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Abstract—Development of a smart and connected community 
(SCC) health framework is an indispensable part in the 
development of smart cities. Smartphones with increased 
processing capability, integrated sensors, storage capacity, and 
cloud connectivity have a key role to play in developing this SCC 
Health framework. In this paper, we report a novel smartphone-
based framework for continuous monitoring of arrhythmia,
obstructive sleep apnea (OSA), chronic obstructive pulmonary 
disease (COPD), and flu. In addition to personalized monitoring,
community-wide temporal and spatial monitoring are also 
possible in this approach. A custom smartphone app is developed 
that has the ability for collection of body sensor data via 
Bluetooth, loading machine learning algorithms dynamically
from the webserver, computing disease severity in real-time,
sharing of anonymous data, and visualization of community 
health status via the webserver. The framework has been tested 
for online monitoring of OSA, COPD, and flu severity. An 
accuracy of ±1°F has been achieved for flu measurement and a 
mean absolute error (MAE) of 8.27 AHI has been achieved for 
OSA severity estimation using heart rate variability and SpO2.
The app has a power consumption of 218 mW when active, uses a 
memory of 7 MB, and requires a total storage space of 9.36 MB. 
This framework aims to improve community health, reduce
waste in healthcare spending, and facilitate early treatment in 
case of disease exacerbation. 

Keywords—Connected health, Mobile Health, Smartphone 
app., Smart and connected community, Wireless body sensors.

I. INTRODUCTION 

Smart cities around the world are entering a new era of 
transformation towards Smart and Connected Communities
(SCC) where residents and their surrounding environments are 
increasingly connected through intelligent technologies.
Smartphones can play a key role in this framework with 
Mobile Health (mHealth) technology that has already enabled 
a revolution in computerized health interventions, and will not 
only reduce cost of healthcare, but also improve community 
health. For instance, cardiovascular disease (CVD) is 
projected to cost over $1 Trillion by 2035 and almost 50% of 
US population will develop pre-existing CVD conditions [1]. 
Other chronic diseases such as obstructive sleep apnea (OSA),
chronic obstructive pulmonary disease (COPD), and flu
require continuous monitoring. Hence, there is a need for the 
development of a Smart and Connected Community Health 
(SCC Health) framework that can be used reliably for 
monitoring the patients with chronic diseases at home 
environment improving individual and collective health, while
avoiding frequent hospital visits thereby reducing healthcare 
cost significantly. 

Past research activities primarily focused on a particular 
disease with wearables for mHealth. For instance, Oresko et 
al. investigated a wearable smartphone-based platform for 
cardiac arrhythmia detection using the electrocardiogram 
(ECG) signals [2]. Alhussein proposed a Parkinson’s disease 
monitoring framework for use in smart cities [3]. 
Constantinescu et al. proposed a framework for a distributed 
mHealth Systems [4]. While many other researchers have 
proposed mHealth based frameworks, most of them are 
limited to disease classification, require multiple sensors, and 
did not address the online spatial-temporal severity estimation
and visualization of the diseases throughout the community.

Our focus is the development of severity metrics that well 
correspond with standard severity metrics and can be 
estimated in real-time using minimal number of easy-to-use 
sensors. For example, the standard metric for severity 
assessment of OSA is Apnea-hypopnea index (AHI). An AHI 
����� LQGLFDWHV�PLOG-moderate OSA and AHI > 30 indicates a 
severe OSA [5]. The standard procedure for estimation of AHI 
is to conduct a polysomnogram test. Polysomnogram is a 
complex test requiring data collection using many sensors 
such as ECG, EEG, EMG, respiration, airflow, SpO2, audio, 
and motion. Usually, polysomnogram is done at a sleep 
laboratory, and though there are options for home based 
polysomnogram, it requires the assistance and involvement of 
a certified sleep technician to perform the test properly and 
assess the results. In our study, we have addressed the online 
estimation of OSA severity using heart rate variability and 
SpO2 collected using a wrist band and utilized machine 
learning technique for automated disease severity 
computation. For flu severity estimation, we captured body 
temperature using an inkjet printed (IJP) fully passive 
disposable sensor. The architecture utilizes on a lightweight
smartphone app and performs edge-computing on the 
smartphone platform for data processing, feature extraction 
and severity estimation with machine learning methods. There 
is provision for data sharing from the user community to a 
central webserver, that allows monitoring the progression of a 
disease over time and visualize the spatial distribution of a 
disease within a geographical area.

II. MATERIALS AND METHOD

A. Data Set
For OSA we have used the Sleep Health Heart Study 

(SHHS) dataset available from National Sleep Research 
Resource [6]. SHHS was implemented as a multi-center cohort
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Fig 1. Method for Estimation of Sleep Apnea Severity

study in two phases by the National Heart Lung & Blood 
Institute. In both the phases, Polysomnograms were obtained in 
the homes of the participants, by trained and certified
technicians. The polysomnogram data was saved in European 
Data Format (EDF). Two manual scoring was included to 
annotate the database with AHI, respiratory disturbance index, 
sleep stages, event start and end time identification, etc. In our
study, we have considered 298 subjects who showed an 
exacerbation (progression to higher severity stages) in their 
diseases. Two records were obtained from each of these 
subjects, thus making the total number of records to 596. The 
AHI for the studied subjects ranges from 0-117.

For flu estimation, data have been collected from controlled 
heat pads at laboratory set up. A total of 69 data samples 
ranging from 70ºF to 108ºF have been collected in total. A 
precision fiber optic thermometer (Optocon FOTEMP with
TS2 optical fiber probe, Weidmann Technologies, Germany)
was used for establishing the ground truth.

B. Algorithms for Severity Estimation
For sleep apnea severity estimation, data from heart rate 

and SpO2 sensor have been used. The inter-beat-interval (viz.
RR interval) data series was filtered using a 3rd order moving 
average filter to smooth out the ripples and to remove the high 
frequency noises. Then the signal was resampled at 4 Hz and
interpolated using cubic interpolation. Time domain and 
frequency domain heart rate variability (HRV) features as 
described in Table. I was extracted from the entire signal as 
recommended in HRV guideline [7]. For short term HRV 
features 5 min window has been used. Pearson correlation of 
HRV features with apnea-hypopnea index (AHI) has been done 
to find the features showing a significant correlation with AHI. 
Two more features based on the SpO2 level - the percent of 
sleep duration with less than 90% SpO2 and with less than 85% 
SpO2, were added with significant HRV features. Then an 
ensemble of regression method (boosted, leaf size=8, number
of learners=30, learning rate=0.1) has been used to estimate the 
severity (AHI) of sleep apnea. The method for OSA severity 
estimation has been shown in Fig. 1. For evaluating the model 
performance 5-fold cross validation has been used.

TABLE I. TIME DOMAIN AND FREQUENCY DOMAIN MEASURES OF HEART RATE 
VARIABILITY USED IN THIS STUDY

Feature Description

AVNN Mean of NN-interval

SDNN Standard deviation of all NN intervals.

SDANN Standard deviation of the averages of NN intervals in all 5 
min segments of the entire recording.

RMSSD Defined as the square root of the mean of the squares of 
differences between adjacent NN intervals.

SDNN 
index

Mean of the standard deviation of all NN intervals for all 5 
min segments of the entire recording.

SDSD Defined as the standard deviation of the differences between 
adjacent R-R intervals.

pNNx
NNx count divided by the total no. of all NN intervals where 
NNx is the number of pairs of adjacent NN intervals 
differing by more than x ms.

VLF Power in very low frequency range (� 0.04 Hz)

LF Power in low frequency range (0.04 – 0.15 Hz)

HF Power in high frequency range (0.15 -0.4 Hz)

LF/HF Ratio of LF power to HF power

WEKA has been used as the model development 
environment [8]. Trained, evaluated and hyperparameter tuned 
model from WEKA has been exported for use in Android. In 
android the trained model was stored in the asset directory and 
was loaded in the activity for online estimation of the severity 
of sleep apnea for a subject based on the real-time collected 
sensor data and on-device extracted features.

For monitoring the flu severity body temperature has been 
estimated using a fully passive IJP temperature sensor. In 
addition, user reported flu symptoms has been collected using 
the app. A data check is performed online using the statistical 
measures-mean, standard deviation and range to rule out 
unreliable data being used. A random forest regression method 
has been used for the estimation of body temperature [9]. For 
flu severity a linear scale from 0-100 has been used based on
estimated body temperature and flu symptoms [10]. The list of 
symptoms used is as follows: 

i) Sore throat
ii) Nasal congestion
iii) Sneezing
iv) Muscle aches and pains
v) Cough
vi) Headache
vii) Chillness and fever

Fig 2. System Architecture of the SCC Health framework



Fig 3: Use case diagram for SCC Health app

C. SCC Health Framework and Smartphone App
The system architecture of the SCC Health framework has 

been shown in Fig. 2. Details of our IJP sensors and scanner 
have been reported elsewhere [11]. Processed information 
from the smartphone can be shared with a web server using 
Wi-Fi/ cellular network for observing temporal and spatial 
distribution of the diseases. The webserver is accessible via 
the smartphone app.

As shown in Fig. 3, there are two main actors in the use 
case diagram of the app: one is the user and the other is the 
admin. The admin sets up account for the user, create 
username and password for the user and handle all settings 
related issues. The user uses the app to detect the severity of 
his/her diseases i.e. OSA, COPD, arrhythmia and flu. User 
may also use "one stop service" setting to detect the severities 
of all the diseases at once. The other use cases are sharing data 
with the SCC and visiting the SCC Health webserver. Based 
on the use cases the functional requirements for the app are: 
data collection, data processing, data storage, severity 
computation, and data sharing. In addition, non-functional 
requirements such as data privacy, security, performance 
optimization have been considered.

The application was developed according to the standard 
lifecycle of system development in the order of analysis-
design-implementation-evaluation. Android Studio 2.3.1 has 
been used as the integrated development environment (IDE).
The build tool version is 25.0.2 and minSdkVersion is 21. The 
application functionality was tested on various smartphones 
including Samsung Avant, Samsung Galaxy S6, and Samsung-
SM-G900A. Fig. 4 shows the flowchart of the app. The user 
needs to get a personalized username and password provided 
by the admin to log in. Before assigning username and 
password, admin records user information including ID and 
address by creating a profile for the user. The same app can be 
used to create profiles for multiple users and all user profiles 
are saved in an SQLite database. 

When the user login with correct username and password, 
the app greets the user, and the user may proceed to the main 
menu where she may choose any of the three buttons: About, 
Webserver, or Diagnostic. About activity describes the details 
of the project. Using Webserver activity, user may visit the 
SCC Health website. Diagnostics activity lead her to the 
disease severity detection process where she may choose any 
one of the four diseases or she may choose "one stop service" 
to test all the diseases at once. 

Fig. 4: Flowchart for SCC Health android application

The sequence diagram for the "one stop service" is shown in 
Fig. 5. The user first needs to connect to the scanner via 
Bluetooth. For that, the user needs to click "Connect scanner", 
then a list of available Bluetooth devices will pop up. The user 
selects the scanner from the list. There is a status bar above 
connect scanner button, which indicates whether the app is 
connected to a scanner or not. After connection has been 
established, a list of five sensors will appear from which the 
user needs to select one sensor that he/she will be collecting 
data from and click "Collect data" button to start collecting data 
from the sensor via the connected scanner. Before the data 
collection, handshaking protocol between the app and the 
scanner will be executed where information about type of 
disease, type of sensor, and duration of scan will be confirmed. 
If the handshaking is successful, the scanner power up the 
WRAP sensor and starts collecting sensor data. 

Fig 5. Sequence diagram for SCC Health app using "one stop service"



During data collection the app display a progress bar. when
data collection by one sensor is completed, the app prompts the 
user to select the next sensor and collect data again. When data 
has been collected from all the sensors, the app prompts the 
user to select a severity-ranking algorithm, and then the user 
can click on "Compute severity". After severity calculation, the 
app will show the sensor data values and the degree of severity. 
At this stage the user has the option to save the test results and
to share the result with the SCC Health webserver. The 
webserver can be accessed at www.sccmobilehealth.com.

D. Dynamically Executable Algorithms for severity assesment
The developed algorithms are pre-installed in the app but 

there is provision to download algorithms in the form of DEX 
file from a public GitHub repository and upgrade the 
algorithms dynamically. In future, when the framework 
becomes open access, a researcher can submit better algorithms 
and the user will be able to choose the algorithm for severity 
computation. Another possibility is that the user may choose an 
algorithm from available algorithms based on past user ratings 
or personal experience. In this way, the framework remains 
open for the whole research community and crowdsourcing of 
algorithms become possible.

Fig. 6: Uploading and downloading algorithms from open repository

Fig. 7: Flowchart to anonymize user data

As shown in the Fig. 6, the sensor values are passed to the 
DEX file as an argument and the algorithm in the DEX file 
computes a severity value for the disease and then returns the 
severity value (type double) to the function in the activity. The 
GitHub repository for the algorithms is available 
https://github.com/esarplab.

B. Connected Health and Data Privacy

     To maintain data privacy, the user's name, address, or any
other personal information is not shared with the SCC. To 
visualize all data of the users, randomly generated user IDs are
assigned to the users, and hash keys are used in the 
visualization of the temporal trend of the disease for a user and
spatial distribution (weighted average of individual severity)
of the disease in a geographical area. The flowchart of making 
the data anonymous has been shown in Fig. 7 the latitude and
longitude derived from a user address, is represented by a hash 
key, and is named grid code. The grid code along with PID, 
severity value, disease type, time of diagnostic are shared with 
the webserver where the hash code is mapped to a large 
geographical area, which ensures privacy of the location of 
any user.

III. RESULTS

The correlation of HRV indices with AHI has been shown in 
Table I. As can be seen, 3 HRV features show a significant 
correlation (marked with asterisk) with AHI. To avoid multi-
collinearity pNN40 was discarded from the regression model
as it shows a high correlation with pNN50. Using 2 HRV 
features (1 from time domain and 1 from frequency domain)
and 2 SpO2 features, for 5-fold cross validation the ensemble 
of regression method achieved a mean absolute error of 8.27 
AHI and an RMSE of 11.38 AHI. Fig. 8 shows the plot of 
actual AHI and estimated AHI for each record. In some cases, 
there is a good overlap between the actual and estimated AHI. 
The residual plot shown in Fig. 9. shows a random pattern of 
residuals on both sides of 0. 

TABLE II. CORRELATION OF HRV FEATURES WITH AHI

correlation p-Value

AVNN 0.152 0.767
SDNN 0.150 0.377
SDANN -0.156 0.357
RMSSD 0.269 0.108
SDNN index 0.221 0.188
pNN40 0.337 0.041*
pNN50 0.342 0.038*
VLF 0.179 0.289
LF 0.164 0.331
HF 0.278 0.096
LF/HF -0.340 0.039*
LFnu -0.298 0.073
HFnu 0.298 0.070



Fig. 8 Plot showing actual and estimated AHI for the subjects

Fig 9. Residual plot for actual versus estimated AHI
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Fig 10. (a) comparison of valid and invalid response from the temperature 
sensor (b) Bland-Altman plot for the estimated and true temperature.

The Android app has been tested using IJP temperature 
sensor printed on polyamide substrate for body temperature 
estimation. Fig. 10(a) compares a valid response from the 
temperature sensor with an invalid response. It can be seen
that the valid response has a good transition, whereas the 
transition for invalid response is negligible. This is due to the 
circuit implemented in this temperature sensor [11]. Residual 
plot for temperature estimation has been shown in Fig. 10(b). 
The overall accuracy obtained for temperature sensor is 
±1.27°F. An overnight instantaneous heart rate signal 
collected in the app from a subject using the wrist band has 
been shown in Fig. 11. Snapshots from the app and the server 
has been shown in Fig. 12 depicting password protected log 
in, disease monitoring facility, provision for automated data
quality checking, estimated severity of the disease, temporal 
plot for tracking disease progress over time and geo-spatial 
plot for monitoring the disease severity in the city 
neighborhoods.

Fig 11. Example overnight heart rate signal collected in the app from a subject
during sleep using wristband

Fig. 12 Snapshots from the App and the server (a) Log in, (b) Main 
window, (c) Automated data quality check (d) Estimated disease severity, 
(e) Temporal plot showing disease progression (f) Spatial plot for disease 
severity in the city neighborhoods

(a)

(b) (a) (b) (c)

(d) (e) (f)



The app has been optimized for power consumption. For 
active data collection the power consumption is 218 mW, 
Memory usage is 7 MB and storage size is about 9.4 MB. A
comparison of this work with previous related works have 
been shown in Table I. This framework has several advantages
over the others including online severity estimation, dynamic 
upgradation of algorithms, crowdsourcing of algorithms, 
integration with IJP passive sensors etc.

TABLE III. COMPARATIVE STUDY WITH SIMILAR WORKS.
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Individual Health Status Y Y Y Y Y Y

Community Health Status N N N N N Y

Cloud/webserver 
connectivity N Y Y Y Y Y

Online severity estimation N N N N N Y

Dynamic upgradation of 
algorithms N N N N N Y

Data Encryption/Privacy X X Y X X Y

Data Security X Y Y X Y X
User control on data 
sharing N N N N N Y

Database Y Y Y Y Y Y

Data export for clinical 
study Y Y Y Y Y Y

Low power consumption X X X X N Y
Integration with IJP
passive sensor N N N N N Y

Crowdsourcing of disease 
monitoring algorithms N N N N N Y

Y- Yes, N- No, X- Not Reported, boldfaced items show novel/important contribution of this work.

IV. CONCLUSION

The proposed smartphone-based SCC Health framework
has the potential to improve the healthcare monitoring
significantly and can be easily integrated in the smart city
infrastructure. In addition, sharing anonymized severity 
metrics with their community will empower the users, permit 
the community stakeholders to assess population health status, 
might reduce the healthcare cost, and help identify potential 
individual and community actions to achieve improvement in 
community-wide health status. For our future work, we have 
recruited volunteers through our community partner- the 
United Methodist Church, Memphis for a large-scale

deployment of this framework and further improvement based 
on feedbacks from the users, medical experts and public health 
professionals.

REFERENCES

[1] P. A. Heidenreich, et al., "Forecasting the Future of Cardiovascular 
Disease in the United States." Circulation, vol. 123, no. 8, pp. 933-944, 
2011.

[2] J. J. Oresko et al., "A Wearable Smartphone-Based Platform for Real-
Time Cardiovascular Disease Detection Via Electrocardiogram 
Processing," in IEEE Transactions on Information Technology in 
Biomedicine, vol. 14, no. 3, pp. 734-740, May 2010.

[3] M. Alhussein, "Monitoring Parkinson’s Disease in Smart Cities," 
in IEEE Access, vol. 5, pp. 19835-19841, 2017.

[4] L. Constantinescu, J. Kim and D. Feng, "SparkMed: A Framework for
Dynamic Integration of Multimedia Medical Data into Distributed m-
Health Systems," in IEEE Transactions on Information Technology in 
Biomedicine, vol. 16, no. 1, pp. 40-52, Jan. 2012

[5] Adult Obstructive Sleep Apnea Task Force of the American Academy of 
Sleep Medicine, "Clinical guideline for the evaluation, management and 
long-term care of obstructive sleep apnea in adults,” JCSM: Official 
Publication of the American Academy of Sleep Medicine, vol. 5, (3), pp. 
263, 2009.

[6] Dennis A. Dean et al., “Scaling Up Scientific Discovery in Sleep 
Medicine: The National Sleep Research Resource”, Sleep, vol. 39, Issue 
5, pp. 1151–1164, May 2016.

[7] Task Force of the European Society of Cardiology and the North 
American Society of Pacing and Electrophysiology, “Heart rate 
variability: standards of measurement, physiological interpretation, and 
clinical use,” Eur. Heart J (1996) 17:354–81.10.1093

[8] Frank, Eibe, et al. "Weka-a machine learning workbench for data 
mining." Data mining and knowledge discovery handbook. Springer, 
Boston, MA, 2009. 1269-1277.

[9] MJ Rahman and B. I. Morshed, " Improving Accuracy of Inkjet Printed 
Core Body WRAP Temperature Sensor Using Random Forest
Regression Implemented with an Android App," 2019 United States 
National Committee of URSI National Radio Science Meeting (USNC-
URSI NRSM), Boulder, CO, 2019.

[10] Eccles, Ron. "Understanding the symptoms of the common cold and 
influenza." The Lancet infectious diseases 5, no. 11 pp. 718-725, 2005.

[11] B.I.Morshed et al., "Inkjet Printed Fully Passive Body-Worn Wireless 
Sensors for Smart and Connected Community (SCC)”, J. Low Power 
Electronics and Applications. vol. 7, no. 4, art. 26, pp. 1-21, 2017.

[12] A. Benharref and M. A. Serhani, "Novel Cloud and SOA-Based 
Framework for E-Health Monitoring Using Wireless Biosensors," 
in IEEE Journal of Biomedical and Health Informatics, vol. 18, no. 1, 
pp. 46-55, Jan. 2014.

[13] U. Satija, et al., "Real-Time Signal Quality-Aware ECG Telemetry 
System for IoT-Based Health Care Monitoring," in IEEE Internet of 
Things Journal, vol. 4, no. 3, pp. 815-823, June 2017

[14] G. Muhammad et al. "Smart Health Solution Integrating IoT and Cloud: 
A Case Study of Voice Pathology Monitoring," in IEEE 
Communications Magazine, vol. 55, no. 1, pp. 69-73, January 2017.


