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Abstract. We present a novel framework for collaboration amongst a
team of robots performing Pose Graph Optimization (PGO) that ad-
dresses two important challenges for multi-robot SLAM: i) that of en-
abling information exchange “on-demand” via Active Rendezvous without
using a map or the robot’s location, and ii) that of rejecting outlying mea-
surements. Our key insight is to exploit relative position data present in
the communication channel between robots to improve groundtruth accu-
racy of PGO. We develop an algorithmic and experimental framework for
integrating Channel State Information (CSI) with multi-robot PGO; it
is distributed, and applicable in low-lighting or featureless environments
where traditional sensors often fail. We present extensive experimental
results on actual robots and observe that using Active Rendezvous re-
sults in a 64% reduction in ground truth pose error and that using CSI
observations to aid outlier rejection reduces ground truth pose error by
32%. These results show the potential of integrating communication as
a novel sensor for SLAM.
Keywords: Rendezvous, Multi-robot SLAM, Sensing, Wi-Fi, Robotics

1 Introduction

Fig. 1: Sensor information from wire-
less signals used for multi-robot PGO.

Multi-robot mapping allows for quick ex-
ploration of unknown environments and
resiliency to individual robot failures.
There has been a significant effort to es-
tablish the necessary coordination algo-
rithms for efficient and accurate mapping
using information fused from teams of
robots [20, 5, 21, 19]. Data exchange is
a critical need for successful execution of
a distributed mapping task, both for map
fusion and for reducing errors in pose es-
timates that accumulate over time due
to noise. A common assumption in these
works is that robots can share information reliably and that relative position
information is sufficiently accurate to allow for integration of data [5, 20]; as-
sumptions that are challenging to uphold in practice. For information exchange,
random rendezvous opportunities are often exploited, or it is assumed that robots
can navigate to a common location in the map to rendezvous [19, 10, 20]. How-
ever, the question of how to enforce a communication rendezvous in a distributed
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fashion without requiring robots to have an agreed upon shared map remains
a challenge. Additionally, outlying relative pose measurements between robots
can result from many causes including erroneous loop closure, data mismatch,
and sensor noise amongst others. These outlier measurements can be severely
detrimental to accuracy [3]. Detecting such outliers is challenging and has been
identified as an open problem for the next era of multi-robot simultaneous lo-
calization and mapping (SLAM), penned the “Robust Perception Age” [1].

Ideally, it would be possible to address both of these challenges using local
information that already exists in the system but is not currently exploited for
PGO. By building upon a key insight, that existing communication links between
robots contain relative position information that can be fruitfully exploited in
PGO, we address these challenges from a new perspective.

We present an algorithmic framework where each robot monitors its trajec-
tory error and its wireless channels to neighboring robots in order to proac-
tively request a rendezvous whenever this error exceeds a prescribed threshold.
By enabling information exchange, robots are able to improve the groundtruth
accuracy of their estimated pose obtained with PGO. We refer to this as Ac-
tive Rendezvous. We accomplish this by building upon our prior work that uses
Channel State Information (CSI) observations collected from communication
links between robots to derive the angle-of-arrival (AOA) for received signals
without specialized hardware [6, 13]. Whereas [6] uses a global optimization ap-
proach to improve communication across a network of robots, the current work
differs in several key aspects necessary for integration with PGO: it 1) is en-
tirely distributed, allowing robots to follow gradient directions of communication
quality with a desired neighboring robot 2) identifies a neighboring robot for
rendezvous that would best reduce robot’s trajectory error, and 3) modifies the
PGO formulation to use inter-robot position data measured from communica-
tion channels to reduce the influence of outliers. To address outliers, we devise
a mathematical framework for using relative pose information from the inter-
robot communication signals to scale the information matrix of each relative
measurement. When used by PGO, this scaling automatically reduces the influ-
ence of outliers. Since PGO is often performed by robots operating in indoor
environments that have structure, or multipath generators, any method for us-
ing information from communication signals to reject outliers must i) handle
multipath and ii) characterize the accuracy with which it can validate reported
relative positions in these environments. Our framework specifically handles the
case of multipath, leading to good performance across different testbeds with
and without obstacles (multipath generators), and we provide an experimental
characterization of error in AOA needed for outlier detection (Figure 10 (b) and
(c)). In this way our method informs outlier rejection effectively by using CSI
as an independent source of validation for data shared between robots; Thereby
improving the resulting accuracy of PGO.

By integrating AOA information from communication channels with PGO,
we address two important problems: 1) realizing data exchange on demand,
or Active Rendezvous, between robots to keep trajectory error below a desired
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threshold, and 2) mitigating the effect of outliers on PGO to improve the solution
accuracy. Our method is environment independent, distributed, and compatible
with any exploration method where information exchange is critical. Our experi-
ments show that incorporating AOA information significantly reduces trajectory
error, leading to a 64% reduction of pose error with respect to ground truth. No-
tably, our methods are applicable to environments where conventional sensing
modalities may fail. As such, this paper begins to lay a foundation for using
communication-as-a-sensor for multi-robot mapping.

2 Related Work
While the body of related work for distributed mapping and Pose Graph Op-
timization (PGO) is too large for a comprehensive overview, we survey the
most relevant works to current paper objectives here. PGO is one of the most
common modern techniques for SLAM, and supports many crucial tasks in
robotics [1].Techniques for distributed PGO include reducing the amount of
poses communicated [3], the use of graph sparsification [12, 17], and efforts to
reduce bandwidth requirements [4, 15]. However, these techniques still suffer
from outlying observations and the inability to coordinate information exchange
on demand. This paper builds off of distributed PGO techniques as in [3] but
incorporates information from communication channels to alleviate these two
challenges. Another approach to these challenges, Active SLAM, attempts to
incorporate estimation uncertainty into the control of robots, such as estimat-
ing information-gain from exploration versus uncertainty reduction via repeated
visitations [25, 24] using pose graphs. Our approach is compatible with different
exploration methods of the environment, such as Active SLAM.

Localization and pose estimation using various Radio Frequency (RF) mea-
surements comprises a large body of work [11, 16, 27, 23, 18]. Unfortunately,
these methods often require specialized hardware that is not normally found on
robots, or are marred by the phenomenon of multipath which is often present
in indoor environments of interest in mapping tasks. Most related to our ap-
proach are synthetic aperture radar (SAR) techniques for indoor positioning
that can handle multipath and alleviate the need for bulky multi-antenna ar-
rays [13, 14, 6, 26]. These approaches show great promise for robotic applications
due to their compatibility with Wi-Fi, which is present on many robot platforms.

The current paper builds atop this body of related work, in particular [6],
and extends it in several critical ways necessary for multi-robot PGO. In contrast
to [6], this work is distributed and derives decentralized methods for reducing
pose estimation error based on trajectory error and real-time Effective Signal
to Noise Ration (ESNR) values. In the context of other outlined mapping and
localization approaches, this paper highlights an algorithmic and experimental
framework to intelligently incorporate communications-channel information into
collaborative mapping techniques.

3 Problem Statement
We consider problems where n robots explore an unknown environment and
must maintain accurate estimates of their poses. To prevent divergence of the
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estimation process, these robots must periodically exchange information via ren-
dezvous. Our approach does not make assumptions about how robots explore
the environment and is independent of the exploration strategy so long as regu-
lar information exchange is required during exploration. Here, robot i’s pose is
given by xi(t) := (Ri(t), pi(t)) where pi(t) ∈ R3 is the position of robot i at time
t and Ri(t) ∈ SO(3) is the orientation of robot i at time t. SO(3) here is the
special orthogonal group, defined as {R ∈ R3×3 : RᵀR = I3, det(R) = +1}. We
assume that information exchange, or communication rendezvous, between two
robots i and j can occur whenever a communication link exists between robots
that can support the required data rate qi ≥ 0. This is the required data rate for
exchanging information to reduce the estimation error of the robot. In practice
this value is dependent on the nature of the data exchanged, but most commonly
includes position estimates and a history of observations of the environment. It is
important to note that the minimum communication rate required to “sense” or
broadcast ping packets is often possible at much larger distances than the com-
munication rate required for a rendezvous. We define the set of robots that robot
i has minimal connectivity to as NCi(t). We leverage previous work on attaining
directional signal profiles, or angle-of-arrival information for each communicat-
ing pair of robots [6] inside NCi

(t). A primer on how to attain the AOA profile
Fij for each pair of communicating robots is included in Sec. 4. The goal of this
paper is to use these AOA profiles between communicating robots to improve
the accuracy of the PGO process.

3.1 Pose Graph Optimization
We assume that each robot i acquires relative pose measurements z̄ij(t), i.e the
pose of robot j with respect to robot i’s reference frame at time t. We follow the
observation model from [3], dropping t for clarity:

z̄ij := (R̄ij , p̄
i
j), where R̄

i
j = (Ri)

ᵀRjRε and p̄ij = (Ri)
ᵀ(pj − pi) + pε (1)

Here (Rε, pε) denotes the noise of the observation and, roughly speaking, is
assumed to be drawn from some zero-mean Gaussian distribution with Fisher
information matrix Ωz̄ij . We define Ez̄(t) as the set of all relative pose observations
for all robots that occur up to time t, and E iz̄(t) as the subset of Ez̄(t) relative to
robot i. We assume the robots are capable of an estimation process to find an
optimized set of poses x∗ following the maximum likelihood formulation:

x∗ = arg max
x

∏
z̄∈Ez̄(t)

L(z̄|x) (2)

Our development is largely independent of the method to obtain x∗ (we refer
to [3, 8] for examples) and thus we keep the concepts general where possible.
We assume the method to obtain x∗ allows for any robot i to compute the
optimization cost for all measurements relative to itself at any time, denoted
as Erri(xi(t), E iz̄(t)), which we refer to as “trajectory error”. One such example
from [3], which is used in our experimental evaluation, is:

Erri(xi(t), E iz̄(t))) :=
∑

z̄∈Eiz̄(t)

ω2
p||pj − pi −Rip̄ij ||2 +

ω2
R

2
||Rj −RiR̄ij ||2F (3)
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where || · ||2F is the Frobenius norm and ω2
p and ω2

R

2 are concentration parameters
for the distribution of Rε, pε.

Our goal is to ensure that once the trajectory error passes a user defined
threshold δ > 0, a subset of the robots can engage in Active Rendezvous to gather
and exchange information to reduce overall estimation errors. We stress that the
concepts of this paper are extensible beyond Equation (3) to any error metric
Erri that can be computed directly from the estimation process. Therefore, our
objectives are two-fold: for every robot i ∈ {1, . . . , n} with the local observations
E iz̄(t) and observations over the wireless channel of Fij for every robot j inNCi

(t),
we aim to address:

Problem 1 (Active Rendezvous). Develop an algorithm for achieving Active Ren-
dezvous between robots that is distributed and independent of the acquired map.
Problem 2 (Outlier Rejection). Develop a framework that uses observations over
the wireless channels, Fij , to mitigate outlying observations in Ez̄(t).

4 Primer: Angle-of-Arrival in Multi-Robot Systems

Fig. 2: AOA information from a signal pro-
file using Channel State Information (CSI).

As robots communicate, messages are
transmitted over wireless channels h
which are complex numbers exposed
by some commodity Wi-Fi cards and
measurable from any wireless de-
vice. These quantities characterize the
power and phase of a received sig-
nal, and are affected by the path the
signal traverses (attenuation) and the
environment (scattering, multi-path),
which can reveal information about
the direction of the signal’s source.
Attaining (AOA) information requires
hardware that is normally too bulky for small robots, but previous work demon-
strates that the combination of robot motion and wireless channel measurements
can instead be used to obtain this information. By having robot i take several
snapshots of the wireless channel hij to robot j as it moves over a piece-wise
linear [6] or circular trajectory [7], a signal profile can be computed as:

Fij(φ, θ) =
1∣∣∣Eign(ĥij ĥ

+
ij) exp

√
−1Φij(φ,θ)

∣∣∣2 (4)

An actual measured profile Fij is shown in Fig. 2 for θ ∈ (−180, 180) and φ ∈
(0, 40)), and the unit vector vθmax(Fij) along the direction θmax is depicted in the
schematic on the right hand side of Fig. 2. This captures the direction of arrival
of the signal in 3D space between two communicating robots i and j where
φ is the polar direction of the arriving signal (out of the plane) and θ is the
azimuthal direction of the arriving signal (in the plane). Here the raw channel
ratio between two antennas is used to define ĥij = h1ij/h2ij , a vector of the
ratio of wireless channel snapshots between the two receiving antennas mounted
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on robot i (Fig. 5 shows a typical hardware setup). The function Φij(φ, θ) is
defined as Φij(φ, θ) = 2πr

λ cos(φ − Bj) sin(θ − Γj), λ is the wavelength of the
signal, r is the distance between the two antennas, Bj , Γj are the transmitters
orientation, Eign(·) are noise eigenvectors, (·)+ is the conjugate transpose, and
k is the number of signal eigenvectors, equal to the number of paths (in practice
k is related to the number of peaks in the profile [7]). In the current paper robot
i performs a quarter turn (circular motion) while obtaining wireless channel
snapshots once during each iteration of Algorithm 2 to obtain Fij . Of particular
importance to our approach is prior work which compares peak locations in the
Fij profile to derive a likelihood that a reported relative position between the
robots i and j is correct [7]. LetWij(φij , θij) be the likelihood that a transmitting
robot i is indeed along its reported direction (φij , θij) with respect to a receiving
robot j. The likelihood is derived as (cf. β in [7]):

Wij(φij , θij) = g(φij − φFij ; 0, σ2
φ)× g(θij − θFij ; 0, σ2

θ) (5)
where φFij and θFij denote the closest maximum in Fij to (φFij , θFij ) and
g(x;µ, σ2) = min(1,

√
2πf(x;µ, σ)) is a normalized Gaussian PDF with mean

µ and variance σ2. In this paper we will provide an experimental study of Wij

and we will develop the necessary framework for integrating this likelihood into
pose-graph optimization so that AOA can be used as an independent observation
to detect outliers in relative position measurements between robots (Section 6).

5 Active Rendezvous
In this section we describe a framework for achieving Active Rendezvous between
robots to keep their trajectory errors below a desired threshold. This threshold
is arbitrary, specified by the user, and often related to how much trajectory error
is tolerable for the task at hand. As robots move through the environment they
accumulate odometer and sensor errors [8]. By exchanging information, such as a
history of observations and relative pose estimates, these errors can be reduced.
We thus introduce decentralized methods for: 1) initiating a request for Active
Rendezvous among robots when their estimated trajectory errors grow beyond
an acceptable threshold, 2) selecting the subset pair of robots to be activated
to complete an Active Rendezvous based on ESNR and trajectory error values,
and 3) the set of relative position commands, based on wireless signal profiles,
to be executed in a distributed manner to achieve rendezvous. Before detailing
our methods, we define different robot behaviors below:
1. move_to_relative_waypoint: robot moves toward a given waypoint.
2. exploration: arbitrary path finding policy to explore the environment.
3. adaptive_walk: series of move_to_relative_waypoint using signal profiles.

We assume that each robot i runs Algorithm 1 to monitor it’s trajectory
error (see Equation 3). This error function could be replaced with any generic
error metric that measures the disagreement between pose estimates and mea-
surements. Once this error passes a prescribed (arbitrary) threshold value of
δ for any robot i , it broadcasts minimal data packets to identify neighboring
robots who can listen and reply back, to form NCi(t). Each neighbor of robot i
will potentially receive multiple requests. It will choose to respond true to the
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Algorithm 1 ERROR MONITOR
Require: Estimated pose error threshold δ, robot index i, desired data exchange rate

qi, minimum number of observations κ, connected neighbors of i, NCi , αi for each
robot(can be all same or arbitrary value based on priority of robot by demand)

1: t← 1, xi ← ∅, Eiz̄ ← ∅ . Initialization
2: while explore do
3: [xi(t), Eiz̄(t)]← exploration
4: Erri(xi(t), Eiz̄(t)) ← Equation (3)
5: if Erri(xi(t), Eiz̄(t)) > δ then
6: min_service_discrepancy ←∞
7: robot i broadcasts active rendezvous requests to all robots of NCi(t)
8: for j in NCi(t) do . Selection of adaptive robot j
9: if request accepted by robot j then
10: ρij ← ESNRij
11: wij ← max(αi

qi−ρij
qi

, 0)
12: if wij < min_service_discrepancy then
13: j∗ ← j
14: min_service_discrepancy ← wij
15: end if
16: end if
17: end for
18: x∗i ← Algorithm 2(qi, κ, j

∗, xi)
19: xi ← x∗i
20: end if
21: t← t+ 1
22: end while
requester to whom it has highest ESNR and is thus most suited to serve. In the
case of ties, it will use the requesters’ trajectory error as the tie breaker. Robot i
then uses Algorithm 1 (line 6-17) to identify a robot j ∈ NCi(t) for a rendezvous
that has the lowest service discrepancy to robot i, using lower trajectory error
as a tie-breaker if size(NCi

(t) ) > 1. Service discrepancy, the difference between
the desired data exchange rate qi and current data exchange rate, is defined as
wij = max(

αi(qi−ρij)
qi

, 0) where αi ≥ 0 is the priority of robot i, and ρij ≥ 0
is the actual signal strength of the link between i and j. A service discrepancy
wij = 0 denotes that robot j can transmit data to robot i at its desired data
rate qi. To achieve a rendezvous via Algorithm 2, robot j moves towards robot
i which is stationary by following the gradient of the communication edge cost.
This edge cost is given by rM (pj , Pt, wij , Fij) = (p′ij − pj)TMij(p

′
ij − pj) which

is a Mahalanobis distance between an robot j with position pj and the “vir-
tual” position, p′ij , of robot i as determined from the AOA profile Fij [6]. Here,
p′ij = pj +wijvθmax is the perceived distance between robot i and j as estimated
from the wireless profile Fij and vθmax is a vector along the maximum AOA of
the signal between i and j (see Figure 2), and wij is the current service discrep-
ancy of robot j to robot i. Matrix Mij encodes the AOA information from the
profile Fij as Mij = QijΛQ

T
ij where Qij = [vθmax , vθmax⊥ ], vθmax is a unit vector

along the direction of maximum AOA (see Fig. 2 for a description of vθmax), and
Λ = diag( 1

σ2 , 1) is a diagonal matrix capturing the noise characteristics of Fij ,
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and ⊥ denotes the orthogonal vector. Minimizing this edge cost with respect to
pj returns a position for robot j that improves the communication rate between
i and j. The paper [6] shows how to derive the value of σ2 from the profile Fij
however for simplicity we assume that σ < 1, which amounts to the link ij having
more signal than noise. Note that following the gradient of the communication
edge cost does not require line-of-sight observations. During each iteration of
Algorithm 2, the robot performing the rendezvous repeats this process to obtain
a new position pj(t + 1) of robot j until a desired number κ of relative pose
observations have been generated between itself and robot i for optimization.
Post optimization, the robots revert back to exploration; gathering odometer
measurements and monitoring the trajectory error via Algorithm 1.

Algorithm 2 ACTIVE RENDEZVOUS
Require: Desired data exchange rate qi, minimum number of observations κ, robot j

selected for rendezvous, raw pose estimates xi, some small positive values ε > 0
Ensure: Optimized pose estimates x∗i , for robot i
1: while |E iz̄(t)| < κ do . perform adaptive_walk
2: wij ← max{0, αj qi−ρijqi

} . compute service discrepancy
3: Fij ← Equation (4)
4: p′ij ← pj(t) + wijvθmax(Fij) . virtual client position
5: ∇rM =Mij(p

′
ij − pj) . Compute communication gradient direction

6: pj(t+ 1) = pj(t) + wij∇rM
7: [xi, Eiz̄(t)]← move_to_relative_waypoint(pj(t+ 1))
8: ρij ← ESNRij . actual received signal strength over link ij
9: if qi ≤ ρij then
10: qi ← qi + (ρij − qi) + ε . Update data transfer rate until |E iz̄(t)| ≥ κ
11: end if
12: end while
13: x∗i ← Equation (2)
14: return x∗i

6 Outlier Rejection

Fig. 3: Angle from
Fij versus angle
from reported rel-
ative position θij
(2D).

Integration of relative position data from the communica-
tion channels into the PGO framework has two distinct ad-
vantages. Not only can this information be used to enable
frequent data exchange opportunities as described in Sec-
tion 5, but it can also be used to validate this data thus re-
ducing the effect of outliers in the optimization. This section
discusses how wireless communication channels can be used
to reject such outliers. In particular, we devise a mathemat-
ical framework for using relative pose information captured
in Fij to scale the information matrix of each relative pose
observation z̄ij(t) such that outlier measurements have less
influence on the final maximum likelihood estimate. Our ob-
servational model in Equation (1) assumes all observations
are drawn from a Gaussian distribution. An outlier measurement however is not
necessarily drawn from the same distribution model and can introduce signifi-
cant bias to an optimization [2]. Note that we make no assumptions about how
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outliers are generated. Ideally it would be possible to automatically mitigate
the effect of outlier measurements in the optimization of Equation (3) by set-
ting their information values to small or even zero values. The AOA information
captured in an Fij profile can be used for this purpose. Specifically, we want
to verify that the observation z̄ij(t) is consistent with the observation from the
AOA profile Fij . We define (φij , θij) to be the relative position of robot j with
respect to robot i which can be derived from the relative pose estimate z̄ij(t)
(Fig. 3) as θij = arctan 2(∆Y,∆X) and φij = arctan 2(∆Z,

√
∆X2 +∆Y 2 ).

Importantly, Fij contains AOA information for all incoming signal paths from
i to j and thus can handle indoor, or multipath, environments. A signal path
along the direction (φ, θ) would result in a peak value of Fij(φ, θ). Therefore we
can define the closest maximum peak location in Fij to the reported relative
position (φij , θij) as (φFij

, θFij
) where

[φFij
, θFij

] = arg min
φ,θ

α+ β (6)

s.t. ‖θ − θij‖ ≤ α, ‖φ− φij‖ ≤ β, (φ, θ) ∈ ΘN (Fij)

Here ΘN (Fij) is the set of angles producing the N largest peaks in Fij . In other
words, (φFij , θFij ) is the tuple of angles among the peaks of Fij corresponding
to the signal direction that is closest to the reported position (φij , θij). From
Equation (5) in Section 4 we can compute the likelihood that robot ij is indeed at
the reported relative location (φij , θij) according to the signal profile Fij asWij ∈
[0, 1]. This likelihood serves as a natural candidate for a weighting term that can
be applied to the information matrix Ωz̄ij of each relative measurement between
robots. This would result in a smaller weight, nearing zero, for all relative pose
measurements (φij , θij) that are likely to be outliers as reported by the AOA
signal profile with computable variance σθ, σφ. Relative pose estimates (φij , θij)
are deemed to be likely outliers if their difference to peaks in the AOA profile
Fij is larger than a threshold value ∆. Thus, for all relative pose observations,
we compute a new information matrix Ω′

z̄ij
as:

Ω′z̄ij
:=

{
Wij ·Ωz̄ij |θij − θFij

| ≥ ∆ or |φij − φFij
| ≥ ∆

Ωz̄ij otherwise
(7)

The error threshold ∆ is determined based on the noise of the AOA profile which
is shown to be Gaussian in [7] in theory with a computable variance. Here the
error in the AOA profiles was found to be on the order of 8.5◦ in our exper-
imental study (see Figure 2). The weight Wij is given by Equation (5). After
properly adjusting the information matrix for each factor in Equation (3), the
optimization result demonstrates smaller ground truth error. Figure 10 demon-
strates hardware results showing improved ground truth error in optimized pose
estimates using the information matrix from Equation (7).

7 Results
In this section, we describe our simulation and hardware experiments. For each
experiment we compare the difference in performance with and without Active
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Rendezvous. We employ a random exploration strategy as a benchmark though
we note that our methods are fully compatible with general exploration methods
as well. We utilize the Absolute Trajectory Error (ATE) metric [22] and use a
specialized version defined in [3]:

ATEtrans :=
1∑k
i=1 ni

k∑
i=1

tni∑
t=t0

||pi(t)− p̂i(t)||2 (8)

ATErot :=
1∑k
i=1 ni

k∑
i=1

tni∑
t=t0

||Ri(t)ᵀR̂i(t)− I3||2F (9)

Fig. 4: Results for 50 robot
simulation with trajectory error
bounded at desired threshold. Y-
axis Error=Err(x(t), Ez̄(t)) and
shaded region demonstrates stan-
dard deviation over 5 runs.

where k is the number of robots, ni is the num-
ber of poses in the trajectory of robot i, pi(t)
and Ri(t) are the estimated translation and ro-
tation of robot i at time t, and p̂i(t) and R̂i(t)
are benchmark positions and rotations of robot
i, typically according to ground truth from mo-
tion capture. In order to keep our methods gen-
eral to different SLAM or PGO implementa-
tions we do not assume that observations are
acquired with any particular sensor (i.e. cam-
era, lidar, etc), but instead emulate them by us-
ing oracle positions (obtained from motion cap-
ture) with added Gaussian noise. Likewise, out-
lier measurements are emulated using Gaussian
noise with large standard deviations compared
to the measurement noise model. Although in
practice outlying measurements can occur for a variety of reasons, such as er-
roneous loop closures or data aliasing, etc., we do not make assumptions about
them or how they occur. We use identical PGO implementation across experi-
ments with different rendezvous strategies (Random vs. Active Rendezvous); our
results thus compare the difference in performance between using Active Ren-
dezvous and CSI-enabled outlier rejection and not using either. In particular our
results show that by monitoring trajectory error as in Algorithm 1 and enforc-
ing Active Rendezvous when it reaches a user-specified threshold, we can reduce
the total trajectory error by more than 6X (Figure 7). This translates to an
improvement in ground truth pose accuracy of 64% (Figure 6) as demonstrated
in hardware experiments in a large environment (Testbed 2 is depicted in Fig-
ure 5(c)). Using AOA data to assist in outlier rejection as presented in Section 6
further reduces groundtruth pose error by 32% (Figure 10).

7.1 Simulation Experiments
7.1.1 Setup: Our simulation consists of a framework developed using GTSAM
library, ROS and Gazebo for robot control and visualization. We first verify that
the framework’s backend optimizer, an implementation from authors of [3], works
well with the nearest neighbor selection in Algorithm (1) for a large number
of robots during Active Rendezvous, as shown in Fig. 4. The selection here uses
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trajectory error, robot ID data and a mapping of Euclidean distance to ESNR so
as to approximate the behavior of communication quality in real wireless signals.
Next, we test robot controls for obstacle detection and avoidance in Gazebo. The
implementation is independent of any specific sensor-based SLAM approach as
we instead added Gaussian noise to oracle observations.

7.1.2 Results: In order to examine the impact of using Active Rendezvous,
we first compare the trajectory error of our approach with a custom random
exploration and rendezvous strategy in the simulation environments.To test the
framework’s scalability, we performed 5 trials with environment size of 10000 sq
meters, each with 50 robots, that ran for 50 iterations, with estimated trajectory
error threshold δ = 10. We add Gaussian noise of 0.2 meters in translation and
5◦ in rotation for generating poses and measurements. Each robot is capable of
moving 2 meters in one iteration and has a virtual sensor range of 2.2 meters
to generate measurements. From Figure 4, the aggregate results shows that our
approach periodically enforces rendezvous over the experiment duration, provid-
ing better performance once the trajectory error first reaches the user-provided
threshold. The average simulation time for each run was 5 minutes.

7.2 Hardware Experiments

Fig. 5: Hardware setups used for experimental evaluation: (a) Overhead view of 74 sq
m Testbed 1, (b) Turtlebot3 robot platform (c) 3000 sq m Testbed 2

7.2.1 Setup: For hardware experiments, two Turtlebot3 Burger robots were
deployed in two testbeds of different sizes shown in Figure 5, including a very
large 3,000 square meter testbed (Figure 5 (c)). Each robot was equipped with
MinnowBoard Turbot Dual and Quadcore off-the-shelf SBCs (single board com-
puters) running Ubuntu 16.04 LTS with kernel v4.15 and two 5dBi antennas
spaced 22 cm apart, communicating over a 5 GHz channel. We attached an Intel
5300Wi-Fi card to the Turbot which estimates wireless channels for each antenna
via the 802.11n Channel State Information(CSI) tool [9]. A Matlab framework
calculated wireless signal profiles (Sec. 4) once per call to Algorithm 2 using ping
packets collected over a quarter turn rotation (<1 second worth of data collection
per profile) where the rotation angle of the robot was monitored using the na-
tive Turtlebot3 IMU sensor or OptiTrack motion capture data. Algorithm 2 then
provided actuation commands to robots during Active Rendezvous. Groundtruth
pose data was collected using OpiTrack. The Turbots were set in monitor mode
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to broadcast fixed length ping packets at a rate of 200 packets/sec. The mea-
surements E iz̄(t) were generated by injecting noise from a zero-mean Gaussian
distribution with standard deviation σR = 5◦ for rotation and σt =0.2 meters
for the translations to groundtruth measurements similar to Sec. 7.1.

Fig. 6: Aggregate ground truth error (Equa-
tions (8) (9)) reduction of 64% on average
over 3 hardware runs in large 3000 square
meter testbed (Fig. 5(c)). Average distance
traversed is 100 meters for each robot. The
low probability of random rendezvous leads
to high variance in its groundtruth error.

7.2.2 Results: We compare our
approach to only using random ren-
dezvous with three sets of real-world
experiments for validation in hard-
ware settings and to demonstrate our
Active rendezvous approach works in
the presence of obstacles. The ini-
tial two experiments were carried
out in testbed shown in Figure 5(a)
for 50 iterations with each robot
moving 1 meters during an itera-
tion and having an observation dis-
tance of 1.1 meters. We first dis-
play the estimated trajectory er-
ror Erri(xi(t), E iz̄(t)) and rendezvous
history for a single trial of hardware
experiments in an environment with
and without obstacles. It can be seen
from Fig. 7 that early in the trial, the
random rendezvous based approach
performs similarly to our approach due to several random rendezvous. However,
after a long period without a rendezvous, the former begins to diverge. In con-
trast, our method begins to enforce Active Rendezvous as soon as the trajectory
error increases. Additionally, examining Fig. 7 (c),(d), we note that the presence
of obstacles affects the number of rendezvous. The next set of experiments were
performed in the environment shown in Figure 5(a) without obstacles. We per-
formed 6 trials that each ran for 50 iterations. We then introduced 4 obstacles
and performed the same number of trials and iterations per trial in this environ-
ment. Aggregate results, as well as individual robot errors, for both experimental
conditions are shown in Fig. 8. We see the same trends as in simulation: early
on in the experiments, both methods show similar performance, but over time
the random-walk based method degrades while our approach remains accurate.
Finally, we performed identical hardware experiments, both with and without
obstacles, in extreme low light conditions (Fig. 9). These experiments were de-
signed to showcase that our method of rendezvous is completely independent
of visual conditions, in a dark, featureless environment which would severely
inhibit vision-based place recognition algorithms for coordinating rendezvous.
The last set of experiments were carried out in a larger testbed - Figure 5(c),
to evaluate the impact of Active Rendezvous on groundtruth errors calculated
per [28]. Each robot moved an average distance of 100 meters during every run,
using an observation distance of 2.2 meters to generate measurements. 3 such
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Fig. 7: Single trial of Random Rendezvous versus Active Rendezvous shows the growth
of trajectory error over time due to noisy sensors (odometers in this case). Y-axis
Error=Err(x(t), Ez̄(t)) from Equation (3). Active Rendezvous reduces estimated trajec-
tory error by 6X versus Random Rendezvous for different environments and platforms
with heterogeneous sensor noise (Testbed 1, Fig 5(a) is used here). Horizontal dashed
lines indicate desired error threshold. Vertical lines indicate rendezvous.

runs were conducted, each lasting 20 minutes on average. The aggregate results
in Figure 6 shows that enforcing rendezvous due to bounds on trajectory error,
our approach significantly increases accuracy while remaining agnostic to the
exploration method of choice and the environment.

Fig. 8: Aggregate experimental results demonstrates bounded trajectory error for Active
Rendezvous over 10 trials of hardware experiments in Testbed 1 from Fig 5(a). Y-axis
Error=Err(x(t), Ez̄(t)), shaded region indicates standard deviation.

7.3 Experimental Results for Outlier Rejection
In this section we present hardware results for using CSI to detect and weight
outlier relative pose measurements prior to performing optimization. The mea-
surements are injected with random translation and rotation error between (2σ
3σ) of the original noise distribution to generate outliers.As explained in Sec. 6,
we collect 9 measurements between robots for each of the 5 trials of Active
Rendezvous. Figure 10 (a),(b) and (c) show the average groundtruth error from
Equation (8) in estimated trajectory before and after outlier rejection, error
distribution of 100 AOA samples and the joint-distribution of AOA and mea-
surements respectively. The W in Figure 10 (c) is computed from Equation (5).
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(a) Error before and after rendezvous in well-lit conditions.

(b) Error before and after rendezvous in low-lighting conditions.
Fig. 9: Active Rendezvous in a visually degraded environment where vision based ren-
dezvous would fail. Y-axis Error=Err(x(t), Ez̄(t)). Testbed boundary is shown fluoresced
(not visible to robots). Shaded regions of plots show adaptive navigation and Active Ren-
dezvous during one instance of optimization.

This shows that the AOA measurements reliably detect outliers for ∆ ≥ 8.5◦ as
a rejection boundary. Figure 10 (a), shows that using AOA to reject observations
leads to a significant decrease in average groundtruth error. This reduction high-
lights the benefit of having an independent modality to validate measurements.

8 Conclusion and Future Work
We have presented a distributed method for integrating directional information
from wireless communications into pose graph optimization that enables robots
to rendezvous with one another in a way that is independent of the environment
and is capable of rejecting outlying relative pose observations. We demonstrate
the utility of this method both in simulation and in hardware experiments. We
attain an improvement in ground truth pose accuracy of 64% with Active Ren-
dezvous compared to random rendezvous using similar exploration strategies.
Additionally, using CSI information in outlier rejection improves ground truth
accuracy by 32%. Future work could involve integrating this information directly
in the pose graph optimization.
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Fig. 10: (a)Aggregate results over 5 independent experiments carried out in 74 sq meter
testbed (Fig. 5(a)) show 32% reduction in groundtruth error by using AOA for outlier
rejection. (b)Error distribution of AOA information in Fij shown to be approximately
Gaussian for actual profiles obtained using native IMU on Turtlebot3 platform. (c)
Weights as computed from Eqn. (5) and used for outlier rejection in Eqn. (7) are shown
to correctly reduce the weighting for outlier observations differing from ground truth for
any ∆ ≥ 8.5◦ in our implementation.
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