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ABSTRACT

Organic aerosols are subjected to atmospheric processes driven by sunlight, including the
production of reactive oxygen species (ROS) capable of transforming their physicochemical
properties. In this study, secondary organic aerosols (SOA) generated from aromatic precursors
were found to sensitize singlet oxygen ('O,), an arguably underappreciated atmospheric ROS.
Specifically, we quantified 'O,, OH radical and H,O, quantum yields within photoirradiated
solutions of laboratory-generated SOA from toluene, biphenyl, naphthalene, 1,8-
dimethylnaphthalene. At 5 mge L' of SOA extracts, the average steady-state concentration of
'0, and of OH radicals in irradiated solutions were 3 = 1 x 10"* M and 3.6 + 0.9 x 10" M,
respectively. Furthermore, ROS quantum yields of irradiated ambient PM;, extracts were
comparable to those from laboratory-generated SOA, suggesting a similarity in ROS production
from both types of samples. Finally, by using our measured ROS concentrations, we predict that

certain organic compounds found in aerosols, such as amino acids, organo-nitrogen compounds
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and phenolic compounds have shortened lifetimes by more than a factor of two when 'O, is
considered as an additional sink. Overall, our findings highlight the importance of SOA as a

source of '0s, and its potential as a competitive ROS species in photooxidation.

TOC art

INTRODUCTION

Organic aerosols are ubiquitous in the atmosphere and represent up to 90% of the submicron
particulate mass.' They can scatter solar radiation thereby impacting climate directly, but also act
as cloud condensation nuclei and impact climate indirectly. It is thus important to understand the
chemical and physical properties of organic aerosols and how these properties are modified by
atmospheric processing, such as solar irradiation,” heterogeneous oxidation,” hygroscopic
growth,®” aqueous phase processing,™ etc. Chemical aging of organic aerosols can proceed by
gas phase partitioning and reactive uptake of oxidants such as hydroxyl radical and ozone. Yet,
there is now a recognition that chemical reactions initiated within the particle phase can
dominate aging processes and consequently alter the physicochemical properties of the

10-12
aerosol.
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The aqueous phase photochemistry of organic aerosols is driven by solar UV radiation and is
thus limited to photons with wavelengths upwards of 290 nm. Direct photolysis of organic
peroxides and of H,0O, can generate aqueous phase OH radicals, a highly reactive and
unselective oxidant. Light absorption by chromophoric organic species can yield triplet state

organic matter capable of oxidizing organic material as well as produce singlet oxygen (‘0,)."* "

17,18 . 19 .
1% rain water ? , In

Up to now, atmospheric 'O, has been quantified in cloud water,'® fog water,
road dust’® and very recently in particulate matter.'” 'O, can also oxidize polyaromatic
hydrocarbons within organic aerosols®' to form secondary organic acrosol (SOA) from aqueous
reactions of biogenic organic compounds.*”* Furthermore, 'O, is known to selectively undergo
cycloaddition type reactions, which are well characterized in the context of biology.” This
oxidant could be affecting the fate of aerosol tracers, of pollutants within aerosols and of

17,20,22

toxins. In addition, 'O, is an important oxidant when studying the fate of pollutants in

aquatic environments such as surface waters as well as when understanding oxidative stress

health complications within the human body.'%!#72

In aquatic environments, dissolved organic matter can sensitize 102 with concentrations
typically around 10 M. We hypothesized that 'O, could also be sensitized by chromophoric
SOA. Indeed, we found that anthropogenic SOA produced from aromatic atmospheric precursors
efficiently sensitized 'O, with quantum yields comparable to dissolved organic matter. Our goal
was to quantify 'O, within irradiated SOA and particulate matter extracts, and to evaluate
whether '0,-mediated processes are competitive with other processes leading to the degradation

of key organic aerosol tracers in SOA particles.

MATERIALS AND METHODS
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1. SOA preparation and collection

The SOA samples were prepared by the photooxidation of toluene, biphenyl, naphthalene, 1,8-
dimethylnaphthalene and o-pinene inside a smog chamber at UC Irvine using a previously
described procedure.”” The aromatic compounds were chosen based on their hypothesized ability
to form sensitizing molecules such as aromatic quinones as well as on their atmospheric
relevance from anthropogenic sources. In addition, 1,8-dimethylnaphthalene was added to the list
to investigate the role of 1,4-quinone type products on 'O, production. 1,8-Dimethylnaphthalene
has two additional methyl groups preventing the formation of 1,4-quinone compared to
naphthalene. Furthermore, a-pinene was chosen as a control non-aromatic precursor to generate
SOA.

Briefly, aromatic compound vapors and oxidant precursor HO, were mixed in a 5 m’ Teflon
FEP. The chosen starting mixing ratios (Table S1) were relatively high to produce requisite
amount of material (~3 mg) for the photochemical experiments. The precursors was irradiated
with UV-B lamps (centered at 310 nm; FS40T12/UVB, Solar Tec Systems, Inc.) for 2 to 3 hours
at room temperature. Once sufficient particle mass concentration was achieved, the particles
were collected on 0.2 um pore size PTFE filters (FGLP04700 from Millipore) at 15 L/min for 3
to 4 hours (Table S1). The filters were vacuum sealed and kept frozen until extraction, and the

extract solutions were stored at 4 °C (section 2 in SI).

2. Ambient PM sampling

PM,, samples were collected on quartz microfiber filters 150 mm (Whatman™) with a High
Volume Sampler Digitel DH 77 (Digitel Elektronik GmbH). 24-Hour PM,( samples were taken

on November 29™ 2017 and on March 4™ 2018, in Roveredo, in the canton of Graubiinden in
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Switzerland. Sampling dates were chosen when no extraordinary events occurred, and thus, the
two selected filters can be regarded as typical particulate matter samples for this site (section 3 in

SI fur further site details).

3. Extraction of SOA and PM filters
Both the SOA and PM filters were extracted in glass Schott bottles with nanopure 18.2 ohm-

cm milli-Q water and subsequently further diluted to exactly 5 mge L. The submerged filters
were then placed on a lab-shaker (Adolf Kiihne AG) for about three hours at 250 rotations per
minute to obtain the water extractable components. The filters were then removed using
sterilized tweezers and the non-purgeable organic carbon (NPOC) content in the extracts was
measured using a total organic carbon (TOC) analyzer (Shimadzu, model TOC-L CSH). NPOC
calibrations were done with a recrystallized solution of dipotassium phthalate and NPOC
detection limits of 1o were < 0.01 mg C L. Extracts were refrigerated at 4°C until use. We
tested the effect of storage on the sensitizing ability of the solution, and concluded that no
change in the sensitizing ability of the mixtures was observed after 1 month of storage (Table

33).

4. Irradiation experiments
All extracts and reference compounds were irradiated with a SMART narrow-band hand-held
lamp at 311 nm at a distance of 2 cm from a rotating sample holder. Experiments measuring 'O,
steady-state concentrations were also performed with ten bulbs of 365 nm UVA broad band in a
Rayonet photoreactor for comparison. The relative intensity spectra of both the 311 nm lamp and
the 365 nm broadband bulbs as a function of wavelength were recorded (Figure S4). For the

determination of quantum yields, we favor the use of a single wavelength lamp over a broadband
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source to simplify the rate of light absorption calculation, leading to fewer errors and thus more
accurate quantum yield values. Furthermore, we argue that our quantum yield measurements
represent upper limits due to the use of 311 nm wavelength, representing UVB irradiation, the
highest energy range reaching the troposphere and the surface of the planet (Figure S2). Finally,
the overlap between the SOA absorbance and the solar spectral flux is optimal between 310 nm

and 340 nm (Figure S2), where the 311 nm lamp is indeed irradiating (section 4 in the SI).

5. Quantification of 0, steady-state concentrations

Steady-state 'O, concentrations were determined for SOA extracts, solutions of SOA precursor
compounds, solutions of two reference materials, specifically juglone and Suwannee River fulvic
acid (SRFA), as well as extracts from two ambient PM filters. Steady-state experiments were
conducted at room temperature in individual borosilicate test tubes using furfuryl alcohol (FFA,
100 uM) as a probe for '0,,”® and extracted organic material at a NPOC concentration of 5 mgc
L as the 'O, sensitizer. The concentration of SOA samples was chosen (1) to be comparable to
previously measured TOC for cloud waters,”” (2) to give measurable 'O, production with
consequent appreciable FFA degradation and (3) to operate at the exact same NPOC
concentration for all extracts. Solutions were irradiated at 311 nm and 80 pL aliquots were
sampled every 30 minutes and analyzed for FFA concentration using ultra high-pressure liquid
chromatography (UPLC, Waters ACQUITY) coupled with a photodiode array detector (Figure
S3).

To account for the reaction of FFA with OH radicals, the FFA pseudo-first-order rate constants
were corrected by subtracting the contribution of OH radicals to the observed decay of FFA

according to Kops®™™ = Kobs - (K "OF x [OH]s), Where ki 2% = 1.5 x 10" M 57 *° where
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[OH]; is the concentration determined as described in section 7. Steady-state '0, concentrations
were calculated by dividing the corrected FFA pseudo-first-order rate constant (Kops ) by its

reaction rate constant with 'Oy (ke =1 x 10° M~' s=") as in equation (1).*®

kCOTT

['O2]s= <5 (1)

rxn

By UPLC, the detection limit of FFA was 4 x 10”7 M, calculated using 3o of the smallest FFA
calibration peak divided by the calibration slope, which corresponds to a minimum detectable
'0, steady-state concentration of 3 x 10> M. The kinetic solvent isotope effect was used to rule
out FFA degradation by other oxidants, mainly triplet state organic.’® According to Davis et al.,”!
if FFA degradation is solely due to 'O, oxidation, the FFA pseudo-first-order rate constant in a
solvent mixture 1:1 D,O/H,O (v/v) should be 1.9 times the rate observed in pure H,O, due to the
difference in 'O, lifetime in H,O and D,0. Therefore, we performed the FFA degradation
experiments in 1:1 D,O/H,O (v/v) and found that FFA degradation is due solely to 'O, for all
SOA mixtures and PM, filters when irradiating at 365 nm, while there is a contribution of OH

radical at 311 nm (Table S4).

6. Determination of 'O, quantum yield

'0, quantum yields were determined for solutions containing SOA material, SOA precursor
compounds, two reference materials, specifically juglone and Suwannee River fulvic acid, and
two ambient PMj, filters (Table S2). Perinaphthenone (PN) was used as a reference 'O,
sensitizer with a wavelength-independent quantum yield of 0.98 + 0.08.*> The sensitized
photolysis experiments were performed in individual borosilicate test tubes using the same
irradiation conditions for PN and the test mixtures. 'O, quantum yields were calculated

according to equation (2):
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_ Kobs o, Rabs
b10, = PN X RSox X Pen 2

abs

where kobsSOA and kobsPN are the observed degradation rate constants for FFA in the presence of
SOA material and PN, RabsSOA and RabsPN are the rates of light absorption for SOA and PN

(section 4.1 in SI).

7. Quantification of OH radical steady-state concentrations and quantum yields

OH radicals were quantified using the 311 nm light source. According to the method described
by Page at al.”’, potassium terephthalate (TPA) was added to the solution and used as an OH
radical probe. The reaction of OH radicals with TPA produces hydroxyterephthalate (hTPA),
which was monitored over time by UPLC-PDA (Waters ACQUITY). The rate of hTPA
production (Rprpa) was measured for seven TPA concentrations, ranging from 20 to 400 uM
(Figure S6). The rate was determined using the asymptote of the curve generated from Ryrpa
plotted against TPA concentration (Figure S6b). The slopes of the curves were multiplied by Roy
and by the reaction rate constant of TPA with OH radicals to obtain the OH radical scavenging
rate constant of the SOA extracts, k’on. [OH]ss under conditions of no probe were obtained by
dividing Rog by k'og. The hydroxyl radical steady-state concentrations, [OH]s, was also
determined under conditions of no probe, following the approach described by Zhou and Mopper
(section 4.2.1. in SI).** Under our experimental conditions, the limit of detection of hTPA is 1 x
10" M, which corresponds to a minimum detectable OH radical steady-state concentration of
3x 107" M.

The OH radical generation quantum yields were determined for all the mixtures described

above according to equation (3):

bon = ROH/Rabs (3)
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where Roy is the rate of OH radical production and R,y is the rate of light absorption by the

solution (section 4.2 in SI).

8. Quantification of hydrogen peroxide production and quantum yield

Hydrogen peroxide production was quantified using the horseradish peroxidase (HRP)-
Amplex Red method.>*® A horseradish peroxidase solution was prepared by combining 10 pL
of a 10 mM Amplex Red solution in DMSO, 20 pL of 10 U/mL horseradish peroxidase solution
in 50 mM phosphate buffer pH 7.4, and 1 mL of 50 mM phosphate buffer at pH 7.4. Each
sample was irradiated at 311 nm and 50 pL aliquots were taken every 30 minutes. Then, 50 uL
of the horseradish peroxidase mixture was added to the aliquot. In the presence of the
horseradish peroxidase enzyme, Amplex Red reacts quantitatively with H,O, to produce
fluorescent resorufin with a yield of ~100%.?® After incubation in darkness for at least 30 min to
produce resorufin, the samples were analyzed for resorufin using ultra high-pressure liquid
chromatography (UPLC, Waters ACQUITY) coupled with a photodiode array detector (Figure
S8). The detection limit of H,O, was 2 x 10”7 M under our experimental conditions.

Hydrogen peroxide quantum yields were obtained as the ratio of the hydrogen peroxide
production rate, measured with the HRP-Amplex Red method, and the rate of light absorption

using equation (4) (Table S6 and section 4.3 in SI).

¢H202 = RHZOZ/Rabs 4)
Results and discussion

1. 'O, production from SOA extracts

The filter extracts from toluene, biphenyl, naphthalene and 1,8-dimethylnaphthalene SOA

efficiently sensitized 'O, and produced OH radicals as well as peroxides upon irradiation with
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single wavelength UVB light at 311 nm. The 'O, steady-state concentrations, measured in these
conditions for 5 mgc L™ solutions of SOA extracts, ranged between 1.1 x 10"*and 4.5 x 10
M with an average of (3 + 1) x 10 M (Figure 1). All SOA extracts from aromatic precursors
showed 'O, quantum yields ranging between 1.2 x 10 and 3.2 x 107 (Table 1). These results
show that laboratory-generated anthropogenic SOA material can generate a significant amount of
'0, when irradiated with UV light, an observation currently underappreciated in aerosol ROS
chemistry.

For comparison, the 'O, quantum yield of Suwannee River fulvic acid (SRFA), a commercially
available and well-studied dissolved organic matter within the field of aquatic photochemistry,
was 0.034 under identical experimental conditions (Table S2), consistent with the literature range
of 0.01-0.04.>*' We can conclude that the 'O, quantum yield measured for SOA generated from
aromatic precursors, compares well with 'O, quantum yields known for chromophoric dissolved
organic matter.

In addition, a-pinene SOA was used as a control non-aromatic precursor-generated SOA
(Table S1). We did not expect a-pinene SOA to sensitize 'O», since compounds found in this
SOA do not contain conjugated double bonds or aromatic systems, and indeed have limited
ability to absorb light, as shown by its UV-vis spectra (Figures S1 and S2) and SUVA;s4 (Table
S9). As expected, no quantifiable 'O, production could be observed when a-pinene SOA was
used as 'O, sensitizer.

Furthermore, we conducted 'O, experiments with the pure precursor compounds of the SOA
filters (toluene, biphenyl, naphthalene and 1,8-dimethylnaphthalene) in aqueous solutions at a
concentration of 5 mge L. These compounds did not show any 'O, production, except for 1,8-

dimethylnaphthalene which displayed 'O, sensitizing ability, although much lower than its

10
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corresponding SOA material. Specifically, a solution of 1,8-dimethylnaphthalene showed a 'O,
quantum yield of 0.3 x 10 one order of magnitude smaller than the SOA material prepared by
oxidation of 1,8-dimethylnaphthalene (3.2 x 107?). This result suggests that photosensitizing
moieties are produced during the photooxidation of the SOA precursor compounds inside the

smog chamber, which is known for toluene oxidation product.***
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Figure 1: Steady-state concentrations of 'O, and OH radicals quantified for irradiation at 311 nm
within laboratory-generated SOA and ambient-collected PM;, filters. No quantifiable FFA

degradation was observed with a-pinene SOA.

2. OH radicals and H,O; production from SOA extracts

In the context of evaluating the relevance of 'O, within ROS produced in irradiated SOA and
PM, extracts, we also quantified the production of OH radicals and H,O,. All irradiated SOA

samples at 311 nm produced steady-state concentrations of hydroxyl radicals between 2.6 x 107

11
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to 4.9 x 10" M (Figure 1). Note that these concentrations are three orders of magnitude lower
than the steady-state concentrations of 'O», quantified for the same aqueous SOA samples. OH
radical quantum yields were also calculated and ranged between 4.6 x 10™ and 6.8 x 107, three
orders of magnitude smaller than 'Os.

In addition, biphenyl and 1,8-dimethylnaphthalene SOA extracts were found to have slightly
lower quantum yields for producing OH radicals (5.1 x 107 and 4.6 x 107 respectively),
compared to naphthalene and toluene SOA (6.3 x 10” and 6.8 x 107, respectively) (Table 1 and
Figure 2). Irradiation of solutions of pure organic compounds that served as SOA precursors
(toluene, biphenyl, naphthalene and 1,8-dimethylnaphthalene) did not show any OH radical
production under the same experimental conditions. This result further supports that the ability of
producing ROS derives from functional groups formed in the aerosol production process.

The competition kinetic approach used to determine [OH]s; and OH radical production rates,
allowed us to estimate the OH radical scavenging rate constant of SOA mixtures and PM;,
extracts (k'oy). Values obtained ranged between 3.5 and 8.9 x 107 s (Table S4), similar to
dissolved organic matter samples and fog waters by Arakaki et al.** We further calculated the
ratio between k'oy and the TOC, finding values between 3.0 and 7.5 x 10° L M¢™' s (Table S4),
in agreement with previously reported values for dissolved organic matter,™ fog waters,** and
particle extracts.'?

Furthermore, all anthropogenic and biogenic SOA samples were able to generate H,O,,
although to a different extent. Since H,O, concentrations increased with irradiation time, no
steady-state  concentrations can be determined (Figure S6a). Naphthalene, 1,8-
dimethylnaphthalene and a-pinene SOA had similar H,O, quantum yields, while biphenyl and

toluene SOA showed a lower activity (Table 1 and Figure 2). As expected, the pure compounds

12
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did not produce H,0,, except for 1,8-dimethylnaphthalene with a quantum yield of 1.5x10™. The
H,0, quantum yields are one order of magnitude larger than the OH radical quantum yields and
ranged between 2.5x10™ and 4.5x10™.

When comparing OH and 'O, quantum yields and steady-state concentrations, we observed
that the OH radical quantum yields and resulting concentrations were three orders of magnitude
smaller (Table 1, Figure 2). The higher concentration of 'O, is balanced by its higher substrate
selectivity and lower reactivity,” which make OH radicals and 'O, competitive oxidants for
processing air pollutants and tracers.

In addition, a fraction of the OH radicals are likely generated by H,O, photolysis. If this
photolysis is the rate limiting step, which is a reasonable assumption based on H,O;
concentrations increasing with time, then one could expect higher quantum yields for H,O,

compared to OH radicals.

3. 102, OH radical and H,O; comparison between SOA and PM;, extracts

Our results suggest the importance of 'O, as an oxidant in anthropogenic SOA. Because these
aerosols were generated within a smog chamber at high concentrations and may not accurately
represent the real atmosphere, we extended our study to two 24 hour-integrated PM;, filters,
collected in Graubiinden, Switzerland. Irradiated PM filter extracts at 311 nm produced ROS
(Figure 2 and Table 1). We found that steady-state concentrations of 'O, were comparable to
those for SOA prepared from toluene but lower than for SOA prepared from larger aromatic
compounds (Figure 1). On the other hand, they showed systematically higher 'O, quantum yields
than SOA mixtures (Table 1). Their average 'O, steady-state concentration and production
quantum yield were 1.1 x 10"* M and 0.043 respectively. The sensitizing ability of PM,

extracts further supports the importance of 'O, in atmospheric processing of organic aerosols.
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292 The PM;, samples were also tested for the production of OH radicals and H,O,. OH radical
293  quantum yields were on the same order of magnitude than those for the SOA mixtures, albeit two
294  to three times higher (Table 1, Figure 2). PM,( samples also produced H,0O,, with quantum yields
295  in the range of 3.9 to 6.5 x 10™. These findings indicate that ROS quantum yields measured from
296  the laboratory-generated SOAs are comparable to quantum yields from actual field-collected
297  atmospheric particulate matter.
298
299 Table 1. Summary of measured ROS steady-state concentrations and quantum yields for SOA
300 samples and PM, filters, the error reported for ['O,]s represents the standard deviation of 3
301 measurements, while the errors reported for quantum yields are propagated errors. No
302  uncertainty is associated with naphthalene SOA because not enough material was collected to
303  repeat at least three measurements.
304
Ent TOC ['Oalss @ '0, [OH]y  ®OH @ H0,
y (mge/L)y (10 M) 10  10M)  (107) (107
1,8-DMN SOA 5 45+0.8 3+1 29+04 46+09 45+04
1,8-DMN 5 22+0.6 03+0.2 <0.3 nd 1.5+0.6
Naphthalene SOA 5 2.7 2.3 35£06 6310 3.5+03
Biphenyl SOA 5 27+07 23+0.7 49+03 51+£10 25+02
Toluene SOA 5 1.1+£0.7 12+03 3.1+£07 68+13 26+03
a-pinene SOA 5 <0.3 nd 2.6+0.8 nd 43+04
PM filter Nov 2017 5 14+04 45+04 33£03 11+4 39+0.6
PM filter Mar 2018 5 0.8+04 40+03 23+04 24+£5 6.5+0.7

305
306
307
308

nd = not determined

14



309
310

311

312

313
314

315

316

317

318

319

320

321

-
-

10

—
Ol

o 02
= OH
[ | H202

T IIIlIll]

n
n

102 = 10
- . i
] ] I
>
E 10°- = 10°
c . == b
[\ E B
= i ] = ES .

10 5 = 10™

LM o i o s e s o

|
S & & &F & 5
= & @QQ e & é\g \\(\0

Laboratory-generated SOA | Ambient-collected PM

Figure 2: Quantum yields of each oxidant measured at 311 nm for laboratory-generated SOA and

ambient-collected PM;,.

4. Origin of SOA and PM extracts’ sensitizing ability

In order to understand the origin of the sensitizing ability of SOA, we evaluated the
aromaticity of SOA samples, since it is known that aromatic structures are important light-
absorbing moieties and promote the photosensitizing ability of organic compounds.*® The
photooxidation of aromatic hydrocarbons can produce compounds with a retained aromatic
moiety and compounds with ring-opened and oxidized functionalities. For example, products of
oxidation of naphthalene include substituted naphthalene compounds, such as naphthols, as well
as substituted benzene compounds, such as hydroxy benzoic acids.*’ The gas phase mechanism

of toluene oxidation also can similarly lead to phenolic type compounds.*® In this section, we

15
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discuss the specific ultraviolet absorbance at 254 nm (SUVA;s4), the aromaticity equivalent (X;),
and the sensitizing ability of juglone to assess the origin of 'O, within chromophoric SOA and

PM;y extracts.®’

4.1. SUVAs,4

The effective aromaticity of toluene, biphenyl, naphthalene, 1,8-dimethylnaphthalene and o-
pinene SOA samples, as well as PM, filters, was estimated by calculating the specific ultraviolet
absorbance at 254 nm (SUVA,sy), previously used as a proxy for organic matter aromaticity.”
The SUVA»s4, calculated by normalizing the absorbance at 254 nm with the total organic carbon
of the mixture, ranged between 2.0 and 4.5 L mgc™" m™, showing appreciable aromatic content in
aromatic SOA extracts and PM, filters (Table S9). The highest SUVA;s4 value was found for
biphenyl SOA, likely due to the presence of two independent aromatic structures capable of
preserving aromaticity during photooxidation.”' a-pinene SOA had a low SUVA,s, value of 0.3,
consistent with the absence of aromatic structures in the mixture (Table S9).

PM, filters had reduced SUV A;s4 values compare to SOA materials, agreeing with their lower
'0, steady-state concentrations and thus with their higher quantum yields. The same effect was
previously noted in fractionated dissolved organic matter, where less aromatic fractions showed

41,52 "
2 In addition, we found a

higher quantum yields due to their limited rate of light absorption.
correlation between the rate of light absorption at 311 nm and the 'O, steady-state concentrations
with SUVA,s4 values, suggesting that an increase in aromatic content produces higher rates of
light absorption and therefore higher 'O, steady-state concentrations (Figure 3). SUVA,s4 values

were also estimated after 4 hours of irradiation at 311 nm and 365 nm, showing no significant

change in the absorption of the mixtures (Figure S9).
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Figure 3: Left: Correlation plot of the rate of absorbance at 311 nm of SOA samples and PM
filters (total of six extracts) as a function of SUVA at 254 nm. Right: Correlation plot of '0,

steady-state concentrations of the same six extracts as a function of SUVA;sg.

4.2. Aromaticity equivalent

High resolution mass spectrometry (HRMS) analysis (section 6 of SI) of the SOA samples
were performed, and yielded mass spectra of a complex mixture of oxidized organic compounds,
with masses up to 350 Da (Figure S10). We calculated the aromaticity equivalent values (X;)
from assigned molecular formulas (Figure S11).* For aromatic SOA materials, X, values were >
2.5, representative of the threshold for the presence of aromatics and condensed aromatics in the
mixture.” The X; values were calculated at 0 and at 4 hours of irradiation for toluene, biphenyl,
naphthalene and 1,8-dimethylnaphthalene SOA extracts, as well as for PM; extracts. As for the
SUVA,s4 values, we observed no significant changes in X, values after 4 hours of irradiation
(Figure S11), indicating no depletion in the aromatic content of the mixtures. This evidence is in
good agreement with the constant rate of FFA degradation over time, implying a steady-state

concentration of 'O, when SOA samples are irradiated over the timescale of 4 hours. Since the
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'0, sensitizing ability of SOA is not measurably depleted during irradiation, we suggest that the
ROS produced do not modify the sensitizing properties within our experimental timescales. We
also plotted for the four SOA extracts the H/C vs O/C ratios (Figure S12), the nominal carbon
oxidation state vs carbon number (Figure S13) and aromaticity index vs carbon number (Figure

S14), all with the same conclusion.

4.3. Juglone as a sensitizer
We identified a peak at m/z of 174.0321 in naphthalene SOA, which we tentatively assigned to
juglone, a hydroxy-benzoquinone known as a naphthalene oxidation intermediate.” We tested
the ability of juglone to produce 'O, and measured a 'O, steady-state concentration of 7.5 x 10°
'* M and a quantum yield of 0.11 (Table S2). The 'O, steady-state concentration of juglone fell
in the range of the measured SOA extracts. The quantum yield of juglone was higher than the
quantum yield of the SOA extracts since, as a pure compound, it did not absorb as much light as
organic matter without sensitizing 'O,. This observation is consistent with our hypothesis that the
presence of aromatics is important for sensitizing 'O,. Yet, if 1,4-quinone moieties were the
major sensitizing moiety, a difference between the 'O, concentrations of naphthalene and 1,8-
dimethylnaphthalene would have been observed, since 1,8-dimethylnaphthalene cannot form 1,4
quinones. Since this difference was not observed, we can only state that aromatic quinones, such
as juglone, are likely one of many classes of 'O, sensitizers in SOA derived from aromatic

precursors.

5. Comparison of 'O, and OH radical quantum yields with the literature

To place our findings in the context of different aerosol types and understand the importance

of SOA-produced ROS in the oxidation of air pollutants and particulate matter, we compare our
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ROS quantum yields with previously published measurements of fog, rain and cloud waters as
well as road dust (Table 2). Faust and Allen reported the first measurement of 'O, steady-state
concentration in cloud Wa‘[er,16 with values comparable to this work for SOA and PM extracts.
However, the reported quantum yields span a wider range, likely due to the variability of the
sampling locations. Anastasio and McGregor measured 'O, and OH radical steady-state
concentrations in fog waters,'® using the same FFA method employed in this study, and reported
4 to 20 times higher concentrations, but comparable OH radical quantum yields. Albinet and
Vione measured 'O, and OH radical steady-state concentrations in rain water and detected no
'0,, but a high concentration of OH radicals."” Kaur and Anastasio measured the same oxidants
in fog water samples collected in Davis, California,'’ finding an average 'O, quantum yield of
4.2 x 10'2, which compares well with our SOA and PM,, extracts. In addition, the OH radical
quantum yields reported for fog waters were six times larger than for our SOA extracts. This
difference could potentially be ascribed to the presence of fewer OH radical sources in SOA than
in fog water. Kaur and Anastasio indeed reported that 70% of the OH radical production was due
to NO, and NOs™ in fog waters, while these anions are not present in our SOA extracts.
Furthermore, Cote et al. reported the 'O, production from aqueous road dust and showed that
irradiated extracts generated 'O, with steady-state concentrations of 1x10™"° M, however 'O,
quantum yields were not reported and therefore experimental conditions cannot be directly
compared at this time. Most recently, Kaur et al. quantified 'O,, OH radicals and triplet state
organic matter within fog and particulate matter in Davis, California.'* They obtained higher 'O,
steady-state concentrations, in agreement with their use of 50% D,0O as a solvent, which extends

'0, lifetime by a factor of 2, and their use of a xenon lamp.
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Table 2. Summary of singlet oxygen and hydroxyl radical steady-state concentrations and

quantum yields for atmospherically relevant aqueous solutions. The values are reported as

ranges, note that steady-state concentrations are dependent on the TOC of the sample and the

illumination method.
Material ['Os]ss 00, [OH s o OH' Reference
(107 M) (107 (1077 M) (107)

Cloud water 2.7-110* 4.8-20 Faust et al., J. Geophys. Res.
1992

Fog water 11-61"° 17-77% 1-64 Anastasio & McGregor,
Atmos. Environ. 2001

Rain water <0.27°¢ 87 -150° Albinet & Vione, Sci. Total
Environ. 2010

Fog water 1.1-30"  1.1-12 26-110" 15-87 Kaur et al., Atmos. Environ.
2017

Road dust 0.83-10¢ Cote et al.,, Environ. Sci.

extracts Technol. Lett. 2018

PM, extracts 6.4 —220° 22-5.7 17-79¢ 62-35 Kaur et al., Atmos. Chem.
Phys. 2019

SOA extracts 1.1-45" 12-3  26-49" 4.6-6.8 Thiswork

PMjpextracts 0.8-14" 40-45 22-33" 11-24 Thiswork

*Midday, equinox-normalized steady-state concentration

® Winter solstice-normalized steady-state concentration

¢ Values obtained with UV-A lamps at 365 nm with a photon flux of 1.6 x 10° EL" 5™

d Steady-state concentration obtained by irradiation with a solar simulator

¢ Steady-state concentration measured in D,O irradiating with a xenon arc lamp

"Steady-state concentration obtained by irradiation at 311 nm
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Atmospheric implications

In this work, we tested and verified the hypothesis that SOA generated from aromatic
compounds are capable of photosensitizing 'O,. The measured concentrations of 'O, were three
orders of magnitude higher than those of OH radical, indicating that 'O, could play a role in
oxidizing air pollutants and tracers. To compare the relevance of these two oxidants for the fate
of environmentally relevant pollutants and air tracers, we performed a kinetic box model for
organic compounds with known '0, and OH radical reaction rate constants (Figure 4, Table S9).
The goal is to highlight the potential of 'O, as a relatively important oxidant in organic aerosol
processing. For 'O, and OH radical steady-state concentrations, we used the average values from
our SOA measurements of 3 x 10"* M and 4 x 107" M, respectively, and we used literature
reaction rate constants for the following organic compounds: benzimidazole, 4-nitrophenol,
vanillin, imidazole, indole, syringol, histidine, resorcinol, niclosamide, tryptophan,
hydroquinone, methionine, tyrosine and cysteine.sé‘f70 Some of these compounds are potentially

72,73

. . .. .71 . .7
found in atmospheric aerosols, such as benzimidazole, cysteine’ ', nitrophenols' ™", tyrosine’’,

syringol and vanillin™*"

. We opted not to consider H,O, as part of this box model because of its
low concentrations and low reactivity with organics compared to the other two ROS.

The 14 compounds studied here could be classified into two categories: overall lifetimes
against ROS reduced by (1) more than 50% and by (2) less than 50%, when including '0,as a
sink (Figure 4). In general, the lifetime of compounds which contain electron-rich aromatic rings
such as histidine, imidazole, resorcinol, indole, tryptophan and hydroquinone is strongly affected
by the presence of 'O, (Figure 4). Of note, histidine’s lifetime against OH is 59 days, whereas its

lifetime against OH radicals and 'O, is 4 days, indicating that 'O, is the major sink for histidine

in proteinaceous aqueous aerosols. Furthermore, other amino acids (e.g. tryptophan, methionine),
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organo-nitrogen compounds (imidazole, indole, niclosamide) and phenolic compounds
(hydroquinone, resorcinol) have shortened lifetimes by more than a factor of two when 'O,
reactivity is considered in their overall fate (Figure 4). On the other hand, the second category of
compounds with lifetimes affected to a lesser extent by 'O, reactivity also include amino acids
and phenolic compounds, and thus it remains difficult to predict on a single compound basis the
effect of an additional sink against 'O,.

To further corroborate the importance of 'O, as a potential atmospheric oxidant for organic
aerosol processing, Kaur et al. recently came to the same conclusion when looking at the
contributions of OH radicals, 'O, and triplet state organic carbon to PM and fog water
processing.'? Therefore, the omission of 'O, reactivity in SOA processing models could lead to
the overestimation of the lifetimes of aromatic pollutants and atmospheric aerosol tracers. We
also recommend that 'O, rate coefficients with key atmospheric pollutants be the focus of further
organic aerosol kinetics research. It is also likely that 'O, is participating in atmospheric aging of
organic aerosols.”®

From the results reported in this work, it is clear that irradiated aromatic SOA can produce
ROS, including 'O, in the atmosphere. In the literature, photochemical processing of organic
aerosols has been primarily attributed to OH radicals from organic peroxide decomposition and
Fenton chemistry,”’ but it is likely that 'O, is also participating in the same photochemical
processing, and play an important role in the oxidation of certain air pollutants. 'O, is a selective
oxidant and typically shows reaction rate constants with organic molecules 2 to 3 orders of
magnitude smaller than OH radical, however, the measured 102 steady-state concentrations here
and in other recent publications are about 3 orders of magnitude larger than OH radical (see

Table 2). Consequently, we expect 'O, to be a competitive oxidant to OH radicals.
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Figure 4: Results of a kinetic box model for !0, and OH radical contribution to the
environmental lifetimes of selected tracers. The 14 compounds were selected because they have
known OH radical and 'O, reaction rate constants in water. In addition, the compounds were
categorized into two categories depending on whether their overall lifetime was affected by more

or by less than 50% with the consideration of 10, as sink.
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Supporting Information. UV-vis spectra of SOA samples, quantum yields calculations for SOA,
SRFA, juglone, PM, filters and precursor compounds, rate constants used in the model box calculation,

SUVA,.,, MS data.
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