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Abstract 

Topological defects appear in symmetry breaking phase transitions and are ubiquitous throughout 
Nature. As an ideal testbed for their study, defect configurations in nematic liquid crystals (NLCs) could 
be exploited in a rich variety of technological applications. Here we report on robust theoretical and 
experimental investigations in which an external electric field is used to switch between pre-determined 
stable chargeless disclination patterns in a nematic cell, where the cell is sufficiently thick that the 
disclinations start and terminate at the same surface. The different defect configurations are stabilised 
by a master substrate that enforces a lattice of surface defects exhibiting zero total topological charge 
value. Theoretically, we model disclination configurations using a Landau-de Gennes 
phenomenological model. Experimentally, we enable diverse defect patterns by implementing an in-
house-developed Atomic Force Measurement scribing method, where NLC configurations are 
monitored via polarised optical microscopy. We show numerically and experimentally that an 
“alphabet” of up to 18 unique line defect configurations can be stabilised in a 4x4 lattice of alternating 
s=±1 surface defects, which can be “rewired” multistably using appropriate field manipulation. Our 
proof-of-concept mechanism may lead to a variety of applications, such as multistable optical displays 
and rewirable nanowires. Our studies also are of interest from a fundamental perspective. We 
demonstrate that a chargeless line could simultaneously exhibit defect-antidefect properties. 
Consequently, a pair of such antiparallel disclinations exhibits an attractive interaction. For a 
sufficiently closely-spaced pair of substrate-pinned defects, this interaction could trigger rewiring, or 
annihilation if defects are depinned.      
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I. INTRODUCTION 

 
Topological defects (TDs), in which the relevant order parameter field becomes ill-defined at a point, 
line, or surface [1], appear as a consequence of symmetry-breaking phase transitions. Since these 
structures generate complex order parameter patterns, TDs are of interest throughout the physical 
sciences, spanning such diverse areas as condensed materials [2-5] and cosmology [6], with TD-
dominated physical properties exhibiting universal behaviour independent of the systems’ microscopic 
details [1].  

Owing to their large response to external stimuli and large optical and electric anisotropies, liquid 
crystals [7] (LCs) provide an ideal test bed for many topological-based phenomena and motivate 
manipulation of TDs over a wide range of scientifically important systems, such as superfluid vortices 
[8,9] in 3He and 4He, Bose-Einstein condensates [10], and Abrikosov vortices in superconductors [11]. 
Furthermore, TDs in liquid crystals could be exploited in various technological applications. For 
example, they can strongly impact LC optical properties [7]; generate optical vortices [12]; and 
efficiently trap appropriate (surface decorated) nano [13-16] or colloidal particles [17,18], which could 
lead to development of tunable metamaterials, rewirable nano or micro-wires, and self-healing 
materials.   

The nematic phase represents the simplest LC phase [7]. The conventional uniaxial nematic LC phase 
is a fluid consisting of rod-like molecules. Local ordering is commonly determined by the unit vector 
field n, referred to as the nematic “director” field, where ±n states are equivalent in bulk; this 
corresponds to quadrupolar symmetry of the director. In equilibrium there is long range orientational 
order, with n being spatially uniform along a symmetry breaking direction. Common excitations in n 
are line defects (disclinations) corresponding to non-contractible loops in the order parameter space 
characterised by the “winding number” s, in which n rotates s times as one circumnavigates the defect 
core. In two-dimensions (2D) defects are characterised by half-integer or integer values of s, where 
different values of s correspond to topologically different structures. On the other hand, in 3D only 
s=±1/2 defects exist [19,20] (i.e., +n rotates to -n as one encircles a line defect) where states s=-1/2 and 
s=+1/2 are topologically equivalent. Their impact on the director’s far-field is determined by the total 
topological “charge” q, defined by non-contractible spheres enclosing the entire line defect. We refer 
to line defects with q=0 and 𝑞𝑞 ≠ 0  as chargeless and charged TDs, respectively. Isolated chargeless 
loops tend to vanish over time. Note that for ferromagnetic (dipolar) order, as opposed to nematic 
(quadrupolar) order, line defects are not topologically protected — they can escape along the third 
dimension [21] via reorientation of the order parameter — owing to the ferromagnet’s dipolar order 
parameter field. Thus a ferromagnet’s winding number s must be an integer. 

There are strong motivations to stabilise and manipulate diverse complex lattices of nematic line 
defects, for both fundamental and application reasons. They could be stabilised by chirality [7,22], 
dispersed colloids [23,24], or confining surface treatments [17,25].  But in situ manipulation of TDs is 
notoriously difficult. Moreover, their controllable and multistable manipulation among predetermined 
configurations is scarce [17,23,26], and in particular has been totally unexplored for ubiquitous 
“chargeless” defect lines [5]. For purposes of this paper we focus on work presented in [25,27-29]. 
References 25, 27, and 28 illustrate different methods for enforcing a regular array of topological defects 
of alternating winding number. These include an atomic force microscope scribing method [25], a 
plasmonic photoalignment technique [27], or combining doped ions and polymer alignment layers [28]. 
For controlled switching, one can imagine the use of laser tweezers [5, 23], a slow technique that would 
need to be utilized serially, from one defect to another. Interdigitated electrodes [29] have been used 
for efficient robust switching among multistable nematic director patterns, although not for the control 
of disclination lines. Our approach of a simple, spatially homogeneous electric field and patterned defect 
arrays facilitates rapid rewiring of defects. 
 



Here we demonstrate the systematic assembly and reassembly of a lattice of chargeless line defects (see 
Fig. 1a) in a thin nematic liquid crystal cell that is nanopatterned for orientational order. We report on 
a robust theoretical framework and corresponding experimental results in which an external electric 
field is used to switch between pre-determined and stable line defect configurations by coupling the 
field to the complex director profile surrounding the defects. We anticipate that our proof-of-concept 
for “rewiring” topological line defects in liquid crystals also may lead to a variety of applications based 
on reconfigurable nanowires in soft matrices such as multistable optical displays, electronics, and 
charge carrier pathways for photovoltaics. 

The plan paper of the paper is as follows. In Sec. II we present the geometry and topology that enables 
a rich diversity of multi-stable nematic chargeless disclinations in our numerical and experimental 
research. In Sec. III a Landau-de Gennes phenomenological model in terms of the nematic tensor order 
parameter is introduced. The experimental set-up is described in Sec. IV. In Sec. V numerical results 
are reported, in which we show multistability of defect configurations and some representative external 
electric field-driven disclination rewirings. Experimental confirmation of proof-of-concept for the 
rewiring mechanism proposed numerically is presented in Sec. VI. In the last section, we summarise 
results. Some technical details are assembled in the Appendix.      

 

II. GEOMETRY OF THE PROBLEM 
 

Our investigations examine electric field-driven transformations of lattices of line defect segments in a 
nematic liquid crystal confined to a plane-parallel cell. Key geometrical and topological features of the 
cell used in the main numerical and experimental studies are sketched schematically in Figs. 2. We 
stabilize patterns of TDs in the LC by means of controlled boundary conditions, i.e., we enforce the 
topology at the substrates [25].  In terms of Cartesian coordinates (x,y,z), defined by the unit vector triad 
(ex, ey, ez), the bottom master and the top slave planar-aligning substrates are placed at z=0 and z=h (Fig. 
2a) respectively. The master substrate was patterned with a square array of enforced topological defects 
each having strength s = ±1 (see Fig. 2b) and defined by the equation  

 

ϕ(x, y) = ∑ 𝑠𝑠𝑘𝑘𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 �
𝑦𝑦−𝑦𝑦𝑘𝑘
𝑥𝑥−𝑥𝑥𝑘𝑘

� +ϕ0.
𝑁𝑁
𝑘𝑘=1                                                                                               (1) 

This is the solution to Laplace’s equation that is appropriate in the equal elastic constant approximation 
[30]. Here φ  corresponds to the azimuthal orientation of the enforced nematic director field with respect 
to the x-axis and k corresponds to the index of the N defects. We impose a “winding number-neutral” 4 
× 4 grid (N = 16) of s = ±1 defects (∑ 𝑠𝑠𝑘𝑘 = 0𝑘𝑘 ) with lattice spacing 𝑑𝑑 in both the x and y directions. The 
opposing slave substrate enforces planar degenerate anchoring in which the director lies in the xy-plane 
but is free to assume any orientation imposed elastically through the liquid crystal by the master surface. 
Furthermore, we allow the presence of a spatially homogeneous external electric field E, which is 
applied either along the x or y direction and we consider LCs with positive electric anisotropy [7]. 
 



 
FIG. 1.  Nematic LC cell with line defects. a) Experimental polarising microscopy texture of a nematic 
LC cell exhibiting line defects confined near the master plate. b) Bright field image of a section of the 
sample showing three of the four integer s=±1defects having decomposed into half-integer defects. 



 
FIG. 2. Geometry and topology used in experimental and most numerical studies. a) Nematic LC is 
confined to a plane-parallel cell. The bottom master plate strongly enforces a 4x4 array of s=±1 surface 
defects as shown in b). The top slave plate enforces isotropic tangential anchoring. 

 
III. MODELLING 

 
A. Free energy 

 
We used a Landau-de Gennes mesoscopic approach [7] in which nematic orientational order is modelled 
by the traceless and symmetric tensor nematic order parameter field 𝑸𝑸 = ∑ 𝜆𝜆𝑖𝑖(𝒆𝒆𝑖𝑖 ⊗ 𝒆𝒆𝑖𝑖)3

𝑖𝑖=1 , where 𝒆𝒆𝑖𝑖 
are the eigenvectors and 𝜆𝜆𝑖𝑖 the corresponding eigenvalues. We considered LCs that exhibit equilibrium 
nematic uniaxial order, commonly expressed [7] as 𝑸𝑸(𝑢𝑢) = 𝑆𝑆 �𝒏𝒏⊗ 𝒏𝒏− 1

3
𝑰𝑰�. Here 𝑆𝑆 ∈ [−1/2,1] stands 

for the uniaxial order parameter, the unit vector field 𝒏𝒏 is referred to as the nematic director field, and 
𝑰𝑰 is the unit tensor.  

We assume that the spatiotemporal evolution of the nematic order is determined by [31]  𝛾𝛾 𝑑𝑑𝑸𝑸
𝑑𝑑𝑑𝑑

= − 𝛿𝛿𝛿𝛿
𝛿𝛿𝑸𝑸

, 
where the LC viscous properties are approximated by a single material parameter 𝛾𝛾. We                                                                                                                                     



write the free energy 𝐹𝐹 = ∫𝑓𝑓𝑑𝑑3𝑟𝑟 as the integral over the nematic LC confined within a plane-parallel 
cell of thickness h. The free energy 𝑓𝑓 = 𝑓𝑓𝑐𝑐 + 𝑓𝑓𝑒𝑒 + 𝑓𝑓𝑓𝑓 consists of the condensation (𝑓𝑓𝑐𝑐), elastic (𝑓𝑓𝑒𝑒), and 
external field (𝑓𝑓𝑓𝑓) contribution, which we express [7] as 

𝑓𝑓𝑐𝑐 =
1
2
𝐴𝐴0(𝑇𝑇 − 𝑇𝑇∗)𝑇𝑇𝑇𝑇𝑸𝑸2 −

1
3
𝐵𝐵 𝑇𝑇𝑇𝑇𝑸𝑸3 +

1
4
𝐶𝐶(𝑇𝑇𝑇𝑇𝑸𝑸2)2,                                                                               (2𝑎𝑎) 

𝑓𝑓𝑒𝑒 =
1
2
𝐿𝐿|∇𝑸𝑸|2,                                                                                                                                                      (2𝑏𝑏) 

𝑓𝑓𝑓𝑓 = −
1
2
𝜀𝜀0Δ𝜀𝜀𝐸𝐸2 𝒆𝒆𝐸𝐸 ⋅ 𝑸𝑸𝒆𝒆𝐸𝐸  .                                                                                                                               (2𝑐𝑐) 

Here 𝐴𝐴0, B, C are material constants, 𝑇𝑇∗ is the supercooling temperature of the isotropic phase, L is the 
representative elastic modulus in the single elastic constant approximation,  𝑬𝑬 = 𝐸𝐸𝒆𝒆𝐸𝐸  is the external 
electric field pointing along the unit vector 𝒆𝒆𝐸𝐸, 𝜀𝜀0 is the permittivity of free space, and ∆𝜀𝜀 is the 
anisotropy of the dielectric constant. 
 

B. Parametrisation and scaling 
  
In our simulations we use the following parametrisation in the Cartesian coordinate frame defined by 
the unit vectors (ex, ey, ez): 

  

𝑸𝑸 = �
𝑞𝑞1 + 𝑞𝑞2 𝑞𝑞3 𝑞𝑞4
𝑞𝑞3 𝑞𝑞1 − 𝑞𝑞2 𝑞𝑞5
𝑞𝑞4 𝑞𝑞5 −2𝑞𝑞1

�  ,                                                                                                            (3) 

where 𝑞𝑞1, 𝑞𝑞2, 𝑞𝑞3, 𝑞𝑞4, and 𝑞𝑞5 are variational parameters. 
 
For scaling purposes we introduce [32] the dimensionless temperature 𝑟𝑟 = (𝑇𝑇 − 𝑇𝑇∗)/(𝑇𝑇∗∗ − 𝑇𝑇∗) and 
the scaled order parameter 𝑸𝑸 = 𝑸𝑸/𝑆𝑆0, where 𝑆𝑆0 = 𝐵𝐵

4𝐶𝐶
 and 𝑇𝑇∗∗ = 𝑇𝑇∗ + 𝐵𝐵2/(24𝐴𝐴0𝐶𝐶) is the superheating 

temperature. We  scale distances with respect to h, and measure the time with respect to the 
characteristic order parameter relaxation time 𝜏𝜏 = 2𝛾𝛾

3𝐴𝐴0(𝑇𝑇∗∗−𝑇𝑇∗)
 expressed at 𝑇𝑇 = 𝑇𝑇∗∗. 

 The resulting dimensionless free energy densities 𝑓𝑓𝑐𝑐, 𝑓𝑓𝑒𝑒, and 𝑓𝑓𝑓𝑓 can be expressed as 

𝑓𝑓𝑐𝑐 =
𝑟𝑟
6
𝑇𝑇𝑇𝑇𝑸𝑸2 −

2
3
𝑸𝑸3 +

1
8

(𝑸𝑸2)2 ,                                                                                                                      (4a) 

𝑓𝑓𝑒𝑒 = �
𝜉𝜉𝑏𝑏
ℎ
�
2

�∇�𝑸𝑸�2,                                                                                                                                                (4𝑏𝑏) 

𝑓𝑓𝑓𝑓 = −�
𝜉𝜉𝑏𝑏
𝜉𝜉𝐸𝐸
�
2

𝒆𝒆𝐸𝐸 ⋅ 𝑸𝑸𝒆𝒆𝐸𝐸  .                                                                                                                                    (4𝑐𝑐) 

Here 𝜉𝜉𝑏𝑏 = 2√𝐿𝐿𝐿𝐿/𝐵𝐵 is the bare biaxial correlation length [32], 𝜉𝜉𝐸𝐸 = �𝐿𝐿𝑆𝑆0/(𝜀𝜀0Δ𝜀𝜀𝐸𝐸2)  is the external 
field extrapolation length [7,32] expressed at 𝑇𝑇 = 𝑇𝑇∗∗, and ∇�= ℎ∇. 
 
Minimization of the free energy is performed numerically deep inside the nematic phase. At the master 
plate we enforce strong anchoring of the 4 × 4 pattern of s=±1 defects using Eq.(1); at the slave plate 
we enforce strong degenerate planar anchoring, and use free boundary conditions at lateral walls. The 
corresponding interference textures are calculated for monochromatic light, with the polarizer and 
analyser along ex and ey, by using the Jones matrix beam propagation model [33], in which scattering 
and reflections are neglected. 
 



We used the following parameters for simulations: ℎ
 𝜉𝜉𝑏𝑏

= 50, 𝑑𝑑
𝜉𝜉𝑏𝑏

= 50  (if not stated otherwise), 𝑟𝑟 = −8. 

In calculating polarised microscopy textures we impose crossed polarizers, and set 𝑛𝑛𝑜𝑜 = 1.54 (ordinary 
refractive index), 𝑛𝑛𝑒𝑒 = 1.74 (extraordinary index), 𝜆𝜆 = 520 𝑛𝑛𝑛𝑛 ( light wavelength), and ℎ = 16 𝜇𝜇𝜇𝜇.  

IV. EXPERIMENTAL SETUP 
 
For experiments we use the nematic liquid crystal 4-cyano-4'-pentylbiphenyl (5CB) confined to a cell 
of thickness h = 16.0 ± 0.2 µm. Our atomic force microscope (AFM) scribing method [25] is used to 
scribe the defect pattern given by Eq. (1) onto the polyvinyl alcohol coated master plate using an AFM 
stylus; here 𝑑𝑑~20 µm. The slave substrate is spin-coated with the planar-degenerate alignment layer 
polymethyl methacrylate.  

The experiment requires two independent electric fields in the plane of the cell, each along one of the 
principle axes of the square array. To pattern the two electrode pairs, we mask four rectangular strips 
on an indium-tin-oxide (ITO) coated slide so that they form a square in the middle of the sample. The 
exposed ITO is removed by soaking in piranha solution, leaving behind two pairs of mutually 
orthogonal electrodes. A cartoon is shown in Fig. 3. 

This ITO-coated master substrate is cleaned by sonicating sequentially in detergent, acetone, and 
ethanol, and then coated with the strong planar anchoring agent polyvinyl alcohol (PVA) by spin 
coating. The sample is baked at 170oC for 2 h. We create a spatially-varying easy axis over an 85 × 85 
µm square at the center of the electrode pattern by using a Bruker AFM stylus (TESPD, 300 kHz 
resonance) with a rigid cantilever (40 N/m spring constant) delivering a scribing force of about 1 µN, 
which does not measurably alter the PVA topography [25].  The scribing speed was approximately 18 
µm s-1. AFM-scribed lines are spaced between 150 and 300 nm apart, with narrower spacings used in 
regions of higher curvature.  The scribed region is shown pictorially by the small square in Fig. 3. 

For the cell’s opposing slave substrate, a glass slide was spin-coated with the planar-degenerate 
alignment layer [34] polymethyl methacrylate (PMMA) and baked at 80oC for 2 h. On filling with liquid 
crystal, the initial alignment is isotropic planar, although a weak azimuthal memory effect develops 
over time.  This memory effect is expected to have only a perturbative effect on the numerical 
simulations, which assume isotropic planar boundary conditions at the slave surface. A complete cell 
was assembled with Mylar spacers, and was measured by interferometry to have a thickness of 16.0 ± 
0.2 µm. The cell was filled with the positive dielectric anisotropy, room temperature nematic liquid 
crystal 4-cyano-4'-pentylbiphenyl (5CB) by capillary action in the isotropic phase. The sample was then 
cooled to the nematic phase and placed on the stage of a polarised microscope.   

The ITO electrodes formed two pairs of orthogonal rectangles, with the shorter leg of each rectangle 
facing the patterned square. The gap along the x-axis electrode pair was 𝑑𝑑𝑒𝑒

(𝑥𝑥)= 2.35 mm, and along the 
y-axis it was 𝑑𝑑𝑒𝑒

(𝑦𝑦)= 2.59 mm; both are much larger than the dimensions of the patterned square, and thus 
the field at the square can be considered uniform to better than 0.5%.  For in-plane electrodes the applied 
electric field was determined by conformal mapping techniques, and is given at the midpoint between 
the electrodes by [35] 𝐸𝐸 = 2𝑉𝑉

𝜋𝜋𝑑𝑑𝑒𝑒
 , where V is the potential difference applied between electrodes. It is 

important to note that because of the positioning and small size of the scribed region as represented by 
the square in Fig. 3, and the fact that the cell thickness is much smaller than the gaps de, both the x- and 
y- electric fields are nearly uniform across the square and the z-component of the electric field is 
virtually zero. We also remark that, owing to the large electrode gaps de, ac voltages of many hundreds 
of volts were required (500 Hz square wave). 



 

FIG. 3.  Cartoon of master (patterned) surface.  Two pairs of ITO electrodes are shown, allowing 
application of an electric field along the x-axis or along the y-axis.  The patterned region is 
represented by the small square in the center.  A scale bar is shown. 
 

V. NUMERICAL SIMULATIONS 
 

A. “Alphabet” of disclination patterns. 
 

Of interest are different disclination patterns that could emerge from the master plate imposed 4 x 4 
grid of surface defects in sufficiently thick cells (h>d/2). We first analyse the structure of disclinations 
and diversity of patterns that they form using the Landau-de Gennes mesoscopic [7] approach. 

For conditions of interest (cells of thickness ℎ~20 𝜇𝜇𝜇𝜇), each s = ±1 defect tends to decompose into a 
pair of half-integer daughter defects of the same total strength (See Fig. 1b). This decomposition reduces 
the elastic energy, which scales as s2 away from the defect core [7,36-38]. The decomposed daughter 
[39] defects repel each other such that, at the master surface, their separation distance is a competition 
between the anchoring strength imposed by the master substrate and the repulsion between same-
strength defects (Supplementary Movie 1). 

For thin cells (h≲d/2), disclination lines tend to be charged [40] and run from the positive (negative) 
defect at the master substrate to the induced defect of the same sign at the slave substrate. An example 
is shown in Fig. 4a. But for cells sufficiently thick relative to the defect d spacing, the disclination lines 
run approximately parallel to the patterned substrate, between defects having opposite strength [41,42]. 
These defects are chargeless, consisting of s=+1/2 and s=-1/2 sections, where a typical structure is 
depicted in Fig. 4b. Running close to the master surface, these disclination lines are associated with the 
pair of daughter defects and are attracted by, and terminate on, nearest neighbour defects of opposite 
sign. In the case of a single chargeless disclination, the director field far from the master surface tends 
to be aligned uniformly.  
 



 
FIG. 4. Schematic sketches showing cells possessing either charged or chargeless line defects, where 
the master plate enforces s=±1 surface point defects. a) Charged s=1/2 split disclination lines spanning 
the master and slave confining plate. b) Chargeless line defects joining s=±1/2 daughter defects within 
the master plate. Typical director field profiles are shown both just above the master plate and well 

above it. The red line indicates region where the amplitude 𝑆𝑆 = �3
2
𝑇𝑇𝑇𝑇𝑸𝑸𝟐𝟐 of the order parameter  𝑸𝑸  is 

reduced to S= Sbulk/2 due to strong local elastic distortions. Here Sbulk stands for the bulk equilibrium 
value.   
 
Possible stable and metastable patterns of chargeless disclinations generated by the master substrate 
imposed 4 × 4 array pattern of surface defects were obtained numerically in sufficiently thick cells 
(h>d/2) and are shown in Fig. 5. Each line defect connects a pair of nearest-neighbour daughter defects 
of opposite signs at the same master substrate. The resulting patterns form closed loops. Our geometry 
and topology allows an “alphabet” of 18 different patterns, exhibiting 7 different symmetries. The seven 
disclination patterns, to which we refer as the irreducible patterns, are shown in the first and third rows 
of Fig. 5. All other patterns can be obtained from this set via rotations for an angle 𝜙𝜙 = 𝑁𝑁 𝜋𝜋

2
  around the 

z–axis, where N is an integer. The top cell view is presented and disclinations are visualised by plotting 
regions of relatively strongly suppressed order parameter, which is realised in the cores of defects. The 
thickness of disclination lines is roughly given by the nematic biaxial correlation length [7,43] 𝜉𝜉𝑏𝑏. The 
corresponding calculated polarising optical microscope images under crossed polarizers are given in 
the second and fourth panels of Fig. 5.  



 
FIG. 5. Irreducible patterns. Numerically calculated nematic textures exhibiting seven different 
symmetries emerging from the enforced 4 x 4 array. The first and third rows: The top cell view of the 
line defect patterns where regions with strongly suppressed order parameter values are shown, 
fingerprinting the defect core regions. The solid and open circles indicate origins of nucleating s=+1 
and s=-1 defect sites. The second and fourth rows: The corresponding typical optical microscopy 
textures obtained under crossed polarizers. Scale bar corresponds to the cell thickness h.  From the 
irreducible patterns one can generate an “alphabet” of 18 different patterns.    

We henceforth label the irreducible set of disclination patterns as [II] (Fig. 5a), [U] (Fig. 5b), [O] (Fig. 
5c), [oooo] (Fig. 5d), [Lo] (Fig. 5e), [Ioo] (Fig. 5f), and [H] (Fig. 5g), because these symbols roughly 
reflect key features of the patterns. Furthermore, for latter purpose we label the locations of  𝑠𝑠 = ±1 
surface defects at the master plate with a pair of indices {i,j}, where 𝑖𝑖 and 𝑗𝑗 ∈ [1,2,3,4] determine a row 
and column number of the 4x4 array. Here {1,1} and {4,4} locate the upper-left and bottom-right sides 
of the 4x4 checkerboard. Furthermore, we label by {𝑖𝑖1, 𝑗𝑗1} − {𝑖𝑖2, 𝑗𝑗2} a disclination spanning the defect 
sites  {𝑖𝑖1, 𝑗𝑗1} and {𝑖𝑖2, 𝑗𝑗2}.  

The free energies F of the patterns are, in general, different and depend on geometry and LC material 
properties. For example, for the set of parameters ℎ

𝜉𝜉𝑏𝑏
= 𝑑𝑑

𝜉𝜉𝑏𝑏
= 50, a strong anchoring condition at the 

master plate and an absence of an external electric field, the excess free energy Δ𝐹𝐹[𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝] = 𝐹𝐹 − 𝐹𝐹𝑛𝑛 



of all patterns is roughly the same (their values differ for less than 1%) , where 𝐹𝐹𝑛𝑛 determines the free 
energy of the equilibrium bulk nematic.  Only the free energy cost of the [H] structure is noticeably 
higher: Δ𝐹𝐹[𝐻𝐻]

Δ𝐹𝐹[𝐼𝐼𝐼𝐼]
~1.01. We used the configuration [II] as the reference pattern because it could be 

stabilized relatively simply. 

To understand the switching mechanism among the competing patterns it is instructive to visualize the 
typical nematic ordering of structures above the master plate, just below the average maximal height  
𝑧𝑧 = 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚<<h of disclination lines. A representative example is presented in Fig. 6. Note that nematic 
orientational ordering is commonly represented by the nematic director field n for the orientational field 
in cases of uniaxial nematic ordering. However, close to disclinations the nematic order could enter 
biaxial states [43,44] due to relatively strong elastic distortions. Consequently, we plot the principal 
eigenvector 𝒆𝒆1 of Q corresponding to the largest Q eigenvalue. In cases of uniaxial order (which is 
strongly violated only within the cores of defects [44,45]) it holds that 𝒆𝒆1 = 𝒏𝒏. Consequently, we 
henceforth refer to 𝒆𝒆1 as the nematic director field because the LC ordering is, in most parts of the 
sample, essentially uniaxial. In Fig. 6 we present the nematic director field of [II] within the (x,y) cross-
sections at 𝑧𝑧~𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚.  Note that the master plate-imposed nematic pattern (at z=0) is the same for all 
structures for strong enough anchoring and is schematically depicted in Fig. 2b.  The master surface 
enforces a zig-zag domain-like pattern within the 4x4 checkerboard region, where the average 
orientation of neighboring domains tends to be oriented perpendicularly. Here each domain corresponds 
roughly to a region enclosed by four 𝑠𝑠 = ±1 surface imposed defects. The master plate-enforced 
nematic structure, which is determined by Eq.(1), does not impose any preferred orientation.  Note that 
in the case of charged disclinations, spanning the master and slave plates, this symmetry would be 
preserved on increasing z. However confined chargeless disclinations break this symmetry, as illustrated 
in Fig. 6.The figure evidences a domain-type pattern, that dominates in the region 0 < 𝑧𝑧 < 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚. For 
visualization purposes we also superimposed the pattern of line disclinations.  One sees that the nematic 
structure surrounding a line connecting two neighboring surface defects  — these lines also roughly 
match domain boundaries — is significantly different if the defects are connected, or not, by  a 
disclination. In the former case 𝒆𝒆1 reorients by 𝜋𝜋/2 on crossing domain boundaries (e.g., see the region 
enclosing the line [1,1]-[1,2] or [1,1]-[2,1]). This relatively abrupt reorientation is enabled via the order 
reconstruction mechanism [43,44]. On the contrary, in the latter case the principal field is more gradual 
(e.g., see the region enclosing the line [2,1]-[2,2]). Therefore, confined disclinations introduce an 
anisotropic domain pattern, which is on average more responsive to imposed changes, e.g., via an 
external electric field. Furthermore, on increasing z above 𝑧𝑧𝑚𝑚𝑚𝑚𝑚𝑚 nematic patterns progressively become 
homogeneously aligned along a symmetry breaking direction that lies within the (x,y) plane. 

 

 



 
FIG. 6.  Orientational field of the nematic structure shown in Fig. 5a just above the master plate. The 
(x,y) projection of the disclination pattern is superimposed with dotted lines. Positions of surface-
enforced defects s=±1 are marked with closed (s=1) and open (s=-1) circles. Furthermore, positions of 
top-left ([1,1]), top-right ([1,4]), bottom-left ([4,1]), and bottom-right ([4,4]) surface defects are 
indicated. Note that the director profile reorients roughly by 𝜋𝜋/2 radians on crossing at right angles a 
disclination line position. On the other hand, transitions along boundaries of other domains are realised 
via a gradual splay-like reorientation.  

B. Pattern rewiring 
 

One can realise transformations between different disclination patterns by rewiring just few pairs of 
facing disclinations into perpendicular directions. For example, this could be achieved efficiently by 
the use of laser tweezers [5] or by applying an appropriate external electric field 𝑬𝑬. 

In Figs. 7 we schematically sketch how all members of the irreducible set could be reached starting 
from [II] by rewiring just one or two pairs of facing disclinations. The pattern [II] could be obtained by 
imposing first a strong enough spatially homogeneous external electric field E along the x-direction. 
After the desired pattern is formed, the field is switched off, while the structure remains trapped in one 
of the (meta) stable states. In Figs. 7, above the arrows, we schematically sketch the spatial profile of 
E, which enables realisation of the displayed transformations. This is also the route that we used to 
obtain the remaining representative members of the irreducible set when starting from [II]. Note that all 
patterns are found to remain stable after the transformation-enabling E is switched off. 

The patterns [U], [Ioo], and [H] are realized by rewiring a single pair of facing disclinations when 
starting from [II]. However, one could also realise the other patterns (i.e. [O], [Lo], and [oooo]) by 
manipulating only one pair of disclinations by using a different initial pattern. For example, starting 
from [U] one could reach[O] by rewiring {1,2}-{2,2} and {1,3}-{2,3} into new pairs {1,2}-{1,3} and 
{2,2}-{2,3}. Furthermore, from [U] one gets [Lo] by rewiring the pairs {2,3}-{3,3} and {2,4}-{3,4} 
into {2,3}-{2,4} and {3,3}-{3,4}. Finally, [oooo] could be obtained from [Ioo] by rewiring {2,1}-{3,1} 
and {2,2}-{3,2} into {2,1}-{2,2} and {3,1}-{3,2}. 



 

FIG. 7.  Schematic representation of rewiring between different irreducible patterns. a) [II]→ [O], b) 
[II]→ [U], c) [II]→ [Ioo], d) [II]→ [Lo], e) [II]→ [oooo], f) [II]→ [H]. Disclinations marked in red are 
rewired in the transformation. This may be accomplished, for example, by using a spatially-dependent 
electric field: In the coloured squares above the arrows we schematically indicate the external electric 
field E spatial profile. Red and blue colour mark a relatively large and zero value of E, respectively. 
The diffuse regions correspond to spatially slow variation of field E; the sharp transitions between red 
and blue correspond to a spatially rapid variation of E. Note that for all cases only the pairs of facing 
disclinations need to be rewired.  

C. Rewiring mechanism 
 

To realize electric field-driven rewiring, we focus on the characteristic nematic director pattern above 
a chargeless disclination shown in Fig. 4b. One sees that above the disclination line the director field 
tends to orient on average perpendicular to the disclination line’s direction. Therefore, if E is applied 
parallel to the in-plane projection of the disclination lines, it tends to reorient the nematic director field 
along the electric field orientation for a positive dielectric anisotropy liquid crystal. This realignment 
can trigger reorientation of the disclination line for appropriate boundary conditions.  

The tendency to realign a chargeless disclination line perpendicular to E is evident also from a simple 
free energy cost analysis of a straight disclination within a cylinder, where details are given in Appendix 
A. We use an ansatz for a straight chargeless disclination representing a possible solution in the equal 
elastic constant approximation of the Frank-Oseen continuum description [7], which we confine within 
a cylindrical volume. One sees (Appendix A) that the external electric field free energy contribution is 
minimum if the disclination direction and E are mutually perpendicular. 

 

 

 



D. Rewiring a pair of disclinations 
 

To demonstrate numerically the rewiring mechanism, we first consider the simplest possible 
arrangement of chargeless disclinations typifying a basic unit of our 4x4 template. For this purpose we 
analyse E-driven rewiring of a pair of chargeless disclinations (see Fig. 8) which are enabled by a master 
plate that enforces a 2 × 2 square array consisting of s=±1/2 surface defects. (Note that all the defect 
sites would be connected by disclination lines for the case of a 2 × 2 array of s=±1 surface defects.) In 
the initial configuration the disclination lines run along the x-axis. Then we apply a spatially 
homogeneous external field E =Eex and gradually increase its amplitude. We quantify the extent of the 
average nematic alignment along E with the quantity 𝑆𝑆(𝑥𝑥) = 〈𝑃𝑃2(𝒏𝒏.𝒆𝒆𝑥𝑥)〉. Here 𝑃𝑃2 is the Legendre 
polynomial of order 2 and 〈… 〉 stands for the spatial average over the liquid crystal. For a spatially 
homogeneous nematic alignment along E it holds that 𝑆𝑆(𝑥𝑥) = 1; for an isotropic distribution of n, 𝑆𝑆(𝑥𝑥) =
0. In Fig. 8d we demonstrate that 𝑆𝑆(𝑥𝑥) on average increases on increasing E and  𝑆𝑆(𝑥𝑥) saturates after the 
critical value of E triggering the rewiring is reached. The corresponding typical textures simulating 
polarising microscopy experiment are shown in Supplementary Movie 2. 

We next demonstrate that a pair of parallel disclinations exhibit the attractive interaction, which in 
general moves the disclinations to bring them close. Let us consider the disclination pattern shown in 
Fig. 8a for E=0. Initially, the surface defects are separated for distances 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑦𝑦 = 𝑑𝑑 in x and y 
directions, respectively. Note that the two disclinations are “antiparallel”, the first one joining (s=1/2, 
s=-1/2) and the second one (s=-1/2, s=1/2) nucleation surface defects, respectively. Therefore, each 
segment of the first line faces a segment of the second line bearing the opposite signed winding number. 
Consequently, the lines attract each other, which causes their distortion shown in Fig. 9b. In Figs. 9 (see 
also Supplementary Movie 3) we show that on gradually decreasing 𝑑𝑑𝑦𝑦 and the attractive interaction 
could trigger the rewiring of disclinations. One sees that at a critical value of 𝑑𝑑𝑦𝑦 the interacting lines 
collide and rewire in the y direction. The latter configuration is energetically more favourable than the 
previous one because of shorter total length of energetically costly disclinations.  



 

FIG. 8.  Different stages of the electrical field-driven rewiring mechanism shown for the case of a 2 x 
2 array of s=±1/2 master plate imposed defects. a) E=0, b) 𝐸𝐸 ≾ 𝐸𝐸𝑐𝑐 (𝜉𝜉𝐸𝐸 = 1.118 𝜉𝜉𝑏𝑏), c) 𝐸𝐸 ≿ 𝐸𝐸𝑐𝑐  ( 𝜉𝜉𝐸𝐸 =
0.994 𝜉𝜉𝑏𝑏). At 𝐸𝐸 = 𝐸𝐸𝑐𝑐 (corresponding to 𝜉𝜉𝐸𝐸~ 𝜉𝜉𝑏𝑏) the defect lines rewire. The nematic director field is 
plotted just above the master plate and at the slave plate, and we superimpose the line defect profile. 
(Points are plotted where the order parameter is strongly suppressed due to elastic distortions). d)  
𝑆𝑆(𝑥𝑥)(𝐸𝐸) vs. E/Ec is plotted. Calculated points are marked by square symbols and the line is the guide 
for an eye. Scale bar corresponds to the cell thickness h. 

 



 

FIG. 9.  Different stages of the thickness-driven rewiring mechanism shown for the case of a 2 x 2 array 
of s=±1/2 master plate imposed surface defects. a) 𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
= 1,  b) 𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
= 4

5
, c)  𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
= 3

5
.  The nematic director 

field is plotted just above the master plate and at the slave plate, and we superimpose the line defect 
profile. (Points are plotted where the order parameter is strongly suppressed due to elastic distortions). 
Scale bar corresponds to the cell thickness h.  

E. Electric field driven rewiring between two different II patterns 
  

Finally, we consider electric field-driven rewiring realised in the geometry depicted in Fig. 2, where we 
use as the starting structure the pattern [II], oriented along the x-direction. Note that from this reference 
pattern one could obtain the other structures using an appropriate 𝑬𝑬 configuration, as shown in Fig. 7.  

For a demonstrative rewiring example, we switch theoretically between two different realisations of the 
pattern [II], where as an intermediate state also the pattern [O] emerges (see Fig. 5c). Representative 
rewiring stages are plotted in Figs. 10 (see also Supplementary Movie 4). In the initial state the two 
loops characterising the pattern are aligned along the x direction; see Fig. 10a. This state is obtained by 
cooling from the isotropic phase in presence of a spatially homogenous external field E =Eey, which is 
then switched off. Then we apply a gradually increasing field E =Eex along the x direction. On 
increasing E the disclinations progressively become distorted in the (x,y) plane. A collision of the 
distorted facing disclination lines enables their reconfiguration. Above the threshold field 𝐸𝐸 = 𝐸𝐸2 the 
pattern of two loops oriented along the y direction is formed (Fig. 10d). Note that in the intermediate 
stage (Fig. 10c) the pattern shown in Fig. 5c was realised at 𝐸𝐸 = 𝐸𝐸1 < 𝐸𝐸2. Importantly, the 
configurations shown in Fig. 10c and Fig. 10d persists when the field is switched off after each of these 
states is reached; thus, we have a truly multistable system.     

        



 
FIG. 10. Numerical simulation of the external electric field driven rewiring shown for the case of a 4 x 
4 array of s=±1 master plate imposed surface defects.  Selected stages of the transition between two 
different realizations of structure depicted in Fig. 5a are shown. The top rows: The top cell view of the 
line defect patterns where regions with strongly suppressed order parameter values are shown. The 
bottom row: The corresponding calculated optical microscopy textures obtained under crossed 
polarizers. All structures and interference patterns were obtained numerically. In the simulation we 
gradually increase E.  a) 𝜉𝜉𝑏𝑏/𝜉𝜉𝐸𝐸 = 0, b) 𝜉𝜉𝑏𝑏/𝜉𝜉𝐸𝐸 = 1.12, c) 𝜉𝜉𝑏𝑏/𝜉𝜉𝐸𝐸 = 1.23, d) 𝜉𝜉𝑏𝑏/𝜉𝜉𝐸𝐸 = 1.34. Scale bar 
corresponds to the cell thickness h. 

VI. EXPERIMENTAL PROOF-OF-CONCEPT 
  

Using our experimental set-up, we demonstrate that the rewiring mechanism which our simulations 
yield could be indeed realised experimentally. For this purpose we stabilise the pattern [II] using the 
AFM scribing method. Then we switch the disclinations using an in-plane external electric field 
between two different realisations of [II], mimicking simulation results shown in Figs. 10 and 
Supplementary Movie 4. Below we describe experimental measurements that confirm the predictive 
power and robustness of our simulation results.  

We start from the pattern [II] aligned along the x-direction. The applied voltage was increased at two 
very different rates to measure the threshold field(s), i.e., the electric field(s) at which the disclination 
lines can exchange termination partners and rotate by 90° in the xy-plane. One method involved a slow 
quasi-ramp of the voltage along the x-axis, from 0 to 633 V, in voltage steps of 𝛿𝛿𝛿𝛿𝑥𝑥 = 2 V, corresponding 
to field steps of δEx = 0.76 kVm-1, approximately every 5 seconds. A photomicrograph was taken at 
each step to record the position of the disclinations. When the ramp was completed, the process was 
repeated using a field along the y-axis, with δΕy steps of 0.7 kVm-1 (The difference between δEx and 
δEy is due to a small anisotropy between the x- and y-electrode pairs.).  A separate experiment was 
performed on the same sample in which the voltage (along the x-axis) was increased quickly from 0 to 
a particular set voltage Vn over a time scale <5 µs, waiting 3 seconds, and then recording an image. The 
voltage then was returned to 0, allowing the distorted (but not yet rewired) defect lines to relax back to 
equilibrium. Some leftover distortion of the disclination lines is always present, so they were 
straightened to their initial configurations by applying a voltage along the y-axis of 633V for 3 seconds. 
The process was repeated, each time increasing the set voltage Vn in steps of δVx= 2.1V until it reached 
a value for which all the segments had rewired. The entire experiment then was repeated for fields 
applied along the y-axis. Importantly, disclinations that had been rewired at a particular set voltage Vn 



remained stable when the applied voltage was returned to zero; this demonstrates experimentally the 
multistability of the line defect patterns.  

Due to the finite nature of the patterned array, there are three intermediate configurations for the 
experimentally observed cell that also are stable at zero field, and are accessible at intermediate field 
strengths, as seen in Figs. 11 c-e. The threshold electric field at which the first intermediate 
configuration occurs is about 16% below the saturation field E2, where the saturation field is the point 
at which the last defects exchange partners and further voltage increase has no effect. We found that all 
the defect lines exchanged termination partners at E2=135±10 kVm-1 in the x direction and E2=155±10 
kVm-1 in the y direction when the voltage was increased quickly. When increasing the voltage slowly 
in steps of δΕx or δΕy, as appropriate, saturation was measured to be slightly smaller, viz., E2=125±10 
kVm-1 in the x-direction and E2=145±10 kVm-1 in the y-direction. The discrepancies between the fast 
and slow voltage changes likely is due to the viscoelastic response time, indicating that the slow ramps 
were performed in equilibrium but the fast ramps were close to – but not quite in – equilibrium. 

The discrepancies between the x and y saturation fields are likely due to detailed surface conditions, 
such as anisotropic anchoring due to the shape of the AFM stylus, or imperfections in the etched 
electrodes. In our experiment we used a pair of almost spatially homogenous electric fields E — one 
field (Ex) was oriented along the x-axis and the other (Ey) along the y-axis — to switch between the 
structures, where details are shown in Supplementary Movie 5.  

The intermediate configurations are reproducible on repeated cycling of applied field.  In Fig. 11c, for 
example, the right-hand domain has been rewired.  On symmetry grounds, the left-hand side could have 
been rewired first.  In practice, small variations in the field and/or in the boundary conditions are 
sufficient to break the symmetry.  Importantly, this symmetry-breaking could be exploited to create any 
desired sequence of rewiring by controlled AFM scribing (or alternatively, by selective ultraviolet light 
exposure [47,48]) to perturb appropriately a given part of the pattern. 

Thus, we clearly have switched experimentally between two different realisations (see Fig. 11a and Fig. 
11f) of the theoretically predicted representative pattern shown in Fig. 5a. Furthermore, the intermediate 
states depicted in Figs. 11c, and 11e correspond to different realizations of the pattern in Fig. 5b, and 
the experimental structure in Fig. 11d corresponds to that in Fig. 5c. Each intermediate state is stable 
when the field at that point is switched to zero.  

 

 



 
FIG. 11.  Experimental observation of electric field-driven rewiring of disclinations. A complete cell 
with a cell gap of h = 16 ± 0.2 µm. The cell is filled with the liquid crystal 5CB and imaged using a 
polarising optical microscope, with the polariser and analyser oriented parallel and perpendicular to the 
image. a) Photo taken at E=0. The defects were previously aligned by applying a large field E =Eey in 
the y-direction. b) An ac electric field E =Eex is applied along the direction indicated, sufficiently large 
that the defect segments are close to osculating. c-e) Intermediate defect configurations, each occurring 
successively with increasing E =Eex. f) Final configuration after the field has been increased above the 
critical field.  All closed loop configurations remain stable when E =Eex is reduced to zero and can be 
switched back to configuration a) by applying a sufficiently strong field E =Eey along the y-axis. Scale 
bar in panel a) corresponds to the surface defect distance 𝑑𝑑~20 µm. 

VII. CONCLUSIONS 
 

We have demonstrated numerically and experimentally external electric field driven rewiring of a 
complex network of nematic line defects among competing configurations that are truly multistable, 
i.e., the new configurations survive even when the field is switched off. The set of available 
configurations was predetermined by a specific master surface nematic director field pattern. In our 
study the surface nematic director field at the master plate was fixed due to relatively strong boundary 
conditions. We switched between different patterns by rewiring disclinations close above the master 
plate using an appropriate external electric field configuration, which triggers molecular field changes 
in the sample. We illustrated the diversity of multistable and switchable configurations using an NxN 
array of charge ±1  defects for N=4. This is the simplest topologically neutral combination emerging 
from an NxN array of such defects, and provides complete proof-of-concept for this approach. Namely, 
N=2 offers only a single pattern of disclinations, and N=3 results in a net non-zero topological charge. 
For N=4 we obtained 18 different patterns exhibiting seven different symmetries. By increasing N the 
complexity of patterns would dramatically increase, although it would provide no additional physical 
insight into the phenomenon.  

 Our proof-of-principle study might pave the way for numerous applications, in particular in remotely 
addressable electrooptic, photonic, and emerging nanotechnological devices. Namely, different 
disclination patterns could enable different desired functionality of a system. For example, line defects 
could be exploited as efficient traps for appropriate nanoparticles [13,14,49]. These could introduce 



additional desired material properties into the system, e.g. electrical conductivity. In such a case 
controlled and predetermined networks of these line defects would correspond to a complex network of 
conducting nano or micro wires with rewiring capability, where different configurations would 
correspond to different emergent functionalities.      
 
Furthermore, these reconfigurable defects might provide insight into fundamental behaviours in Nature. 
If fields represent the fundamental entity of Nature [50], than topologically protected localised field 
distortions might represent fundamental particles, as first suggested by Skyrme [51]. In this view, we 
speculate that the fundamental understanding of chargeless lines in nematic LCs could yield some 
insight into intriguing Majorana particles [52], which behave simultaneously like matter and antimatter. 
Namely, our simulations reveal that an antiparallel pair of chargeless disclinations behave like a defect-
antidefect pair. The facing segments of the defect lines exhibit opposite twisting and are mutually 
attractive if defects are sufficiently close, as shown in Figs. 9 and Supplementary Movie 3, thereby 
tending to annihilate each other. Note that a chargeless disclination of our study could be stable because 
its end-points are pinned to a confining substrate that enforces the surface defects. Therefore, an 
unpinned chargeless loop would vanish with time by shrinking into a point, leaving non-singular 
nematic ordering. However, our preliminary studies reveal that chargeless loops could be stabilised by 
toroidal topology [53,54], which will be the focus of future study. 
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APPENDIX A: IMPACT OF AN EXTERNAL ELECTRIC FIELD ON DISCLINATIONS 

Of interest is the impact of an external electric field E orientation on typical nematic disclinations. In 
our estimate we use the Frank-Oseen continuum model [7] in which nematic structures are represented 
by the nematic director field n. We use either Cartesian {x,y,z} or cylindrical coordinates {𝜌𝜌,𝜑𝜑, 𝑧𝑧}, 
determined by unit vectors {𝒆𝒆𝑥𝑥,𝒆𝒆𝑦𝑦,𝒆𝒆𝑧𝑧} and {𝒆𝒆𝜌𝜌,𝒆𝒆𝜑𝜑,𝒆𝒆𝑧𝑧}, respectively. We consider straight 
disclinations running along the z-axis.  

The relevant free energy density terms 𝑓𝑓 = 𝑓𝑓𝑒𝑒 + 𝑓𝑓𝑓𝑓 consist of the elastic (𝑓𝑓𝑒𝑒) and external field (𝑓𝑓𝑓𝑓) 
contribution [7]:  

𝑓𝑓𝑒𝑒 = 𝐾𝐾1
2

(∇.𝒏𝒏)2 + 𝐾𝐾2
2

(𝒏𝒏.∇ × 𝒏𝒏)2 + 𝐾𝐾3
2

|𝒏𝒏 × ∇ × 𝒏𝒏|2,                                                                                 (A1a) 

𝑓𝑓𝑓𝑓 = −𝑆𝑆 𝜀𝜀0Δ𝜀𝜀(𝑬𝑬.𝒏𝒏)2

2
,                                                                                                                                           (A1b) 

where Δ𝜀𝜀 is the field anisotropy and  S stands for the uniaxial nematic order parameter. In the following 
we use the approximation of equal Frank elastic constants 𝐾𝐾 ≡ 𝐾𝐾1 = 𝐾𝐾2 = 𝐾𝐾3, and express the external 
field in terms of the azimuthal (𝜙𝜙𝐸𝐸) and polar angle  (𝜃𝜃𝐸𝐸) as 

𝑬𝑬 = 𝐸𝐸(𝒆𝒆𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐸𝐸𝑠𝑠𝑠𝑠𝑛𝑛𝜙𝜙𝐸𝐸 + 𝒆𝒆𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝐸𝐸𝑐𝑐𝑐𝑐𝑐𝑐𝜙𝜙𝐸𝐸 + 𝑒𝑒𝑧𝑧𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝐸𝐸).                                                                              (A2)                                                                                      

The solutions [7,20] of the relevant Euler-Lagrange equations, corresponding to charged and chargeless 
disclinations, can be expressed as 

𝒏𝒏 = 𝒆𝒆𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝒆𝒆𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝒆𝒆𝑧𝑧𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.                                                                                                 (A3) 

“Elementary” charged disclinations are determined by 

 𝛾𝛾 = 0, 𝜃𝜃 = ± 1
2

 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑦𝑦/𝑥𝑥).                                                                                                                       (A3a) 

 



Furthermore, a representative chargeless disclination is described by 

𝛾𝛾 = 𝜋𝜋𝜋𝜋/ℎ0, 𝜃𝜃 = 1/2 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑦𝑦/𝑥𝑥).                                                                                             (A3b) 

Here ℎ0 determines the distance, where the disclination switches between the “planar” s=1/2 and s=-
1/2 pattern. Therefore, 𝒏𝒏(𝑧𝑧 = 0) = 𝒆𝒆𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝒆𝒆𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 and 𝒏𝒏(𝑧𝑧 = ℎ) = 𝒆𝒆𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝒆𝒆𝑦𝑦𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠.  Within this 
description the “out-of-plane” twist deformation of the disclination varies linearly with z. Note that 
charged and chargeless disclinations also can be called, respectively, as wedge and twist disclinations 
in the literature [7,20]. 

We use the ansatz Eq.(A3) to express the free energy penalties, where we confine disclinations within 
a cylinder of radius R: 

𝑔𝑔(𝑤𝑤) = 1
4𝜚𝜚2

− 𝑠𝑠𝑠𝑠𝑠𝑠2𝜃𝜃𝐸𝐸
2ξ𝐸𝐸

2 ,                                                                                                                                        (A4a) 

𝑔𝑔(𝑡𝑡) = 1
𝜚𝜚2

+ 𝜋𝜋2

2ℎ2
+ 1

ξ𝐸𝐸
2 �−

5
16

+ cos(2𝜃𝜃𝐸𝐸)
16

+ sin (2𝜃𝜃𝐸𝐸)sin𝜙𝜙𝐸𝐸
2𝜋𝜋

�,                                                                            (A4b)                                                                                                                                        

where 𝑔𝑔(𝑑𝑑𝑑𝑑𝑑𝑑) = 1
𝐾𝐾ℎ0𝜋𝜋

∬ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓ℎ0,2𝜋𝜋
0,0  and the superscript dis labels either the wedge (w, that is, charged) 

or twist (t, that is, chargeless) disclination, and 𝜉𝜉𝐸𝐸 = �𝐾𝐾/(𝑆𝑆𝜀𝜀0Δ𝜀𝜀𝐸𝐸2) stands for the external electric 
field coherence length.    

It follows that both kind of disclinations tend to be oriented perpendicular to 𝑬𝑬 for Δ𝜀𝜀 > 0, namely,  

𝑔𝑔(𝑤𝑤) �𝜃𝜃𝐸𝐸 = 𝜋𝜋
2
� − 𝑔𝑔(𝑤𝑤)[𝜃𝜃𝐸𝐸 = 0] = − 1

2ξ𝐸𝐸
2 ,                                                                                           (A5a) 

𝑔𝑔(𝑡𝑡) �𝜃𝜃𝐸𝐸 = 𝜋𝜋
2
� − 𝑔𝑔(𝑡𝑡)[𝜃𝜃𝐸𝐸 = 0] = − 1

8ξ𝐸𝐸
2 .                                                                                              (A5b) 
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