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Abstract—Development of a smart and connected community
(SCC) health framework is an indispensable part in the
development of smart cities. Smartphones with increased
processing capability, integrated sensors, storage capacity, and
cloud connectivity have a key role to play in developing this SCC
Health framework. In this paper, we report a novel smartphone-
based framework for continuous monitoring of arrhythmia,
obstructive sleep apnea (OSA), chronic obstructive pulmonary
disease (COPD), and flu. In addition to personalized monitoring,
community-wide temporal and spatial monitoring are also
possible in this approach. A custom smartphone app is developed
that has the ability for collection of body sensor data via
Bluetooth, loading machine learning algorithms dynamically
from the webserver, computing disease severity in real-time,
sharing of anonymous data, and visualization of community
health status via the webserver. The framework has been tested
for online monitoring of OSA, COPD, and flu severity. An
accuracy of £1°F has been achieved for flu measurement and a
mean absolute error (MAE) of 8.27 AHI has been achieved for
OSA severity estimation using heart rate variability and SpOa.
The app has a power consumption of 218 mW when active, uses a
memory of 7 MB, and requires a total storage space of 9.36 MB.
This framework aims to improve community health, reduce
waste in healthcare spending, and facilitate early treatment in
case of disease exacerbation.

Keywords—Connected health, Mobile Health, Smartphone
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[.  INTRODUCTION

Smart cities around the world are entering a new era of
transformation towards Smart and Connected Communities
(SCC) where residents and their surrounding environments are
increasingly connected through intelligent technologies.
Smartphones can play a key role in this framework with
Mobile Health (mHealth) technology that has already enabled
a revolution in computerized health interventions, and will not
only reduce cost of healthcare, but also improve community
health. For instance, cardiovascular disease (CVD) is
projected to cost over $1 Trillion by 2035 and almost 50% of
US population will develop pre-existing CVD conditions [1].
Other chronic diseases such as obstructive sleep apnea (OSA),
chronic obstructive pulmonary disease (COPD), and flu
require continuous monitoring. Hence, there is a need for the
development of a Smart and Connected Community Health
(SCC Health) framework that can be used reliably for
monitoring the patients with chronic diseases at home
environment improving individual and collective health, while
avoiding frequent hospital visits thereby reducing healthcare
cost significantly.
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Past research activities primarily focused on a particular
disease with wearables for mHealth. For instance, Oresko et
al. investigated a wearable smartphone-based platform for
cardiac arrhythmia detection using the electrocardiogram
(ECG) signals [2]. Alhussein proposed a Parkinson’s disease
monitoring framework for wuse in smart cities [3].
Constantinescu et al. proposed a framework for a distributed
mHealth Systems [4]. While many other researchers have
proposed mHealth based frameworks, most of them are
limited to disease classification, require multiple sensors, and
did not address the online spatial-temporal severity estimation
and visualization of the diseases throughout the community.

Our focus is the development of severity metrics that well
correspond with standard severity metrics and can be
estimated in real-time using minimal number of easy-to-use
sensors. For example, the standard metric for severity
assessment of OSA is Apnea-hypopnea index (AHI). An AHI
< 30 indicates mild-moderate OSA and AHI > 30 indicates a
severe OSA [5]. The standard procedure for estimation of AHI
is to conduct a polysomnogram test. Polysomnogram is a
complex test requiring data collection using many sensors
such as ECG, EEG, EMG, respiration, airflow, SpO-, audio,
and motion. Usually, polysomnogram is done at a sleep
laboratory, and though there are options for home based
polysomnogram, it requires the assistance and involvement of
a certified sleep technician to perform the test properly and
assess the results. In our study, we have addressed the online
estimation of OSA severity using heart rate variability and
SpO: collected using a wrist band and utilized machine
learning  technique for automated disease severity
computation. For flu severity estimation, we captured body
temperature using an inkjet printed (IJP) fully passive
disposable sensor. The architecture utilizes on a lightweight
smartphone app and performs edge-computing on the
smartphone platform for data processing, feature extraction
and severity estimation with machine learning methods. There
is provision for data sharing from the user community to a
central webserver, that allows monitoring the progression of a
disease over time and visualize the spatial distribution of a
disease within a geographical area.

II. MATERIALS AND METHOD

A. Data Set

For OSA we have used the Sleep Health Heart Study
(SHHS) dataset available from National Sleep Research
Resource [6]. SHHS was implemented as a multi-center cohort
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Fig 1. Method for Estimation of Sleep Apnea Severity

study in two phases by the National Heart Lung & Blood
Institute. In both the phases, Polysomnograms were obtained in
the homes of the participants, by trained and certified
technicians. The polysomnogram data was saved in European
Data Format (EDF). Two manual scoring was included to
annotate the database with AHI, respiratory disturbance index,
sleep stages, event start and end time identification, etc. In our
study, we have considered 298 subjects who showed an
exacerbation (progression to higher severity stages) in their
diseases. Two records were obtained from each of these
subjects, thus making the total number of records to 596. The
AHI for the studied subjects ranges from 0-117.

For flu estimation, data have been collected from controlled
heat pads at laboratory set up. A total of 69 data samples
ranging from 70°F to 108°F have been collected in total. A
precision fiber optic thermometer (Optocon FOTEMP with
TS2 optical fiber probe, Weidmann Technologies, Germany)
was used for establishing the ground truth.

B. Algorithms for Severity Estimation

For sleep apnea severity estimation, data from heart rate
and SpO» sensor have been used. The inter-beat-interval (viz.
RR interval) data series was filtered using a 3™ order moving
average filter to smooth out the ripples and to remove the high
frequency noises. Then the signal was resampled at 4 Hz and
interpolated using cubic interpolation. Time domain and
frequency domain heart rate variability (HRV) features as
described in Table. I was extracted from the entire signal as
recommended in HRV guideline [7]. For short term HRV
features 5 min window has been used. Pearson correlation of
HRYV features with apnea-hypopnea index (AHI) has been done
to find the features showing a significant correlation with AHI.
Two more features based on the SpO: level - the percent of
sleep duration with less than 90% SpO» and with less than 85%
SpO,, were added with significant HRV features. Then an
ensemble of regression method (boosted, leaf size=8, number
of learners=30, learning rate=0.1) has been used to estimate the
severity (AHI) of sleep apnea. The method for OSA severity
estimation has been shown in Fig. 1. For evaluating the model
performance 5-fold cross validation has been used.

TABLE 1. TIME DOMAIN AND FREQUENCY DOMAIN MEASURES OF HEART RATE
VARIABILITY USED IN THIS STUDY

Feature Description
AVNN Mean of NN-interval
SDNN Standard deviation of all NN intervals.
Standard deviation of the averages of NN intervals in all 5
SDANN . . .
min segments of the entire recording.
RMSSD Defined as the square root of the mean of the squares of
differences between adjacent NN intervals.
SDNN Mean of the standard deviation of all NN intervals for all 5
index min segments of the entire recording.
Defined as the standard deviation of the differences between
SDSD . .
adjacent R-R intervals.
NNx count divided by the total no. of all NN intervals where
PNNx NNx is the number of pairs of adjacent NN intervals
differing by more than x ms.
VLF Power in very low frequency range (< 0.04 Hz)
LF Power in low frequency range (0.04 — 0.15 Hz)
HF Power in high frequency range (0.15 -0.4 Hz)
LF/HF Ratio of LF power to HF power

WEKA has been used as the model development
environment [8]. Trained, evaluated and hyperparameter tuned
model from WEKA has been exported for use in Android. In
android the trained model was stored in the asset directory and
was loaded in the activity for online estimation of the severity
of sleep apnea for a subject based on the real-time collected
sensor data and on-device extracted features.

For monitoring the flu severity body temperature has been
estimated using a fully passive IJP temperature sensor. In
addition, user reported flu symptoms has been collected using
the app. A data check is performed online using the statistical
measures-mean, standard deviation and range to rule out
unreliable data being used. A random forest regression method
has been used for the estimation of body temperature [9]. For
flu severity a linear scale from 0-100 has been used based on
estimated body temperature and flu symptoms [10]. The list of
symptoms used is as follows:

i) Sore throat

ii)  Nasal congestion

iii) Sneezing

iv) Muscle aches and pains

v) Cough

vi) Headache

vii) Chillness and fever
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Fig 2. System Architecture of the SCC Health framework
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Fig 3: Use case diagram for SCC Health app

C. SCC Health Framework and Smartphone App

The system architecture of the SCC Health framework has
been shown in Fig. 2. Details of our IJP sensors and scanner
have been reported elsewhere [11]. Processed information
from the smartphone can be shared with a web server using
Wi-Fi/ cellular network for observing temporal and spatial
distribution of the diseases. The webserver is accessible via
the smartphone app.

As shown in Fig. 3, there are two main actors in the use
case diagram of the app: one is the user and the other is the
admin. The admin sets up account for the user, create
username and password for the user and handle all settings
related issues. The user uses the app to detect the severity of
his/her diseases i.e. OSA, COPD, arrhythmia and flu. User
may also use "one stop service" setting to detect the severities
of all the diseases at once. The other use cases are sharing data
with the SCC and visiting the SCC Health webserver. Based
on the use cases the functional requirements for the app are:
data collection, data processing, data storage, severity
computation, and data sharing. In addition, non-functional
requirements such as data privacy, security, performance
optimization have been considered.

The application was developed according to the standard
lifecycle of system development in the order of analysis-
design-implementation-evaluation. Android Studio 2.3.1 has
been used as the integrated development environment (IDE).
The build tool version is 25.0.2 and minSdkVersion is 21. The
application functionality was tested on various smartphones
including Samsung Avant, Samsung Galaxy S6, and Samsung-
SM-G900A. Fig. 4 shows the flowchart of the app. The user
needs to get a personalized username and password provided
by the admin to log in. Before assigning username and
password, admin records user information including ID and
address by creating a profile for the user. The same app can be
used to create profiles for multiple users and all user profiles
are saved in an SQLite database.

When the user login with correct username and password,
the app greets the user, and the user may proceed to the main
menu where she may choose any of the three buttons: About,
Webserver, or Diagnostic. About activity describes the details
of the project. Using Webserver activity, user may visit the
SCC Health website. Diagnostics activity lead her to the
disease severity detection process where she may choose any
one of the four diseases or she may choose "one stop service"
to test all the diseases at once.
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Fig. 4: Flowchart for SCC Health android application

The sequence diagram for the "one stop service" is shown in
Fig. 5. The user first needs to connect to the scanner via
Bluetooth. For that, the user needs to click "Connect scanner",
then a list of available Bluetooth devices will pop up. The user
selects the scanner from the list. There is a status bar above
connect scanner button, which indicates whether the app is
connected to a scanner or not. After connection has been
established, a list of five sensors will appear from which the
user needs to select one sensor that he/she will be collecting
data from and click "Collect data" button to start collecting data
from the sensor via the connected scanner. Before the data
collection, handshaking protocol between the app and the
scanner will be executed where information about type of
disease, type of sensor, and duration of scan will be confirmed.
If the handshaking is successful, the scanner power up the
WRAP sensor and starts collecting sensor data.
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Fig 5. Sequence diagram for SCC Health app using "one stop service"



During data collection the app display a progress bar. when
data collection by one sensor is completed, the app prompts the
user to select the next sensor and collect data again. When data
has been collected from all the sensors, the app prompts the
user to select a severity-ranking algorithm, and then the user
can click on "Compute severity". After severity calculation, the
app will show the sensor data values and the degree of severity.
At this stage the user has the option to save the test results and
to share the result with the SCC Health webserver. The
webserver can be accessed at www.sccmobilehealth.com.

D. Dynamically Executable Algorithms for severity assesment

The developed algorithms are pre-installed in the app but
there is provision to download algorithms in the form of DEX
file from a public GitHub repository and upgrade the
algorithms dynamically. In future, when the framework
becomes open access, a researcher can submit better algorithms
and the user will be able to choose the algorithm for severity
computation. Another possibility is that the user may choose an
algorithm from available algorithms based on past user ratings
or personal experience. In this way, the framework remains
open for the whole research community and crowdsourcing of
algorithms become possible.
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Fig. 6: Uploading and downloading algorithms from open repository
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As shown in the Fig. 6, the sensor values are passed to the
DEX file as an argument and the algorithm in the DEX file
computes a severity value for the disease and then returns the
severity value (type double) to the function in the activity. The
GitHub repository for the algorithms is available
https://github.com/esarplab.

B. Connected Health and Data Privacy

To maintain data privacy, the user's name, address, or any
other personal information is not shared with the SCC. To
visualize all data of the users, randomly generated user IDs are
assigned to the users, and hash keys are used in the
visualization of the temporal trend of the disease for a user and
spatial distribution (weighted average of individual severity)
of the disease in a geographical area. The flowchart of making
the data anonymous has been shown in Fig. 7 the latitude and
longitude derived from a user address, is represented by a hash
key, and is named grid code. The grid code along with PID,
severity value, disease type, time of diagnostic are shared with
the webserver where the hash code is mapped to a large
geographical area, which ensures privacy of the location of
any user.

III. RESULTS

The correlation of HRV indices with AHI has been shown in
Table 1. As can be seen, 3 HRV features show a significant
correlation (marked with asterisk) with AHI. To avoid multi-
collinearity pNN40 was discarded from the regression model
as it shows a high correlation with pNN50. Using 2 HRV
features (1 from time domain and 1 from frequency domain)
and 2 SpO; features, for 5-fold cross validation the ensemble
of regression method achieved a mean absolute error of 8.27
AHI and an RMSE of 11.38 AHI. Fig. 8 shows the plot of
actual AHI and estimated AHI for each record. In some cases,
there is a good overlap between the actual and estimated AHI.
The residual plot shown in Fig. 9. shows a random pattern of
residuals on both sides of 0.

TABLE II. CORRELATION OF HRV FEATURES WITH AHI

correlation p-Value
AVNN 0.152 0.767
SDNN 0.150 0.377
SDANN -0.156 0.357
RMSSD 0.269 0.108
SDNN index 0.221 0.188
pNN40 0.337 0.041%
pNNS50 0.342 0.038*
VLF 0.179 0.289
LF 0.164 0.331
HF 0.278 0.096
LF/HF -0.340 0.039*
LFnu -0.298 0.073
HFnu 0.298 0.070
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Fig 10. (a) comparison of valid and invalid response from the temperature
sensor (b) Bland-Altman plot for the estimated and true temperature.

The Android app has been tested using IJP temperature
sensor printed on polyamide substrate for body temperature
estimation. Fig. 10(a) compares a valid response from the
temperature sensor with an invalid response. It can be seen
that the valid response has a good transition, whereas the
transition for invalid response is negligible. This is due to the
circuit implemented in this temperature sensor [11]. Residual
plot for temperature estimation has been shown in Fig. 10(b).
The overall accuracy obtained for temperature sensor is
+1.27°F. An overnight instantancous heart rate signal
collected in the app from a subject using the wrist band has
been shown in Fig. 11. Snapshots from the app and the server
has been shown in Fig. 12 depicting password protected log
in, disease monitoring facility, provision for automated data
quality checking, estimated severity of the disease, temporal
plot for tracking disease progress over time and geo-spatial
plot for monitoring the disease severity in the city
neighborhoods.
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Fig 11. Example overnight heart rate signal collected in the app from a subject
during sleep using wristband

COMPUTED SEVERITY
Flu
o Severity- 0 T

T

Steep Apnea

o Severity 1850 100
—-—

Fiars Puate Vamation (%)

COPD-Night

o -0 160

—
Heas mate (3]

oz

COPD-Moming

o Seeiy. 138 120
- C ee——
Heart Rate (3

P o)

(d)
Fig. 12 Snapshots from the App and the server (a) Log in, (b) Main
window, (c) Automated data quality check (d) Estimated disease severity,
(e) Temporal plot showing disease progression (f) Spatial plot for disease
severity in the city neighborhoods

L




The app has been optimized for power consumption. For
active data collection the power consumption is 218 mW,
Memory usage is 7 MB and storage size is about 9.4 MB. A
comparison of this work with previous related works have
been shown in Table I. This framework has several advantages
over the others including online severity estimation, dynamic
upgradation of algorithms, crowdsourcing of algorithms,
integration with IJP passive sensors etc.

TABLE III. COMPARATIVE STUDY WITH SIMILAR WORKS.

= —
N T
S = =
S : — | 3
RN
Metric S eS| 2| oz
~ = @ - £
N g £ S g o
= = .
Sl 2| £ & 8 5
] £ s | € = H
= ) 5} ]
glo|r |« = 2
S| S| <4 | 5|0 =
Individual Health Status Y Y Y Y Y Y
Community Health Status N N N N N Y
Cloud/v&_felf)server N v v v v v
connectivity

Z
z
Z
z
z
=<

Online severity estimation

Dynamic upgradation of
algorithms

z
z
z
z
z
o

Data Encryption/Privacy

Data Security

User control on data
sharing

< Z x| X
< |2z | <]
< | Z | =<|~
< |2z | x|
< | Z | <X
[T I S i

Database

Data export for clinical
study

=
=
=
=
<
=<

s
ks
s
ks
Z
<

Low power consumption

Integration  with IJP
passive sensor
Crowdsourcing of disease
monitoring algorithms

Y- Yes, N- No, X- Not Reported, boldfaced items show novel/important contribution of this work.

IV. CONCLUSION

The proposed smartphone-based SCC Health framework
has the potential to improve the healthcare monitoring
significantly and can be easily integrated in the smart city
infrastructure. In addition, sharing anonymized severity
metrics with their community will empower the users, permit
the community stakeholders to assess population health status,
might reduce the healthcare cost, and help identify potential
individual and community actions to achieve improvement in
community-wide health status. For our future work, we have
recruited volunteers through our community partner- the
United Methodist Church, Memphis for a large-scale

deployment of this framework and further improvement based
on feedbacks from the users, medical experts and public health
professionals.
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