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Abstract— Exacerbation monitoring of obstructive sleep
apnea (OSA) is important for the evaluation of treatment
effectiveness and tracking the disease progression. In this study,
we investigate the use of spectral features from a single channel
electroencephalography (EEG) for early detection and
monitoring of OSA exacerbation using the Sleep Health Heart
Study dataset. We have explored 22 features at different sleep
stages corresponding to different frequency bands to distinguish
410 subjects in the stable and exacerbation groups. An optimal
set of 15 features has been selected using the recursive feature
elimination technique. It has been found that these features
provide significant discriminative information (p-value < 0.05)
for classification. On the test dataset of 82 EEG records, a
classification accuracy, sensitivity, and specificity of 79.17%,
80.85%, and 76.00%, respectively, have been achieved using
Quadratic Discriminant Analysis classifier. Results demonstrate
that OSA exacerbation can be detected early and monitored
with this simple yet effective method using a single channel
EEG.

1. INTRODUCTION

On an average, 22% of men and 17% of women suffer
from obstructive sleep apnea (OSA) [1]. Insufficient sleep,
drowsiness, and daytime sleepiness are some of the direct
consequences of OSA. Untreated OSA is either responsible
or strongly correlated with many diseases such as myocardial
infarction, hypertension, high blood pressure, and depression
[1]. OSA is not persistent for the whole duration of sleep;
rather it appears in a repetitive manner as events. OSA event
is associated with physiological changes such as heart rate,
oxygen saturation level, and respiration. American Academy
of Sleep Medicine (AASM) Taskforce defined an
apnea/hypopnea event as a complete cessation or transitory
reduction of breathing when the airflow decreases by more
than 50% from the amplitude of baseline and the oxygen
saturation level decrease by at least 4% and the event persists
for a minimum of 10 seconds [2]. OSA diagnosis and
severity —assessment is currently measured using
polysomnogram (PSG), a comprehensive test that collects
different types of physiological signals including ECG, EEG,
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Sp0,, leg movement, body movement, and respiration.
These tests are usually conducted in sleep laboratory settings
and scored by certified sleep clinicians.

Although patients diagnosed with OSA are generally
treated with continuous positive airway pressure (CPAP)
device, many patients are not comfortable with CPAP and, in
some cases, CPAP may lead to other complicacy such as dry
mouth, discomfort breathing, and development of central
sleep apnea. For patients with mild OSA, the use of CPAP
may not provide significant improvement [3]. Oral appliance
(OA) and surgical operations are possible alternative to
CPAP in the management of OSA [4]. Some researchers
have evaluated the effectiveness of weight reduction in the
early stages of OSA [5]. One of the major challenges
involved in the management of OSA is the evaluation of
treatment effectiveness on a regular basis. Although CPAP is
generally equipped with a system for monitoring AHI, other
approaches require PSG or separate arrangements for
monitoring OSA progression.

Many studies have been conducted to diagnose OSA
using Electrocardiogram (ECG), pulse oximetry and
electroencephalography (EEG) features [6]. Liu et al
proposed a neural network method for the detection of
obstructive sleep apnea from EEG [7]. Almuhammadi et al.
proposed an efficient method for sleep apnea classification
based on EEG signals [8]. However, these investigations are
limited to the classification of apneic subjects from healthy
subjects and do not address the issue of continuous
monitoring of an OSA patient for the evaluation of treatment
effectiveness. In this study, we have investigated the spectral
band powers of EEG signal and variance in power for the
detection of OSA exacerbation and continuous monitoring of
OSA at home environment with a large dataset.

II. MATERIALS AND METHODS

A. Dataset

We have used the Sleep Health Heart Study (SHHS)
dataset available from National Sleep Research Resource
[9]. SHHS was implemented as a multi-center cohort study
in two phases by the National Heart Lung & Blood Institute.
Subjects were recruited in 12 centers located all over the
country. In total 6441 subjects were enrolled in the first
phase called SHHS-1. In the second phase of study (SHHS-
2) 3295 subjects were enrolled. In both the phases
Polysomnograms were obtained in an unattended setting,
usually in the homes of the participants, by trained and
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Fig. 1 Representative EEG data from channels
C3-Al and C4-A2.

Certified technicians. The PSG data was saved in European
Data Format (EDF). Data processing and initial scoring was
done by Compumedics software [9]. Two manual scoring
was included to annotate the dataset with AHI, respiratory
disturbance index, sleep stages, event start and end time
identification etc. In our study, we have primarily considered
only those patients who were enrolled in both SHHS-1 and
SHHS-2. Based on the annotated obstructive apnea-hyponea
index (OAHI), we have identified 205 subjects who showed
an exacerbation in their disease. In this context, exacerbation
means that they have advanced to a higher severity stage or
their apnea-hypopnea index (AHI) has increased by 10
scores. These 205 patients included in the exacerbation
group consist of both men and women. Most of them were
married and elderly and predominantly overweight or obese.
To have a balanced dataset, in our study we have also
included 205 non-exacerbating i.e. stable subjects. In total
410 subjects from the SHHS have been included and
randomized in this study.

B.  Sleep Stages and EEG Frequency Bands

In general, overnight sleep can be divided into two stages
Rapid Eye Movement (REM) sleep and Non-rapid eye
movement (N-REM) sleep. N-REM sleep is further divided
into Stage 1, Stage 2, Stage 3, and Stage 4, where Stage 1 is
the lightest sleep and Stage 4 is the deepest sleep. REM
sleep is divided into Phasic and Tonic sleep. There is a
cyclic pattern in the sleep where a person starts with NREM
Stage 1 after sleep onset and gradually progress to Stage 4
and then again comeback to Stage 1 and then REM sleep
[10]. In the whole night, 5-6 sleep cycles are typically
observed with longer sleep cycles in the initial hours and
shorter sleep cycles at the end. EEG signal consists of six
major frequency bands namely Alpha (o), Beta (B), Gamma
(v), Delta (8), Theta (©), and Sigma (o). The details of EEG
frequency bands have been provided in Table I. Previous
studies have confirmed that Alpha band power activity
corresponds to wakefulness, Delta and Theta band power are
prevalent in NREM stage 4 and comparatively low in REM
sleep [11]. During REM sleep, a mixed frequency theta
including some alpha waves without sleep spindles are
observed.
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Fig. 2. EEG power spectral density of a subject
from channels C3 (green) and C4 (red).
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Fig. 3 Distribution of delta sleep power in
exacerbation and stable OSA subjects
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TABLE II. LIST OF SPECTRAL FEATURES

Frequency Band Features

Delta Total Power, REM Sleep Power, NREM Sleep Power
Theta Total Power, REM Sleep Power, NREM Sleep Power
Alpha Total Power, REM Sleep Power, NREM Sleep Power
Beta Total Power, REM Sleep Power, NREM Sleep Power
Gamma Total Power, REM Sleep Power, NREM Sleep Power
Slow Sigma Total Power, REM Sleep Power, NREM Sleep Power
Fast sigma Total Power, REM Sleep Power, NREM Sleep Power

C. Feature Extraction, Feature Selection, and
Classification

The EEG signal was collected using two channels from
the central region of brain for over 5 hours. One of the
channel is C4-A1l and the other one is C3-A2. The sampling
rate for EEG was 125 samples per second (sps). A
representative portion of the raw EEG signal for a SHHS
subject from the two EEG channels has been shown in Fig.
1. The power spectral densities, as shown in Fig. 2, for these
two channels are very similar. In our study, we have only
used the signal from C4 channel as it has been designated as
primary EEG channel in SHHS. EEG spectral analysis was
performed using the SpectralTrainFig App in MATLAB [9].
We have extracted 21 features from the decontaminated EEG
signal as shown in Table. II. In addition, we have considered
the variance in power as another feature. For plotting the
Power Spectral Density (PSD) and time-frequency analysis,
we have used EEGLab [12]. The distribution of data in both
groups are skewed for all the variables. The distribution for
delta sleep has been visualized in Fig. 3, which shows a right
skewed distribution. Since the data failed normality test
(Shapiro-Wilk) for all the variables, we have adopted non-
parametric methods of statistical analyses i.e., Mann-
Whitney U test and Wilcoxon signed rank test for testing if
there is a significant difference. Sigma plot and IBM SPSS
software has been used for statistical analysis. For feature
selection, we have used recursive feature elimination
technique using R caret package, which tune the model on
the training set using all predictors, calculate model
performance, calculate variable importance, and determine
the appropriate number of predictors [13]. The feature
extraction and classification method has been shown in
Fig4. For classification, we have wused Quadratic
Discriminant Analysis (QDA) classifier. The data set was
divided in training and test set in an 80% and 20% ratio.
Five-fold cross validation was used in the training set.
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Feature Non-Exacerbating Exacerbating p-value
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Fig. 4 Feature extraction and classification method 5(;:‘;:1:1% 90.45 (112.33) 65.56 (98.62) 0.007

The QDA classifier has a non-linear decision boundary
and belongs to the family of Bayesian classifiers. The
quadratic discriminant function is given by,

Ok(x)= —12log|Zi|—12(x—ui)" Zi ! (x—ui) +logmi , where X is
the covariance matrix for each class k= 1,2,....K and the
classification rule is G(x)=arg maxy dx(x).

III. RESULTS

The results of Mann Whitney U test for comparing the
EEG spectral features of exacerbating OSA group with non-
exacerbating subjects (control group) has been shown in
Table III. The significant differences (p-value < 0.05) are
indicated with asterisks. The non-exacerbating group has a
higher delta sleep power compared to the exacerbating group
as shown in Fig. 5. In addition, the alpha band power in
REM stage is higher in exacerbating group compared to non-
exacerbating group. These conform to the fact that an
exacerbating person spend less time in deep sleep (stage 3-
4). Significant differences are also observed in beta and
sigma band power.
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Fig. 6 shows the time frequency analysis of the EEG of a
subject showing exacerbation. Fig. 6A and Fig. 6B shows the
spectrogram before and after exacerbation respectively. It
can be noted from the time frequency analysis that there is a
decrease in Delta band power due to exacerbation.

The results of Wilcoxon-Signed Rank test reveal a
significant change within the group due to exacerbation. The
spectral power in different sleep stages during baseline and
follow-up visits has been shown in Fig. 7. Based on
Wilcoxon signed rank test, significant changes have been
marked with asterisks. Although some of the spectral
features show a significant change due to aging and is
observed in both the groups, some other features show a
significant change for the exacerbation group only. It is
noted that due to exacerbation, there is a decrease in Delta
REM power and Beta N-REM power while an increase in
Theta N-REM power. Alpha and sigma band power are only
affected by aging.
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Fig. 6: Time-frequency analysis of a subject showing progression in OSA for (A) baseline EEG
(B) follow-up EEG after Exacerbation.
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TABLE. IV FIVE-FOLD CROSS VALIDATION RESULTS OF THE QDA
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. there is a significant change in spectral features due to a
o P S,WZ' ::"EM Sig::;;" progression in the disease. The classification results achieved
17 7 ﬁT T i _—'L—T with quadratic discriminant analysis is promising and has the
i . Eo ’ll [ potential for further improvement. The use of single channel
EEG data enables the use of this method on wearable
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Fig. 7: Changes in EEG Spectral Power in A) Delta B) Theta C) Alpha D)
Sigma E) Beta bands due to exacerbation.
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Fig. 8: Representative partition plots with extracted features
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Fig. 9 Feature selection by Recursive feature elimination

The partition plot with some features are shown in Fig. 8. As
shown in Fig. 9, the RFE method suggested 15 features as
best predictors to achieve maximum accuracy. With the top

15 features, QDA classification achieved an accuracy of
77.06%, sensitivity of 75.19%, and specificity of 78.05% in
the training set. In the test set, it achieved an accuracy of
79.17%, sensitivity of 80.85% and specificity of 76%. These
results are summarized in Table IV.

error rate: 0.417

devices. This study also reveals that spectral features of
single channel EEG obtained from central aerial position
alters for healthy and apneic subjects in different sleep
stages. This demonstrates the potential of using EEG spectral
features for early detection and continuous monitoring of
OSA. These in turn can be utilized to monitor effectiveness
of OSA treatment and home management of OSA.
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