MANIFOLD GRADIENT DESCENT SOLVES MULTI-CHANNEL SPARSE BLIND
DECONVOLUTION PROVABLY AND EFFICIENTLY

Laixi Shi and Yuejie Chi

Dept. of Electrical and Computer Engineering, Carnegie Mellon University
Emails: {laixis, yuejiec}@andrew.cmu.edu

ABSTRACT

Multi-channel sparse blind deconvolution refers to the problem of
learning an unknown filter by observing its circulant convolutions
with multiple input signals that are sparse. It is challenging to learn
the filter efficiently due to the bilinear structure of the observations
with respect to the unknown filter and inputs, leading to global am-
biguities of identification. We propose a novel approach based on
nonconvex optimization over the sphere manifold by minimizing a
smooth surrogate of the sparsity-promoting loss function. It is demon-
strated that manifold gradient descent with random initializations
provably recovers the filter, up to scaling and shift ambiguities, as
soon as the number of observations is sufficiently large under a suit-
able random data model. Numerical experiments are conducted to
illustrate the efficiency of the proposed method with comparisons to
existing methods.

Index Terms— multi-channel sparse blind deconvolution, non-
convex optimization, manifold gradient descent

1. INTRODUCTION

In various fields of signal processing, computer vision, and inverse
problems, a problem of central interest is to simultaneously recover a
pair of unknown signals « and g from their convolution. For example,
neural or seismic recordings can be modeled as the convolution of a
pulse shape (i.e. a filter), corresponding to characteristics of neurons
or earth wave propagation, with a spike train modeling time of acti-
vations (i.e. a sparse input) [1, 2]. This problem is ill-posed without
extra assumptions since the number of unknowns is much larger than
the number of observations [3, 4, 5, 6, 7]. Luckily, in many situations,
one can make multiple observations sharing the same filter, but with
diverse sparse inputs, either spatially or temporally, thanks to the
advances of sensing technologies [3, 8]. In this paper, we are thus
motivated to identify the filter as well as the sparse inputs leveraging
multiple convolutional observations in an efficient manner, a problem
termed as multi-channel sparse blind deconvolution (MSBD).

Mathematically, we model each observation y; € R™ as a convo-
lution, between a filter, or an impulse response, g € R", and a sparse
input, x; € R™:

i1=1,...,p, (1)

where the total number of observations is given as p. Here, we
consider circulant convolution, denoted as ®, whose operation is
expressed equivalently via pre-multiplying a matrix C(g) to the input
x;, where C(g) is a circulant matrix with g as its first column. Our

yi =g ®x; =C(g)zs,
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goal is to recover both the filter g and sparse inputs {a;}7_, from
the observations {y; }}_,.

Clearly, the problem is challenging due to the bilinear form of the
observations with respect to the unknowns, which are not uniquely
identifiable. For any circular shift S;(g) of g by j positions, and any
non-zero scalar 8 # 0, we have y; = (8S;(g)) ® (87'S_;(x:)),
forj =1,...,n. Hence, we can only hope to recover g and {x; }}_,
accurately up to certain circulant shift and scaling ambiguities.

In this paper, we focus on the case that C(g) is invertible, which
is equivalent to requiring all the Fourier coefficients of g are nonzero.
This condition plays a critical role in guaranteeing the identifiability
of the model as long as p is large enough [9]. Under this assumption,
there exists a unique inverse filter (sometimes called an equalizer),
Ginv € R™ such that C(ginv)C(g) = C(g)C(ginv) = I, where I is
the identity matrix. This allows us to convert the bilinear form (1)
into a linear form of the unknowns by multiplying C(giny) on both
sides to obtain:

C(Ginv)Yi = ginv ® g ® T; = C(ginv)C(g)Ti = x4,

fori = 1,...,p. A natural strategy is to recover giny Vvia exploit-
ing the sparsity of the inputs {z;}}_;, by seeking a vector h that
minimizes the cardinality of C(h)y; = C(y:)h:

1
min = " [[C(y)hll,
i=1

heR™ p 4

where || - ||o is the pseudo-£p norm that counts the cardinality of the
nonzero entries of the input vector. However, this simple formulation
is problematic for two obvious reasons: (1) first, due to scaling
ambiguity, a trivial solution is h = 0; (2) second, the cardinality
minimization is computationally infeasible. In this paper, we address
these issues by reformulating this naive approach into an efficient and
provably correct approach.

1.1. Our contributions

To address the first issue, a spherical constraint ||h||2 = 1 is added to
avoid the scaling ambiguity. For the second issue, the ||-||, constraint
is relaxed to its convex smooth surrogate 1, (z) = plog cosh(z/u),
where g controls the smoothness of the surrogate. With slight abuse
of notation, we assume 9, (2) = >, ¥, (2:) is applied entry-wise,
where z = [z;]1<i<n. Inspired by [3, 10], we propose the following
pre-conditioned optimization problem for MSBD:

p
min f(h) = > Vu(CwIRR) st [hl, =1 @
i=1

heR™

where R is a pre-conditioning matrix depending only on the observa-
tions {y; }?_,, that we will formally introduce later in Section 2.2.
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(b) general filter
no pre-conditioning

-
(c) general filter
with pre-conditioning
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no pre-conditioning

Fig. 1. An illustration of the landscape of the empirical loss func-
tion f(h) with or without the pre-conditioning matrix R in R>. (a)
orthogonal filter C(g) = I, no pre-conditioning is applied; (b) a
general filter, no pre-conditioning is applied; (c) same general filter
as (b) with pre-conditioning.

Encouragingly, although (2) is a nonconvex optimization prob-
lem due to the sphere constraint, under a suitable random model of
the sparse inputs, the loss function f(h) exhibits benign geometric
curvatures as long as the sample size p is sufficiently large. As an
illustration, Fig. 1 shows the landscape of f(h) whenn = 3, p = 30,
and the inputs x;’s are composed of standard Bernoulli-Gaussian
(BG) entries [11, Definition 2] with parameter 6 = 0.3." When the
filter is orthogonal, e.g. C(g) = I, it can be seen from Fig. 1 (a)
that the empirical loss function f(h) has benign geometry without
pre-conditioning (e.g. R = I), where the local minimizers are ap-
proximately all shift and sign-flipped variants of the ground truth (i.e,
+e;), and are symmetrically distributed across the sphere. On the
other end, for filters that are not orthogonal, the geometry of f(h)
without pre-conditioning is less well-posed, as illustrated in Fig. 1 (b).
For the same non-orthogonal filter, by introducing pre-conditioning,
which intuitively stretches the loss surface to mirror the orthogonal
case, the pre-conditioned loss function f(h) given in (2) has much
better geometry (as illustrated in Fig. 1 (c)).

Motivated by the benign geometry of f(h) illustrated above, a
natural approach to minimize f(h) over the sphere is via manifold
gradient descent, which is simple and low-complexity. Surprisingly,
this simple approach works remarkably well, even with random initial-
izations, for appropriately chosen step sizes. Based on such empirical
success, our goal is to address the following question: can we estab-
lish theoretical guarantees of manifold gradient descent to recover
the filter?

In this paper, we prove that despite nonconvexity of (2), with a
small number of random initializations, a vanilla manifold gradient
descent (MGD) algorithm is capable of accurately recovering both
the unknown filter and sparse inputs in polynomial time with high
probability, as long as the sample size p is large enough on the order
of p = O(n*®) up to logarithmic factors. This result is achieved
through an integrated analysis of geometry and optimization, which
provides justifications to the empirical success of MGD with random
initializations.

1.2. Related work

Our work belongs to the recent line of activities on designing provable
nonconvex procedures for high-dimensional statistical estimation, see
[12] for an overview. The problem of blind deconvolution / calibration
with a single observation (or equivalently, channel) has been studied
extensively under different geometric priors such as sparsity and

!'A random variable X = - Z is said to be BG with parameter 6 € [0, 1]
if €2 is a Bernoulli random variable with probability 6 and Z is a standard
Gaussian random variable, where €2 and Z are independent.

subspace assumptions on both the filter and the input, using convex
and nonconvex optimization formulations [4, 6, 7, 13, 14, 15, 16, 17],
and in the multi-channel setting [18, 19, 20, 21, 22, 23]. For the same
MSBD problem, [18] proposed a convex linear program which has
stringent requirements on the condition number of the filter matrix
C(g). Our work is most related to [3], which was the first to study a
nonconvex formulation for MSBD, by applying an £4-norm relaxation
to the || - ||o norm. Our algorithm works at a much lower sample
complexity O(n*®) in contract to O(n?) in [3] and outperforms it in
the numerical experiments. Another concurrent work in [24] obtains
a sample complexity of p = O(n®), which is slightly higher than
ours, using a different loss function. Other algorithms for multi-
channel blind deconvolution include sparse spectral methods [25] and
nonconvex regularization [26].

On a different front, MSBD can be regarded as learning a convolu-
tional invertible dictionary, where the proposed algorithm is inspired
by approaches for dictionary learning in [10, 27, 28]. However, the
approach in [27] is only applicable to orthogonal dictionaries, while
we deal with a general invertible convolutional filter. Compared to the
sample complexity O(n®) required for learning complete dictionaries
in [10], our result demonstrates the benefit of exploiting convolutional
structures, which has a much lower sample complexity of O(n*?).

1.3. Paper organization and notations

The rest of this paper is organized as follows. The theoretical guaran-
tee of the benign geometry and its implications for the convergence
of MGD are presented in Section 2. In Section 3, we numerically
evaluate the proposed method with comparisons to existing algo-
rithms. Finally, we conclude in Section 4. Due to space limits, the
proofs are delayed to the full version [29]. Throughout the paper, we
use boldface letters to represent vectors and matrices. For a vector
x € R", let z; denote its jth element, 1.; denote the length-j vector
composed of the first j entries of , i.e., the vector [x1, T2, - - , ;] ',
x\; denote ®1:;—1,i+1:n, i.€. the vector removing the ith element of
x. Let [n] denote the index set {1,2,--- ,n}. If anindex 5 ¢ [n] for
an n-dimensional vector, then the actual index is computed as in the
modulo n sense. Let ||-||,, represent the > norm of a vector, and || - ||
denote the operator norm of a matrix.

2. MAIN RESULTS

In this section, we provide the theoretical analysis of the benign geom-
etry of the objective function f(h), and its algorithmic implications
on efficient optimization via MGD.

2.1. Geometry in the Orthogonal Case

We start by considering the simpler case when C(g) is an orthonormal
matrix. In this case, we present the following optimization problem
without pre-conditioning:

. 1¢
i, Folh) =2 3 CwIn) st Nl =1 @)
Without loss of generality, we can assume C(g) = I. To see this,
denote h. = C(g)h, we have ||h2 = IC(g)h]||, = 1 due to the
orthonormality of C(g). Therefore, (3) can be equivalently reformu-
lated with respect to h. which corresponds to the case that the ground
truth ginv = €.

Our main geometric theorem characterizes benign local curva-
tures of f,(h) around the neighborhoods of +S;(e1),j € [n], which
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are shifted and sign-permuted copies of the ground truth e;. We first
introduce 2n subsets on the sphere which we will focus on in the
following [27, 28]:

i h?
S = {h hi 20, 7“ i 1+5}, )
\z

where £ € [0, 0o) controls the size of the subsets, i € [n].
Due to symmetry, we will describe the geometry of f,(h) only

for Sé”'”, which carries over to the 2n subsets in (4). For conve-
nience, we introduce the reparametrization trick in [10] by defining

w = hin,o1 € B" lie h(w) = (w, /1 - Hw||§) , wWhere

B"! = {w : ||lw|2 < 1} is the unit ball in R"~'. With this
in mind, f,(h) can be equivalently rewritten with respect to w as
do(w) = fo(h) = % 1 Yu(C(y:)h(w)), whose geometry is
characterized in the following theorem.

Theorem 1. Suppose C(g) = I and x; ~;;q BG(0). For any & €

(0,1), 8 € (0, %), there exist constants c1, 02, s, C4, 5, C such that
. — n n3log3/2 plogn
for i < comind0,&/°n ), p > €24 log (2ot )
the following holds with probability at least 1 —c3p” " —exp (—can)
for h(w) € Sg(:H:
T
w' Vo(w)
———— > 00 if ||w Sa
canb
Vioo(w) = = =1 if wll, < (5b)

\[

) has exactly one unique local minimizer w.

0ll, < <5~

and the function ¢, (w

log2p

near 0, such that ||w. — >

Theorem 1 demonstrates the desired benign geometry of the em-
pirical objective function in the subset Sé:H with respect to w. Theo-
rem 1 guarantees that with high probability, there exists a unique local
minimizer near a shifted ground truth ey, with ||k, (w.) — en ||, <

V2 ||w, — 0l|,. By extending this geometry to the 2n subsets Sg(d),
there exists exactly 2n local minimizers which are close to the shifted
and sign-permuted ground truths {+e; : ¢ € [n]} respectively. The
function ¢, (w) either has a large gradient towards the descent di-
rection when ||w||2 is large (c.f. (5a)), or is strongly convex when
|lw]|2 is small (c.f. (5b)), indicating the geometry is rather benign
and suitable for optimization using first-order methods such as MGD.

2.2. Extension to the General Case

We now sketch the extension of the geometry in Theorem 1 to the
general case when C(g) is invertible, but not necessarily orthogonal.
To preserve the benign geometry, we construct the pre-conditioning
matrix R in the following manner according to [3, 10]:

9np ZC yz yi)

As the sample size p grows to infinity, the pre-conditioning matrix
R asymptotically converges to its expectation value, and the pre-
conditioned f(h) in (2) also gets closer to the benign geometry of
fo(h) in the orthogonal case in Section 2.1. As long as the sample
size is large enough, the theorem below suggests that under the same
reparameterization b = h(w) in Section 2.1, a geometry similar to

—1/2

Algorithm 1: Manifold Gradient Descent for MSBD

Input: Observation {y;}7_,, sparsity 6, step size 7,
initialization h(*) on the sphere;
for k< OtoT — 1do

L RHD

Output: Return h(™

Rk _ n- (9f(h(k))
[R®) —n-f (R")]],

that of f,(h) in Theorem 1 can be guaranteed for ¢(w) = f(h). Let
& be the condition number  of C(g), which is the ratio of the largest
and smallest magnitudes of the DFT coefficients of g.

Theorem 2. Suppose C(g) is invertible with condition number k.
Forany & € (0,1), 6 € (0, %) there exist constants c1, ¢2, ¢3, cq, C

such that when p < ¢1 min{6, 5(1)/6”_3/4} and

8, 37 4 2

k°n”log” plog”n

p>C——rs 5, (6)
0 12E8

the geometry in (5) holds for ¢(w) with probability at least 1 —

cap”" — exp (—can) for h(w) € Sé:“. In addition, the function

¢(w) has exactly one unique local minimizer w* near 0, such that

||’UJ 0H2 < (‘2K /nlog3plog2n.
p

2.3. Manifold Gradient Descent

Inspired by Theorem 2, a simple MGD algorithm is proposed and
summarized in Alg. 1, where 9f(h) = (I — hh")Vf(h) is the
Riemannian gradient with respect to h, and V f (k) is the Euclidean
gradient of f(h). We present the convergence guarantee of Alg. 1 in
the following theorem.

Theorem 3. Instate the assumptions of Theorem 2. For the MGD
algorithm in Alg. 1, if the initialization satisfies h®) e Sg(gi),for any
cuéob
n24/log(np)
small constant ¢, the iterates Rk = 1,2, -

achieve

. log® plog? n
’l(TU + S (gine nlog plog n
min l i (ginv)ll2 < 92 ) +e€

foranye > 0,inT < un&oG + n07] log ( ) iterations.

i € [n], then with a step size n < for some sufficiently

stay in Sééi) and

The above theorem demonstrates that with an initialization in
one of the 2n subsets {Ségi),i € [n] ¢, the proposed MGD algo-

rithm, with proper step size, will converge to the unique local min-
imizer in that subset in a polynomial time. Therefore, the only left
ingredient is to make sure a valid initialization can be obtained ef-
ficiently. Fortunately, it is known from the following lemma that
setting & = 1/(4logn) allows a sufficiently large basin of attrac-
tion, such that a random initialization can land into it with a constant
probability.

Lemma 1. [28, Lemma 3] When & = ﬁ, the initialization
selected uniformly at random on the sphere lies in one of these 2n

subsets {Sééi),i € [n]} with probability at least 1/2.
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Fig. 2. Success rates of the proposed approach (first row) and the
approach in [3] (second row) under various parameter settings.

Finally, combining Lemma 1 and Theorem 3, by setting £, =
1/(41ogn), we can guarantee to recover ginv accurately up to global
ambiguity with high probability, as long as Alg. 1 is initialized uni-
formly at random over the sphere with O(logn) times.

3. NUMERICAL EXPERIMENTS

In this section, we examine the performance of the proposed approach
with comparison to [3], which is also based on MGD using a different

. 4 .
loss function L(h) = —ﬁ P lIC(y:)Rh||,, on both synthetic
and real data.

3.1. Experiments on synthetic data

We first compare the success rate of the proposed approach and that
in [3], following a similar simulation setup as in [3]. In each ex-
periment, the sparse inputs are generated following BG(6), and the
matrix C(g) with specific  is synthesized by generating the DFT
g of g which is random with the following rules: 1) The DFT g is
symmetric to ensure that g is real, i.e., g¢;) = g(*n+2_j), where *
denotes the conjugate operation. 2) The gains of g follow a uniform
distribution on [1, k], and the phases of g follow a uniform distribu-
tion on [0, 27). In all experiments, we run MGD for no more than
T = 200 iterations with a fixed step size of 7 = 0.1 and apply back-
tracking line search for both methods. For our formulation, we set
= min (10n~°/%,0.05). For each parameter setting, we conduct
10 Monte Carlo simulations to compute the success rate. Recall that
the desired h is a signed shifted version of ginv, i.e., C(g)h = te;
(j € [n]). Therefore, to evaluate the accuracy of the output o™, we
compute C (g)Rh(T) with the ground truth g, and declare successful
recovery if ||C(g) Rh™ || /||C(g) R |2 > 0.99.

Fig. 2 (a) and (d) show the success rate of the proposed approach
and that in [3] with respect to n and p, where § = 0.3 and Kk = 8
are fixed. It can be seen that the proposed approach succeeds at a
much smaller sample size, where p is smaller than n. This indicates
possible room for improvements of our theory. Fig. 2 (b) and (e)
shows the success rate of the proposed approach and that in [3] with
respect to 6 and p, where n = 64 and x = 8 are fixed. The proposed
approach continues to work well even at a relatively high value of 6
up to around 0.5. Finally, Fig. 2 (c) and (f) shows the success rate
of the proposed approach and that in [3] with respect to x and p,
where n = 64 and § = 0.3 are fixed. Again, the performance of the
proposed approach is insensitive to the condition number & as long

(d) true image

(e) recovery via ours (f) recovery via [3]

Fig. 3. Multi-channel sparse blind image deconvolution. Examples of
(a) the observation in RGB; (b) the sparse input; (c) the observation
for the R-channel alone. (d-f) The RGB image of the truth, the
recovery via our method and [3].

as the sample size p is large enough. On the other end, the approach
in [3] performs significantly worse than the proposed approach under
all the parameter settings.

3.2. Experiments on 2D image deconvolution

To further evaluate our method, we performance the task of blind im-
age reconstruction and compare with [3]. Suppose multiple circulant
convolutions {y;}7_, (illustrated in Fig. 3 (a) for the RGB image
and Fig. 3 (c) for the R channel only) of an unknown 2D image (illus-
trated in Fig. 3 (d), the Hamerschlag hall on the campus of CMU) and
multiple sparse inputs {a; }7_, (illustrated in Fig. 3 (b)) are observed.
Here, the size of the observations is n = 128 x 128, § = 0.1, and
the number of observations p = 1000, which is significantly smaller
than n.

We apply the proposed reconstruction method to each channel
of the image, i.e. R, G, B, respectively using the corresponding
channel of the observations {y; };_,, and obtain the final recovery by
summing up the recovered channels. For each channel, the recovered

\ O-1 .
image is computed as g = F ! []-' (Rh) ] , where h denotes

the output of the algorithm, F is the 2D DFT operator, and z® ! is
the entry-wise inverse of a vector @. The second row of Fig. 3 shows
the true image, final recovered image by our method and [3] (after
aligning the shift and sign) in (d), (e) and (f) respectively. It shows
that the proposed approach again obtains much better recovery than
that in [3].

4. CONCLUSION

This paper proposes a novel nonconvex approach for multi-channel
sparse blind deconvolution based on manifold gradient descent with
random initializations. Under a Bernoulli-Gaussian model for the
sparse inputs, we provide theoretical characterizations for the benign
geometric landscape of the loss function, which ensures the global
convergence of a properly designed manifold gradient descent with
random initializations. We prove that the proposed approach succeeds
with high probability as long as the sample complexity satisfies p =
O(n*®) up to logarithmic factors, which significantly improves prior
art in [3]. Furthermore, our method succeeds in a much larger range
of the condition number of C(g) and the sparsity level of inputs. In
future work, we plan to improve the sample complexity as well as
extend the analysis to the noisy setting.
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