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ABSTRACT

Multi-channel sparse blind deconvolution refers to the problem of

learning an unknown filter by observing its circulant convolutions

with multiple input signals that are sparse. It is challenging to learn

the filter efficiently due to the bilinear structure of the observations

with respect to the unknown filter and inputs, leading to global am-

biguities of identification. We propose a novel approach based on

nonconvex optimization over the sphere manifold by minimizing a

smooth surrogate of the sparsity-promoting loss function. It is demon-

strated that manifold gradient descent with random initializations

provably recovers the filter, up to scaling and shift ambiguities, as

soon as the number of observations is sufficiently large under a suit-

able random data model. Numerical experiments are conducted to

illustrate the efficiency of the proposed method with comparisons to

existing methods.

Index Terms— multi-channel sparse blind deconvolution, non-

convex optimization, manifold gradient descent

1. INTRODUCTION

In various fields of signal processing, computer vision, and inverse

problems, a problem of central interest is to simultaneously recover a

pair of unknown signals x and g from their convolution. For example,

neural or seismic recordings can be modeled as the convolution of a

pulse shape (i.e. a filter), corresponding to characteristics of neurons

or earth wave propagation, with a spike train modeling time of acti-

vations (i.e. a sparse input) [1, 2]. This problem is ill-posed without

extra assumptions since the number of unknowns is much larger than

the number of observations [3, 4, 5, 6, 7]. Luckily, in many situations,

one can make multiple observations sharing the same filter, but with

diverse sparse inputs, either spatially or temporally, thanks to the

advances of sensing technologies [3, 8]. In this paper, we are thus

motivated to identify the filter as well as the sparse inputs leveraging

multiple convolutional observations in an efficient manner, a problem

termed as multi-channel sparse blind deconvolution (MSBD).

Mathematically, we model each observation yi ∈ R
n as a convo-

lution, between a filter, or an impulse response, g ∈ R
n, and a sparse

input, xi ∈ R
n:

yi = g ~ xi = C(g)xi, i = 1, . . . , p, (1)

where the total number of observations is given as p. Here, we

consider circulant convolution, denoted as ~, whose operation is

expressed equivalently via pre-multiplying a matrix C(g) to the input

xi, where C(g) is a circulant matrix with g as its first column. Our
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goal is to recover both the filter g and sparse inputs {xi}pi=1 from

the observations {yi}pi=1.

Clearly, the problem is challenging due to the bilinear form of the

observations with respect to the unknowns, which are not uniquely

identifiable. For any circular shift Sj(g) of g by j positions, and any

non-zero scalar β 6= 0, we have yi = (βSj(g)) ~ (β−1S−j(xi)),
for j = 1, . . . , n. Hence, we can only hope to recover g and {xi}pi=1

accurately up to certain circulant shift and scaling ambiguities.

In this paper, we focus on the case that C(g) is invertible, which

is equivalent to requiring all the Fourier coefficients of g are nonzero.

This condition plays a critical role in guaranteeing the identifiability

of the model as long as p is large enough [9]. Under this assumption,

there exists a unique inverse filter (sometimes called an equalizer),

ginv ∈ R
n such that C(ginv)C(g) = C(g)C(ginv) = I , where I is

the identity matrix. This allows us to convert the bilinear form (1)

into a linear form of the unknowns by multiplying C(ginv) on both

sides to obtain:

C(ginv)yi = ginv ~ g ~ xi = C(ginv)C(g)xi = xi,

for i = 1, . . . , p. A natural strategy is to recover ginv via exploit-

ing the sparsity of the inputs {xi}pi=1, by seeking a vector h that

minimizes the cardinality of C(h)yi = C(yi)h:

min
h∈Rn

1

p

p∑

i=1

‖C(yi)h‖0 ,

where ‖ · ‖0 is the pseudo-`0 norm that counts the cardinality of the

nonzero entries of the input vector. However, this simple formulation

is problematic for two obvious reasons: (1) first, due to scaling

ambiguity, a trivial solution is h = 0; (2) second, the cardinality

minimization is computationally infeasible. In this paper, we address

these issues by reformulating this naive approach into an efficient and

provably correct approach.

1.1. Our contributions

To address the first issue, a spherical constraint ‖h‖2 = 1 is added to

avoid the scaling ambiguity. For the second issue, the ‖·‖0 constraint

is relaxed to its convex smooth surrogate ψµ(z) = µ log cosh(z/µ),
where µ controls the smoothness of the surrogate. With slight abuse

of notation, we assume ψµ(z) =
∑n

i=1 ψµ(zi) is applied entry-wise,

where z = [zi]1≤i≤n. Inspired by [3, 10], we propose the following

pre-conditioned optimization problem for MSBD:

min
h∈Rn

f(h) =
1

p

p∑

i=1

ψµ(C(yi)Rh) s.t ‖h‖2 = 1, (2)

where R is a pre-conditioning matrix depending only on the observa-

tions {yi}pi=1, that we will formally introduce later in Section 2.2.
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(a) orthogonal filter (b) general filter (c) general filter

no pre-conditioning no pre-conditioning with pre-conditioning

Fig. 1. An illustration of the landscape of the empirical loss func-

tion f(h) with or without the pre-conditioning matrix R in R
3. (a)

orthogonal filter C(g) = I , no pre-conditioning is applied; (b) a

general filter, no pre-conditioning is applied; (c) same general filter

as (b) with pre-conditioning.

Encouragingly, although (2) is a nonconvex optimization prob-

lem due to the sphere constraint, under a suitable random model of

the sparse inputs, the loss function f(h) exhibits benign geometric

curvatures as long as the sample size p is sufficiently large. As an

illustration, Fig. 1 shows the landscape of f(h) when n = 3, p = 30,

and the inputs xi’s are composed of standard Bernoulli-Gaussian

(BG) entries [11, Definition 2] with parameter θ = 0.3.1 When the

filter is orthogonal, e.g. C(g) = I , it can be seen from Fig. 1 (a)

that the empirical loss function f(h) has benign geometry without

pre-conditioning (e.g. R = I), where the local minimizers are ap-

proximately all shift and sign-flipped variants of the ground truth (i.e,

±ei), and are symmetrically distributed across the sphere. On the

other end, for filters that are not orthogonal, the geometry of f(h)
without pre-conditioning is less well-posed, as illustrated in Fig. 1 (b).

For the same non-orthogonal filter, by introducing pre-conditioning,

which intuitively stretches the loss surface to mirror the orthogonal

case, the pre-conditioned loss function f(h) given in (2) has much

better geometry (as illustrated in Fig. 1 (c)).

Motivated by the benign geometry of f(h) illustrated above, a

natural approach to minimize f(h) over the sphere is via manifold

gradient descent, which is simple and low-complexity. Surprisingly,

this simple approach works remarkably well, even with random initial-

izations, for appropriately chosen step sizes. Based on such empirical

success, our goal is to address the following question: can we estab-

lish theoretical guarantees of manifold gradient descent to recover

the filter?

In this paper, we prove that despite nonconvexity of (2), with a

small number of random initializations, a vanilla manifold gradient

descent (MGD) algorithm is capable of accurately recovering both

the unknown filter and sparse inputs in polynomial time with high

probability, as long as the sample size p is large enough on the order

of p = O(n4.5) up to logarithmic factors. This result is achieved

through an integrated analysis of geometry and optimization, which

provides justifications to the empirical success of MGD with random

initializations.

1.2. Related work

Our work belongs to the recent line of activities on designing provable

nonconvex procedures for high-dimensional statistical estimation, see

[12] for an overview. The problem of blind deconvolution / calibration

with a single observation (or equivalently, channel) has been studied

extensively under different geometric priors such as sparsity and

1A random variable X = Ω ·Z is said to be BG with parameter θ ∈ [0, 1]
if Ω is a Bernoulli random variable with probability θ and Z is a standard
Gaussian random variable, where Ω and Z are independent.

subspace assumptions on both the filter and the input, using convex

and nonconvex optimization formulations [4, 6, 7, 13, 14, 15, 16, 17],

and in the multi-channel setting [18, 19, 20, 21, 22, 23]. For the same

MSBD problem, [18] proposed a convex linear program which has

stringent requirements on the condition number of the filter matrix

C(g). Our work is most related to [3], which was the first to study a

nonconvex formulation for MSBD, by applying an `4-norm relaxation

to the ‖ · ‖0 norm. Our algorithm works at a much lower sample

complexity O(n4.5) in contract to O(n9) in [3] and outperforms it in

the numerical experiments. Another concurrent work in [24] obtains

a sample complexity of p = O(n5), which is slightly higher than

ours, using a different loss function. Other algorithms for multi-

channel blind deconvolution include sparse spectral methods [25] and

nonconvex regularization [26].

On a different front, MSBD can be regarded as learning a convolu-

tional invertible dictionary, where the proposed algorithm is inspired

by approaches for dictionary learning in [10, 27, 28]. However, the

approach in [27] is only applicable to orthogonal dictionaries, while

we deal with a general invertible convolutional filter. Compared to the

sample complexityO(n9) required for learning complete dictionaries

in [10], our result demonstrates the benefit of exploiting convolutional

structures, which has a much lower sample complexity of O(n4.5).

1.3. Paper organization and notations

The rest of this paper is organized as follows. The theoretical guaran-

tee of the benign geometry and its implications for the convergence

of MGD are presented in Section 2. In Section 3, we numerically

evaluate the proposed method with comparisons to existing algo-

rithms. Finally, we conclude in Section 4. Due to space limits, the

proofs are delayed to the full version [29]. Throughout the paper, we

use boldface letters to represent vectors and matrices. For a vector

x ∈ R
n, let xj denote its jth element, x1:j denote the length-j vector

composed of the first j entries of x, i.e., the vector [x1, x2, · · · , xj ]>,

x\i denote x1:i−1,i+1:n, i.e. the vector removing the ith element of

x. Let [n] denote the index set {1, 2, · · · , n}. If an index j /∈ [n] for

an n-dimensional vector, then the actual index is computed as in the

modulo n sense. Let ‖·‖2 represent the `2 norm of a vector, and ‖ · ‖
denote the operator norm of a matrix.

2. MAIN RESULTS

In this section, we provide the theoretical analysis of the benign geom-

etry of the objective function f(h), and its algorithmic implications

on efficient optimization via MGD.

2.1. Geometry in the Orthogonal Case

We start by considering the simpler case when C(g) is an orthonormal

matrix. In this case, we present the following optimization problem

without pre-conditioning:

min
h∈Rn

fo(h) :=
1

p

p∑

i=1

ψµ(C(yi)h) s.t ‖h‖2 = 1. (3)

Without loss of generality, we can assume C(g) = I . To see this,

denote h̃ = C(g)h, we have ‖h̃‖2 = ‖C(g)h‖2 = 1 due to the

orthonormality of C(g). Therefore, (3) can be equivalently reformu-

lated with respect to h̃, which corresponds to the case that the ground

truth ginv = e1.

Our main geometric theorem characterizes benign local curva-

tures of fo(h) around the neighborhoods of±Sj(e1), j ∈ [n], which
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are shifted and sign-permuted copies of the ground truth e1. We first

introduce 2n subsets on the sphere which we will focus on in the

following [27, 28]:

S(i±)
ξ =

{
h : hi ≷ 0,

h2
i∥∥h\i

∥∥2

∞

> 1 + ξ

}
, (4)

where ξ ∈ [0,∞) controls the size of the subsets, i ∈ [n].
Due to symmetry, we will describe the geometry of fo(h) only

for S(n+)
ξ , which carries over to the 2n subsets in (4). For conve-

nience, we introduce the reparametrization trick in [10] by defining

w = h1:n−1 ∈ B
n−1 i.e. h(w) =

(
w,

√
1− ‖w‖22

)
, where

B
n−1 = {w : ‖w‖2 ≤ 1} is the unit ball in R

n−1. With this

in mind, fo(h) can be equivalently rewritten with respect to w as

φo(w) = fo(h) = 1
p

∑p
i=1 ψµ(C(yi)h(w)), whose geometry is

characterized in the following theorem.

Theorem 1. Suppose C(g) = I and xi ∼iid BG(θ). For any ξ0 ∈
(0, 1), θ ∈ (0, 1

3
), there exist constants c1, c2, c3, c4, c5, C such that

for µ < c1 min{θ, ξ1/60 n−3/4}, p ≥ Cn4

θ2ξ2
0

log
(

n3 log3/2 p logn
µθξ0

)
,

the following holds with probability at least 1− c3p−7− exp (−c4n)
for h(w) ∈ S(n+)

ξ0
:

w>∇φo(w)

‖w‖2
≥ c2ξ0θ if ‖w‖2 ≥

µ

4
√
2
, (5a)

∇2φo(w) ≥ c2nθ

µ
I if ‖w‖2 ≤

µ

4
√
2
, (5b)

and the function φo(w) has exactly one unique local minimizer w∗

near 0, such that ‖w∗ − 0‖2 ≤ c5µ
θ

√
log2 p

p
.

Theorem 1 demonstrates the desired benign geometry of the em-

pirical objective function in the subset S(n+)
ξ0

with respect to w. Theo-

rem 1 guarantees that with high probability, there exists a unique local

minimizer near a shifted ground truth en, with ‖h∗(w∗)− en‖2 ≤√
2 ‖w∗ − 0‖2. By extending this geometry to the 2n subsets S(i±)

ξ ,

there exists exactly 2n local minimizers which are close to the shifted

and sign-permuted ground truths {±ei : i ∈ [n]} respectively. The

function φo(w) either has a large gradient towards the descent di-

rection when ‖w‖2 is large (c.f. (5a)), or is strongly convex when

‖w‖2 is small (c.f. (5b)), indicating the geometry is rather benign

and suitable for optimization using first-order methods such as MGD.

2.2. Extension to the General Case

We now sketch the extension of the geometry in Theorem 1 to the

general case when C(g) is invertible, but not necessarily orthogonal.

To preserve the benign geometry, we construct the pre-conditioning

matrix R in the following manner according to [3, 10]:

R =

[
1

θnp

p∑

i=1

C(yi)
>C(yi)

]−1/2

.

As the sample size p grows to infinity, the pre-conditioning matrix

R asymptotically converges to its expectation value, and the pre-

conditioned f(h) in (2) also gets closer to the benign geometry of

fo(h) in the orthogonal case in Section 2.1. As long as the sample

size is large enough, the theorem below suggests that under the same

reparameterization h = h(w) in Section 2.1, a geometry similar to

Algorithm 1: Manifold Gradient Descent for MSBD

Input: Observation {yi}pi=1, sparsity θ, step size η,

initialization h(0) on the sphere;

for k ← 0 to T − 1 do

h
(k+1) ← h(k) − η · ∂f(h(k))

‖h(k) − η · ∂f (h(k))‖2

Output: Return h(T )

that of fo(h) in Theorem 1 can be guaranteed for φ(w) = f(h). Let

κ be the condition number κ of C(g), which is the ratio of the largest

and smallest magnitudes of the DFT coefficients of g.

Theorem 2. Suppose C(g) is invertible with condition number κ.

For any ξ0 ∈ (0, 1), θ ∈ (0, 1
3
), there exist constants c1, c2, c3, c4, C

such that when µ < c1 min{θ, ξ1/60 n−3/4} and

p ≥ C κ
8n3 log4 p log2 n

θ4µ2ξ20
, (6)

the geometry in (5) holds for φ(w) with probability at least 1 −
c3p

−7 − exp (−c4n) for h(w) ∈ S(n+)
ξ0

. In addition, the function

φ(w) has exactly one unique local minimizer w? near 0, such that

‖w? − 0‖2 ≤ c2κ
4

θ2

√
n log3 p log2 n

p
.

2.3. Manifold Gradient Descent

Inspired by Theorem 2, a simple MGD algorithm is proposed and

summarized in Alg. 1, where ∂f(h) = (I − hh>)∇f(h) is the

Riemannian gradient with respect to h, and∇f(h) is the Euclidean

gradient of f(h). We present the convergence guarantee of Alg. 1 in

the following theorem.

Theorem 3. Instate the assumptions of Theorem 2. For the MGD

algorithm in Alg. 1, if the initialization satisfies h(0) ∈ S(i±)
ξ0

, for any

i ∈ [n], then with a step size η ≤ cµξ0θ

n2
√

log(np)
for some sufficiently

small constant c, the iterates h(k), k = 1, 2, · · · stay in S(i±)
ξ0

and

achieve

min
j∈[n]

‖h(T ) ± Sj(ginv)‖2 .
κ4

θ2

√
n log3 p log2 n

p
+ ε

for any ε > 0, in T . n
µηξ0θ

+ µ
nθη

log
(
µ
ε

)
iterations.

The above theorem demonstrates that with an initialization in

one of the 2n subsets
{
S(i±)
ξ0

, i ∈ [n]
}

, the proposed MGD algo-

rithm, with proper step size, will converge to the unique local min-

imizer in that subset in a polynomial time. Therefore, the only left

ingredient is to make sure a valid initialization can be obtained ef-

ficiently. Fortunately, it is known from the following lemma that

setting ξ0 = 1/(4 log n) allows a sufficiently large basin of attrac-

tion, such that a random initialization can land into it with a constant

probability.

Lemma 1. [28, Lemma 3] When ξ0 = 1
4 logn

, the initialization

selected uniformly at random on the sphere lies in one of these 2n

subsets
{
S(i±)
ξ0

, i ∈ [n]
}

with probability at least 1/2.
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Fig. 2. Success rates of the proposed approach (first row) and the

approach in [3] (second row) under various parameter settings.

Finally, combining Lemma 1 and Theorem 3, by setting ξ0 =
1/(4 log n), we can guarantee to recover ginv accurately up to global

ambiguity with high probability, as long as Alg. 1 is initialized uni-

formly at random over the sphere with O(log n) times.

3. NUMERICAL EXPERIMENTS

In this section, we examine the performance of the proposed approach

with comparison to [3], which is also based on MGD using a different

loss function L(h) = − 1
4p

∑p
i=1 ‖C(yi)Rh‖44, on both synthetic

and real data.

3.1. Experiments on synthetic data

We first compare the success rate of the proposed approach and that

in [3], following a similar simulation setup as in [3]. In each ex-

periment, the sparse inputs are generated following BG(θ), and the

matrix C(g) with specific κ is synthesized by generating the DFT

g̃ of g which is random with the following rules: 1) The DFT g̃ is

symmetric to ensure that g is real, i.e., g̃(j) = g̃∗
(n+2−j), where ∗

denotes the conjugate operation. 2) The gains of g̃ follow a uniform

distribution on [1, κ], and the phases of g̃ follow a uniform distribu-

tion on [0, 2π). In all experiments, we run MGD for no more than

T = 200 iterations with a fixed step size of η = 0.1 and apply back-

tracking line search for both methods. For our formulation, we set

µ = min (10n−5/4, 0.05). For each parameter setting, we conduct

10 Monte Carlo simulations to compute the success rate. Recall that

the desired h is a signed shifted version of ginv, i.e., C(g)h = ±ej

(j ∈ [n]). Therefore, to evaluate the accuracy of the output h(T ), we

compute C(g)Rh(T ) with the ground truth g, and declare successful

recovery if ‖C(g)Rh(T )‖∞/‖C(g)Rh(T )‖2 > 0.99.

Fig. 2 (a) and (d) show the success rate of the proposed approach

and that in [3] with respect to n and p, where θ = 0.3 and κ = 8
are fixed. It can be seen that the proposed approach succeeds at a

much smaller sample size, where p is smaller than n. This indicates

possible room for improvements of our theory. Fig. 2 (b) and (e)

shows the success rate of the proposed approach and that in [3] with

respect to θ and p, where n = 64 and κ = 8 are fixed. The proposed

approach continues to work well even at a relatively high value of θ
up to around 0.5. Finally, Fig. 2 (c) and (f) shows the success rate

of the proposed approach and that in [3] with respect to κ and p,

where n = 64 and θ = 0.3 are fixed. Again, the performance of the

proposed approach is insensitive to the condition number κ as long

(a) observation (RGB) (b) sparse input (c) observation (R)

(d) true image (e) recovery via ours (f) recovery via [3]

Fig. 3. Multi-channel sparse blind image deconvolution. Examples of

(a) the observation in RGB; (b) the sparse input; (c) the observation

for the R-channel alone. (d-f) The RGB image of the truth, the

recovery via our method and [3].

as the sample size p is large enough. On the other end, the approach

in [3] performs significantly worse than the proposed approach under

all the parameter settings.

3.2. Experiments on 2D image deconvolution

To further evaluate our method, we performance the task of blind im-

age reconstruction and compare with [3]. Suppose multiple circulant

convolutions {yi}pi=1 (illustrated in Fig. 3 (a) for the RGB image

and Fig. 3 (c) for the R channel only) of an unknown 2D image (illus-

trated in Fig. 3 (d), the Hamerschlag hall on the campus of CMU) and

multiple sparse inputs {xi}pi=1 (illustrated in Fig. 3 (b)) are observed.

Here, the size of the observations is n = 128 × 128, θ = 0.1, and

the number of observations p = 1000, which is significantly smaller

than n.

We apply the proposed reconstruction method to each channel

of the image, i.e. R, G, B, respectively using the corresponding

channel of the observations {yi}pi=1, and obtain the final recovery by

summing up the recovered channels. For each channel, the recovered

image is computed as ĝ = F−1

[
F

(
Rĥ

)�−1
]
, where ĥ denotes

the output of the algorithm, F is the 2D DFT operator, and x�−1 is

the entry-wise inverse of a vector x. The second row of Fig. 3 shows

the true image, final recovered image by our method and [3] (after

aligning the shift and sign) in (d), (e) and (f) respectively. It shows

that the proposed approach again obtains much better recovery than

that in [3].

4. CONCLUSION

This paper proposes a novel nonconvex approach for multi-channel

sparse blind deconvolution based on manifold gradient descent with

random initializations. Under a Bernoulli-Gaussian model for the

sparse inputs, we provide theoretical characterizations for the benign

geometric landscape of the loss function, which ensures the global

convergence of a properly designed manifold gradient descent with

random initializations. We prove that the proposed approach succeeds

with high probability as long as the sample complexity satisfies p =
O(n4.5) up to logarithmic factors, which significantly improves prior

art in [3]. Furthermore, our method succeeds in a much larger range

of the condition number of C(g) and the sparsity level of inputs. In

future work, we plan to improve the sample complexity as well as

extend the analysis to the noisy setting.
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