
  

  

Abstract— Exacerbation monitoring of obstructive sleep 
apnea (OSA) is important for the evaluation of treatment 
effectiveness and tracking the disease progression. In this study, 
we investigate the use of spectral features from a single channel 
electroencephalography (EEG) for early detection and 
monitoring of OSA exacerbation using the Sleep Health Heart 
Study dataset. We have explored 22 features at different sleep 
stages corresponding to different frequency bands to distinguish 
410 subjects in the stable and exacerbation groups. An optimal 
set of 15 features has been selected using the recursive feature 
elimination technique. It has been found that these features 
provide significant discriminative information (p-value ≤ 0.05) 
for classification. On the test dataset of 82 EEG records, a 
classification accuracy, sensitivity, and specificity of 79.17%, 
80.85%, and 76.00%, respectively, have been achieved using 
Quadratic Discriminant Analysis classifier. Results demonstrate 
that OSA exacerbation can be detected early and monitored 
with this simple yet effective method using a single channel 
EEG. 

I. INTRODUCTION 

     On an average, 22% of men and 17% of women suffer 
from obstructive sleep apnea (OSA) [1]. Insufficient sleep, 
drowsiness, and daytime sleepiness are some of the direct 
consequences of OSA. Untreated OSA is either responsible 
or strongly correlated with many diseases such as myocardial 
infarction, hypertension, high blood pressure, and depression 
[1]. OSA is not persistent for the whole duration of sleep; 
rather it appears in a repetitive manner as events. OSA event 
is associated with physiological changes such as heart rate, 
oxygen saturation level, and respiration. American Academy 
of Sleep Medicine (AASM) Taskforce defined an 
apnea/hypopnea event as a complete cessation or transitory 
reduction of breathing when the airflow decreases by more 
than 50% from the amplitude of baseline and the oxygen 
saturation level decrease by at least 4% and the event persists 
for a minimum of 10 seconds [2]. OSA diagnosis and 
severity assessment is currently measured using 
polysomnogram (PSG), a comprehensive test that collects 
different types of physiological signals including ECG, EEG, 
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SpO2, leg movement, body movement, and respiration. 
These tests are usually conducted in sleep laboratory settings 
and scored by certified sleep clinicians.  
    Although patients diagnosed with OSA are generally 
treated with continuous positive airway pressure (CPAP) 
device, many patients are not comfortable with CPAP and, in 
some cases, CPAP may lead to other complicacy such as dry 
mouth, discomfort breathing, and development of central 
sleep apnea. For patients with mild OSA, the use of CPAP 
may not provide significant improvement [3]. Oral appliance 
(OA) and surgical operations are possible alternative to 
CPAP in the management of OSA [4]. Some researchers 
have evaluated the effectiveness of weight reduction in the 
early stages of OSA [5]. One of the major challenges 
involved in the management of OSA is the evaluation of 
treatment effectiveness on a regular basis. Although CPAP is 
generally equipped with a system for monitoring AHI, other 
approaches require PSG or separate arrangements for 
monitoring OSA progression.  
 

   Many studies have been conducted to diagnose OSA 
using Electrocardiogram (ECG), pulse oximetry and 
electroencephalography (EEG) features [6]. Liu et al. 
proposed a neural network method for the detection of 
obstructive sleep apnea from EEG [7]. Almuhammadi et al. 
proposed an efficient method for sleep apnea classification 
based on EEG signals [8]. However, these investigations are 
limited to the classification of apneic subjects from healthy 
subjects and do not address the issue of continuous 
monitoring of an OSA patient for the evaluation of treatment 
effectiveness. In this study, we have investigated the spectral 
band powers of EEG signal and variance in power for the 
detection of OSA exacerbation and continuous monitoring of 
OSA at home environment with a large dataset.  

II. MATERIALS AND METHODS 

A. Dataset 
 We have used the Sleep Health Heart Study (SHHS) 
dataset available from National Sleep Research Resource 
[9]. SHHS was implemented as a multi-center cohort study 
in two phases by the National Heart Lung & Blood Institute. 
Subjects were recruited in 12 centers located all over the 
country. In total 6441 subjects were enrolled in the first 
phase called SHHS-1. In the second phase of study (SHHS-
2) 3295 subjects were enrolled. In both the phases 
Polysomnograms were obtained in an unattended setting, 
usually in the homes of the participants, by trained and 
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Fig. 1 Representative EEG data from channels 

C3-A1 and C4-A2. 

 
Fig. 2.  EEG power spectral density of a subject 
from channels C3 (green) and C4 (red). 

 
Fig. 3 Distribution of delta sleep power in 

exacerbation and stable OSA subjects 
Certified technicians. The PSG data was saved in European 
Data Format (EDF). Data processing and initial scoring was 
done by Compumedics software [9]. Two manual scoring 
was included to annotate the dataset with AHI, respiratory 
disturbance index, sleep stages, event start and end time 
identification etc. In our study, we have primarily considered 
only those patients who were enrolled in both SHHS-1 and 
SHHS-2. Based on the annotated obstructive apnea-hyponea 
index (OAHI), we have identified 205 subjects who showed 
an exacerbation in their disease. In this context, exacerbation 
means that they have advanced to a higher severity stage or 
their apnea-hypopnea index (AHI) has increased by 10 
scores. These 205 patients included in the exacerbation 
group consist of both men and women. Most of them were 
married and elderly and predominantly overweight or obese. 
To have a balanced dataset, in our study we have also 
included 205 non-exacerbating i.e. stable subjects. In total 
410 subjects from the SHHS have been included and 
randomized in this study. 

B. Sleep Stages and EEG Frequency Bands 
In general, overnight sleep can be divided into two stages 
Rapid Eye Movement (REM) sleep and Non-rapid eye 
movement (N-REM) sleep. N-REM sleep is further divided 
into Stage 1, Stage 2, Stage 3, and Stage 4, where Stage 1 is 
the lightest sleep and Stage 4 is the deepest sleep. REM 
sleep is divided into Phasic and Tonic sleep. There is a 
cyclic pattern in the sleep where a person starts with NREM 
Stage 1 after sleep onset and gradually progress to Stage 4 
and then again comeback to Stage 1 and then REM sleep 
[10]. In the whole night, 5-6 sleep cycles are typically 
observed with longer sleep cycles in the initial hours and 
shorter sleep cycles at the end. EEG signal consists of six 
major frequency bands namely Alpha (α), Beta (β), Gamma 
(γ), Delta (δ), Theta (Ɵ), and Sigma (σ). The details of EEG 
frequency bands have been provided in Table I. Previous 
studies have confirmed that Alpha band power activity 
corresponds to wakefulness, Delta and Theta band power are 
prevalent in NREM stage 4 and comparatively low in REM 
sleep [11]. During REM sleep, a mixed frequency theta 
including some alpha waves without sleep spindles are 
observed. 

TABLE I.  EEG  FREQUENCY BANDS 

Band Delta Theta Alpha Sigma Beta Gamma 

Freq-
uency  
(Hz) 

0.5 - 4  4-8 8-13 12-14 13-30 36-90 

TABLE II.  LIST OF SPECTRAL FEATURES 

Frequency Band Features 

Delta Total Power, REM Sleep Power, NREM Sleep Power 

Theta Total Power, REM Sleep Power, NREM Sleep Power 

Alpha Total Power, REM Sleep Power, NREM Sleep Power 

Beta Total Power, REM Sleep Power, NREM Sleep Power 

Gamma Total Power, REM Sleep Power, NREM Sleep Power 

Slow Sigma Total Power, REM Sleep Power, NREM Sleep Power 

Fast sigma Total Power, REM Sleep Power, NREM Sleep Power 

C. Feature Extraction, Feature Selection, and 
Classification 

 The EEG signal was collected using two channels from 
the central region of brain for over 5 hours. One of the 
channel is C4-A1 and the other one is C3-A2. The sampling 
rate for EEG was 125 samples per second (sps). A 
representative portion of the raw EEG signal for a SHHS 
subject from the two EEG channels has been shown in Fig. 
1. The power spectral densities, as shown in Fig. 2, for these 
two channels are very similar. In our study, we have only 
used the signal from C4 channel as it has been designated as 
primary EEG channel in SHHS. EEG spectral analysis was 
performed using the SpectralTrainFig App in MATLAB [9]. 
We have extracted 21 features from the decontaminated EEG 
signal as shown in Table. II. In addition, we have considered 
the variance in power as another feature. For plotting the 
Power Spectral Density (PSD) and time-frequency analysis, 
we have used EEGLab [12]. The distribution of data in both 
groups are skewed for all the variables. The distribution for 
delta sleep has been visualized in Fig. 3, which shows a right 
skewed distribution. Since the data failed normality test 
(Shapiro-Wilk) for all the variables, we have adopted non-
parametric methods of statistical analyses i.e., Mann-
Whitney U test and Wilcoxon signed rank test for testing if 
there is a significant difference. Sigma plot and IBM SPSS 
software has been used for statistical analysis. For feature 
selection, we have used recursive feature elimination 
technique using R caret package, which tune the model on 
the training set using all predictors, calculate model 
performance, calculate variable importance, and determine 
the appropriate number of predictors [13].  The feature 
extraction and classification method has been shown in 
Fig.4. For classification, we have used Quadratic 
Discriminant Analysis (QDA) classifier. The data set was 
divided in training and test set in an 80% and 20% ratio. 
Five-fold cross validation was used in the training set. 



  

 
 

Fig. 4 Feature extraction and classification method 

The QDA classifier has a non-linear decision boundary 
and belongs to the family of Bayesian classifiers. The 
quadratic discriminant function is given by,  
δk(x)= −12log|Σk|−12(x−μk)T Σk

−1(x−μk)+logπk , where Σk is 
the covariance matrix for each class k= 1,2,….K and the 
classification rule is G(x)=arg maxk δk(x). 

III. RESULTS 
The results of Mann Whitney U test for comparing the 

EEG spectral features of exacerbating OSA group with non-
exacerbating subjects (control group) has been shown in 
Table III. The significant differences (p-value < 0.05) are 
indicated with asterisks. The non-exacerbating group has a 
higher delta sleep power compared to the exacerbating group 
as shown in Fig. 5. In addition, the alpha band power in 
REM stage is higher in exacerbating group compared to non-
exacerbating group. These conform to the fact that an 
exacerbating person spend less time in deep sleep (stage 3-
4). Significant differences are also observed in beta and 
sigma band power. 

TABLE III.  RESULTS OF MANN WHITNEY U TEST 

Feature Non-Exacerbating 
Median (IQR) 

Exacerbating 
Median (IQR) 

p-value 

N = 205 N = 205  

Delta sleep 30.563 (19.184) 26.094 (19.018) 0.000* 

Delta NREM 36.028 (22.390) 29.092 (21.178) 0.000* 

Delta REM 11.819 (6.135) 10.376 (6.092) 0.049* 

Theta sleep 7.085 (4.498) 6.682 (5.498) 0.300 

Theta NREM 7.925 (5.310) 7.249 (5.864) 0.070 

Theta REM 4.270 (2.814) 4.244 (3.304) 0.933 

Alpha sleep 3.562 (3.299) 3.557 (2.846) 0.749 

Alpha NREM 3.898 (3.513) 3.751 (3.022) 0.225 

Alpha REM 2.042 (1.704) 2.496 (1.988) 0.019* 

Sigma sleep 1.823 (1.213) 1.780 (1.234) 0.277 

Sigma NREM 1.978 (1.365) 1.843 (1.409) 0.037* 

Sigma REM 1.067 (0.812) 1.220 (0.917) 0.017* 

Beta sleep 0.645 (0.379) 0.730 (0.491) 0.005* 

Beta NREM 0.640 (0.350) 0.725 (0.477) 0.002* 

Beta REM 0.615 (0.451) 0.708 (0.539) 0.034* 

Power 
Variance 

90.45 (112.33) 65.56 (98.62) 0.007* 

Fig. 6 shows the time frequency analysis of the EEG of a 
subject showing exacerbation. Fig. 6A and Fig. 6B shows the 
spectrogram before and after exacerbation respectively. It 
can be noted from the time frequency analysis that there is a 
decrease in Delta band power due to exacerbation. 

The results of Wilcoxon-Signed Rank test reveal a 
significant change within the group due to exacerbation. The 
spectral power in different sleep stages during baseline and 
follow-up visits has been shown in Fig. 7. Based on 
Wilcoxon signed rank test, significant changes have been 
marked with asterisks. Although some of the spectral 
features show a significant change due to aging and is 
observed in both the groups, some other features show a 
significant change for the exacerbation group only. It is 
noted that due to exacerbation, there is a decrease in Delta 
REM power and Beta N-REM power while an increase in 
Theta N-REM power. Alpha and sigma band power are only 
affected by aging.   

  
  

Fig. 6: Time-frequency analysis of a subject showing progression in OSA for (A) baseline EEG 
(B) follow-up EEG after Exacerbation. 
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Fig.5 Boxplot for delta sleep power density 
 



  

 
Fig. 7: Changes in EEG Spectral Power in A) Delta B) Theta C) Alpha D) 
Sigma E) Beta bands due to exacerbation.  

 
Fig. 8: Representative partition plots with extracted features 

Fig. 9 Feature selection by Recursive feature elimination 

The partition plot with some features are shown in Fig. 8. As 
shown in Fig. 9, the RFE method suggested 15 features as 
best predictors to achieve maximum accuracy. With the top 
15 features, QDA classification achieved an accuracy of 
77.06%, sensitivity of 75.19%, and specificity of 78.05% in 
the training set. In the test set, it achieved an accuracy of 
79.17%, sensitivity of 80.85% and specificity of 76%. These 
results are summarized in Table IV. 

TABLE. IV FIVE-FOLD CROSS VALIDATION RESULTS OF THE QDA 
CLASSIFICATION MODEL 

Data set 
Exacerbation Classification 

Accuracy Sensitivity Specificity 

Training 77.06% 75.19% 78.05% 

Test 79.17% 80.85% 76.00% 

IV. CONCLUSION  
This study indicates that EEG spectral power in different 

sleep stages can show a significant difference between 
exacerbating and non-exacerbating subjects. In addition, 
there is a significant change in spectral features due to a 
progression in the disease. The classification results achieved 
with quadratic discriminant analysis is promising and has the 
potential for further improvement. The use of single channel 
EEG data enables the use of this method on wearable 
devices. This study also reveals that spectral features of 
single channel EEG obtained from central aerial position 
alters for healthy and apneic subjects in different sleep 
stages. This demonstrates the potential of using EEG spectral 
features for early detection and continuous monitoring of 
OSA. These in turn can be utilized to monitor effectiveness 
of OSA treatment and home management of OSA. 
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