capacitance (Cf) is applied in between the gate of M2 and the Ls,VG of the VXG to achieve the proper replica of a differential operation. In comparison to cross-coupled differential LNAs, this topology is capable to achieve 4-5dB higher Gmax [5].

In a CS LNA the feedback caused by device parasitic gate-drain capacitance (Cgd) degrades the LNA’s gain and reverse isolation (S12). Neutralization is very effective way to mitigate this detrimental effect of Cgd with improvement in forward gain (S21) and no penalty in power consumption. In literature cross-coupled capacitances [1] and transformer feedback [6] methods are applied to achieve neutralization. Cross-coupled capacitive neutralization can be only applied to a differential pair where the chip area and power consumption is large. In a single-ended design transformer feedback is an attractive way to neutralize Cgd by providing a magnetic feedback between the drain and gate of the device. Here, the phase of the magnetic feedback is opposite, but the magnitude is same in comparison to the unwanted Cgd coupling. However, this conventional transformer feedback neutralization with a fixed magnetic-coupling is not suitable at mm-wave frequencies where the net Cgd can be varied due to PVT variations, inaccuracies in electromagnetic (EM) simulation and interconnect modeling. As a result, there is a clear need of a tunable magnetic coupling in LNAs to address the unexpected change in Cgd.

An effective neutralization approach for mm-wave LNAs using a tunable transformer (k1) is adopted in the 1st-stage as shown in Fig. 1. This tunable neutralization technique is widely used in mm-wave CMOS power amplifiers (PA) [4, 7-11] to improve stability, gain and efficiency, and but the use in an LNA is never reported. This technique can precisely neutralize the adverse effects of Cgd while achieving significant improvement in forward-gain, stability, and NF in an LNA.

The proposed CSVG-LNA offers three key benefits in the context of conventional topologies. First, this approach can omit frequency shift problem in conventional variable-gain LNAs with bias voltage change approach. Second, this proposed technique can reduce power consumption significantly due to the combined variable gain stage. Third, due to the compact area of the transformer the overall area of the CSVG-LNA is small as a result a compact phased-array receiver size can be realized.

III. IMPLEMENTATION AND SIMULATION RESULTS

A 65-nm CMOS technology is used to implement the proposed two-stage CSVG-LNA. Fig. 2 shows the complete circuit diagram with component values. Total device width of 50μm and 64μm is used for M1 and M2 respectively. Both tunable transformers utilize bottom coils (Lb,TN, Lb,VG) in metal-1 layer (ML1) to modulate the inductance of their primary (Lp,TN, Lp,VG) and secondary (Ls,TN, Ls,VG) coils. The Lb,TN and Lb,VG are connected to switch, Mc1 and Mc2 respectively. If the control voltages (Vc1 and Vc2) of these switches are turned-on it reduces the inductance values in their primary and secondary coils of VXG and XTN [4]. In contrast, if the switches are turned-off the primary and secondary coils of VXG and XTN remains unchanged. As a result, this inductance modulation creates the coupling coefficient change in the transforms [4]. The post layout simulation results show change in k1 and k2 of 0.1 to 0.2 and 0.3 to 0.7 respectively. The quality factors of the XC, XTN are always better than 18.
With the selected device size and passive component values the two-stage LNA provides about 19dB of peak gain and 4dB of NF while consuming 9mW of power. Fig. 3 shows the post-layout simulation result of the CSVG-LNA’s gain and NF across the control voltage \((V_{C2}\)) of \(X_{VG}\). As \(V_{C2}\) increases the gain increases because \(k_2\) increases. Also, the gain drops with decrease in \(V_{C2}\) as \(k_2\) decreases. For full range of \(V_{C2}\) the gain changes about 6.4dB (19-12.6) at 28GHz. Notice that the NF only changes by 0.2dB across this entire 6.4dB of gain-tuning range showing the merit of this proposed technique. Fig. 4 shows post-layout simulation result of the CSVG-LNA’s gain and NF across the control voltage \((V_{c1})\) of \(X_{TN}\) while keeping \(V_{C2}\) = 1V. The 1st -stage requires a certain \(k_1\) to neutralize the effect of \(C_{gd}\). For this design at \(V_{c1}\) of 0.6V the LNA shows peak \(S_{21}\) of 19dB. This \(V_{c1}\) condition correspond to \(k_0\) of 0.17. At this point the NF is also minimum which is about 3.9dB. Since \(V_{c1}\) = 0.6V produces peak \(S_{21}\) and minimum NF, this setting is used for the plot in Fig. 3. The gain-tuning range can be increased further (i.e., 10-12dB) by incorporating a third-stage with proposed \(X_{VG}\) and/or increasing the \(k_2\) (i.e., 0.1-0.9) range.

IV. EXPERIMENTAL RESULTS

Fig. 5 shows the chip prototype in 65-nm CMOS which occupies an active area of 0.16mm\(^2\). The measurement results of the \(S_{21}\) across frequency for \(V_{c2}\) of 1 to 0V with a step of 0.2V are plotted in Fig. 6. A peak \(S_{21}\) of 18.2dB for \(V_{c2}\) = 1V while a \(S_{21}\) of 12dB is achieved for \(V_{c2}\) = 0V at 28GHz resulting about 6.2dB of gain tuning range. Note that the \(S_{21}\) can be reconfigured in a continuous fashion at band of interest by providing a finer step of \(V_{c2}\). The \(S_{12}\) was better than -35dB with a setting of \(V_{c1}\) of 0.6V showing the effectiveness of tunable neutralization in a CS configuration. The stability factor is better than 5.5 from DC to 34GHz across all the gain states. Fig. 7 shows the measured \(S_{22}\) and \(S_{11}\) across frequency with various \(V_{C2}\). With the change in \(V_{C2}\) the \(S_{22}\) changes as expected while the change in \(S_{11}\) small. As a result, the proposed technique is capable to show low NF variations which is shown in Fig. 8.

Only 0.2dB of NF variation is achieved at 28GHz while maintaining NF of 3.9-4.1dB (Fig. 8). Moreover, the NF is <4.3dB across 24-32GHz. At 28GHz the input 1-dB point (\(P_{1db}\)) is -15dB for \(V_{c1}\)=0.6V and \(V_{c2}\)=1V while consuming only 9.8mW of power (\(P_{dc}\)). Table 1 shows the performance summary and comparison with state-of-the-arts mm-wave CMOS variable gain LNAs at mm-wave. The proposed CSVG-LNA is capable to achieve lowest NF variations while consuming significantly lower power. As a result, a 1.5X improvement in FoM is achieved. The FoM definition [2] is provided in (1).

![Fig. 5: Die micrograph and layout of \(X_{VG}\) in 65nm CMOS technology.](image-url)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CMOS Tech.</td>
<td>65nm</td>
<td>40nm</td>
<td>28nm</td>
<td>28nm</td>
</tr>
<tr>
<td>Freq. (GHz)</td>
<td>28</td>
<td>27.5</td>
<td>82.3</td>
<td>79</td>
</tr>
<tr>
<td># of Stages</td>
<td>2 (CS)</td>
<td>3 (Differ.)</td>
<td>3 (Differ.)</td>
<td>3 (Differ.)</td>
</tr>
<tr>
<td>Gain & Range (dB)</td>
<td>18.2-12</td>
<td>27.1-18.4</td>
<td>29.6-18</td>
<td>19.3 -23.8</td>
</tr>
<tr>
<td>3dB BW* (GHz)</td>
<td>6.2</td>
<td>8.7</td>
<td>11.6</td>
<td>4.5</td>
</tr>
<tr>
<td>NF (dB)</td>
<td>3.9-4.1</td>
<td>3.4-4.4</td>
<td>6.4-8.2</td>
<td>4.9-5.6</td>
</tr>
<tr>
<td>(P_{dc}) (mW)</td>
<td>9.8</td>
<td>21.5</td>
<td>31.3</td>
<td>30.6</td>
</tr>
<tr>
<td>Supply (V)</td>
<td>1</td>
<td>1.1</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>(P_{1db}) (dBm)</td>
<td>15</td>
<td>-13.4</td>
<td>-28.1</td>
<td>-18.5</td>
</tr>
<tr>
<td>Area* (mm(^2))</td>
<td>0.16</td>
<td>0.26</td>
<td>0.25</td>
<td>0.15</td>
</tr>
<tr>
<td>FoM*</td>
<td>1758</td>
<td>1152</td>
<td>380</td>
<td>530</td>
</tr>
</tbody>
</table>

*maximum gain condition, +active area only
A new continually-stepped variable gain low-noise-amplifier (CSVG-LNA) for mm-wave 5G receivers is proposed. The tunability in coupling-coefficient of the transformer allows to change the output matching of the LNA in a continuous fashion resulting a continuous gain-variation. The proposed technique alleviates high power consumption and large NF variation problems in traditional designs. A prototype in 65-nm CMOS achieves measured 6.2dB of gain control while producing 18.2dB of S_{21} and 3.9-4.1dB of NF at 28GHz resulting only ~0.2dB NF deviation. The chip occupies a compact core area of 0.2mm2 and consumes only 9.8mW of power. As a result, a 1.5X improvement in FoM in comparison to state-of-the-arts mm-wave variable-gain CMOS LNAs are achieved. The proposed CSVG-LNA presents an attractive solution for next-generation compact and low-cost 5G phased-array receivers.

ACKNOWLEDGEMENT

This work was supported in part by the U.S. National Science Foundation (NSF) under Grant CNS-1564014 and CNS-1705026, and in part by the NSF Center for Design of Analog Digital Integrated Circuits (CDADIC) and in part by the Joint Center for Aerospace Technology Innovation (JCATI).

REFERENCES