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Abstract

Given a 7-dimensional compact Riemannian manifold (M, g) that admits G,-structure, all
the G-structures that are compatible with the metric g are parametrized by unit sections of
an octonion bundle over M. We define a natural energy functional on unit octonion sections
and consider its associated heat flow. The critical points of this functional and flow precisely
correspond to G,-structures with divergence-free torsion. In this paper, we first derive esti-
mates for derivatives of V(¢) along the flow and prove that the flow exists as long as the
torsion remains bounded. We also prove a monotonicity formula and an e-regularity result
for this flow. Finally, we show that within a metric class of G,-structures that contains a
torsion-free G;-structure, under certain conditions, the flow will converge to a torsion-free
G-structure.

Mathematics Subject Classification 53C10 - 53C29 - 58E30 - 58E15

1 Introduction

A fundamental problem in the study of 7-dimensional manifolds with G, -structures is the
question of general existence conditions for torsion-free G,-structures, which are the ones
that correspond to metrics with holonomy contained in G2. One of the possible approaches is
to try and construct a flow of G;-structures which under certain conditions would converge to
torsion-free G,-structures. This approach was originally pioneered by Robert Bryant [6] when
he introduced the Laplacian flow of closed G,-structures, i.e. ones for which the defining 3-
form ¢ is closed. Later, Karigiannis, McKay, and Tsui [33] introduced a similar flow, known as
the Laplacian coflow, for co-closed G»-structures. It has some similar properties to Bryant’s
flow - its stationary points are precisely torsion-free G,-structures, and it may be interpreted
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as the gradient flow of the volume functional. However, as discovered in [20], it has a crucial
deficiency in that it is non-parabolic. In that paper, the author attempted to rectify the coflow
by introducing the modified coflow, which has an additional term that changes the sign of the
term that made the coflow non-parabolic, but would still preserve the co-closed condition.
However, the new flow lacks some of nicer features of the original coflow—in particular,
it has additional non-torsion-free stationary points and it is not known if it can be written
as a gradient flow of some functional. One of the advantages of working with co-closed
G»-structures is that they are generally more abundant than closed ones. An application of
the h-principle in [11] shows that any compact manifold that admits G-structures will also
admit co-closed G;-structures. Therefore, it is very important to understand under which
conditions it is possible to deform a co-closed G, -structure to a torsion-free one.

More specifically, given a co-closed G;-structure, i.e. one where ¥ := *¢ is a closed 4-
form, the linearization at v of the corresponding Hodge Laplacian is an indefinite operator.
This is in contrast to the closed case, i.e. when d¢ = 0, where the linearization at ¢ of
Ay is a semi-definite operator, which can then made strongly elliptic by the addition of a
Lie derivative term to take into account diffeomorphism invariance. In the co-closed case,
the term that causes Ay, to be indefinite is 777 (Ay ) , which is the component of Ay v in
the 7 -dimensional representation A‘71 of G,. This term is however determined by div 7—
the divergence of the torsion [20,24]. It should be noted that for closed G»-structures, div T’
always vanishes [6], so thatis why this issue doesn’t arise in that case. Therefore, the condition
divT = 0 may be thought of as another “gauge-fixing” condition to make Ay elliptic.
From the point of view of G,-structure coflows, the condition div 7 = 0 makes the original
and modified coflows equal to leading order. Therefore, these considerations make it very
important to understand this divergence-free torsion property and in particular, under which
conditions do G;-structures with div 7 = 0 exist.

Another motivation for looking at divergence-free torsion comes from the following obser-
vation. As noted above, div T enters the A‘7t part of Ay v. However, it is known [31] that
deformations of ¢ along A3, and equivalently of ¥ along A%, keep the metric unchanged
and simply deform the G;-structure within a fixed metric class. Therefore, fixing div7T =0
essentially corresponds to taking particular a representatives of the metric class. Indeed, in
an investigation of isometric Gp-structures (that is, ones that are compatible with the same
metric) in [23], it was found that on a compact manifold, G,-structures with div7 = 0 are
precisely the critical points of the L?-norm of the torsion when restricted to a fixed metric
class. In [23] this functional was also reformulated as an energy functional & = [, |DV 12 vol
for unit octonion sections that parametrize isometric G-structures, were V' is a unit octonion
section and D is the octonion covariant derivative defined with respect to some fixed back-
ground G»-structure. This allowed to rewrite the condition div 7 = 0 as a semilinear elliptic
equation for octonion sections and similarly, the negative gradient flow of & then becomes a
semilinear heat equation

v
E=ADV+|DV|2V (1.1)
where Ap = —D*D is the Laplacian operator corresponding to D.

Given that (1.1) precisely corresponds to the A‘71 component of the Laplacian coflow, it
is crucial to understand its properties in more detail. In particular, it is expected that at least
under some conditions, it should converge to a G-structure with div 7 = 0. In future work,
this may be used as a gauge-fixing condition that could relate the original coflow and the
modified one.
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It is noteworthy that this flow has remarkable similarities to the harmonic heat flow and
the Yang—Mills flow. Just as these two classical flows, (1.1) appears as the gradient flow of
an energy functional and in the analysis it becomes clear that many of the tools used for the
harmonic heat flow and the Yang—Mills flow can be adapted in this setting as well. As such,
it is another example of a flow that doesn’t change the geometry of the underlying space (as
opposed to the Ricci flow and aforementioned Laplacian flows of G-structures), but is still
fundamentally related to the geometry.

In this paper, we first give a brief overview of G;-structures and octonion bundles in Sects.
2 and 3. Then, in Sect. 4 we reintroduce the energy functional for octonions and consider some
of its properties. In Sect. 5, we then work out estimates for the flow (1.1). For convenience,
we introduce the quantity A (x,7) = |[DV (x,1)*> = [TV |2 , where T() is the torsion of
the G,-structure that corresponds to the octonion section V. We work out the evolution of
derivatives of V and prove the following

1. If V (¢) is a smooth solution to (1.1) on a finite maximal time interval [0, #,ax ), then for

any 0 < ¢ < fiax.,
2Ry

(14 32 ) e4rr -1

where A (t) = sup,cy A(x,7) and Ry, R, are some constants that depend on the
curvature and the background G,-structure.

2. If V (¢) is a smooth solution to (1.1) on a finite maximal time interval [0, fnax), and A ()
is bounded, then all derivatives of V also remain bounded.

3. Aslongas A (t), and hence |T(V) , remains bounded, there will exist a smooth solution
V (¢) to the flow (1.1).

A(r) <

- R (1.2)

The methods used here are similar to what Lotay and Wei [36] used for the Laplacian flow
of G-structures, Weinkove [42] used for the Yang—Mills flow, Grayson and Hamilton [19]
used for the harmonic map flow, and which originally Shi [39] introduced for the Ricci flow.
In Sect. 6, given a solution V of (1.1), we define the quantity

Z () = (to —z)/ DV |? k vol (1.3)
M

where k is a positive scalar solution of the backwards heat equation, evolving backwards in
time from ¢t = ty, and in Theorem 6.1, we prove that Z (¢) satisfies an almost monotonicity
formula. While Z (¢) is not strictly monotonic along the flow, it is well-behaved and can be
controlled. In particular, we show that for t > 7,

Z(t)<CZ(t)+C(t—r1) (éao+é"0%> (1.4)

where C is some constant that depends on the geometry of the manifold and & is the initial
value of the functional &. This is similar to the monotonicity results obtained by Hamilton for
the harmonic map heat flow and the Yang—Mills flow in [27]. Other versions of monotonicity
results had been obtained for the harmonic map flow in [7,8,40] and for the Yang—Mills flow
in [9,29,34].

In Sect. 7, we define the .# -functional, which essentially replaces k in Z by the heat kernel
of the backwards heat equation. Applying the monotonicity formula allows us to prove an
e-regularity result for solutions of (1.1) in Theorem 7.1, which says that if .# < & for some
& > 0, then the flow may always be smoothly extended. This then leads on to global existence
of solutions for sufficiently small initial energy density A9 = |[DV (0)|%. This again builds
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upon prior work on the harmonic map heat flow and the Yang—Mills flow. An elliptic version
of e-regularity for harmonic maps was originally introduced by Schoen and Uhlenbeck in
[38], and parabolic versions were given by Struwe [40], Chen and Ding [7], Grayson and
Hamilton [19]. For the Yang-Mills flow, e-regularity results were given by Chen and Shen
in [9] and Weinkove in [42].

In Sect. 8, we consider a special case when the flow takes place in the presence of a torsion-
free G,-structure, that is, the metric has holonomy contained in G;. In that case, we can take
the background G;-structure to be torsion-free, and consider the flow (1.1) starting from an
arbitrary octonion section. That particular torsion-free G-structure is then represented by
constant octonion sections =+ 1. Therefore, it makes sense to decompose the unit octonion
V (¢) intoreal and imaginary parts and then the evolution of the real part f (#) = Re V (¢) is of
particular interest. Indeed, we find that f2 satisfies the Minimum Principle, so that pointwise,
it is bounded below by its infimum at t = 0, and moreover, if initially inf | f (0)| > 0, then
the L'-norm of f grows monotonically along the flow, with the time derivative bounded
below by a constant multiple of &. This is significant because clearly | f (¢)| is bounded
above by 1, and hence if the flow exists for all # > 0 (such as under the condition from Sect.
7), then it must reach a torsion-free G-structure, i.e. a global minimum of &. This is again
very similar to the behavior of the harmonic map heat flow, where if the flow satisfies a small
initial energy condition and the initial map is homotopic to a constant map, then the heat flow
will converge to a constant map [7].

Note that two days after the initial version of this paper appeared on arXiv, a paper by
Dwivedi, Gianniotis, and Karigiannis [14] that has a substantial but independent overlap with
this paper has also been posted. However, while a number of conclusions and techniques are
similar, the points of view on the flow (5.1) are different. In this paper, we regard this as a
flow of octonion sections, while in [14] a more traditional geometric flows approach is used.
Both approaches are valuable and complementary and provide different perspectives on the
same phenomenon. Since the appearance of the initial versions of these two papers, there has
been a very useful cross-pollination of ideas and in the final version of the present paper in
some instances we allude to [14] for additional clarity and completeness.

Even more recently, a preprint by Loubeau and Sa Earp [37] appeared, where a similar
flow is studied but from yet another point of view. In [37], a more general concept of a
harmonic geometric structure is defined, which in the G, case reduces to critical points of
the functional &—that is, G -structures with divergence-free torsion. Similarly, the harmonic
flow of geometric structures then reduces to the flow (1.1) in the G, case.

2 Gy-structures

The 14-dimensional group G is the smallest of the five exceptional Lie groups and is closely
related to the octonions, which is the noncommutative, nonassociative, 8-dimensional normed
division algebra. In particular, G, can be defined as the automorphism group of the octonion
algebra. Given the octonion algebra O, there exists a unique orthogonal decomposition into
a real part, that is isomorphic to R, and an imaginary (or pure) part, that is isomorphic
to R’

O=R@R’ 2.1)

Correspondingly, given an octonion a € O, we can uniquely write

a=Rea+1Ima
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where Rea € R, and Ima € R”. We can now use octonion multiplication to define a vector
cross product x on R”. Given u, v € R7, we regard them as octonions in /m Q, multiply
them together using octonion multiplication, and then project the result to Im @ to obtain a
new vector in R’

u xv=Imuv). 2.2)

The subgroup of GL (7, R) that preserves this vector cross product is then precisely the group
G». A detailed account of the properties of the octonions and their relationship to exceptional
Lie groups is given by John Baez in [2]. The structure constants of the vector cross product
define a 3-form on R, hence G, is alternatively defined as the subgroup of GL (7, R) that
preserves a particular 3-form ¢q [30].

Definition 2.1 Let (e1 e, e7) be the standard basis for (R7)*, and denote ¢’ A e/ A e
by ¢'/%. Then define g to be the 3-form on R given by
00 = €1 4 o145 4 Q167 | 246 _ 257 _ 34T _ 356 (2.3)

Then G is defined as the subgroup of GL (7, R) that preserves ¢p.

In general, given a n-dimensional manifold M, a G-structure on M for some Lie subgroup
G of GL (n,R) is a reduction of the frame bundle F' over M to a principal subbundle P
with fibre G. A Gj-structure is then a reduction of the frame bundle on a 7 -dimensional
manifold M to a G,-principal subbundle. The obstructions for the existence of a G,-structure
are purely topological. It well-known [16-18] that a manifold admits a G,-structure if and
only if the Stiefel-Whitney classes w; and wy both vanish.

It turns out that there is a 1-1 correspondence between G -structures on a 7-manifold
and smooth 3-forms ¢ for which the 7-form-valued bilinear form B, as defined by (2.4) is
positive definite (for more details, see [5] and the arXiv version of [28]).

1
By (u,v) = 3 (uap) AN (vap) N @ 2.4)

Here the symbol _ denotes contraction of a vector with the differential form, which can be
written in local coordinates as

(U) i = U Pamn 2.5)

where we have also used the Einstein summation convention, which we will be using hence-
forth whenever dealing with expressions in local coordinates.

A smooth 3-form g is said to be positive if By, is the tensor product of a positive-definite
bilinear form and a nowhere-vanishing 7-form. In this case, it defines a unique Riemannian
metric g, and volume form vol, such that for vectors u and v, the following holds

1
8y (u, v)vol, = 3 (uap) A (va@) A @ (2.6)

An equivalent way of defining a positive 3-form ¢, is to say that at every point, ¢ is in
the GL (7, R)-orbit of ¢g. It can be easily checked that the metric (2.6) for ¢ = ¢ is in
fact precisely the standard Euclidean metric gg on R”. Therefore, every ¢ that is in the
GL (7, R)-orbit of ¢y has an associated Riemannian metric g that is in the GL (7, R)-orbit
of go. The only difference is that the stabilizer of go (along with orientation) in this orbit
is the group SO (7), whereas the stabilizer of ¢g is Go C SO (7). This shows that positive
3-forms forms that correspond to the same metric, i.e., are isometric, are parametrized by
SO (1) /Gy = RP7 = §7 /Z»> . Therefore, on a Riemannian manifold, metric-compatible
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G-structures are parametrized by sections of an RIP’-bundle, or alternatively, by sections of
an S”-bundle, with antipodal points identified.

The intrinsic torsion of a Gy-structure is defined by Vg, where V is the Levi-Civita
connection for the metric g that is defined by ¢. Following [32], we have

Va¥bed = 2T, Y ppeq (2.7a)
VaVbcde = —8Tu[pPede (2.7b)

where T, is the full torsion tensor, note that an additional factor of 2 is for convenience, and
Y = xg is the 4-form that is the Hodge dual of ¢ with respect to the metric g. In general
we can split T, according to irreducible representations 1, 7, 14, and 27 of G into forsion

components

1 1 1

2T = 198 — 1129+ =10 — =T 2.8

F08— N9+ ST = 3T (2.3
where 7 is a function, and gives the 1 component of 7. We also have ty, which is a 1-form
and hence gives the 7 component, 15 is a 2-form in the 14 representation, and 73 is a traceless
symmetric 2-tensor, giving the 27 component. As shown by Karigiannis in [32], the torsion
components t; relate directly to the expression for d¢ and dv. In fact, in our notation,

de = 0¥ + 311 A @ + iy (13) (2.92)
dyr = 41) Ay + *15. (2.9b)

Here i, is a map that takes symmetric 2-tensors to 3 -forms and given a decomposable 2-tensor
o ® a, where « is a 1-form,

1
ip (0 @a) = ga A (o) .

Note that in [20-22,25] a different convention for the torsion is used is used: 7; in that
convention corresponds to %‘L’o here, 77 corresponds to —1 here, iy (127) corresponds to
—%13, and 114 corresponds to %‘62. The notation used here is widely used elsewhere in the
literature.

An important special case is when the G-structure is torsion-free, that is, 7 = 0. This
is equivalent to V¢ = 0, and hence torsion-free G;-structures are also called parallel G2-
structures. Also, by Fernandez and Gray [16], this condition is also equivalentto dgp = dyy =
0. Moreover, a G,-structure is torsion-free if and only if the holonomy of the corresponding
metric is contained in G [30]. On a compact manifold, the holonomy group is then precisely
equal to G if and only if the fundamental group 7y is finite. If dp = 0, then we say ¢ defines
a closed Gj-structure. In that case, 79 = 17 = 73 = 0 and only 73 is in general non-zero. In
this case, T = %rz and is hence skew-symmetric. If instead, dy» = 0, then we say that we
have a co-closed G;-structure. In this case, 7; and 1, vanish in (2.9b) and we are left with
70 and t3 components. In particular, the torsion tensor 7, is now symmetric. There are of
course other, intermediate, torsion classes. For example, if 7] is the only non-zero torsion
component, the G, structure is said to be locally conformally parallel, since it is known
[10,21] that a conformal transformation can at least locally give a parallel G-structure. If 7,
is exact, then a suitable conformal transformation gives a global parallel G,-structure.

3 Octonion bundle

In [23], the author defined the octonion bundle on a manifold with a G, -structure.
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Definition 3.1 Let M be a smooth 7-dimensional manifold with a G,-structure (¢, g). The
octonion bundle OM = A® @ TM on M is a rank 8 real vector bundle equipped with an
octonion product of sections given by

_ ab—g(a, )
Ao"’B_<a/3+ba+a><(pﬂ> 3.1)

for any sections A = (a,«) and B = (b, B) . Here we define x, by g (a x, B, y) =
¢ (a,B,y) and given A € I' (OM), we write A = (Re A, Im A). The metric on TM is
extended to QM to give the octonion inner product (A, B) = ab + g («, B).

The product (3.1) is non-associative and the associator for oy, is given by
[A,B,Cl, = Aoy (Bo, C)— (Ao, B) o, C
=2(¥ (o, B )Y (3.2)

where «, 8, y are the imaginary parts of A, B, C and (¥ (-, «, B, y)) is the vector field
obtained from the 1-form v (-, v, B, ¥) using the metric.

Given the octonion bundle QM with the octonion algebra defined by the G»-structure ¢
with torsion tensor T, we can extend the Levi-Civita connection V to sections of OM. Let
A = (a,a) € I' (OM) , then define the covariant derivative on OM as

VxA = (Vxa, Vxa) (3.3)
forany X € I' (T M). Then, as shown in [23]
Vx (AB) = (VxA) oy, B+ Aoy, (VxB) — [Tx, A, B] 34
where Tx = (0, X JT'). We can then define an adapted octonion covariant derivative.

Definition 3.2 Define the octonion covariant derivative D such forany X € I' (TM),
Dy : T (OM) — I (OM)

given by
DxA =VxA— Ao, Tx (3.5)

forany A € I (OM). As before, Tx = (0, X_T) € I’ ImOM).

From now on, let us suppress o, for octonion product defined by ¢. As shown in [23], D
satisfies a number of useful properties. In particular, it is metric-compatible, and satisfies a
partial product rule

Dx (AB) =(VxA)B+ A(DxB). (3.6)

We can also see that
Dx1 = —Tx. 3.7

For a fixed vector field X, we have Tx = (0, X_T) € I' (Im QOM), so the full torsion tensor
T may now be interpreted as a 1-form with values in Im QM , that is, T is a map from
I'(TM) to I" (Im QM) that takes X to Tx. So as in [23], we will regard T € 2! (Im OM).
Recall from [23], that given a unit octonion section V on OM we may define a modified

product on OM
Aoy B=(AV)(V'B)= AB+[A, B, VIV~! (3.8)
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This product then induces a new G»-structure that is compatible with the same metric g as
¢ and is given by

ov (p) = (v — v*) @ — 2vpvy + 20 A (Vo) (3.9)

where V = (v, v). It was explained by Bryant in [6] that all G,-structures that are isometric
to ¢ are given by (3.9) for some V. In particular, this also gives an explicit parametrization
of G;-structures that are compatible with g as sections of an S7/Z, = RP7 -bundle over M.
In [23] it was shown that given two unit octonion sections U and V/,

ou (ov (9)) = ouv (9). (3.10)

This allows to move easily between isometric G-structures. Moreover, it was also shown
how the torsion and hence the octonion covariant derivative D depend on the choice of V.

Theorem 3.3 ([23]) Let M be a smooth 7-dimensional manifold with a G, -structure (¢, g)
with torsion T € 2! (ImQM) and corresponding octonion covariant derivative D. For a
unit section V. € I (OM), consider the Ga-structure oy (). Then, the torsion T of
oy () is given by

TV = —(pV)v~l. (3.11)

Also, let DY) be the octonion covariant derivative corresponding to oy (¢) . Then, for any
octonion section A, we have,
DMA =D AV) VL (3.12)

We will refer to a particular choice of a G,-structure on M as a background G,-structure.
Namely, given a background G, -structure ¢, we will write any other isometric G»-structure
as oy (p), or will just refer to it as the G,-structure defined by the octonion section V.
Similarly, the octonion derivative D will be defined relative to ¢ and its torsion 7. From
(3.10) and (3.12) we see that we can easily change the background G»-structure.

For some tensor bundle .7 on M, define .7 ® OM to be the bundle of octonion-valued
tensors. Then we can extend D to sections of .7 ® QOM, and in particular we can also define
the covariant exterior derivative on sections 27 (QOM) of the bundle of octonion-valued
differential forms (APT*M) @ OM

dp : 27 (OM) — 2P OM). (3.13)

such that .
dpQ =dvQ — (—DP O AT (3.14)

where dvy is the skew-symmetrized V and A is a combination of exterior product and octonion
product. Also define the divergence of a p-form P with respect to D as the (p — 1)-form
Div P, given by
. b
(DIV P)bz...bp = Db] Phlzuhp' (315)

In [23] we found the following properties of 7 as a Im QM -valued 1-form

Proposition 3.4 Suppose the octonion product on QM is defined by the G-structure ¢ with
torsion T. Then,

1
dpT = 1 (777 Riem) (3.16)
Divl = TP +divT (3.17)
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where 7 Riem € 22 (ImOM) = 2% (TM)-a vector-valued2-form given by (77 Riem) ., =
(Riem) y,, ™. Also, divT € 20 (ImOM) is given by (divT)* = VPT,* and |T|* €
20 (ReOM) is given by |T|> = T, T.

In particular, using Proposition 3.4, we can now work out the commutator [D,, Dp] on
octonion-valued tensors.

Lemma 3.5 Suppose P € I' (7 Q@ OM). Then,
1
D,DyP — D,D,P = Riem (P),, — ZP (7 Riem) (3.18)

where Riem (P) gives the action of the Riemann curvature endomorphism on P regarded as
asectionof 7O (7 QTM).

Proof From the definition of D (3.5) as well as the product rule property (3.6), we have

D,D,P = D, (Vp, P — PTp)
= VaVpP — (VpP) T, — (Vo P) Ty — P (D Tp)

and hence,
D,DyP — DD, P =V, V,P —V,V,P — P (D,T, — DpTy)
= Riem (P),, — %P (7 Riem)
where we have also used (3.16). O

For convenience, we’ll denote the curvature operator by F, so that
1
Fu, (P) = Riem (P),, — ZP (7 Riem) (3.19)
Define the Laplacian operator Ap on QM -valued tensors as
ApP =D“D,P (3.20)
where P € I" (7 ® OM) . More explicitly, this is given by
ApP = D (D, P)
= D*(V,P — PT),)
= D" (V,P)— (V*P)T, — P (D"T,)
= AP —-2(V,P)T* — P (DivT) 3.21)

For a tensor product of two QM -valued tensors, we find

Ap(P®Q)=D"((VaP)® 0+ P R (DaQ))
=(AP)® Q0 +2(VuP)® (DQ) + P ® (ApQ) (3.22)

‘We will also need to know how to commute Ap and D.

Lemma 3.6 Suppose P € I' (7 Q@ OM). Then,

1
Dy (ApP) — Ap (DpP) = =2 (Riemgy, V) (P) + 2 (VP) (r7 Riem),;,
— Ricpe VEP — Riemy,' (PT,) + Riemg, (P) T
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+% P (D (17 Riem),,) — (divRiem), (P).  (3.23)

where Riem is the Riemann curvature endomorphism on an appropriate tensor bundle.
Proof Using (3.18) and (3.6) repeatedly, we have

Dy, (ApP) = DyD*D,P = D*DyD,P + F,° (Dy P)
= ApDyP — D (Fup (P)) + F,* (D, P)

More concretely,

D“ (Fp, (P)) = D° (Riemuh (P) — iP (7m7 Riem)gb)
= (V“Riemgp) (P) + (Riemgp V?) (P) — Riemyp, (P) T¢
—411 (VP) (7 Riem),p, — %P (D (77 Riem) ., (3.24)
F,* (D4 P) = — Riem (V, P)%, — Riem,* (PT,) (3.25)

We also have
Riem (V, P)“, = Ricpe VP + (Riem?%, V,) P

where (Riem“b Va) P means a composition of operators V and Riem, both acting on sections
of the bundle .7 & (7 ® T M), as opposed to Riem (V, P)“ , where Riem acts on VP as a
section of the bundle 7*M ® (7 @ (7 ® T M)). Combining everything, we obtain (3.23).

O
In (3.23), note that
D? (77 Riem),, = V° (Riemabcd <p€d’"5m) — (77 Riem),, T°
= (div Riem) g U8,y + 2 Riemgpea Ty, S8,
— (77 Riem),;, T¢ (3.26)

where § is the canonical Im QM -valued 1-form that gives the isomorphism from 7T M to
Im OM, so in local coordinates, for any value of the index m, §,, is an imaginary octonion.
We see that any terms in (3.23) that do not involve derivatives of P, either involve div Riem
or a combination of Riem and 7. Hence, we can schematically write

D (ApP) = Ap (DP) + Riem xD P + (divRiem + Riem *T') x P (3.27)

where % denotes some contraction involving g and/or ¢.
Consider (Ap P, P)

(ApP,P)=(D,DP, P)
=V, (D*P,P)—|DPJ?
=V, (V*|P)* - (P,D"P)) — |DPI?
where we have used metric compatibility of D. Thus,
1
div(DP, P) = -4 |P? (3.28)

and hence, .
(ADP,P)=§A|P|2—|DP|2. (3.29)
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In particular, for a unit octonion section V/,

(ApV,V)=—|DV|*. (3.30)

4 Energy functional

Given a 7-dimensional Riemannian manifold that admit G,-structures, we have a choice of
G, -structures that correspond to the given Riemannian metric g. As we have seen, after
fixing an arbitrary Gp-structure ¢ in this metric class, all the other G»-structures that are
compatible with g are parametrized by unit octonion sections, up to a sign. Given a unit
octonion section V, the corresponding G,-structure oy (¢) will have torsion 7(V) given
by 79 = —(DV) V™!, where D is the octonion covariant derivative with respect to
¢. The question is how to pick the “best” representative of this metric class. The choice
of a particular G;-structure in a fixed metric class is similar to choosing a gauge in gauge
theory. Obviously, if the metric has holonomy contained in G, then the “best” representative
should be a torsion-free G, -structure that corresponds to that metric. On compact manifolds,
a reasonable approach would be to pick a gauge that minimizes some functional. The natural
choice is the LZ-norm of the torsion. Suppose M is now compact, in [23] the author defined
the functional & : I' (SOM) — R, where SOM is the unit sphere subbundle, by

g(V):/ )T(V)‘Zvol (4.1)
M
=/ |V V=" vol 4.2)
M
= [ |DV|*vol. (4.3)
M

This is simply the energy functional for unit octonion sections. It should be noted that & (V)
is independent of the choice of the background G;-structure and thus really only depends
on the G -structure oy (¢). So it may equivalently be considered as a functional on the
space of G-structures that are compatible with the metric g. A similar energy functional for
spinors has been studied by Ammann, Weiss and Witt [1], however in their case, the metric
was unconstrained, and so the functional was both on spinors and metrics.

Using the properties of D, we easily obtain the critical points.

Proposition 4.1 ([23]) The critical points of & satisfy
ApV +|DVPV =0 4.4)

and equivalently
divr") = 0. 4.5)

The condition (4.5) comes from the identity
ApV +|DVPV = —(divT<V>) V. (4.6)

We see from (4.5) that the critical points of & correspond to G-structures that have
divergence-free torsion. This description fits very well with the interpretation of the G-
structure torsion as a connection for a non-associative gauge theory. The condition div 7 = 0
is then simply the analog of the Coulomb gauge. It is well-known (e.g. [12,13,41]) that in
gauge theory, given some reference connection A, a connection A = Ag + a is said to be in
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the Coulomb gauge relative to Ag if d;';oa = 0 and A is gauge equivalent to Ag. Moreover,

a then corresponds to critical points of the L?-norm of A — A within the gauge group
orbit of Ag. In our situation, we have a very similar thing happening, where the Levi-Civita
connection V plays the role of the reference connection Ag and 7 has the role of a. The
divergence-free torsion condition can equivalently be written as d3, 7 = 0.

In general, unless DV = 0 (and hence TV = 0), critical points of & with div TV =0
will not be local extrema of &

Proposition 4.2 Suppose V (s, t) is a two-parameter family of unit octonion sections, then
the Hessian of & at a critical point is given by

92E (V (s, t . .

YeWisn) _ 2/ (DV, DV') = DV (V, V') vol @.7)
asot M

where V = 5 Ly (s,t)and V' = ds V (s, 1).

Proof To enforce the condition |V|? = 1, we may rewrite & as a functional on I" (OM) with
a Lagrange multiplier A

sW)= [ (DVE=2(VE 1))l
M

where A = |[DV |2 at a critical point. From [23] we know that the first variation is given by

3£(V( t))—/ (LDV( DI A3|V< 1% ) vol
a1 S0= o SO A I )VO

=2/ <<D3V(s,t),DV(s,t)> <V(s n, 2 V. z)>)
M Jt

and hence, the second variation is

W_zf (<D3V( 0.0 v t)> <D82V( B, DV ’)>
asar Sy \\ar Tt oo ;

gy gven)-alven. >)
Vs, 5V (5.0) V(1) 5oV (s.1)

a ad a
:2/ (<D*V(S,I),D*V(s,t)>— < Vis,t), V(s t)>
M at as

82
where we have integrated by parts. However, at a critical point A = IDV|? and (4.4) is
satisfied, hence the second derivative term vanishes and at a critical point obtain (4.7). O

The characterization of divergence-free torsion as corresponding to critical points of the
functional & shows that G;-structures with such torsion are in some sense special. On the
other hand, it is quite a broad class of G,-structures. In [23], a Dirac operator ) was defined
on the octonion bundle. For an octonion section V, nn local coordinates it is given by PV =
8% oy (D4 V), where § is the canonical Im @M -valued 1-form as defined in Sect. 3 and o,
is the octonion product defined by the G;-structure ¢. This definition is analogous to the
standard definition on spinors using Clifford multiplication. It was then shown that unit norm
eigensections of I are critical points of &. These correspond to G-structures with torsion that
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have constant 7 and vanishing t, but with arbitrary 7, and 73. An almost complementary set
of G-structures also yields divergence-free torsion—these are locally conformally parallel
G, -structures with 19 = 15 = 73 = 0 and 71 # 0. Overall, we have the following.

Theorem 4.3 Suppose ¢ is a G,-structure on a 7 -dimensional manifold, with torsion T and
components of torsion 1, Ty, T2, 13. Then, div T = 0 if one of the following holds

1. 7 is constant and t1 = 0 and arbitrary t» and 3
2. 10 = 1» = 13 = 0 and arbitrary Ty

Proof The condition 1 is proved in [23, Prop. 10.5]. For condition 2, recall from [16], that if
70 = 7o = 13 = 0, then dt; = 0. Then, from (2.8) and (2.7a), we have

mwnb:—m&ﬁ¢%):—ﬁwwﬂ

db ‘ db
= 2T]C adwa c = —Tfff%adlffa c

= —4r1"rfgoceb =0.

5 Heat flow

In general, however, we don’t know if the functional & has any critical points for a given
metric. However, another approach, that has been successful in the study of harmonic maps
and in Yang-Mills theory is to consider the negative gradient flow of &. This gives the
following initial value problem for a time-dependent unit octonion section V (¢) € I" (SOM)

& = ApV +|DV]*V
V©0) =W,

which was introduced in [23]. Here D is defined with respect to some background G-
structure ¢ with torsion 7'. This will be unambiguous because time-dependent G-structure
along the flow will be denoted by gy = oy (¢) with torsion 7¢V) and Hodge dual 4-form vy .
Although initially we have to make a choice of background ¢, we find that the flow is actually
invariant under a change of the background G,-structure. Indeed, suppose ¢ = oy (¢) , for
some unit octonion section U, then from (3.10),

ov () =oyy-1 (ou (9)) = oyy-1 (@) (5.2)

(5.1

Moreover, from (3.12),
DY (vu")y =vyu! (5.3)

where D) is the covariant derivative defined with respect to ¢. Now, consider the corre-
sponding Laplacian A pw)

Apwy (VUTY) = = (D(U)>* D (vu)
= <D<U)>* (OV)U)

= (ApV)U! (5.4)

where we have applied (5.3) twice. Hence, if we set W = VU —1 we find that (5.1) is
equivalent to

(5.5)

W Ay W+ DO W] W
W (0) = VoU ! ’
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Therefore, we can always change the background G»-structure as convenient.

The flow (5.1) is clearly parabolic and by standard parabolic theory, therefore has short-
time existence and uniqueness. In [3,14], this flow was reformulated explicitly in terms of
the imaginary part of V and was explicitly shown to be parabolic as a PDE on vector fields.

Theorem 5.1 There exists an ¢ > 0 such that there exists a unique solution of (5.1) on
M x [0, ¢&).

From (4.6), an equivalent way of writing the flow (5.1) is

vV
o= (dvr ™) v, (5.6)
ot
Moreover, as an evolution equation for gy (t) = oy () (¢), it can also be rewritten as
a t
(p;t( ) =2(divT 1))y (¢) (5.7)

which we can obtain from the following simple lemma.

Lemma 5.2 Suppose a one-parameter family of unit octonion sections V (t) satisfies the

evolution equation
w =—-QV (5.8)
ot
for some time-dependent sections Q (t) € I' ImOM). Then, the corresponding G-
structure 3-forms @y (t) = oy () satisfy the evolution equation
W~ 20 0y 1) (59)

and the torsion TV) satisfies

aT")
ot
where Xy is the cross-product defined by the G -structure @y (t).

=vQ @) +2TY) xy Q (1) (5.10)

Proof We can extract W by considering what happens to the modified product oy (1) (3.8).
Let A and B be two fixed octonions, then

3
o (Aove B)

%((AV) (VB))
(A%) (VB) + (AV) (?;B)

where we have used V~! = V since V is a unit octonion. Using (5.8) and % = V0, we
then obtain

d . _

= (Aovy B) = —(AQV)) (VB)+ (AV) ((VQ) B)
=—((Aoy Q) V)(VB) +(AV) (V (Qov B))

—(Aoy Q)oy B+ Aoy (Qov B)

=[4, 0, Bly

where we have again used the definition (3.8) of oy and [, -, -]y is the associator with respect
to oy. Using the relationship (3.2) between the associator and 1/, we obtain (5.9).
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Similarly,

aTV) _ K ((pvyvh _ V)V — (V) (v10)

at at
=DVo+7V oy 0 (5.11)
=vQ+27Y) xy Q. (5.12)

[m}

By definition of the negative gradient flow, the energy functional & is decreasing along
the flow (5.1) whenever divT # 0. More precisely, & (¢) satisfies the following equation,
which follows immediately from (5.10) with Q = div T.

Lemma 5.3 Along the flow (5.1), the functional & satisfies

ds 2
= —2/ jdiv 7| vol (5.130)
M
d*& 2 2 2
<= 4/ <‘D(V) (aiv @) [ = 70| |aiv ™| )vol (5.13b)
M

where we regard div TV) as sections of ImOM and TV € QL (ImOM) . The norm |-| is
obtained by extending the metric to 2" (OM).

Proof Using (5.10) with Q = div TV, we have

\%4
a¢ :2/ T(V),L() vol
dt M at
- 2/ (<T(V), VQ>+2<T(V), TV xy Q>) vol

M
= - /1|Qﬁvm
M

where the second term in the second line vanishes by symmetry considerations and the first
term is integrated by parts.
Using (5.11), and suppressing oy, we have

d*&€ _(aTV)
o —4/M<Q,dlv( ” >>V01
=—4 .div(D" Q@+ 1™ I
/M <Q iv ( 0 Q>> s

_ 4/ <VQ, PV + T<V>Q>vol
M

- 4/ (P o+ 01™, DY 0+ T 0)v0l
M

- 4/ (‘D(WQF +<QT<V> +7Mo, p™ Q)
M

+ (QT(V), T<V>Q>) vol. (5.14)

Note that Q and T(") are both imaginary octonions, so QT") + TV) Q only has a real part.
On the other hand, in
DV =vo-0r",
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the derivative term V Q is pure imaginary so the real part comes from QT V). Hence
<QT(V) +7Wo, D(V>Q> — —<QT(V) +7Wo, QT(V))_

d*& 2 2
= :4/ <‘D(V)Q‘ - ‘QT(V)‘ )Vol.
M

However, note that more explicitly, we can write

Thus, overall,

2
01| =g (o1, 01,")
_ gab<Q (QTa(V)) 7 Tb(v)> _ gab<(QQ) TV, Tb(v)>
= 1op|rf
and hence we obtain (5.13b). ]

Remark 5.4 To work out the second derivative, we could alternatively use (5.10) to obtain
& : W)
42 _ 4 <Q,d1v (VQ+2T Xy Q)>v01
dr? M

:4/ |VQ|2+2<VQ,T<V> Xy Q>vo]. (5.15)
M
This is then essentially the same expression that appears in Lemma 5.10 in [14].

In [14], the second derivative of & was estimated using the first non-zero eigenvalue of the
Laplacian on vector fields as long as the pointwise norm square of the torsion was sufficiently
small. From (5.13b), we can say that

d*¢ 2
£ 5 (V)/ aiv 7| vol (5.16)
dr? M

where A1 (V) is lowest (non-zero) eigenvalue of the operator Hy = —A pwv) — |T(V) |2 .By

compactness of M, this operator clearly has a discrete spectrum. Also, from (3.7) and (3.17),
we see that div ") = —Hy (1), and hence, div T(") is L?-orthogonal to the kernel of Hy .
The operator —A vy has a non-negative spectrum that is independent of V', which can be
seen from the covariance property (5.4), however Hy will in general have a spectrum that
depends on V, and does not have to be non-negative. On the other hand, if |T(V) |2 is less
than first non-zero eigenvalue of —A v, then A1 (V) will be positive, and thus we obtain
an analogue of the estimate from [14].

Corollary 5.5 Let A > 0 be first non-zero eigenvalue of the operator — A p. Then, whenever
TV =DV < 1A,

d 2 2
—f ‘divT(V)‘ volf—kf ‘divT(V)‘ vol. (5.17)

We will adapt the techniques introduced by Shi for the Ricci flow [39], that were later
used in [19] for the harmonic map heat flow and in [36] for the Laplacian flow of closed
G»-structures, to prove estimates for a finite time blow-up for the flow (5.1). Let us introduce
the quantity

A(x,t)=|DV (x,1)|*. (5.18)
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Of course, from (3.11), we see that A (x, 1) = |T(V) (x, t)|2 .
Atevery ¢ € R for which (5.1) is defined, let us also define
A(t) =sup A(x,1). (5.19)
xeM
Let A (0) = A be the maximal initial energy density, and equivalently the maximal initial

pointwise norm squared of the torsion tensor sup, ¢, ’T(V) (x,0) ‘
Our main result in this section is the following

Theorem 5.6 Suppose V (1) is a solution to (5.1) on a finite maximal time interval [0, tmax).
Then

lim A(t) =00 (5.20)
t—> tmax
and moreover,
1
Alt)= — — (5.21)
2 (tmax - t)

where Co > 0 depends on the curvature and torsion of the background G»-structure.

The above theorem in particular shows that aslong as A () , and equivalently ‘ TW (x,1)],
is bounded, a solution to (5.1) will exist. To prove Theorem 5.6, we will use the following
strategy

1. We will work out the evolution of DV and hence |DV |2 in Lemma 5.7. From the Maxi-
mum Principle, this will also give an upper bound for A (¢) in Theorem 5.9.

2. We will obtain the evolution of |D2V|2 and |D3V 2, and then in Theorem 5.10, by
induction we will obtain bounds on |Dk \% |2 in terms of A.

3. These bounds will then be used to show that whenever A (¢) is finite, the flow V () may
be smoothly extended further. This will then prove (5.20).

In the estimates that follow, we will use * to denote any multilinear contraction that involves
2,8~ ' o, ¥, and we will drop irrelevant constant factors. Sometimes we will generically
use C for a constant, which may denote a different constant in different places.

Lemma 5.7 Along the flow (5.1), |DV |? evolves as

d(IDV?)

= Ap DV =2|D*V[" +2|DV[* — 4Riem}, ((Var") 8. D7V

1
—2Ricp VPV, DV + 5 ((v*v) (s Riem),, DV
. . m o ,n b 1 . . b
—2(divRiem)," v <8m, D V) + 3 <V Div (7 Riem);, , D V>
2 (Riemab (V) T* — Riem (VT,). va> (5.22)

where v = Im V. Moreover, the evolution of |DV |? satisfies the following inequality

9DV 2 21712 4 2
5 < A|DV[]* =2|D*V|" +2(IDV|* + 2R, IDV|* + R, |DV]) (5.23)

where Ry is a constant multiple of sup,, |Riem| and R, is a linear combination of
sup,, |div Riem| and sup,, |T'| |[Riem|.
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Proof We have V satisfying the flow
A%
W=ADV+|DV|2V (5.24)
and hence, using Lemma 3.6,
a(DV
DV) _ (v
at ot
=D (ApV)+ (VIDVI*)V +|DV|* DV
= Ap (DV) + Riem *DV + (divRiem + Riem *7") * V

) =D (ApV +|DV*V)

+ (VIDV?)V + DV DV. (5.25)
Moreover, now,
d|DV|? 3 (DV)
=2 ,DV
at ot
=2(D(ApV),DV)+2|DV|*. (5.26)

Using (3.29), we then obtain (5.22). The inequality (5.23) follows immediately using (3.27).
O

Corollary 5.8 If the background G,-structure ¢ is torsion-free, then VV|? satisfies the fol-
lowing evolution equation

a(IVVI?)
or
where Riem (Vv, Vv) = Riemgpeq (V40) (vad)for v=ImV.

= AIVVI2=2|V2V[* 4+ 2|VV[* + 4Riem (Vv, Vv) (5.27)

Proof If T = 0, then D = V. Also then 7 Riem = 0, and hence Ric = 0, and similarly
div Riem = 0. Then, (5.27) follows immediately from (5.22). ]

The expression (5.27) is similar to the evolution of the energy density of harmonic maps in
[15], however we have the additional |V V|* term that is quadratic in the dependent variable.
As it is well-known in the theory of semilinear PDEs, such quadratic terms in general lead to
blow-ups. We can however get an estimate on the maximal time for which the energy density
is finite.

Theorem 5.9 Suppose V (t) is a solution to (5.1) on a finite maximal time interval [0, tmax)-
Then for any t € [0, tmax),

2R

(14 28 ) eshir — 1

A(t) < — Ry, (5.28)

where Ry is a constant multiple of sup,, |Riem| and R, is a linear combination of
sup,, |div Riem| and sup,, |T'| |[Riem|.

Proof From (5.23), using Young’s inequality, we can say that for any ¢ > 0

a|DV|? 2 21712 4 2, 1
S SAIDVE 2DV 2 (IDVIF +2(Ri +eRo) DV + R
€

< AIDVP =2|D?V] +2(eRy + IDV)* + 4Ry (eRy + 1DV )
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1
—262R3 — 4R Ry + ke (5.29)
€
Taking ¢ such that 4eR; > ﬁ, then redefining R, as ¢Rj, and using i (x,1) = Ry +

DV (x,1)|?, we get

oh
o = Ah =2 |D?V|* +2h% + 4Ry . (5.30)

Note that in the torsion-free case, from (5.27), we can set Ry = sup,, |[Riem|. Now, & is a

subsolution of the equation

0]

a—': — Au+2u> +4Ru. (5.31)
By the Maximum Principle, & (x, t) is dominated by solutions of (5.31)if A (x, 0) < u (x, 0)
for all x. Since for r = 0, h (x,0) < h(0), we can take u = u (t) with u (0) = h (0) =
Ao+ R>. Solving the ODE % = 2u? + 4R, u with these initial conditions, then gives us the
bound (5.28). O

Given a solution V to (5.1), define A" (¢) = sup,p, ('Dm V (x, t)|2> . Then we have
the following estimates.

Theorem 5.10 For any positive integer m > 2 there exists a constant C,, > 0 that only
depends on M and the background G»-structure, such that if V (t) is a solution to (5.1) for
t € [0, tg) with A (t) < K, with K > 1, then

A (1) < CuK™ fort € [0, 1y). (5.32)

Proof Consider first the evolution of D2V . From (5.25) and (3.27), we can write schemati-
cally

3 (D?V) DV
=D
ot ot
= DAp (DV) + D*(IDV|*V)

+ D (Riem*DV) 4+ D ((divRiem + Riem *7) * V) .

Applying (3.27) again, we have

M—A (D*V)+V*(IDV|*) V +2V (IDV[*) DV + |DV|* D*V
ar P
+ Riem #*D?V + (V Riem + Riem *T) * DV
+ (V (divRiem) 4+ V Riem 7 + Riem %7 * T + Riem *VT) % V
(5.33)

and thus,

o (|p2v[’) : :

T:A[DZH —2|D*V|" +2(V2(IDV*) V, D*V)

+4(V(IDV) DV, D*V)+2|DV|* | D?V [}

+ (Riem*D*V, D*V) 4 ((V Riem + Riem +T) * DV, D*V)

+ ((V (divRiem) + V Riem #T + Riem +T * T + Riem +VT) % V, D*V).
(5.34)
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Also, note that

(V. DaDpV) = Va(V,DpV) = (DaV, DpV) = = (DaV, DpV)  (5.35)
VoV IDVI* = V, ((DyD.V, DV) + DV, DyDV))

=2(D,DyD.V,DV)+2(DyD.V, Dy DV) (5.35b)
V(IDV|*) =2(DV, D*V). (5.35¢)
Thus,
(V2(IDVP) V, D*V) = 2(D, D, DV, D°V)(V, DDV
~2(DyDcV, DDV)(DV, D"V
and hence,

(V2 (1IDVIP) Vv, D2V)| < 2|D3V]IDVP +2|D>V| DV
(V(IDVP) DV, D?V) < 2|DV DV [ .
Overall, we then get
2 (I0v[’) : : 2
———— = ADV] 2|V +4|DV[IDVF + C1 DV [DV]
+Co |D2V[ 4 3 |D2V| 1DV + €4 | DV . (5.36)

Now, using Young’s inequality for any €1 > 1 we have

3 3_ 83,2, L 6
|D’V|IDV] < 5 |DV| + e |DV|

and hence (5.36) becomes

o (|p2v[)

= APV —20—en DV +Cr A+ D[DV]

+C (A D)+ AWK, D).
Now, by hypothesis, A (x,t) < K, and K > 1, so we have

p2v)?
8(} V|) 21,12 31,12 21,12 3
—— <AIDV] =2 —e) D’V + CiIK [D*V|"+ C2K°,  (5.37)
where we assume ¢; < 1. From (5.23), we also have
0A (x,t
;f ) 2 an—2|D?V] + K. (5.38)
Now let s
h= 8K+ Ax,0)|D*V|". (5.39)
Then,
27712
Oh AN a4 ) o (|0*v[?)
-0 _ eVl x, 1) — 7
ot ot ot

< |D*V]P AA (e, 1)+ BK + Ax,1) A | DV
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—2p?v['—16(1 —en K |DPV]
+CiK? |D*V| + Gk (5.40)
for some new constants C; and C,. On the other hand,
Ah = |D*V|P AA (x,1) + 8K + A (x,0) A|D*V [’ + 2,4 | D>V |

and

v

29,4V DV [ = =2|V DV ||V [D?V [

—8|pV||DV||D*V|?

v

4

%

1
—166:K |DV|" = — |D?V

)
where we have used Young’s Inequality with &, > 0. Thus, overall,

ID2V|> AA (x.1) + 8K + A (x,0) A|D2V[* < Ah + 162K | D3V |

1
+— [p2v |, (5.41)
)
and so we obtain
ah 1
5, SAh+I16K (1 +e2- DK D3V + <— —2) \p?v|*
&2
+C K2 D>V | + ¢k
1
< Ah+ 16K (1 + 62 — DK |D’V[* + <— + 3 —2) ip?v[*
&2
Cy 4
+(—+C) K7, (5.42)
dey

where we again applied Young’s Inequality with some £3 > 0. Then, since |D2V|2 < &,

after an appropriate choice of €1, &2, €3, we find that there exists a positive constant C such
that

ah h?
— < Ah— —— 4+ CK*. 5.43
or — CK? + (5.43)
Now considering solutions of the ODE
du _ u? 4+ CK?
dt ~  CK? ’
we find that
u<CK?>.
Therefore, by the Maximum Principle, we also find that
h < CK3,
and hence
21,12 2
|D°V|" < CK (5.44)
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for some other constant C > 1. Note that using (5.44) we can rewrite ( 5.37) as

o (Ip2v[) ) 2
— = S ADV[ =28 [DV] 4 G3K7 (5.45)

fore; < 1.
Now assuming bounds for the first and second derivative we will obtain a bound for

|D3V‘2. From (5.33) and (3.27), it is not difficult to see that

9 (D3V
(T) = Ap (D*V) + D*(IDV* V) + Riem xD*V
+Ry % D*V + Ry« DV + Ry (5.46)
where R; fori = 0,1, ...,k — 1 are some tensors that combine derivatives of Riem and 7.

Now, taking the inner product of (5.46) with D3V and applying (3.29), we obtain

a|D3Vv|

——— = A[D'V[ =2 |D*V[ + (D (VP V). D'V)

+C|D V] +C|D*V||DV|+ CIDVI|DYV| 4+ C|DPV]. (5.47)

Let us focus on the third term on the right-hand side of (5.47). Schematically, ignoring indices
on derivatives, we have

D¥(IDVI*V) = (V¥ IDV*)V +3(V2|DV|*) DV +3(V |DV*) D*V
+ |IDV|? D’V (5.48)
and since D3 (V, V) = 0 we also have
(v,D*V)=-3(DV, D*V).
Thus,
(D* (IDVI* V), D*V) = =3 (V?|DV|*)(DV, D*V)

+3(V2|DVI*)(DV, D*V)
2

+3(VIDV]*)(D*V,D*V)+|DV*|D*V]", (5.49)
and applying bounds |DV| < CK%, }D2V| < CK, we, get
(D 1DV V), D*V)| < CK? |D*V |+ CK |[D*V [’ + CK*
<2 |D*V] 4+ CK |D’V|* + CK*,
where we also used Young’s Inequality on the first term. So overall, we have
9 |D3V|2 37,12 4y,12 3712 4
T§A|D V" =21 —&)|D*V| + CiK [D’V|" + CrK*. (5.50)
Similarly as before, let
h=(8L+|D?V[) D], (5.51)
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where L is a constant such that K2 < L < CK? (which is possible since C > 1) and
|D2V|* < L. Then, using (5.50) and (5.45), we find that

LUy e + CK® (5.52)
ar — CKk* ’
and this then gives us the bound
1Dv|? < CcK? (5.53)

for some constant C. By induction can similarly obtain bounds (5.32) for higher derivatives.
O

Proof of Theorem 5.6 Suppose a solution V (¢) to (5.1) exists on the finite maximal time
interval [0, tmax). We will proceed by contradiction to prove (5.20). Suppose (5.20) does not
hold. This implies that there exists a constant K such that

sup A(x,t) <K. (5.54)
M x[0,tmax)

We then know from (5.32) that for some constant C, > 0

sup AP (x,1) < K2,
M x[0,tmax)

So in particular, DZV} is bounded, and thus from the flow equation (5.1), there exists a
constant C > 0 such that

\%
sup —1 <C.
M x[0,tmax) t
Then, for any O < #; < t2 < fmax, We have
1% V
IV(tz)—V(tl)IS/ at‘dffc(tz_fl)~ (5.55)
1

Therefore, we see that as t —> fmax, the octonion sections V (¢) converge continuously to a
section V (fmax) . Clearly, this will also have unit norm. Locally, for some 0 < ¢ < fipax We
can then write

Tmax
V (tmax) = V(t)+/ (ApV (s) + DV ()I*V (5)) ds. (5.56)
t

Now, by Theorem 5.10, all derivatives of V are uniformly bounded, hence all derivatives
of V (tmax) are also bounded. Thus, V (fnax) is a smooth section and V () converges to it
uniformly in any C"-norm as t —> fmax. Now we have smoothly extended the flow from
[0, fmax) to fmax. However, using short-time existence and uniqueness of the flow, we can
uniquely extend it further starting from ¢ = #pax t0 # = fiax + € for some ¢ > 0. Therefore,
the flow exists on [0, fiax + €) and this contradicts the maximality of #,x. We then find that
(5.54) fails, and can conclude that

lim A(t) = oo. (5.57)

I —>Imax
From (5.30), we see that

d (A1) + Co)

7 <2(A (1) + Cp)?
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where Co = R; + Rj is a constant that depends on the curvature and the torsion of the
background G,-structure. Thus,

d(A@) + Co)~! _
dt =

-2
and thus, integrating, and taking the limit as t —> #ax, We obtain

for all € [0, tmax). Thus, we obtain (5.21). ]

6 Monotonicity

In order to be able to get a better control on the flow, it is useful to find quantities that are
monotonic, or otherwise well-behaved along the flow. Following Hamilton [27], let k be a
positive scalar solution of the backwards heat equation

ok = —Ak (6.1)
ar ’

for 0 <t < 1y, with some initial condition at t = #y and evolving towards ¢t = 0, such that
[y k vol = 1. Then, consider the quantity

Z (@) = (to — t)/ IDV |k vol . 6.2)
M

Theorem 6.1 Suppose V is a solution of the flow (5.1) for 0 < t < ty with initial energy
& (0) = &y. Then, there exists a constant C > 0, that only depends on the background
geometry, such that for any t and t satisfying to — 1 < © <t < ty, Z (t) satisfies the
following relation

1
Zt)<CZ(t)+C(t—r1) (oﬁo + éif) (6.3)
Proof Differentiating Z(t), we find
dZ a
= = —/ |DV|2kvol+(to—t)f — (IDV[*) kvol
dt M M 0t

—(to—l)/ DV | Ak vol. (6.4)
M

Consider the second term on the right-hand side of (6.4). We use the evolution equation (5.26)
for |DV|? and then integrate by parts

i) .
/ E(IDVIZ)kvol—2/ ((D, (ApV), DV>+|DV|4)kvol
M
/ |ApVI* = DV[*) k vol

/ ApV, D' V Vikvol. (6.5)
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Let us now rewrite (6.5) by completing the square ’ADV + |DV|2 V 4+ %V,»kDi \%4

2

/ 5 (IDVP) kvol = —2/‘ADV+|DV|2V+kV kD'V| kvol
M

1 A .
+2/ (abv. D’V>V,~kvol+2/ = (Vik k) (D'V. DIV ) vol
M M
(6.6)

and finally, let us integrate the second term by parts, so that overall, we get

/M Y (IDV|?) kvol = —2/M

- 2/ ((p7v. D;D'V)Vik +(DIV, D'V)V;Vik) vol
M

2

1 .
ApV + |DV]PV + EVikD’V k vol

+2/M % (Vik V) D'V, D7V} vol. 6.7)
Now consider the third term of the right-hand side of (6.4). Integrating by parts, we get
/ IDV | Ak vol = —2/ (D;v. D'DIV) Vik vl
-2 /M (D;jv. DID'V + FI (V) Vik ol
) / (

+2/ <Div, Fj (V))kavol. (6.8)
M

DV, DI D'V)Vikvol

S

Combining all the terms, (6.4) becomes

92 ow = —2¢ 1)/ A 1(VkV k) + _k8ij <DVDJV> 1
—_— = — — i ViK — — i i A%
dt 0 ” Tk T =1

—2(;0—0/ (D"V,F,»j (V)>ijvol, (6.9)
M

where we set
2

1 .
W:(to—t)/ ‘ADV+|DV|2V+EVikD’V kvol. (6.10)
M

Applying integration by parts to the last term in (6.9), we get

dzZ
— 4 2W = -2(19 —t)/ |:V,'ij—
M

1 kg'
— (VikViK) + (p'V. DIV)vol
dt 2(tg — 1)

k
—2(;0—0/ (D7v. D' (F; (V) kvol
M
—(to—t)/ |F (V)>kvol. (6.11)
M

For the first term on the right-hand side of (6.11) we apply Hamilton’s matrix Harnack
inequality from [26]: there exist constants B and C that depend only on the geometry of M
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such that
1 kgij B
ViVik — — (VikVjk) + —— > —C |1+ kIn| —— | ) & (6.12)
k 2(to — 1) (to — 1)2

Note that the trace of this estimate gives the well-known Harnack estimate by Li and Yau
[35].
Let us now consider the second term in (6.11). From (3.24), we know that

D (Fap (V) = (V¥ Riemgp) (V) + (Riemgp V) (V) — Riemgy, (V) T
- % (V4V) (77 Riem),,, — %V (D (77 Riem) ., (6.13)

and therefore,
‘(DjV, D' (Fy (V))>‘ <R (IDV2+|DV]), (6.14)

where R is a constant that depends on the curvature and torsion. Now using (6.12) and (6.14)
in (6.11), and noting that [, k vol = 1, we have

dz

2 oW <2 - RE @) + 1) +2R <1+ln (37» z. (6.15)
di (to — )2

where for convenience we now take R to be the greater of R and C. Let

=1 <2+1n <B7>) (6.16)
(to —1)2
4 _ _(i4m B) 6.17)
dt (1 — 1) '

d 1
= (2R92) +26RW <219 — 1) Ce? (1) + 6 (1F) = 202 (6’0 +&

dt
(6.18)
for o — 1 <t < tp. We can always take B to be large enough so that ¢ > 0 and we can also
bound ¢2R9. Now integrating from 7 to 7, we find that forany fo — 1 < 7 <t < fg

so that

and hence,

1
Z (1) < RO 7 (1) 4 20RO (1 — 1) (é”o + é‘;f)

IA

1
CZ(t)+C(t—r1) <z5’0+é”02), (6.19)
thus completing the proof. O

Remark 6.2 1n [26], it is shown that in the case when V Ric = 0 and the sectional curvature
of M is non-negative, the quantity of the left-hand side of (6.12) is actually non-negative, and
in [27], this leads to the corresponding quantity Z for the harmonic map flow and the Yang—
Mills flow to be monotonically decreasing along the flow. In our case, we have an additional
curvature term in (6.11), which doesn’t immediately give a non-positive term in this case.
On the contrary, in this case, it gives a non-negative Riem (Vv, Vv) term. Therefore, it is not
clear if there are some reasonable conditions under which Z (¢) is monotonically decreasing.
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7 g-regularity

In this section we will use the results on the behavior of Z (t) from the previous section
as well as the a priori estimates from Sect. 5, to obtain an e-regularity result and from it,
long-time existence for small initial energy density (i.e. small pointwise torsion).

Let pxy.1 (x, ) be the backward heat kernel on M, that is, the solution of the backward
heat equation (6.1) for 0 < ¢t < 1y that converges to a delta function at (x,t) = (xo, fo)-
Then, given a time-dependent octonion section V (x, t), define the .% -functional

F (x0, 10, 1) = (tg — 1) /M DV (x,1)? Dxo.to (X, 1) vol (x) . (7.1)

Clearly this is just Z with a particular choice of the backward heat equation solution k. The
key result in this section is the following.

Theorem 7.1 Given &, there exist ¢ > 0 and B > 0, both depending on M and B also
depending on &y, such that if V is a solution of the flow (5.1) on M x [0, ty) with energy
bounded by &, and if

F (x0, 10, 1) < ¢ (7.2)

fort € [ty — B, to), then V extends smoothly to Uy, x [0, to] for some neighborhood Uy, of
xo with | DV | bounded uniformly.

Before we go on to prove Theorem 7.1, here is an important corollary.

Corollary 7.2 There exists an ¢ > O such that if the initial energy density Ag = |DV|?
satisfies Ay < €, then a solution V of the flow (5.1) exists for all t > 0. The limit Voo =
lim;—, 0 V (t) corresponds to a Gy -structure with divergence-free torsion.

Proof Suppose V is a solution of the flow (5.1) on a maximal time interval [0, fyax) With
initial energy &p. By Theorem 6.1, .# satisfies the following inequality for any ¢ and t
satisfying tax — 1 < T <t < tnax and any xg € M

1
F (X0, max» 1) < CF (X0, max, T) + C (1 — 1) (6’0 + g(f) . (7.3)
Using standard properties of the heat kernel, for some constant C we have
o~ C
F (X0 fmax. T) < ————— 6 (1)
(tmax — T)2
If tmax > 1, then set T = fyax — 1, and then we get a bound on .% in terms of &. Otherwise,

set for example 7 = "“2“ , and from (5.21) we have ﬁ < 2 (Ap + Cp) for a constant Cy that

only depends on the background geometry, hence in this case,

F (X0, tmax. T) < C (Ag + C0)? & (1) .

Now, & (1) < & < AgVol (M), where Vol (M) is the total volume of the manifold, so
overall from (7.3) we obtain a bound on .% (xo, fmax, ¢) in terms of Ag. Hence, choosing Ao
small enough, the conditions of Theorem 7.1 are satisfied, and the solution extends smoothly
to [0, fmax]- Restarting the flow from 7 = fi,x, With initial energy & (fmax) < &0, by short-
time existence we can then extend it to [0, fmax + ¢) for some ¢ > 0, thus contradicting the
maximality of #p,x.
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Now we have a solution that exists for all # > 0, with | DV| and, from Theorem 5.10, all
higher derivatives bounded uniformly. This means that choosing A sufficiently small, we can
make sure that | DV| is also sufficiently small, so that it satisfies the conditions of Corollary
5.5 for all time. As in [14], this then implies that [, [div 7)|* vol —> 0 exponentially and
hence, V (¢) converges in L' to a unique limit V... By uniform bounds on the derivatives,
the limit is then smooth and has div 7(Y) = 0. O

To prove Theorem 7.1, similarly as in [19] , we need to carefully understand the local
behavior of solutions to the flow (5.1).

Definition 7.3 For any xo € M andig € R, define a parabolic cylinder P, (xg, o) = B, (x0) %
[to —r2, to] , where B, (xp) is a closed geodesic ball of radius r centered at xg.

We have the following useful Lemma from [19].

Lemma 7.4 ([19, Lemma 2.1]) Let M be a compact manifold. There exists a constant s > 0,
and for every y < 1, a constant C,,, such that if h is a smooth function satisfying

oh

— < Ah —h? 7.4
or — 7:4)
whenever h > 0 in Py, (xo, to) for some r < s, then
h<C ! + ! (7.5)
=Y\ g '

on Pyr (x0, 10).

Lemma 7.4 can be used to modify the proof of Theorem 5.10 to give a local ver-
sion on a parabolic cylinder. Define Ap, (x) (f) = SUpyep (v A (x, 1) and Ag:zxo) (r) =

SUPxeB, (xp) (|Dmv (x, t)|2)-

Theorem 7.5 There exists a constant s > 0 and, for any positive integer m > 2, a constant
C, that only depend on M and the background Gy-structure, such that, if V (t) is a solution
to (5.1) in a parabolic cylinder P (xo, to) for r < min {s, 1} and satisfies Ap, (xy) < K for
K > rLZ then

Aggw (t) < CuK™ on Py, (x0. 10). (7.6)

where ry = 21 7%y,

Proof The proof is essentially the same as that of Theorem 5.10. As in [19], the main
difference is that when we obtain differential inequalities (5.43) and (5.52) for & and for

‘Dz \% |2 and ‘D3 \% |2, respectively, we need to make further changes of variables to get these
inequalities into the form (7.4). Then, rather than using the Maximum Principle directly,

we need to apply Lemma 7.4. In particular, when proving the bound for |D2V|2 , we take
h=@K+ A(x, 1)) |132V|2 as in (5.39) and then as in (5.43), we obtain

h _ an r +CK* (7.7)
ar ~ CK2 ' '
Now, let N
h=———-K 7.8
K2 (7.8)
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for the same constant C. Hence, we have

oh_ ] Ah i +K?
ot — CK? C2K*
< Ah —h* = 2Kh
and therefore, when h > 0 we have
oh -
— < Ah—i?
at
Therefore, applying Lemma 7.4 with y = %, we find that for some constant C, on P% (x0, t0)
we have c
h<—=<CK (7.9)
r
and thus
h<CK?

and for some constant Cs, °
2
ABrz(xo) (1) < CRK~.

A similar argument follows for higher derivatives. O
We now need a lemma similar to Lemma 3.1 in [19].

Lemma 7.6 There exist constants 5 > 0 and y € (0, 1) that depend only on M and the
background G»-structure, such that, if V is a solution of the flow (5.1) in a parabolic cylinder
P, (xo, to) for r <1 such that

1
DV (xo, to)| = "

and
[DV (x,0)| <

SN

forall (x, 1) € Py (xq, to) , then for 8 = tg — yr* we have
F (x0, 19, 0) > 6. (7.10)
Proof From (5.25), we have
‘% (DV)' = |Ap (DV)|+ C1[DV]+ C
+2|D*V||IDV|+|DV]. (7.11)
]

By hypothesis, [DV|? is bounded on the parabolic cylinder P, (xo, fo) by ;iz, hence by
Theorem 7.5, there exist constants C, and C3 such that |D2V|2 < % on P% (x0, f9) and
|D3V|2 < % on Py (x0, 10) . Therefore, from (7.11) we find that on Pr (xo, f0),

0 C
'at (DV)‘ << (7.12)
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for some constant C > 0. Note that the octonionic derivative D, being metric-compatible,
satisfies Kato’s Inequality, so in particular we have

|D*V| = |V|DV]
whenever | DV| # 0. Hence, in some neighborhood around xg,
(o
IVIDVI|| = — (7.13)
r

for some constant C > 0. Overall, the time-derivative bound (7.12) and space derivative
bound (7.13) show that there exists some y € (0, 1) such that for all (x, t) € Py, (xo, to),

1
DV (x,t)| > —. (7.14)
2r
Now, for 6 =1y — yr2, we have

F (x0. 10, 0) = (1o — 6) /M IDV (2, 6)2 pagy (x. ) vol (x)

v

yrz/ IDV (x,0)% pro.so (x, 6) vol (x)
By (x0)

1
*)// Pxo.p (x,0) vol (x).
B;/r(x())

A%

4

However, from Corollary 2.3 of [26], on Py, (xo, tp), we have py, 1 (x,0) > r% for some
constant ¢ that depends only on M . Therefore, for some § > 0, we do obtain (7.10).
Now we can proceed with the proof of Theorem 7.1.

Proof of Theorem 7.1 Suppose first that V is a solution of the flow (5.1) on M x [0, #p]. From
the proof of Theorem 3.2 in [19] and from Theorem 3.1 in [26], we know that for any n > 0,
any constant C > 1, and any xo € M and any 7 = 19 — « € (0, 1], there exists a p > 0 such
that for all (§, ) € P, (xo, o)

U
(T —@) pg.c (x,1) < C(to — @) Prgrg (X, 1) + 7. (7.15)
28y
Multiplying (7.15) by |IDV|?, and integrating we find
3
T, t,a) = CF (xo, 0, ) + "2;5“) <n (7.16)
>0

as long as ¢ in the hypothesis is chosen such that g > Ce. Then, similarly as in the proof of
Theorem 3.2 in [19], define

q(x,1) :min{p—d(xo,x),,/t— (to—pz)}.

In some sense this gives the shorter of the distances from (x, t) to the spatial boundary
of P, (xo, to) and the lower temporal boundary. Now, the function g (x, ) [DV (x, t)| will
attain its maximum in P, (xo, fo) at some point (£, ) in the interior of P, (xo, fp), so that
o =¢q(&,7) > 0.Sinceo < p —d (xg,&) and ol <t — ([(] — r2), it is easy to see that
Py (§,7) C P, (x0,tp) . Moreover, we can also see that g (x,1) > % on P% (&, 7). Now,

define r such that % =|DV (§, 7)|, then for all (x, 1) € P, (xo, fp) , we have

IDV (x,1)| < (7.17)

rg (x, 1)
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Suppose r > % Then, since g (x,t) > g on P% (x0, t9), we obtain abound |[DV (x, )| < %

forall (x,1) € szg (x0, to) . Otherwise, suppose r < % In that case, from (7.17) we find that
forall (x,t) € P, (&, ©),

|IDV (x,1)| < (7.18)

SN

We can now apply Lemma 7.6 to obtaina § > O and a y € (0, 1) such that for 6 = ¢ — yr?
we have
F(&,1,0) > 6. (7.19)

Now, by Theorem 6.1, we find thatif « <6 < 1,
1
FE 1,0 <CFE 1,0) +C0O—) (é”0+w@oz>
1
<Cn+CE—w <éao + £’OZ> (7.20)

where we have used (7.16). Since 0 — a < ty — «, let us find a 8 such that 8 > ¢y — «, and
1
CB (& + &7 ) < 5. Choosing ) < 5= gives us .7 (&, 7, 0) < 8, which contradicts (7.19).

Thus we find that there exist ¢ > 0 and 8 (where B depends on &p), such that for any
(x0, ) € M X [ty — B, to) there exists a p > 0 and a finite B, such that if .# (xo, t9, o) < ¢,
then |[DV| < B is bounded on P, (xo, fo) . It should be noted that p and B only depend
on fy — «, rather than 7y and « individually. Now suppose the solution V only exists on
M x [0, 1p). Then, by applying the gradient bounds to the translates V (x, 1) = V (x, ¢ — )
and taking { — 0, we obtain uniform bounds on |[DV| for t < T. From Theorem 7.5 we
then get estimates on higher derivatives, and thus conclude that the solution extends smoothly
to t = tp in some neighborhood of xg. O

8 Heat flow in the presence of a torsion-free G,-structure

The flow (5.1) and the octonion covariant derivatives are defined with respect to some fixed
background G»-structure that corresponds to the unit octonion V =1 (or V. = —1). In fact,
due to the covariance of D with respect to change of the background G;-structure (3.12),
this choice is arbitrary. However, if we would like to understand if the flow reaches some
particular G,-structure ¢ within the given metric class, then we can without loss of generality
set the background G»-structure to be ¢, and then all that remains to be checked is whether
the flow reaches V2 = 1 within the maximum time interval [0, tmax)- Equivalently, this
corresponds to v = 0 where v = Im V. In this section we will analyze the behavior of the
real and imaginary parts of V along the flow, particularly in the case when a torsion-free G,
-structure exists in the given metric class.

Let V = f 4 v be the decomposition of the unit octonion V into real and imaginary
parts. Then, we also have f2 + lv]> = 1. Also, suppose that the initial octonion is given by
Vo = fo+vo. The background G,-structure ¢ = o1 (¢) will have torsion T (which we will set
to O shortly), the initial G5 -structure ¢y = oy, (¢) will have torsion 7o = — (D V) Vofl, and
the G-structure gy = oy (¢) that corresponds to V, will have torsion TV = — (DV) y-L
Here D is with respect to ¢.
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Lemma 8.1 The evolution of f and [v|? along the flow (5.1) is given by
d
3—{ = Af + fIVV]? + (v,divT)
+2(VaV. (1= fV)TY) (8.1a)
d vl 2 2 2 2 :
Py = A" =2f7|VV|"4+2|Vf|]* =2(v, fdivT)
+4f(VaV, (fV =1 T). (8.1b)
Proof Taking the inner product of (5.1) with 1, we get
af 2
E_(ADV,I)—HDVI f. (8.2)
However,
Af = AV, 1)
= (ApV, 1) +2(DsV, D1} +(V, Apl)
= (ApV, 1) =2(V,V = VT,, T*) = (V,divT + |T|?)
= (ApV, 1) =2(V,V, T — (v, divT) + f|T| (8.3)
and
IDV|]> = |VV —VT|?
= |VV]* =2(V,V, VT +|T. (8.4)
Thus, overall, (8.2) becomes
af 2 : a
5 =Af + fIVV + (v, divT) +2(V,V, (1 = fV)T9).
Multiplying by 2 f, we further obtain
afr 2 2 2 ~
vy =Af +2f°|VV|*=2|VfI*"+2 (v, fdivT)
+4f(VaV, (1= fV)TY). (8.5)
Since [v]*> =1 — f2, % = —%2, and hence we then get (8.1b). O

Lemma8.2 Letu = f2 — v = 22 — 1, and suppose T = 0. Then, along the flow (5.1),

u satisfies the inequality

du > Au+t u v |2
— u u
at — 1 —u?

Proof From (8.5), setting T = 0, we have

ou 2 2
E:Au+2(u+l)|Vv| +2w—D|Vf|~.

Assume first that u? # 1, so that f % 0 and v # 0. Since Vu = 4V f, we find

|Vul? |Vul|?

IV fI?

~ 1612 8w+
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With this, (8.7) becomes

W put2w+ DIVl + 2L v, (8.9)
at 4u+1
From Kato’s inequality,
Vol 2 (V1D = —— [(V (£)* = o [Vul?,
4ol 8(1—u)
using which, (8.9) becomes
%zAqu(l_”uz)sz. (8.10)

It should be noted that generally, Kato’s inequality holds whenever v # 0 , however in our

case, when v = 0, %—’f = 0 since u = 1 — 2 |v|?. However, (8.7) becomes
ad
8—”; = Au+4|Vv]* = —4|(V |v)|> + 4|Vv|> = 0. 8.11)
Hence |Vv|? = |(V |v])|? and thus the inequality still holds. Now suppose u = —1, so that
f = 0and hence |v| = 1. Then, (8.7) becomes
ou
— =Au—4|Vf*=0.
o u—4Ivfi
On the other hand, in (8.9), as u — —1, l—uu2 |Vu|2 — —4 |Vf|2, SO
ou & 2
0=—>-—=-1|V
or = 2 VUl
which is of course true. We conclude that (8.10) holds everywhere. O

To be able to apply the Maximum Principle to (8.6) we need to rewrite it in a different
form. This will then allow us to obtain lower bounds on «, and hence f.

Lemma 8.3 Suppose T = 0, then along the flow (5.1), f (t)? is bounded by
inf [ f (r,x)]* > inf [f (0, x)]? 8.12
inf Lf (@ x)] _1}‘1/1[f(,x)] (8.12)
as long as the flow exists.

Proof In (8.6), let u = sin # for some function 0 such that 6 € [—%, %], Then,

Vu = (cos9) Vo
Au = — (sin6) |VO|> + (cos ) AO

and hence we can rewrite (8.6) as
a6
(cosB) M > (cosB) A6

Overall, for —1 < u < 1, and hence cos 6 > 0, the inequality (8.6) becomes

a0
— > A6. (8.13)
at
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Hence, by the Maximum Principle, we conclude that if inf s [ f (0)]? > 0, then, as long as
the flow exists,

inf @ (¢, x) > inf 6 (0 8.14
inf (’X)_l}lll (0, x) (3.14)
and thus, in any case, infy; [ f (¢, x)]1* > infy £ [(0, x)]>. O

Thus, we have shown that in the presence of a torsion-free G, -structure, f 2 is bounded
below by its initial value and hence, |v]? is bounded above by its initial value. This shows
that pointwise, V () never gets further away from the torsion-free G-structure than at the
initial point. We can do even better though. It turns out that if initially, f is nowhere zero,
then the integral of | f (¢)| increases monotonically along the flow as long as V is not parallel.

For convenience, we define a new functional

G (1) = / | (1) vol (8.15)
M

which is just the L'-norm of f at time ¢. Recall that & (¢) in this case is just the L2-norm of
VvV.
Lemma 8.4 Suppose T =0, and k :=infy; | f (0, x)| > O, then along the flow (5.1),

A9 (1)
at

> k& (). (8.16)

Proof Recall from (8.1b) that along the flow (5.1), for T = 0,
af

= Af + fIVV]? (8.17)

We know from Lemma 8.3 that in this case, inf s f2 (t,x) > infy f2 (0, x) > 0, so we can
rewrite (8.17) as

a1l
s =AI+IAIVYE, (8.18)
since f is never zero along the flow. Integrating over M, we get
09 (t
= [ LI9VE el = inti 016 @
and hence we get (8.16). O

Remark 8.5 Lemma 8.4 shows that as long as initially f (¢) is nowhere zero (and equivalently
infp | £ (0, x)| > 0), its L' norm is increasing monotonically as long as & (t) # 0. Of
course, |f| < 1,and so ¥4 (t) < Vol (M) . Recall from Lemma 5.3 that & (¢) is decreasing
monotonically, with stationary points corresponding to divergence-free Gp-structures. In
particular, if the flow reaches a stationary point with div 7®) = 0, but & (r) > 0, ¢ (¢) will
still increase. On the other hand, suppose M has a parallel vector field. An octonion section
which has this vector as the imaginary part and has a constant real part will then also define
a torsion-free G,-structure. So if the flow reaches this section, at that point & (¢) will vanish,
so it is possible that | f| = 1 will never be reached in that case, even though a torsion-free
G-structure has been reached. If on the other hand, the flow exists for all + > 0, then we
see that it will have to converge to a torsion-free G-structure, again not necessarily the one
defined by | f| = 1.
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Combining Corollary 7.2 and Lemma 8.4, we obtain the following theorem. If we assume
that a torsion-free G-structure is given by U € I (SOM), rather than by the section 1, then
the condition inf s | f (0, x)| > 0 is replaced by the condition that initially [(V (0, x), U)| >
0.

Theorem 8.6 Suppose (¢, g) is a Gy -structure on a compact 7-dimensional manifold M.
Suppose there exists a unit octonion section U such that oy (@) is torsion free. Then there
exists € > 0, such that if the flow (5.1) has initial energy density Ao < ¢ and the initial
octonion section Vy satisfies |(Vy, U)| > 0 on M, then a solution exists for all t > 0, and as
t —> 00, V (t) —> Vi where V, defines a torsion-free Go-structure. If (M, g) admits no
parallel vector fields, then Voo = U.

Proof From Corollary 7.2 we already know that a solution V (¢) will exist for all t > 0.
Recall that we may switch over to the torsion-free G-structure oy (¢) as our background
Ga-structure. In particular, from (3.10), oy () (9) = oy yy-1 (ou (¢)) . Hence we can now
consider V (t) = V@ UL . Let us write V (t) = f () + v(t). Now the condition
[{Vo, U)| > 0 is equivalent to | f (0)] > O . Thus, from Lemma 8.4 we know that ¥ (t)
is growing monotonically along the flow, however ¢ (¢) is also bounded above by Vol (M),
hence it must converge to some ¥, < Vol (M), and in particular this shows that & (1) —> 0.
Hence, the limit Voo = lim,__, o, V (¢) must define a torsion-free G;-structure.

If the background G;-structure is torsion-free, then the torsion of the G;-structure defined
by a unit octonion V will be givenby 7(V) = — (VV) V~!. Hence torsion-free G, -structures
in the same metric class are given by unit octonion sections V for which VV = 0. In particular,
the imaginary part of V is then parallel vector field. So any torsion-free Go-structures apart
from the background G»-structure are defined by parallel vector fields. Hence, if there are
no parallel vector fields on M, then the torsion-free G, -structure that is compatible with g
is unique, and thus Vo, = U. ]

9 Concluding remarks

The results in this paper are just the beginning of the study of the heat flow of isometric
G-structures as well its stationary points: Ga-structures with divergence-free torsion. In the
study of the harmonic map heat flow and the Yang—Mills flow, results such as monotonicity
formulas and e-regularity led to a rich study of singularities and solitons of these flows.
Clearly, this should also be possible in our setting, with the interesting added challenge of
interpreting this in terms of the geometry of G;-structures. Other related concepts such as
entropy, that have been defined in the harmonic map and Yang—Mills cases [4,34] also have
an analog and interpretation in our case. Some progress in this direction has been already
made in the recent paper [14]. Another possible direction is to consider the flow in some
particular simpler settings, such as warped product manifolds with SU (3) -structure that
have been considered as models for the Laplacian coflow [22,33], in which case the octonion
section should reduce to a unit complex number, or even with SU (2) -structure, in which
case the octonion section may reduce to a quaternion section. Understanding the behavior of
the flow in such special settings may inform further directions of study.

One property of the flow (5.1) that hasn’t been fully used yet is the gauge-invariance,
i.e. invariance of the flow under the change of the background G,-structure, as discussed
in Sect. 5. We used this in Sect. 8§ to more conveniently describe the behavior of the flow
in the presence of a torsion-free G,-structure. In [14], similar ideas were used to show an
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“Uhlenbeck-type trick”, using which the evolution of the torsion had a more tractable form.
It is however likely that this gauge-invariance can lead to a better understading of the flow.

References

1. Ammann, B., Weiss, H., Witt, F.: A spinorial energy functional: critical points and gradient flow,
arXiv:1207.3529

2. Baez, J.: The octonions. Bull. Amer. Math. Soc. (N.S.) 39, 145-205 (2002)

3. Bagaglini, L.: A flow of isometric G;-structures. Short-time existence, arXiv:1709.06256

4. Boling, J., Kelleher, C., Streets, J.: Entropy, stability and harmonic map flow. Trans. Am. Math. Soc.
369(8), 5769-5808 (2017)

5. Bryant, R.L.: Metrics with exceptional holonomy. Ann. Math. (2) 126(3), 525-576 (1987)

6. Bryant, R. L.: Some remarks on Gj-structures. In: Proceedings of Gokova Geometry-Topology
Conference 2005, pp. 75-109, Gokova Geometry/Topology Conference (GGT), Gokova (2006),
arXiv:math/0305124

7. Chen, Y.M., Ding, W.Y.: Blow-up and global existence for heat flows of harmonic maps. Invent. Math.
99(3), 567-578 (1990)

8. Chen, Y.M., Struwe, M.: Existence and partial regularity results for the heat flow for harmonic maps.
Math. Z. 201(1), 83-103 (1989)

9. Chen, Y., Shen, C.-L.: Monotonicity formula and small action regularity for Yang—Mills flows in higher
dimensions. Calc. Var. Partial Differ. Equ. 2(4), 389-403 (1994)

10. Cleyton, R., Ivanov, S.: Conformal equivalence between certain geometries in dimension 6 and 7. Math.
Res. Lett. 15(4), 631-640 (2008)

11. Crowley, D., Nordstrom, J.: New invariants of G;-structures. Geom. Topol. 19(5), 2949-2992 (2015)

12. Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford Mathematical Mono-
graphs. The Clarendon Press, Oxford University Press, New York (1990)

13. Donaldson, S. K.: Gauge Theory: Mathematical Applications, in Encyclopedia of Mathematical Physics,
pp. 468—481. Academic Press/Elsevier Science, Oxford (2006)

14. Dwivedi, S., Gianniotis, P., Karigiannis, S.: A gradient flow of isometric G structures, arXiv:1904.10068

15. Eells Jr., J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109-160
(1964)

16. Fernandez, M., Gray, A.: Riemannian manifolds with structure group G;. Ann. Mat. Pura Appl. 132(4),
19-45 (1982)

17. Friedrich, T., Kath, I., Moroianu, A., Semmelmann, U.: On nearly parallel G,-structures. J. Geom. Phys.
23(3-4), 259-286 (1997)

18. Gray, A.: Vector cross products on manifolds. Trans. Am. Math. Soc. 141, 465-504 (1969)

19. Grayson, M., Hamilton, R.S.: The formation of singularities in the harmonic map heat flow. Comm. Anal.
Geom. 4(4), 525-546 (1996)

20. Grigorian, S.: Short-time behaviour of a modified Laplacian coflow of G2-structures. Adv. Math. 248,
378-415 (2013)

21. Grigorian, S.: Deformations of G;-structures with torsion. Asian J. Math. 20(1), 123-155 (2016)

22. Grigorian, S.: Modified Laplacian coflow of G;-structures on manifolds with symmetry. Differ. Geom.
Appl. 46, 39-78 (2016)

23. Grigorian, S.: Go-structures and octonion bundles. Adv. Math. 308, 142-207 (2017)

24. Grigorian, S.: Flows of co-closed G;-Structures, in Lectures and Surveys on G2 Manifolds and Related
Topics. Fields Institute Communications, Springer (2019)

25. Grigorian, S., Yau, S.-T.: Local geometry of the G, moduli space. Comm. Math. Phys. 287, 459-488
(2009)

26. Hamilton, R.S.: A matrix Harnack estimate for the heat equation. Comm. Anal. Geom. 1(1), 113-126
(1993)

27. Hamilton, R.S.: Monotonicity formulas for parabolic flows on manifolds. Comm. Anal. Geom. 1(1),
127-137 (1993)

28. Hitchin, N.J.: The geometry of three-forms in six dimensions. J. Differ. Geom. 55(3), 547-576 (2000)

29. Hong, M.-C., Tian, G.: Asymptotical behaviour of the Yang-Mills flow and singular Yang—Mills connec-
tions. Math. Ann. 330(3), 441-472 (2004)

30. Joyce, D.D.: Compact Manifolds with Special Holonomy. Oxford Mathematical Monographs. Oxford
University Press, Oxford (2000)

31. Karigiannis, S.: Deformations of G and Spin(7) Structures on Manifolds. Can. J. Math. 57, 1012 (2005)

@ Springer


http://arxiv.org/abs/1207.3529
http://arxiv.org/abs/1709.06256
http://arxiv.org/abs/math/0305124
http://arxiv.org/abs/1904.10068

Estimates and monotonicity for a heat flow of isometric... Page370f37 175

32.
33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

Karigiannis, S.: Flows of G,-Structures. I. Q. J. Math. 60(4), 487-522 (2009)

Karigiannis, S., McKay, B., Tsui, M.-P.: Soliton solutions for the Laplacian coflow of some G,-structures
with symmetry. Differ. Geom. Appl. 30(4), 318-333 (2012)

Kelleher, C., Streets, J.: Entropy, stability, and Yang—Mills flow. Commun. Contemp. Math. 18(2),
1550032 (2016)

Li, P, Yau, S.-T.: On the parabolic kernel of the Schrodinger operator. Acta Math. 156(3—4), 153-201
(1986)

Lotay, J.D., Wei, Y.: Laplacian flow for closed G, structures: Shi-type estimates, uniqueness and com-
pactness. Geom. Funct. Anal. 27(1), 165-233 (2017)

Loubeau, E., S4 Earp, H. N.: Harmonic flow of geometric structures, arXiv:1907.06072

Schoen, R., Uhlenbeck, K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307-335
(1982)

Shi, W.-X.: Deforming the metric on complete Riemannian manifolds. J. Differ. Geom. 30(1), 223-301
(1989)

Struwe, M.: On the evolution of harmonic maps in higher dimensions. J. Differ. Geom. 28(3), 485-502
(1988)

Tao, T.: Nonlinear dispersive equations, vol. 106 of CBMS Regional Conference Series in Mathematics.
Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American
Mathematical Society, Providence, RI, (2006). Local and global analysis

Weinkove, B.: Singularity formation in the Yang—Mills flow. Calc. Var. Partial Differ. Equ. 19(2), 211-220
(2004)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


http://arxiv.org/abs/1907.06072

	Estimates and monotonicity for a heat flow of isometric G2-structures
	Abstract
	1 Introduction
	2 G2-structures
	3 Octonion bundle
	4 Energy functional
	5 Heat flow
	6 Monotonicity
	7 ε-regularity
	8 Heat flow in the presence of a torsion-free G2-structure
	9 Concluding remarks
	References




