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Abstract

Topological defects appear in symmetry breaking phase transitions and are ubiquitous throughout
Nature. As an ideal testbed for their study, defect configurations in nematic liquid crystals (NLCs) could
be exploited in a rich variety of technological applications. Here we report on robust theoretical and
experimental investigations in which an external electric field is used to switch between pre-determined
stable chargeless disclination patterns in a nematic cell, where the cell is sufficiently thick that the
disclinations start and terminate at the same surface. The different defect configurations are stabilised
by a master substrate that enforces a lattice of surface defects exhibiting zero total topological charge
value. Theoretically, we model disclination configurations using a Landau-de Gennes
phenomenological model. Experimentally, we enable diverse defect patterns by implementing an in-
house-developed Atomic Force Measurement scribing method, where NLC configurations are
monitored via polarised optical microscopy. We show numerically and experimentally that an
“alphabet” of up to 18 unique line defect configurations can be stabilised in a 4x4 lattice of alternating
s=*1 surface defects, which can be “rewired” multistably using appropriate field manipulation. Our
proof-of-concept mechanism may lead to a variety of applications, such as multistable optical displays
and rewirable nanowires. Our studies also are of interest from a fundamental perspective. We
demonstrate that a chargeless line could simultaneously exhibit defect-antidefect properties.
Consequently, a pair of such antiparallel disclinations exhibits an attractive interaction. For a
sufficiently closely-spaced pair of substrate-pinned defects, this interaction could trigger rewiring, or
annihilation if defects are depinned.
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I. INTRODUCTION

Topological defects (TDs), in which the relevant order parameter field becomes ill-defined at a point,
line, or surface [1], appear as a consequence of symmetry-breaking phase transitions. Since these
structures generate complex order parameter patterns, TDs are of interest throughout the physical
sciences, spanning such diverse areas as condensed materials [2-5] and cosmology [6], with TD-
dominated physical properties exhibiting universal behaviour independent of the systems’ microscopic
details [1].

Owing to their large response to external stimuli and large optical and electric anisotropies, liquid
crystals [7] (LCs) provide an ideal test bed for many topological-based phenomena and motivate
manipulation of TDs over a wide range of scientifically important systems, such as superfluid vortices
[8,9] in *He and *He, Bose-Einstein condensates [10], and Abrikosov vortices in superconductors [11].
Furthermore, TDs in liquid crystals could be exploited in various technological applications. For
example, they can strongly impact LC optical properties [7]; generate optical vortices [12]; and
efficiently trap appropriate (surface decorated) nano [13-16] or colloidal particles [17,18], which could
lead to development of tunable metamaterials, rewirable nano or micro-wires, and self-healing
materials.

The nematic phase represents the simplest LC phase [7]. The conventional uniaxial nematic LC phase
is a fluid consisting of rod-like molecules. Local ordering is commonly determined by the unit vector
field n, referred to as the nematic “director” field, where +n states are equivalent in bulk; this
corresponds to quadrupolar symmetry of the director. In equilibrium there is long range orientational
order, with n being spatially uniform along a symmetry breaking direction. Common excitations in n
are line defects (disclinations) corresponding to non-contractible loops in the order parameter space
characterised by the “winding number” s, in which n rotates s times as one circumnavigates the defect
core. In two-dimensions (2D) defects are characterised by half-integer or integer values of s, where
different values of s correspond to topologically different structures. On the other hand, in 3D only
s=%1/2 defects exist [19,20] (i.e., +n rotates to -n as one encircles a line defect) where states s=-1/2 and
s=+1/2 are topologically equivalent. Their impact on the director’s far-field is determined by the total
topological “charge” ¢, defined by non-contractible spheres enclosing the entire line defect. We refer
to line defects with g=0 and q # 0 as chargeless and charged TDs, respectively. Isolated chargeless
loops tend to vanish over time. Note that for ferromagnetic (dipolar) order, as opposed to nematic
(quadrupolar) order, line defects are not topologically protected — they can escape along the third
dimension [21] via reorientation of the order parameter — owing to the ferromagnet’s dipolar order
parameter field. Thus a ferromagnet’s winding number s must be an integer.

There are strong motivations to stabilise and manipulate diverse complex lattices of nematic line
defects, for both fundamental and application reasons. They could be stabilised by chirality [7,22],
dispersed colloids [23,24], or confining surface treatments [17,25]. But in situ manipulation of TDs is
notoriously difficult. Moreover, their controllable and multistable manipulation among predetermined
configurations is scarce [17,23,26], and in particular has been totally unexplored for ubiquitous
“chargeless” defect lines [5]. For purposes of this paper we focus on work presented in [25,27-29].
References 25, 27, and 28 illustrate different methods for enforcing a regular array of topological defects
of alternating winding number. These include an atomic force microscope scribing method [25], a
plasmonic photoalignment technique [27], or combining doped ions and polymer alignment layers [28].
For controlled switching, one can imagine the use of laser tweezers [5, 23], a slow technique that would
need to be utilized serially, from one defect to another. Interdigitated electrodes [29] have been used
for efficient robust switching among multistable nematic director patterns, although not for the control
of disclination lines. Our approach of a simple, spatially homogeneous electric field and patterned defect
arrays facilitates rapid rewiring of defects.



Here we demonstrate the systematic assembly and reassembly of a lattice of chargeless line defects (see
Fig. 1a) in a thin nematic liquid crystal cell that is nanopatterned for orientational order. We report on
a robust theoretical framework and corresponding experimental results in which an external electric
field is used to switch between pre-determined and stable line defect configurations by coupling the
field to the complex director profile surrounding the defects. We anticipate that our proof-of-concept
for “rewiring” topological line defects in liquid crystals also may lead to a variety of applications based
on reconfigurable nanowires in soft matrices such as multistable optical displays, electronics, and
charge carrier pathways for photovoltaics.

The plan paper of the paper is as follows. In Sec. II we present the geometry and topology that enables
a rich diversity of multi-stable nematic chargeless disclinations in our numerical and experimental
research. In Sec. Il a Landau-de Gennes phenomenological model in terms of the nematic tensor order
parameter is introduced. The experimental set-up is described in Sec. IV. In Sec. V numerical results
are reported, in which we show multistability of defect configurations and some representative external
electric field-driven disclination rewirings. Experimental confirmation of proof-of-concept for the
rewiring mechanism proposed numerically is presented in Sec. VI. In the last section, we summarise
results. Some technical details are assembled in the Appendix.

II. GEOMETRY OF THE PROBLEM

Our investigations examine electric field-driven transformations of lattices of line defect segments in a
nematic liquid crystal confined to a plane-parallel cell. Key geometrical and topological features of the
cell used in the main numerical and experimental studies are sketched schematically in Figs. 2. We
stabilize patterns of TDs in the LC by means of controlled boundary conditions, i.e., we enforce the
topology at the substrates [25]. In terms of Cartesian coordinates (x,y,z), defined by the unit vector triad
(ex, ey, e,), the bottom master and the top slave planar-aligning substrates are placed at z=0 and z=# (Fig.
2a) respectively. The master substrate was patterned with a square array of enforced topological defects
each having strength s = £1 (see Fig. 2b) and defined by the equation

O(x,y) = Thy searctan (22£) + ¢, (1)

X=X

This is the solution to Laplace’s equation that is appropriate in the equal elastic constant approximation
[30]. Here ¢ corresponds to the azimuthal orientation of the enforced nematic director field with respect
to the x-axis and k corresponds to the index of the N defects. We impose a “winding number-neutral” 4
x 4 grid (N =16) of s ==£1 defects (3 s, = 0) with lattice spacing d in both the x and y directions. The
opposing slave substrate enforces planar degenerate anchoring in which the director lies in the xy-plane
but is free to assume any orientation imposed elastically through the liquid crystal by the master surface.
Furthermore, we allow the presence of a spatially homogeneous external electric field E, which is
applied either along the x or y direction and we consider LCs with positive electric anisotropy [7].



FIG. 1. Nematic LC cell with line defects. a) Experimental polarising microscopy texture of a nematic
LC cell exhibiting line defects confined near the master plate. b) Bright field image of a section of the
sample showing three of the four integer s=t1defects having decomposed into half-integer defects.



I\ 7\

N\ =
« NN
"W

FIG. 2. Geometry and topology used in experimental and most numerical studies. a) Nematic LC is
confined to a plane-parallel cell. The bottom master plate strongly enforces a 4x4 array of s=+1 surface
defects as shown in b). The top slave plate enforces isotropic tangential anchoring.

III. MODELLING
A. Free energy

We used a Landau-de Gennes mesoscopic approach [7] in which nematic orientational order is modelled
by the traceless and symmetric tensor nematic order parameter field Q = Y3, 1;(e; ® e;), where e;
are the eigenvectors and A; the corresponding eigenvalues. We considered LCs that exhibit equilibrium

nematic uniaxial order, commonly expressed [7] as Q%) = § (n Xdn-— §I ) Here S € [-1/2,1] stands
for the uniaxial order parameter, the unit vector field n is referred to as the nematic director field, and
I is the unit tensor.

o _ 5
Yae = 5Q°
where the LC viscous properties are approximated by a single material parameter y. We

We assume that the spatiotemporal evolution of the nematic order is determined by [31]



write the free energy F = [ fd3r as the integral over the nematic LC confined within a plane-parallel
cell of thickness 4. The free energy f = f. + f. + f consists of the condensation (f,), elastic (f), and
external field (f¢) contribution, which we express [7] as

1 1 1

f. = EAO(T —THTrQ? — §B TrQ3 + ZC(TrQZ)Z, (2a)
1 2

fe =5 LIVQI, (2b)

ffz_%goAgEz eE'QeE. (Zc)

Here Ay, B, C are material constants, 7" is the supercooling temperature of the isotropic phase, L is the
representative elastic modulus in the single elastic constant approximation, E = Eep is the external
electric field pointing along the unit vector eg, &, is the permittivity of free space, and Ae is the
anisotropy of the dielectric constant.

B. Parametrisation and scaling

In our simulations we use the following parametrisation in the Cartesian coordinate frame defined by
the unit vectors (ey, e, €:):

41+ q> qs qa
Q=] g3 91—q92 gs |, 3
q4 qs —2q,

where g1, 42, 43, 44, and g5 are variational parameters.

For scaling purposes we introduce [32] the dimensionless temperature r = (T —T*)/(T** —T™) and
the scaled order parameter @ = Q/S,, where Sy = :LC and T** = T* + B?/(24A,C) is the superheating

temperature. We scale distances with respect to /4, and measure the time with respect to the
2y

characteristic order parameter relaxation time T = AT T
(T~

expressed at T = T*.

The resulting dimensionless free energy densities f., f,, and ff can be expressed as

i 2 1
fo=2TrQ? 30 +5(0%7, (42)
2
fe= (%b) Vel’, (4b)
2
ff=—<::_2) eg - Qeg. (4c)

Here &, = 2VLC/B is the bare biaxial correlation length [32], éz = /LSy/(goAcE?) is the external
field extrapolation length [7,32] expressed at T = T**, and V= hV.

Minimization of the free energy is performed numerically deep inside the nematic phase. At the master
plate we enforce strong anchoring of the 4 x 4 pattern of s=+1 defects using Eq.(1); at the slave plate
we enforce strong degenerate planar anchoring, and use free boundary conditions at lateral walls. The
corresponding interference textures are calculated for monochromatic light, with the polarizer and
analyser along ex and e,, by using the Jones matrix beam propagation model [33], in which scattering
and reflections are neglected.



We used the following parameters for simulations: fi = 50, fi
b b

In calculating polarised microscopy textures we impose crossed polarizers, and set n, = 1.54 (ordinary
refractive index), n, = 1.74 (extraordinary index), A = 520 nm ( light wavelength), and h = 16 um.

= 50 (ifnot stated otherwise), r = —8.

IV.  EXPERIMENTAL SETUP

For experiments we use the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) confined to a cell
of thickness # = 16.0 £ 0.2 um. Our atomic force microscope (AFM) scribing method [25] is used to
scribe the defect pattern given by Eq. (1) onto the polyvinyl alcohol coated master plate using an AFM
stylus; here d~20 um. The slave substrate is spin-coated with the planar-degenerate alignment layer
polymethyl methacrylate.

The experiment requires two independent electric fields in the plane of the cell, each along one of the
principle axes of the square array. To pattern the two electrode pairs, we mask four rectangular strips
on an indium-tin-oxide (ITO) coated slide so that they form a square in the middle of the sample. The
exposed ITO is removed by soaking in piranha solution, leaving behind two pairs of mutually
orthogonal electrodes. A cartoon is shown in Fig. 3.

This ITO-coated master substrate is cleaned by sonicating sequentially in detergent, acetone, and
ethanol, and then coated with the strong planar anchoring agent polyvinyl alcohol (PVA) by spin
coating. The sample is baked at 170°C for 2 h. We create a spatially-varying easy axis over an 85 x 85
pum square at the center of the electrode pattern by using a Bruker AFM stylus (TESPD, 300 kHz
resonance) with a rigid cantilever (40 N/m spring constant) delivering a scribing force of about 1 uN,
which does not measurably alter the PVA topography [25]. The scribing speed was approximately 18
um s'. AFM-scribed lines are spaced between 150 and 300 nm apart, with narrower spacings used in
regions of higher curvature. The scribed region is shown pictorially by the small square in Fig. 3.

For the cell’s opposing slave substrate, a glass slide was spin-coated with the planar-degenerate
alignment layer [34] polymethyl methacrylate (PMMA) and baked at 80°C for 2 h. On filling with liquid
crystal, the initial alignment is isotropic planar, although a weak azimuthal memory effect develops
over time. This memory effect is expected to have only a perturbative effect on the numerical
simulations, which assume isotropic planar boundary conditions at the slave surface. A complete cell
was assembled with Mylar spacers, and was measured by interferometry to have a thickness of 16.0 £
0.2 um. The cell was filled with the positive dielectric anisotropy, room temperature nematic liquid
crystal 4-cyano-4'-pentylbiphenyl (SCB) by capillary action in the isotropic phase. The sample was then
cooled to the nematic phase and placed on the stage of a polarised microscope.

The ITO electrodes formed two pairs of orthogonal rectangles, with the shorter leg of each rectangle
facing the patterned square. The gap along the x-axis electrode pair was dgx)= 2.35 mm, and along the

y-axis it was dgy )=2.59 mm; both are much larger than the dimensions of the patterned square, and thus
the field at the square can be considered uniform to better than 0.5%. For in-plane electrodes the applied
electric field was determined by conformal mapping techniques, and is given at the midpoint between

the electrodes by [35] E = % , where V' is the potential difference applied between electrodes. It is

important to note that because of the positioning and small size of the scribed region as represented by
the square in Fig. 3, and the fact that the cell thickness is much smaller than the gaps d., both the x- and
y- electric fields are nearly uniform across the square and the z-component of the electric field is
virtually zero. We also remark that, owing to the large electrode gaps d., ac voltages of many hundreds
of volts were required (500 Hz square wave).
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FIG. 3. Cartoon of master (patterned) surface. Two pairs of ITO electrodes are shown, allowing
application of an electric field along the x-axis or along the y-axis. The patterned region is
represented by the small square in the center. A scale bar is shown.

V. NUMERICAL SIMULATIONS
A. “Alphabet” of disclination patterns.

Of interest are different disclination patterns that could emerge from the master plate imposed 4 x 4
grid of surface defects in sufficiently thick cells (4>d/2). We first analyse the structure of disclinations
and diversity of patterns that they form using the Landau-de Gennes mesoscopic [7] approach.

For conditions of interest (cells of thickness h~20 um), each s = +1 defect tends to decompose into a
pair of half-integer daughter defects of the same total strength (See Fig. 1b). This decomposition reduces
the elastic energy, which scales as s* away from the defect core [7,36-38]. The decomposed daughter
[39] defects repel each other such that, at the master surface, their separation distance is a competition
between the anchoring strength imposed by the master substrate and the repulsion between same-
strength defects (Supplementary Movie 1).

For thin cells (2<d/2), disclination lines tend to be charged [40] and run from the positive (negative)
defect at the master substrate to the induced defect of the same sign at the slave substrate. An example
is shown in Fig. 4a. But for cells sufficiently thick relative to the defect d spacing, the disclination lines
run approximately parallel to the patterned substrate, between defects having opposite strength [41,42].
These defects are chargeless, consisting of s=+1/2 and s=-1/2 sections, where a typical structure is
depicted in Fig. 4b. Running close to the master surface, these disclination lines are associated with the
pair of daughter defects and are attracted by, and terminate on, nearest neighbour defects of opposite
sign. In the case of a single chargeless disclination, the director field far from the master surface tends
to be aligned uniformly.



FIG. 4. Schematic sketches showing cells possessing either charged or chargeless line defects, where
the master plate enforces s=t1 surface point defects. a) Charged s=1/2 split disclination lines spanning
the master and slave confining plate. b) Chargeless line defects joining s=+1/2 daughter defects within
the master plate. Typical director field profiles are shown both just above the master plate and well

above it. The red line indicates region where the amplitude § = E TrQ? of the order parameter Q is

reduced to S= Swu/2 due to strong local elastic distortions. Here Swux stands for the bulk equilibrium
value.

Possible stable and metastable patterns of chargeless disclinations generated by the master substrate
imposed 4 x 4 array pattern of surface defects were obtained numerically in sufficiently thick cells
(h>d/2) and are shown in Fig. 5. Each line defect connects a pair of nearest-neighbour daughter defects
of opposite signs at the same master substrate. The resulting patterns form closed loops. Our geometry
and topology allows an “alphabet” of 18 different patterns, exhibiting 7 different symmetries. The seven
disclination patterns, to which we refer as the irreducible patterns, are shown in the first and third rows
of Fig. 5. All other patterns can be obtained from this set via rotations for an angle ¢ = N % around the

z—axis, where N is an integer. The top cell view is presented and disclinations are visualised by plotting
regions of relatively strongly suppressed order parameter, which is realised in the cores of defects. The
thickness of disclination lines is roughly given by the nematic biaxial correlation length [7,43] &;,. The
corresponding calculated polarising optical microscope images under crossed polarizers are given in
the second and fourth panels of Fig. 5.



FIG. 5. Irreducible patterns. Numerically calculated nematic textures exhibiting seven different
symmetries emerging from the enforced 4 x 4 array. The first and third rows: The top cell view of the
line defect patterns where regions with strongly suppressed order parameter values are shown,
fingerprinting the defect core regions. The solid and open circles indicate origins of nucleating s=+1
and s=-1 defect sites. The second and fourth rows: The corresponding typical optical microscopy
textures obtained under crossed polarizers. Scale bar corresponds to the cell thickness 4. From the
irreducible patterns one can generate an “alphabet” of 18 different patterns.

We henceforth label the irreducible set of disclination patterns as [II] (Fig. 5a), [U] (Fig. 5b), [O] (Fig.
5¢), [oooo] (Fig. 5d), [Lo] (Fig. Se), [loo] (Fig. 5f), and [H] (Fig. 5g), because these symbols roughly
reflect key features of the patterns. Furthermore, for latter purpose we label the locations of s = +1
surface defects at the master plate with a pair of indices {i,j}, where i and j € [1,2,3,4] determine a row
and column number of the 4x4 array. Here {1,1} and {4,4} locate the upper-left and bottom-right sides
of the 4x4 checkerboard. Furthermore, we label by {iy, j1} — {i,, j»} a disclination spanning the defect

sites {iy, 1} and {iz, j,}.

The free energies F of the patterns are, in general, different and depend on geometry and LC material

. h_d . .
properties. For example, for the set of parameters o5 50, a strong anchoring condition at the
b b

master plate and an absence of an external electric field, the excess free energy AF [pattern] = F — F,



of all patterns is roughly the same (their values differ for less than 1%) , where F,, determines the free
energy of the equilibrium bulk nematic. Only the free energy cost of the [H] structure is noticeably
AF[H]
AF[II]
stabilized relatively simply.

higher: ~1.01. We used the configuration [II] as the reference pattern because it could be

To understand the switching mechanism among the competing patterns it is instructive to visualize the
typical nematic ordering of structures above the master plate, just below the average maximal height
Z = Zymax<<h of disclination lines. A representative example is presented in Fig. 6. Note that nematic
orientational ordering is commonly represented by the nematic director field # for the orientational field
in cases of uniaxial nematic ordering. However, close to disclinations the nematic order could enter
biaxial states [43,44] due to relatively strong elastic distortions. Consequently, we plot the principal
eigenvector e; of Q corresponding to the largest Q eigenvalue. In cases of uniaxial order (which is
strongly violated only within the cores of defects [44,45]) it holds that e; = n. Consequently, we
henceforth refer to e; as the nematic director field because the LC ordering is, in most parts of the
sample, essentially uniaxial. In Fig. 6 we present the nematic director field of [II] within the (x,y) cross-
sections at z~Zz,,,,. Note that the master plate-imposed nematic pattern (at z=0) is the same for all
structures for strong enough anchoring and is schematically depicted in Fig. 2b. The master surface
enforces a zig-zag domain-like pattern within the 4x4 checkerboard region, where the average
orientation of neighboring domains tends to be oriented perpendicularly. Here each domain corresponds
roughly to a region enclosed by four s = %1 surface imposed defects. The master plate-enforced
nematic structure, which is determined by Eq.(1), does not impose any preferred orientation. Note that
in the case of charged disclinations, spanning the master and slave plates, this symmetry would be
preserved on increasing z. However confined chargeless disclinations break this symmetry, as illustrated
in Fig. 6.The figure evidences a domain-type pattern, that dominates in the region 0 < z < z,,,4,. For
visualization purposes we also superimposed the pattern of line disclinations. One sees that the nematic
structure surrounding a line connecting two neighboring surface defects — these lines also roughly
match domain boundaries — is significantly different if the defects are connected, or not, by a
disclination. In the former case e; reorients by 7 /2 on crossing domain boundaries (e.g., see the region
enclosing the line [1,1]-[1,2] or [1,1]-[2,1]). This relatively abrupt reorientation is enabled via the order
reconstruction mechanism [43,44]. On the contrary, in the latter case the principal field is more gradual
(e.g., see the region enclosing the line [2,1]-[2,2]). Therefore, confined disclinations introduce an
anisotropic domain pattern, which is on average more responsive to imposed changes, e.g., via an
external electric field. Furthermore, on increasing z above z,,,, nematic patterns progressively become
homogeneously aligned along a symmetry breaking direction that lies within the (x,y) plane.
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FIG. 6. Orientational field of the nematic structure shown in Fig. 5a just above the master plate. The
(x,y) projection of the disclination pattern is superimposed with dotted lines. Positions of surface-
enforced defects s=*1 are marked with closed (s=1) and open (s=-1) circles. Furthermore, positions of
top-left ([1,1]), top-right ([1,4]), bottom-left ([4,1]), and bottom-right ([4,4]) surface defects are
indicated. Note that the director profile reorients roughly by /2 radians on crossing at right angles a
disclination line position. On the other hand, transitions along boundaries of other domains are realised
via a gradual splay-like reorientation.

B. Pattern rewiring

One can realise transformations between different disclination patterns by rewiring just few pairs of
facing disclinations into perpendicular directions. For example, this could be achieved efficiently by
the use of laser tweezers [5] or by applying an appropriate external electric field E.

In Figs. 7 we schematically sketch how all members of the irreducible set could be reached starting
from [1I] by rewiring just one or two pairs of facing disclinations. The pattern [II] could be obtained by
imposing first a strong enough spatially homogeneous external electric field E along the x-direction.
After the desired pattern is formed, the field is switched off, while the structure remains trapped in one
of the (meta) stable states. In Figs. 7, above the arrows, we schematically sketch the spatial profile of
E, which enables realisation of the displayed transformations. This is also the route that we used to
obtain the remaining representative members of the irreducible set when starting from [II]. Note that all
patterns are found to remain stable after the transformation-enabling E is switched off.

The patterns [U], [loo], and [H] are realized by rewiring a single pair of facing disclinations when
starting from [II]. However, one could also realise the other patterns (i.e. [O], [Lo], and [ooo0]) by
manipulating only one pair of disclinations by using a different initial pattern. For example, starting
from [U] one could reach[O] by rewiring {1,2}-{2,2} and {1,3}-{2,3} into new pairs {1,2}-{1,3} and
{2,2}-{2,3}. Furthermore, from [U] one gets [Lo] by rewiring the pairs {2,3}-{3,3} and {2,4}-{3,4}
into {2,3}-{2,4} and {3,3}-{3,4}. Finally, [0000] could be obtained from [loo] by rewiring {2,1}-{3,1}
and {2,2}-{3,2} into {2,1}-{2,2} and {3,1}-{3,2}.
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FIG. 7. Schematic representation of rewiring between different irreducible patterns. a) [II]— [O], b)
[I]— [U], ¢) [1[]— [loo], d) [IT]— [Lo], e) [lI]— [0000], ) [II]— [H]. Disclinations marked in red are
rewired in the transformation. This may be accomplished, for example, by using a spatially-dependent
electric field: In the coloured squares above the arrows we schematically indicate the external electric
field E spatial profile. Red and blue colour mark a relatively large and zero value of E, respectively.
The diffuse regions correspond to spatially slow variation of field E; the sharp transitions between red
and blue correspond to a spatially rapid variation of E. Note that for all cases only the pairs of facing
disclinations need to be rewired.

C. Rewiring mechanism

To realize electric field-driven rewiring, we focus on the characteristic nematic director pattern above
a chargeless disclination shown in Fig. 4b. One sees that above the disclination line the director field
tends to orient on average perpendicular to the disclination line’s direction. Therefore, if E is applied
parallel to the in-plane projection of the disclination lines, it tends to reorient the nematic director field
along the electric field orientation for a positive dielectric anisotropy liquid crystal. This realignment
can trigger reorientation of the disclination line for appropriate boundary conditions.

The tendency to realign a chargeless disclination line perpendicular to E is evident also from a simple
free energy cost analysis of a straight disclination within a cylinder, where details are given in Appendix
A. We use an ansatz for a straight chargeless disclination representing a possible solution in the equal
elastic constant approximation of the Frank-Oseen continuum description [7], which we confine within
a cylindrical volume. One sees (Appendix A) that the external electric field free energy contribution is
minimum if the disclination direction and E are mutually perpendicular.



D. Rewiring a pair of disclinations

To demonstrate numerically the rewiring mechanism, we first consider the simplest possible
arrangement of chargeless disclinations typifying a basic unit of our 4x4 template. For this purpose we
analyse E-driven rewiring of a pair of chargeless disclinations (see Fig. 8) which are enabled by a master
plate that enforces a 2 x 2 square array consisting of s=+1/2 surface defects. (Note that all the defect
sites would be connected by disclination lines for the case of a 2 x 2 array of s=+1 surface defects.) In
the initial configuration the disclination lines run along the x-axis. Then we apply a spatially
homogeneous external field E =Fex and gradually increase its amplitude. We quantify the extent of the
average nematic alignment along E with the quantity S® = (P,(n.e,)). Here P, is the Legendre
polynomial of order 2 and (...) stands for the spatial average over the liquid crystal. For a spatially
homogeneous nematic alignment along E it holds that S®) = 1; for an isotropic distribution of n, §&) =
0. In Fig. 8d we demonstrate that S®) on average increases on increasing £ and S saturates after the
critical value of E triggering the rewiring is reached. The corresponding typical textures simulating
polarising microscopy experiment are shown in Supplementary Movie 2.

We next demonstrate that a pair of parallel disclinations exhibit the attractive interaction, which in
general moves the disclinations to bring them close. Let us consider the disclination pattern shown in
Fig. 8a for £=0. Initially, the surface defects are separated for distances dy =d,, =d in x and y
directions, respectively. Note that the two disclinations are “antiparallel”, the first one joining (s=1/2,
s=-1/2) and the second one (s=-1/2, s=1/2) nucleation surface defects, respectively. Therefore, each
segment of the first line faces a segment of the second line bearing the opposite signed winding number.
Consequently, the lines attract each other, which causes their distortion shown in Fig. 9b. In Figs. 9 (see
also Supplementary Movie 3) we show that on gradually decreasing d,, and the attractive interaction
could trigger the rewiring of disclinations. One sees that at a critical value of d,, the interacting lines

collide and rewire in the y direction. The latter configuration is energetically more favourable than the
previous one because of shorter total length of energetically costly disclinations.
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FIG. 8. Different stages of the electrical field-driven rewiring mechanism shown for the case of a 2 x
2 array of s=+1/2 master plate imposed defects. a) E=0, b) E S E,. (g = 1.118 &), 0)E Z E. (& =
0.994 &,). At E = E (corresponding to g~ &) the defect lines rewire. The nematic director field is
plotted just above the master plate and at the slave plate, and we superimpose the line defect profile.
(Points are plotted where the order parameter is strongly suppressed due to elastic distortions). d)
SW(E) vs. E/E, is plotted. Calculated points are marked by square symbols and the line is the guide
for an eye. Scale bar corresponds to the cell thickness 4.



FIG. 9. Different stages of the thickness-driven rewiring mechanism shown for the case of a 2 x 2 array
of s==1/2 master plate imposed surface defects. a) 3—” =1, b) % = %’ c) % = % The nematic director
field is plotted just above the master plate and at the slave plate, and we superimpose the line defect
profile. (Points are plotted where the order parameter is strongly suppressed due to elastic distortions).

Scale bar corresponds to the cell thickness 4.

E. Electric field driven rewiring between two different II patterns

Finally, we consider electric field-driven rewiring realised in the geometry depicted in Fig. 2, where we
use as the starting structure the pattern [II], oriented along the x-direction. Note that from this reference
pattern one could obtain the other structures using an appropriate E configuration, as shown in Fig. 7.

For a demonstrative rewiring example, we switch theoretically between two different realisations of the
pattern [II], where as an intermediate state also the pattern [O] emerges (see Fig. 5c). Representative
rewiring stages are plotted in Figs. 10 (see also Supplementary Movie 4). In the initial state the two
loops characterising the pattern are aligned along the x direction; see Fig. 10a. This state is obtained by
cooling from the isotropic phase in presence of a spatially homogenous external field E =Fey, which is
then switched off. Then we apply a gradually increasing field £ =Eex along the x direction. On
increasing E the disclinations progressively become distorted in the (x,y) plane. A collision of the
distorted facing disclination lines enables their reconfiguration. Above the threshold field E = E, the
pattern of two loops oriented along the y direction is formed (Fig. 10d). Note that in the intermediate
stage (Fig. 10c) the pattern shown in Fig. 5S¢ was realised at E = E; < E,. Importantly, the
configurations shown in Fig. 10c and Fig. 10d persists when the field is switched off after each of these
states is reached; thus, we have a truly multistable system.
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FIG. 10. Numerical simulation of the external electric field driven rewiring shown for the case of a 4 x
4 array of s=t1 master plate imposed surface defects. Selected stages of the transition between two
different realizations of structure depicted in Fig. 5a are shown. The top rows: The top cell view of the
line defect patterns where regions with strongly suppressed order parameter values are shown. The
bottom row: The corresponding calculated optical microscopy textures obtained under crossed
polarizers. All structures and interference patterns were obtained numerically. In the simulation we
gradually increase E. a) &,/&r =0, b) &, /& = 1.12, ¢) &, /& = 1.23, d) &, /& = 1.34. Scale bar
corresponds to the cell thickness 4.

VI. EXPERIMENTAL PROOF-OF-CONCEPT

Using our experimental set-up, we demonstrate that the rewiring mechanism which our simulations
yield could be indeed realised experimentally. For this purpose we stabilise the pattern [II] using the
AFM scribing method. Then we switch the disclinations using an in-plane external electric field
between two different realisations of [II], mimicking simulation results shown in Figs. 10 and
Supplementary Movie 4. Below we describe experimental measurements that confirm the predictive
power and robustness of our simulation results.

We start from the pattern [II] aligned along the x-direction. The applied voltage was increased at two
very different rates to measure the threshold field(s), i.e., the electric field(s) at which the disclination
lines can exchange termination partners and rotate by 90° in the xy-plane. One method involved a slow
quasi-ramp of the voltage along the x-axis, from 0 to 633 V, in voltage steps of 6V, =2V, corresponding
to field steps of SE, = 0.76 kVm'!, approximately every 5 seconds. A photomicrograph was taken at
each step to record the position of the disclinations. When the ramp was completed, the process was
repeated using a field along the y-axis, with JF, steps of 0.7 kVm™ (The difference between SE, and
OE, is due to a small anisotropy between the x- and y-electrode pairs.). A separate experiment was
performed on the same sample in which the voltage (along the x-axis) was increased quickly from 0 to
a particular set voltage V;, over a time scale <5 us, waiting 3 seconds, and then recording an image. The
voltage then was returned to 0, allowing the distorted (but not yet rewired) defect lines to relax back to
equilibrium. Some leftover distortion of the disclination lines is always present, so they were
straightened to their initial configurations by applying a voltage along the y-axis of 633V for 3 seconds.
The process was repeated, each time increasing the set voltage V5 in steps of 6V,= 2.1V until it reached
a value for which all the segments had rewired. The entire experiment then was repeated for fields
applied along the y-axis. Importantly, disclinations that had been rewired at a particular set voltage V,



remained stable when the applied voltage was returned to zero; this demonstrates experimentally the
multistability of the line defect patterns.

Due to the finite nature of the patterned array, there are three intermediate configurations for the
experimentally observed cell that also are stable at zero field, and are accessible at intermediate field
strengths, as seen in Figs. 11 c-e. The threshold electric field at which the first intermediate
configuration occurs is about 16% below the saturation field £, where the saturation field is the point
at which the last defects exchange partners and further voltage increase has no effect. We found that all
the defect lines exchanged termination partners at £-=135+10 kVm'! in the x direction and E>=155£10
kVm in the y direction when the voltage was increased quickly. When increasing the voltage slowly
in steps of OF; or OF,, as appropriate, saturation was measured to be slightly smaller, viz., £>=125+10
kVm in the x-direction and E-=145+10 kVm'! in the y-direction. The discrepancies between the fast
and slow voltage changes likely is due to the viscoelastic response time, indicating that the slow ramps
were performed in equilibrium but the fast ramps were close to — but not quite in — equilibrium.

The discrepancies between the x and y saturation fields are likely due to detailed surface conditions,
such as anisotropic anchoring due to the shape of the AFM stylus, or imperfections in the etched
electrodes. In our experiment we used a pair of almost spatially homogenous electric fields £ — one
field (Ey) was oriented along the x-axis and the other (£,) along the y-axis — to switch between the
structures, where details are shown in Supplementary Movie 5.

The intermediate configurations are reproducible on repeated cycling of applied field. In Fig. 11c¢, for
example, the right-hand domain has been rewired. On symmetry grounds, the left-hand side could have
been rewired first. In practice, small variations in the field and/or in the boundary conditions are
sufficient to break the symmetry. Importantly, this symmetry-breaking could be exploited to create any
desired sequence of rewiring by controlled AFM scribing (or alternatively, by selective ultraviolet light
exposure [47,48]) to perturb appropriately a given part of the pattern.

Thus, we clearly have switched experimentally between two different realisations (see Fig. 11a and Fig.
111) of the theoretically predicted representative pattern shown in Fig. 5a. Furthermore, the intermediate
states depicted in Figs. 11c, and 11e correspond to different realizations of the pattern in Fig. 5b, and
the experimental structure in Fig. 11d corresponds to that in Fig. 5c. Each intermediate state is stable
when the field at that point is switched to zero.
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FIG. 11. Experimental observation of electric field-driven rewiring of disclinations. A complete cell
with a cell gap of 2 =16 = 0.2 pm. The cell is filled with the liquid crystal 5CB and imaged using a
polarising optical microscope, with the polariser and analyser oriented parallel and perpendicular to the
image. a) Photo taken at £=0. The defects were previously aligned by applying a large field E =Fey in
the y-direction. b) An ac electric field E =FEex is applied along the direction indicated, sufficiently large
that the defect segments are close to osculating. c-¢) Intermediate defect configurations, each occurring
successively with increasing E =Fex f) Final configuration after the field has been increased above the
critical field. All closed loop configurations remain stable when E =FEe is reduced to zero and can be

switched back to configuration a) by applying a sufficiently strong field E =Fe, along the y-axis. Scale
bar in panel a) corresponds to the surface defect distance d~20 um.

VII. CONCLUSIONS

We have demonstrated numerically and experimentally external electric field driven rewiring of a
complex network of nematic line defects among competing configurations that are truly multistable,

e., the new configurations survive even when the field is switched off. The set of available
configurations was predetermined by a specific master surface nematic director field pattern. In our
study the surface nematic director field at the master plate was fixed due to relatively strong boundary
conditions. We switched between different patterns by rewiring disclinations close above the master
plate using an appropriate external electric field configuration, which triggers molecular field changes
in the sample. We illustrated the diversity of multistable and switchable configurations using an NxN
array of charge £1 defects for N=4. This is the simplest topologically neutral combination emerging
from an NxN array of such defects, and provides complete proof-of-concept for this approach. Namely,
N=2 offers only a single pattern of disclinations, and N=3 results in a net non-zero topological charge.
For N=4 we obtained 18 different patterns exhibiting seven different symmetries. By increasing N the
complexity of patterns would dramatically increase, although it would provide no additional physical
insight into the phenomenon.

Our proof-of-principle study might pave the way for numerous applications, in particular in remotely
addressable electrooptic, photonic, and emerging nanotechnological devices. Namely, different
disclination patterns could enable different desired functionality of a system. For example, line defects
could be exploited as efficient traps for appropriate nanoparticles [13,14,49]. These could introduce



additional desired material properties into the system, e.g. electrical conductivity. In such a case
controlled and predetermined networks of these line defects would correspond to a complex network of
conducting nano or micro wires with rewiring capability, where different configurations would
correspond to different emergent functionalities.

Furthermore, these reconfigurable defects might provide insight into fundamental behaviours in Nature.
If fields represent the fundamental entity of Nature [50], than topologically protected localised field
distortions might represent fundamental particles, as first suggested by Skyrme [51]. In this view, we
speculate that the fundamental understanding of chargeless lines in nematic LCs could yield some
insight into intriguing Majorana particles [52], which behave simultaneously like matter and antimatter.
Namely, our simulations reveal that an antiparallel pair of chargeless disclinations behave like a defect-
antidefect pair. The facing segments of the defect lines exhibit opposite twisting and are mutually
attractive if defects are sufficiently close, as shown in Figs. 9 and Supplementary Movie 3, thereby
tending to annihilate each other. Note that a chargeless disclination of our study could be stable because
its end-points are pinned to a confining substrate that enforces the surface defects. Therefore, an
unpinned chargeless loop would vanish with time by shrinking into a point, leaving non-singular
nematic ordering. However, our preliminary studies reveal that chargeless loops could be stabilised by
toroidal topology [53,54], which will be the focus of future study.
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APPENDIX A: IMPACT OF AN EXTERNAL ELECTRIC FIELD ON DISCLINATIONS

Of interest is the impact of an external electric field E orientation on typical nematic disclinations. In
our estimate we use the Frank-Oseen continuum model [7] in which nematic structures are represented
by the nematic director field n. We use either Cartesian {X,y,z} or cylindrical coordinates {p, ¢, z},
determined by unit vectors {ey ey e,} and {e, e, e,}, respectively. We consider straight
disclinations running along the z-axis.

The relevant free energy density terms f = f, + fr consist of the elastic (f,) and external field (ff)
contribution [7]:

=AU+ muxn)?+& mxvxnp?, Ala
e 2 2 2

S goAe(E.n)?
ff:_%’ (Alb)

where Ae is the field anisotropy and S stands for the uniaxial nematic order parameter. In the following
we use the approximation of equal Frank elastic constants K = K; = K, = Kj, and express the external
field in terms of the azimuthal (¢z) and polar angle () as

E = E(eysinfgsingg + e, singcos¢g + e,cos0Og). (A2)

The solutions [7,20] of the relevant Euler-Lagrange equations, corresponding to charged and chargeless
disclinations, can be expressed as

n = e,cost + ey sinfcosy + e,sinbsiny. (A3)
“Elementary” charged disclinations are determined by

y=0,0 =+= ArcTan(y/x). (A3a)
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Furthermore, a representative chargeless disclination is described by
y =nz/hy, 8 = 1/2 ArcTan(y/x). (A3b)

Here h, determines the distance, where the disclination switches between the “planar” s=1/2 and s=-
1/2 pattern. Therefore, n(z = 0) = e,cosf + e, sinf and n(z = h) = e,cosf — e, sinf. Within this
description the “out-of-plane” twist deformation of the disclination varies linearly with z. Note that
charged and chargeless disclinations also can be called, respectively, as wedge and twist disclinations
in the literature [7,20].

We use the ansatz Eq.(A3) to express the free energy penalties, where we confine disclinations within
a cylinder of radius R:

1 sin?0
g(W) — rroae T@E’ (Ada)
®_1 m? 1/ 5  cos(26g) | sin(20g)singg
9 02 + 2h2 + & ( 16 + 16 + 2m )’ (Adb)

where g(@s) = ﬁon If 0"18'27[ fdzde and the superscript dis labels either the wedge (w, that is, charged)

or twist (t, that is, chargeless) disclination, and &5 = \/K/(SeyAcE?) stands for the external electric
field coherence length.

It follows that both kind of disclinations tend to be oriented perpendicular to E for Ae > 0, namely,

1
2EY’

gw [gE = g] — gWI[g, =0] = (A5a)
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