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Reinforcement Learning for POMDP: Partitioned
Rollout and Policy Iteration with Application to

Autonomous Sequential Repair Problems
Sushmita Bhattacharya1, Sahil Badyal1, Thomas Wheeler1, Stephanie Gil1,2, Dimitri Bertsekas3,4

Abstract—In this paper we consider infinite horizon discounted
dynamic programming problems with finite state and control
spaces, and partial state observations. We discuss an algorithm
that uses multistep lookahead, truncated rollout with a known
base policy, and a terminal cost function approximation. This
algorithm is also used for policy improvement in an approximate
policy iteration scheme, where successive policies are approxi-
mated by using a neural network classifier. A novel feature of
our approach is that it is well suited for distributed computation
through an extended belief space formulation and the use of a
partitioned architecture, which is trained with multiple neural
networks. We apply our methods in simulation to a class of
sequential repair problems where a robot inspects and repairs
a pipeline with potentially several rupture sites under partial
information about the state of the pipeline.

Index Terms—Optimization and Optimal Control, Distributed
Robot Systems, Autonomous Agents, Search and Rescue Robots,
Deep Learning in Robotics and Automation

I. INTRODUCTION

WE consider the classical partial observation Markovian
decision problem (POMDP) with a finite number of

states and controls, and discounted additive cost over an
infinite horizon. The optimal solution is typically intractable,
and several suboptimal solution/reinforcement learning ap-
proaches have been proposed. Amongst these, are point-based
value iteration (see e.g., [1], [2], [3]), approximate policy
iteration methods based on the use of finite state controllers
(see e.g., [4], [5], [6]), the use of Monte Carlo tree search
and adaptive sampling methods for multistep lookahead with
terminal cost function approximation (see e.g., [7], [8]), and
discretization/aggregation methods based on the solution of a
related perfectly observable Markovian decision problem (see
e.g., [9], [10], [11]). There have also been proposals of policy
gradient and related actor-critic methods (see [12], [13], [14])
that are largely unrelated to methodology proposed here.

In this paper we focus on methods of policy iteration
(PI) that are based on rollout, and approximations in policy
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and value space. They update a policy by using truncated
rollout with that policy, and a terminal cost function ap-
proximation. Several earlier works include elements of our
algorithmic approach. In particular, related methods have been
applied with some variations to perfect state information
problems, notably in the backgammon algorithm of Tesauro
and Galperin [15], and in the AlphaGo program [16], as
well as in the classification-based PI algorithm of Lagoudakis
and Parr [17] (see also [18], [19], [20]). The AlphaZero
program also involves a similar approximation architecture,
but in its published description [21], it does not use roll-
out, likely because the use of long multistep lookahead in
conjunction with Monte Carlo tree search makes the use of
rollout unnecessary. A further novel feature of our algorithms
is the use of a partitioned architecture, involving multiple
policy and value neural networks, which is well-suited for
distributed implementation. Partitioning in conjunction with
asynchronous PI was originally proposed by Bertsekas and Yu
[22], and further developed in the papers [23] and [24] [see
also the books [25] (Section 2.6) and [26] (Section 2.6) for
descriptions, analysis, and extensions]. However, most of this
research was focused on the case of perfect state information,
and lookup table representations of policies and cost functions.
Thus, while most of the principal elements of our approach
have individually appeared in various forms in earlier perfect
state information algorithmic frameworks, their combination
has not been brought together into a single algorithm, and
moreover they have not been adapted to the special challenges
posed by POMDP.

Because of its simulation-based rollout character, the
methodology of this paper depends critically on the finiteness
of the control space, but it does not rely on the piecewise
linear structure of the finite horizon optimal cost function of
POMDP. It can be extended to POMDP with infinite state
space but finite control space, although we have not considered
this possibility in this paper. We describe error bounds to guide
the implementation of our algorithms, and we provide results
of computational experimentation showing that our methods
are viable and well-suited to the POMDP structure.

We apply our methods to a class of problems in robotics,
involving sequential repairs, and search and rescue, where
the POMDP model is particularly well-suited to deal with
partial state information. Autonomous robots in search and
rescue have been viewed as one of the robotics applications
where POMDP approaches need further development and
where these approaches can have great impact [27], [28],
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[29], [30], [31], [32]. Indeed, exploration and learning in
unknown environments has been identified as one of the
grand challenges of Science Robotics [33]. These problems
are very complex, characterized by large state spaces and
constrained communication. Many tools in machine learning
and artificial intelligence have recently been developed for
tackling difficult problems in robotics [34], [35], [36], [37].
Of particular relevance to the current paper are those works
that involve decision making under uncertainty and POMDP
frameworks [38], [39].

As an application of our methodology, we consider a robot
that must decide on the sequence of linearly arranged pipeline
locations to explore and/or repair using prior information
and observations made in situ. The actual damage of each
location is initially unknown and can become worse if not
repaired. This process is modeled by a Markov chain with
known transition probabilities. The problem has a very large
number of states (≈ 1026 in our largest implementation).
Our experiments demonstrate that our methodology is well
suited to robotics applications that involve: i) large state spaces
and long planning horizons, which exacerbate both the curse
of dimensionality and the curse of history, and ii) decaying
environments as in sequential repair problems, where it is
important to use a policy that can identify and execute critical
actions in minimum time.

We compare the performance of our proposed method with
the POMCP and DESPOT methods from [8], [40], respec-
tively, and we showcase the generality of our method by
applying it to more complex versions of the pipeline problem:
a two-dimensional grid pipeline, and a multi-robot variant of
the problem. The use of distributed computation within our
framework also suggests future applicability to multi-robot
problems with asynchronous communication and/or bandwidth
constraints, which are of great importance in robotics [41],
[42], [43], [30], [38].

We also provide theoretical support for our methodology
in the form of a performance bound (Prop. 1), which shows
improvement of the rollout policy over the base policy (ap-
proximately). Alternative methodologies, such as POMCP and
DESPOT, do not enjoy a comparable level of theoretical
support.

In summary, the contributions of the paper include: 1)
the development of an algorithmic framework for finding
approximately optimal policies for large state space POMDP,
including the development of distributed PI methods with a
partitioned architecture, 2) performance bounds to support the
architectural structure, and 3) implementation and validation in
simulation of the proposed methods on a pipeline repair prob-
lem, whose character is shared by broad classes of problems
in robotics.

II. EXTENDED BELIEF SPACE PROBLEM FORMULATION

The starting point of our paper is the classical belief space
formulation of a POMDP. However, we extend this formula-
tion to make it compatible with a distributed multiprocessor
implementation of our algorithm. In particular, we propose to
use as state a sufficient statistic that subsumes the belief state
in the sense that its value determines the value of the belief

state. In this section, we describe this extended belief space
problem formulation.

We assume that there are n states denoted by i ∈ {1, . . . , n}
and a finite set of controls U at each state. We denote by
pij(u) the transition probability from i to j under u ∈ U ,
and by g(i, u, j) the corresponding transition cost. The cost is
accumulated over an infinite horizon and is discounted by α ∈
(0, 1). At each new generated state j, an observation z from
a finite set Z is obtained with known probability p(z | j, u)
that depends on j and the control u that was applied prior
to the generation of j. The objective is to select each control
optimally as a function of the prior history of observations and
controls.

A classical approach to this problem is to convert it to a
perfect state information problem whose state is the current
belief b =

(
b(1), . . . , b(n)

)
, where b(i) is the conditional

distribution of the state i given the prior history. It is well-
known that b is a sufficient statistic, which can serve as a
substitute for the set of available observations, in the sense
that optimal control can be achieved with knowledge of just
b. In this paper, we consider a more general form of sufficient
statistic, which we call the feature state and we denote by
y. We require that the feature state y subsumes the belief
state b. By this we mean that b can be computed exactly
knowing y. One possibility is for y to be the union of b and
some identifiable characteristics of the belief state, or some
compact representation of the measurement history up to the
current time (such as a number of most recent measurements,
or the state of a finite-state controller). We also make the
additional assumption that y can be sequentially generated
using a known feature estimator F (y, u, z). By this we mean
that given that the current feature state is y, control u is
applied, and observation z is obtained, the next feature can
be exactly predicted as F (y, u, z).

Clearly, since b is a sufficient statistic, the same is true for y.
Thus the optimal costs achievable by the policies that depend
on y and on b are the same. However, specific suboptimal
schemes may become more effective with the use of the feature
state y instead of just the belief state b. Moreover, the use
of y can facilitate the use of distributed computation through
partitioning of the space of features y, as we will explain later.

The optimal cost J∗(y), as a function of the sufficient statis-
tic/feature state y, is the unique solution of the corresponding
Bellman equation J∗(y) = (TJ∗)(y) for all y, where T is the
Bellman operator

(TJ)(y) = min
µ∈M

(TµJ)(y),

with M being the set of all stationary policies [functions µ
that map y to a control µ(y) ∈ U ], and Tµ being the Bellman
operator corresponding to µ:

(TµJ)(y) = ĝ(y, µ(y))+α
∑
z∈Z

p̂(z | by, µ(y))J
(
F (y, µ(y), z)

)
.

Here by denotes the belief state that corresponds to feature
state y, ĝ(y, u) is the expected cost per stage

ĝ(y, u) =
n∑
i=1

by(i)
n∑
j=1

pij(u)g(i, u, j),
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p̂(z | by, u) is the conditional probability that the next obser-
vation will be z given the current belief state by and control
u, and F is the feature state estimator.

The feature space reformulation of the problem can serve
as the basis for approximation in value space, whereby J∗ is
replaced in Bellman’s equation by some function J̃ after one-
step or multistep lookahead. For example a one-step lookahead
scheme yields the suboptimal policy µ̃ given by

µ̃(y) ∈ arg min
u∈U

[
ĝ(y, u) + α

∑
z∈Z

p̂(z | by, u)J̃
(
F (y, u, z)

)]
.

(1)
In `-step lookahead schemes, J̃ is used as terminal cost
function in an `-step horizon version of the original infinite
horizon problem (see e.g., [11]). In the standard form of a
rollout algorithm, J̃ is the cost function of some base policy.
Here we adopt a rollout scheme with `-step lookahead, which
involves rollout truncation and terminal cost approximation.
This scheme has been formalized and discussed in the book
[11] (Section 5.1), and is described in the next section.

III. TRUNCATED ROLLOUT WITH TERMINAL COST
FUNCTION APPROXIMATION

In the pure form of the rollout algorithm, the cost function
approximation J̃ is the cost function Jµ of a known policy
µ, called the base policy, and its value J̃(y) = Jµ(y) at any
y is obtained by first extracting b from y, and then running
a simulator starting from b, and using the system model, the
feature generator, and µ (see Fig. 1). In the truncated form
of rollout, J̃(y) is obtained by running the simulator of µ for
a given number of steps m, and then adding a terminal cost
approximation Ĵ(ȳ) for each terminal feature state ȳ that is
obtained at the end of the m steps of the simulation with µ
(see Fig. 2 for the case where ` = 1).

Figure 1. Composite system simulator for POMDP for a given policy. The
starting state ik at stage k of a trajectory is generated randomly using the
belief state bk , which is in turn computed from the feature state yk .

Thus the rollout policy is defined by the base policy µ, the
terminal cost function approximation Ĵ , the number of steps
m after which the simulated trajectory with µ is truncated,
as well as the lookahead size `; see Fig. 2. The choices
of m and ` are typically made by trial and error, based on
computational tractability among other considerations, while
Ĵ may be chosen on the basis of problem-dependent insight
or through the use of some off-line approximation method.
In variants of the method, the multistep lookahead may be
implemented approximately using a Monte Carlo tree search
or adaptive sampling scheme. In our experiments, we used

Figure 2. A truncated rollout scheme: One-step lookahead is followed by
m-step rollout with base policy µ, and terminal cost approximation Ĵ .

a variable and state-dependent value of m. Monte-Carlo tree
search did not work well in our initial experiments, and we
subsequently abandoned it.

Using m-step rollout between the `-step lookahead and the
terminal cost approximation gives the method the character of
a single PI. We have used repeated truncated rollout as the
basis for constructing a PI algorithm, which we will discuss
shortly (see also [11], Section 5.1.2).

There are known error bounds that can be applied to the
preceding truncated rollout scheme. These bounds were given
in [11], Section 5.1, Prop. 5.1.3, but they were derived for the
case where the number of states is finite, so they do not apply
to our feature state representation of a POMDP. However, the
bounds can be extended to our infinite feature space case, since
the proof arguments of [11] do not depend on the finiteness
of the state space. We thus give the bounds without proof.

Proposition 1: (Error Bounds) Consider a truncated rollout
scheme consisting of `-step lookahead, followed by rollout
with a policy µ for m steps, and a terminal cost function
approximation Ĵ at the end of m steps. Let µ̃ be the policy
generated by this scheme. Then: (a) We have

‖Jµ̃ − J∗‖ ≤
2α`

1− α
‖Tmµ Ĵ − J∗‖,

where Tmµ Ĵ is the result of applying m times to Ĵ the Bellman
operator Tµ for policy µ, and ‖·‖ is the sup norm on the space
of bounded functions of the feature state y. (b) We have for
all y

Jµ̃(y) ≤ Jµ(y) +
2

1− α
‖Ĵ − Jµ‖.

The first bound implies that as the size of lookahead `
increases, the bound on the performance of the rollout policy
improves. The second bound suggests that if Ĵ is close to
Jµ, the performance of the rollout policy µ̃ is approximately
improved (to within an error bound), relative to the perfor-
mance of the base policy µ. This is typical of the practically
observed cost improvement property of rollout schemes. In
particular, when Ĵ = Jµ we obtain Jµ̃ ≤ Jµ, which is the
theoretical policy improvement property of rollout (see [11],
Section 5.1.2).

IV. SUPERVISED LEARNING OF ROLLOUT POLICIES AND
COST FUNCTIONS - POLICY ITERATION

The rollout algorithm uses multistep lookahead and on-line
simulation of the base policy to generate the rollout control
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at any feature state of interest. To avoid the cost of on-line
simulation, we can approximate the rollout policy off-line
by using some approximation architecture that may involve
a neural network. This is policy approximation built on top of
the rollout scheme (see [11], Sections 2.1.5 and 5.7.2).

To this end, we introduce a parametric family/architecture of
policies of the form µ̂(y, r), where r is a parameter vector. We
then construct a training set that consists of a large number
of sample feature state-control pairs (ys, us), s = 1, . . . , q,
such that for each s, us is the rollout control at feature state
ys. We use this data set to obtain a parameter r̄ by solving
a corresponding classification problem, which associates each
feature state y with a control µ̂(y, r̄). The parameter r̄ defines a
classifier, which given a feature state y, classifies y as requiring
control µ̂(y, r̄) (this idea was proposed in the context of PI in
the paper [17], and is also described in the book [11], Section
3.5). The classification problem is often solved with the use
of neural networks, and this has been our approach in our
experimentation.

A. Approximate Policy Iteration (API)

We can also apply the rollout policy approximation to the
context of PI. The idea is to view rollout as a one-step policy
improvement, and to view the PI algorithm as a perpetual
rollout process, which performs multiple policy improvements,
using at each iteration the current policy as the base policy,
and the next policy as the corresponding rollout policy. In
particular, we consider a PI algorithm where at the typical
iteration we have a policy µ, which we use as the base policy
to generate many feature state-control sample pairs (ys, us),
s = 1, . . . , q, where us is the rollout control corresponding
to feature state ys. We then obtain an “improved” policy
µ̂(y, r) with an approximation architecture and a classification
algorithm, as described above. The “improved” policy is then
used as a base policy to generate samples of the corresponding
rollout policy, which is approximated in policy space, etc; see
Fig. 3.

To use truncated rollout in this PI scheme, we must also
provide a terminal cost approximation, which may take a
variety of forms. Using zero is a simple possibility, which
may work well if either the size ` of multistep lookahead
or the length m of the rollout is relatively large. Another
possibility, employed in our pipeline repair problem, is to use
as terminal cost in the truncated rollout an approximation of
the cost function of some base policy, which is obtained with
a neural network-based approximation architecture.

In particular, at any policy iteration with a given base
policy, once the rollout data is collected, one or two neural
networks are constructed: A policy network that approximates
the rollout policy, and (in the case of rollout with truncation)
a value network that constructs a cost function approximation
for that rollout policy (the essentially synonymous terms
“actor network” and “critic network” are also common in the
literature). We consider two methods:
1) Approximate rollout and PI with truncation, where each

generated policy as well as its cost function are approxi-
mated by a policy and a value network, respectively. The

cost function approximation of the current policy is used
to truncate the rollout trajectories that are used to train the
next policy.

2) Approximate rollout and PI with no truncation, where each
generated policy is approximated using a policy network,
but the rollout trajectories are continued up to a large
maximum number of stages (enough to make the cost of the
remaining stages insignificant due to discounting) or upon
reaching a termination state. Here only a policy network
is used; a value network is unnecessary since there is no
rollout truncation.

Note that as in all approximate PI schemes, the sampling
of feature states used for training is subject to exploration
concerns. In particular, for each policy approximation, it is
important to include in the sample set {ys | s = 1, . . . , q},
a subset of feature states that are “favored” by the rollout
trajectories; e.g., start from some initial subset of feature states
ys and selectively add to this subset feature states that are
encountered along the rollout trajectories. This is a challenging
issue, which must be approached with care; see [17], [18].

Figure 3. Approximate PI scheme based on rollout and approximation in
policy space.

V. POLICY ITERATION WITH A PARTITIONED
ARCHITECTURE

We will now discuss our partitioned architecture. It is based
on a partition of the set Y of feature states into disjoint sets
Y1, . . . , YN , so that Y = ∪Nν=1Yν . We train in parallel a
separate (local) policy network and a (local) value network (in
the case of a scheme with truncation) using feature state data
from each of the sets Y1, . . . , YN . Thus at each policy iteration,
we use N policy networks and as many as N additional value
networks (in some specially structured problems, including the
pipeline repair problem, some of the value networks may not
be needed, as we will discuss later). The N local policy
networks, each defined over a subset Yν , are combined into
a global policy, defined over the entire feature space Y . For
schemes with truncation, each local value network is trained
using the global policy, but with starting feature states from
the corresponding subset Yν of the partition; see Fig. 4.

This partitioned architecture is well-suited for distributed
computation, with the local networks sharing and updating
piecemeal the current global policy and (in the case of
truncation) the current global terminal cost approximation.
Moreover, we speculate that our methodology requires smaller
training sets, which cover more evenly the feature space,
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Figure 4. Partitioned architecture for rollout and approximate PI. For truncated
rollout, we may employ terminal cost approximation using a value network.

thereby addressing in part the issue of adequate feature
space exploration. While it is hard to quantify this potential
advantage, our computational experience indicates that it is
substantial. Regarding the distributed training of our parti-
tioned architecture, we may conceptually assign one virtual
processor for each set of the feature space partition (of
course multiple virtual processors can coexist within the same
physical processor). The empirical work described in the fol-
lowing sections provides, among others, guidelines for future
research directions on the performance and implementations of
synchronous and asynchronous distributed PI with partitioned
architectures (in the spirit of [22]), particularly in the context
of POMDP as well as multi-agent robotics.

VI. SEQUENTIAL REPAIR AND THE PIPELINE PROBLEM

Various elements of the approximate PI methodology just
described have been applied to a pipeline repair problem. We
will describe the implementation, computational results, and
comparisons with other methodologies in detail. The problem
involves autonomous repair of a number of pipeline locations
where damage may have occurred, and the objective is to find
a policy to repair the pipeline with minimum cost, based on
available information. Our results show that 1) approximate
PI can be successfully applied in the context of POMDP, 2)
a partitioned architecture results in substantial computation
time savings, thus allowing applicability of our methodology
to large state space problems, and 3) our pipeline repair
model and solution methods can be extended to complex two-
dimensional and multi-robot contexts, where a solution can be
facilitated by using partitioning.

A. Pipeline Repair Problem Description

In this problem, an autonomous robot moves along a
pipeline consisting of a sequence of L locations, denoted
1, . . . , L. Each location of the pipeline can be in one of ζ + 1
progressively worse damage levels indicated by d0, d1, . . . , dζ ,
where d0 indicates a no damage condition. The damage level
of each location changes stochastically over time according to
a known Markov chain with the ζ + 1 states 0, 1, . . . , ζ (see

Fig. 5). As the figure indicates, we assume that a location that
is not damaged (state d0), cannot become damaged. However,
for a damaged location, the level of damage can stochastically
become worse. We assume that the robot has a sensing radius
of one location within which it can verify the damage level of
the location. Thus with each visit to a location, an observation
is obtained, namely, the exact damage level of the location.

The robot knows its current location, and maintains for
each location β, a belief state of damages dβ = (dβ0 , . . . , d

β
ζ )

consisting of the conditional probabilities dβ0 , . . . , d
β
ζ of the

damage level, given the current observation history. The initial
belief state could be obtained from information gathered a
priori, for example, via noisy images of the pipeline. Upon
reaching a location β, the robot determines its damage level,
and decides upon one of three actions: Stay in β for one time
period and repair the damage, bringing it to level d0, or move
to one of the two adjacent locations β − 1 or β + 1 without
repairing the damage (if β = 1 or β = L, only two of these
actions are available). There is a known cost per unit time for
each location, depending on its damage level, and the objective
is to minimize the discounted sum of costs of all the locations
of the pipeline over an infinite horizon. This is a POMDP with
L · (ζ + 1)L states and three actions per state.

Figure 5. Markov chain for the damage level of each location of the pipeline.

It is straightforward to implement the belief state estimator,
given the initial belief distributions of the damage levels
of all the locations. It is also straightforward to program a
simulator of the type illustrated in Fig. 1, and to generate
rollout trajectories with a given base policy starting from a
given feature state.

B. Partitioned Architecture for the Pipeline Repair Problem

For our partitioning scheme, we use two characteristics of
the belief vector. These are (see Fig. 6a):
Percentage of disrepair: If less than one half of the
pipeline locations are believed to be in some damaged level
(d1, d2, d3, d4), we say that we are in an endgame state, and
otherwise we say that we are in a startgame state. Density
of possible damage: We distinguish three cases, based on
two variables, LD and RD (Left and Right Damage), which
will be defined shortly. The three cases are a) damage to the
left is greater than to the right: LD

LD+RD > 0.7, b) damage
to the left is approximately equal to damage to the right:
0.3 ≤ LD

LD+RD ≤ 0.7, and c) damage to the right is greater
than to the left: LD

LD+RD < 0.3.
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Figure 6. Partition of the feature space into subsets for the pipeline problem.

Based on the six possible pairs of the characteristics above,
the belief space is partitioned into six corresponding subsets,
and the index of the current subset is added to the belief state
b to form the feature state y (hence y subsumes b and its
evolution can be sequentially simulated, in conjunction with
b, consistent with our assumptions). Since we assume that a
repaired location cannot fall into disrepair, endgame states can-
not lead to startgame states. This allows a sequential training
strategy whereby endgame cost and policy approximations can
be used for training startgame policy and value networks.

C. Algorithmic Implementation

We employ two algorithms that are based on the partitioning
scheme just described: Partitioned Approximate Policy Itera-
tion with No Truncation (pAPI-NT) and Partitioned Approx-
imate Policy Iteration with Truncation (pAPI-T) (see Fig. 7).
These algorithms are well-suited for distributed computation,
with a separate processor being in charge of the simulation and
training within its own subset of the partition, and communi-
cating its local policy and cost function to the other processors
for use in their truncated rollout computations. Also, the
approximate cost functions for the endgame subsets are shared
as terminal cost approximations with other processors that
are learning startgame policies. We find that these schemes
save computation time while performing almost as well as a
nonpartitioned architecture in terms of minimizing cost (see
the next section).

Figure 7. Algorithm for applying pAPI-T to our pipeline repair problem.

D. Experimental Results
We implemented our proposed methodology on various

problems of different sizes: 1) A linear pipeline problem of 20
locations and 1015 states, 2) a two-dimensional grid pipeline
of size 6×6 and 1026 states, and 3) a two-robot linear pipeline
of 1016 states. We describe our experimentation for the linear
pipeline first.

For our experiments we have made the following choices.
We used neural networks for both policy and value approx-
imations. The policy networks used 2 hidden layers of size
256 and 64 ReLU units respectively, while the value networks
used 3 hidden layers of 256, 128, and 64 ReLU units. The
output layer of the policy network used a softmax layer over
3 actions (repair, go left, go right) in a linear single-robot
pipeline (5 actions for a single robot 2D grid, 9 actions for
two-robot linear pipeline). We used the RMSprop optimizer to
minimize the L2 loss with a learning rate of 0.001.

To obtain the rollout policy, we used one-step lookahead and
10 Monte-Carlo simulated trajectories with the base policy
from each leaf of the lookahead tree. We have not tried
multistep lookahead in order to keep the size of the lookahead
tree manageable. We used a greedy policy as the starting base
policy, which repairs the current location if it is damaged,
moves left if out of all damaged locations, the nearest one is on
the left, or moves right otherwise. The density of damage to the
left of the robot at location β is defined as LD =

∑β−1
j=0 d

j ′c,
where c = [0, 0.1, 1, 10, 100] is the vector of costs for the
different damage levels. The definition of RD is similar. For
the 20-location linear pipeline cases, 200,000 training samples
were used for each subset of the feature space partition (and
1.2×106 samples for training using the methods that do not use
partitioning). For the 6×6 grid and two-robot cases, 500,000
training samples were used for each subset of the partition.
Training samples were obtained by: 1) random generation
of feature states from each partition set (Fig. 6(b)), and 2)
augmenting the pool of samples with representative states over
a memory buffer where we randomly retained around 10%
of states generated while evaluating the previous policies as
described in [11], Ch. 5.

Figure 8. Performance comparison of API, where pAPI-T and pAPI-NT use
partitioning, with and without truncation respectively.

We have generally observed that the partitioned architecture
results in significant improvement in running time thanks to
parallelization, at the expense of a modest degradation in
performance. We expect that this improvement will become
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more significant as we address larger problems that require a
richer feature space partition.

We will now present an ablation study of our proposed
method that demonstrates the performance of the major pieces
of our algorithm. In particular, we compare: 1) pAPI-T and
pAPI-NT, which are the full versions of our algorithm with and
without truncation respectively, 2) R-T and R-NT, which are
rollout algorithms with and without truncation, which are the
basis for data collection and training for the improved policies
used in pAPI-T and pAPI-NT, and finally 3) the greedy policy,
which is used as the starting policy for rollout and for PI. The
plot in Fig. 9(a) shows how each component of our method
adds to improved performance. Notice that pAPI-T uses a ter-
minal cost approximation and results in computational savings
over pAPI-NT, but incurs a slight approximation penalty.

Figure 9. (a) Ablation study demonstrating performance contributions of the
different components of our methodology. (b) Comparison of our methods to
DESPOT and POMCP.

1) Comparison to Existing Methods: We have compared
our method with two published POMDP methods: DESPOT
and POMCP. Our simulations were conducted using the code
for these methods, which is freely available at [40]. These
methods do not use rollout with a base policy, but instead
rely on long lookahead supplemented by Monte Carlo tree
search and/or heuristic pruning of the lookahead tree. Results
are shown in Fig. 9(b) for an evaluation set of 1000 random
startgame states. We tried many DESPOT parameter combi-
nations, including K = 100, 200, 300, D = 60, 90, 100, and
λ = 0.1, 0.3. Fig. 9(b) shows the best results that we obtained
with DESPOT using D = 90, K = 200, λ = 0.1, and with
POMCP using the default parameters. We used a closed form
of belief update equation based on the Markov chain of Fig. 5,
by modifying the POMCP and DESPOT code to use a single
particle to represent the belief with a weight of 1.

Our results show the cost of two implementations of
POMCP and DESPOT; the first implementation denoted
DESPOTorig is “straight out of the box,” using the code
provided in [40]. We obtained the other implementation,
DESPOTmod, by modifying the first to disallow “repair”
actions at already repaired locations. We note that without
this modification the DESPOT and POMCP algorithms will
sometimes choose a repair action on an already repaired loca-
tion, leading to higher costs. Our results indicate that pAPI-
NT and pAPI-T outperform DESPOT and POMCP (original

Table I
EXTENSIONS TO PIPELINE REPAIR PROBLEM

Extension Greedy Iter 1 Iter 2
pAPI-NT on 5x4 grid 5476.79 5255.64 4952.26
pAPI-NT on 6x6 grid 18799.5 18037.1 17341.9
pAPI-NT 2-robot, linear (L = 20) 4142.84 3321.95 3133.08

and modified versions) for our pipeline repair problem. The
greedy policy, somewhat unexpectedly, also performs better
than DESPOT and POMCP. The reason may be that the
pipeline repair problem has a long effective planning horizon.
Intuitively for such problems, DESPOT and POMCP are
handicapped by their reliance on a tradeoff between lookahead
length and the sparsity of the lookahead tree. Since both
DESPOT and POMCP estimate Q-values approximately, with
a larger and sparser lookahead, they can perform worse than
the greedy base policy. By contrast, our rollout policy has the
cost improvement property described in Prop. 1, and improves
over the base policy (approximately, within a bound).

Indeed, we have observed that for states requiring a rel-
atively long horizon to repair the pipeline, POMCP and
DESPOT often make poor decisions. However, we could find
no reliable method to detect whether a particular state would
lead to relatively good or bad performance for DESPOT of
POMCP, except in hindsight. Nonetheless for investigation
purposes, even after hand-selecting for evaluation a favorable
set of states, we found that DESPOT or POMCP were still
outperformed by our method. In fact, based on examination
of sample generated trajectories, we have concluded that the
advantage that our method holds is principally due to the long
horizon exploration that is characteristic of the use of rollout
with terminal cost approximation.

2) Extensions of the Pipeline Repair Problem: We present
in Table I results for two extensions of our problem to
demonstrate the generality of our methodology. Specifically
we show results for: 1) a two-dimensional grid pipeline and
2) a two-robot implementation of our methodology. Generally,
our results show that both pAPI-T and pAPI-NT can be applied
to problems with larger state space and multiple robots thanks
to the use of partitioning and the attendant computational
savings.

VII. CONCLUDING REMARKS

This paper develops rollout algorithms and PI methods
that are well-suited to deal with the challenges of POMDP,
including large state spaces, incomplete information, and long
planning horizons. Thus these methods are of high relevance
to robotic tasks in uncertain environments such as search and
rescue. While several of the components of our methodology
have been suggested for perfect state information problems,
they have not been combined and adapted to POMDP. Our
methods are based on partitioning the feature space and
training local policies that are specialized, easier to train, can
be combined to provide a global policy over the entire space,
and are amenable to a highly distributed implementation.

We have applied our methods in simulation to a class of
sequential repair problems where a robot inspects and repairs
a linear pipeline with potentially several rupture sites under

8



partial information about the state of the pipeline (acquired
from a priori obtained knowledge and in situ observations).
Our method’s partitioning of the state space has important
implications for robotics problems – namely, it allows for
massive parallelization over several potentially independent
processors (or robots). Importantly, this framework lends itself
to distributed learning about the environment where different
partitions can correspond to states in spatially different areas
of the world, thus suggesting a new basis from which to solve
future multi-robot POMDP problems.

We finally note that there are several possible extensions to
our sequential repair problem, such as for example allowing
for stochastic repair times, two-dimensional problems with
obstacles, and multiple robots.

Acknowledgement: We acknowledge Calvin Norman and Siva
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