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Abstract
Given a 7-dimensional compact Riemannian manifold (M, g) that admits G2-structure, all
the G2-structures that are compatible with the metric g are parametrized by unit sections of
an octonion bundle over M . We define a natural energy functional on unit octonion sections
and consider its associated heat flow. The critical points of this functional and flow precisely
correspond to G2-structures with divergence-free torsion. In this paper, we first derive esti-
mates for derivatives of V (t) along the flow and prove that the flow exists as long as the
torsion remains bounded. We also prove a monotonicity formula and an ε-regularity result
for this flow. Finally, we show that within a metric class of G2-structures that contains a
torsion-free G2-structure, under certain conditions, the flow will converge to a torsion-free
G2-structure.

Mathematics Subject Classification 53C10 · 53C29 · 58E30 · 58E15

1 Introduction

A fundamental problem in the study of 7-dimensional manifolds with G2 -structures is the
question of general existence conditions for torsion-free G2-structures, which are the ones
that correspond to metrics with holonomy contained inG2. One of the possible approaches is
to try and construct a flow ofG2-structures which under certain conditions would converge to
torsion-freeG2-structures. This approachwasoriginally pioneeredbyRobertBryant [6]when
he introduced the Laplacian flow of closed G2-structures, i.e. ones for which the defining 3-
formϕ is closed. Later,Karigiannis,McKay, andTsui [33] introduced a similar flow, knownas
the Laplacian coflow, for co-closed G2-structures. It has some similar properties to Bryant’s
flow - its stationary points are precisely torsion-free G2-structures, and it may be interpreted
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as the gradient flow of the volume functional. However, as discovered in [20], it has a crucial
deficiency in that it is non-parabolic. In that paper, the author attempted to rectify the coflow
by introducing themodified coflow, which has an additional term that changes the sign of the
term that made the coflow non-parabolic, but would still preserve the co-closed condition.
However, the new flow lacks some of nicer features of the original coflow—in particular,
it has additional non-torsion-free stationary points and it is not known if it can be written
as a gradient flow of some functional. One of the advantages of working with co-closed
G2-structures is that they are generally more abundant than closed ones. An application of
the h-principle in [11] shows that any compact manifold that admits G2-structures will also
admit co-closed G2-structures. Therefore, it is very important to understand under which
conditions it is possible to deform a co-closed G2 -structure to a torsion-free one.

More specifically, given a co-closed G2-structure, i.e. one where ψ := ∗ϕ is a closed 4-
form, the linearization at ψ of the corresponding Hodge Laplacian is an indefinite operator.
This is in contrast to the closed case, i.e. when dϕ = 0, where the linearization at ϕ of
Δϕ is a semi-definite operator, which can then made strongly elliptic by the addition of a
Lie derivative term to take into account diffeomorphism invariance. In the co-closed case,
the term that causes Δψ to be indefinite is π7

(
Δψψ

)
, which is the component of Δψψ in

the 7 -dimensional representation Λ4
7 of G2. This term is however determined by div T—

the divergence of the torsion [20,24]. It should be noted that for closed G2-structures, div T
always vanishes [6], so that iswhy this issue doesn’t arise in that case. Therefore, the condition
div T = 0 may be thought of as another “gauge-fixing” condition to make Δψψ elliptic.
From the point of view of G2-structure coflows, the condition div T = 0 makes the original
and modified coflows equal to leading order. Therefore, these considerations make it very
important to understand this divergence-free torsion property and in particular, under which
conditions do G2-structures with div T = 0 exist.

Anothermotivation for looking at divergence-free torsion comes from the following obser-
vation. As noted above, div T enters the Λ4

7 part of Δψψ . However, it is known [31] that
deformations of ϕ along Λ3

7, and equivalently of ψ along Λ4
7, keep the metric unchanged

and simply deform the G2-structure within a fixed metric class. Therefore, fixing div T = 0
essentially corresponds to taking particular a representatives of the metric class. Indeed, in
an investigation of isometric G2-structures (that is, ones that are compatible with the same
metric) in [23], it was found that on a compact manifold, G2-structures with div T = 0 are
precisely the critical points of the L2-norm of the torsion when restricted to a fixed metric
class. In [23] this functionalwas also reformulated as an energy functional E = ∫

M |DV |2 vol
for unit octonion sections that parametrize isometricG2-structures, were V is a unit octonion
section and D is the octonion covariant derivative defined with respect to some fixed back-
ground G2-structure. This allowed to rewrite the condition div T = 0 as a semilinear elliptic
equation for octonion sections and similarly, the negative gradient flow of E then becomes a
semilinear heat equation

∂V

∂t
= ΔDV + |DV |2 V (1.1)

where ΔD = −D∗D is the Laplacian operator corresponding to D.
Given that (1.1) precisely corresponds to the Λ4

7 component of the Laplacian coflow, it
is crucial to understand its properties in more detail. In particular, it is expected that at least
under some conditions, it should converge to a G2-structure with div T = 0. In future work,
this may be used as a gauge-fixing condition that could relate the original coflow and the
modified one.
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It is noteworthy that this flow has remarkable similarities to the harmonic heat flow and
the Yang–Mills flow. Just as these two classical flows, (1.1) appears as the gradient flow of
an energy functional and in the analysis it becomes clear that many of the tools used for the
harmonic heat flow and the Yang–Mills flow can be adapted in this setting as well. As such,
it is another example of a flow that doesn’t change the geometry of the underlying space (as
opposed to the Ricci flow and aforementioned Laplacian flows of G2-structures), but is still
fundamentally related to the geometry.

In this paper, we first give a brief overview ofG2-structures and octonion bundles in Sects.
2 and 3. Then, in Sect. 4we reintroduce the energy functional for octonions and consider some
of its properties. In Sect. 5, we then work out estimates for the flow (1.1). For convenience,

we introduce the quantity Λ (x, t) = |DV (x, t)|2 = ∣
∣T (V )

∣
∣2 , where T (V ) is the torsion of

the G2-structure that corresponds to the octonion section V . We work out the evolution of
derivatives of V and prove the following

1. If V (t) is a smooth solution to (1.1) on a finite maximal time interval [0, tmax), then for
any 0 ≤ t < tmax,

Λ(t) ≤ 2R1(
1 + 2R1

Λ0+R2

)
e−4R1t − 1

− R2 (1.2)

where Λ(t) = supx∈M Λ(x, t) and R1, R2 are some constants that depend on the
curvature and the background G2-structure.

2. If V (t) is a smooth solution to (1.1) on a finite maximal time interval [0, tmax), andΛ(t)
is bounded, then all derivatives of V also remain bounded.

3. As long as Λ(t) , and hence
∣∣T (V )

∣∣, remains bounded, there will exist a smooth solution
V (t) to the flow (1.1).

The methods used here are similar to what Lotay andWei [36] used for the Laplacian flow
of G2-structures, Weinkove [42] used for the Yang–Mills flow, Grayson and Hamilton [19]
used for the harmonic map flow, and which originally Shi [39] introduced for the Ricci flow.

In Sect. 6, given a solution V of (1.1), we define the quantity

Z (t) = (t0 − t)
∫

M
|DV |2 k vol (1.3)

where k is a positive scalar solution of the backwards heat equation, evolving backwards in
time from t = t0, and in Theorem 6.1, we prove that Z (t) satisfies an almost monotonicity
formula. While Z (t) is not strictly monotonic along the flow, it is well-behaved and can be
controlled. In particular, we show that for t ≥ τ ,

Z (t) ≤ CZ (τ ) + C (t − τ)

(
E0 + E

1
2
0

)
(1.4)

where C is some constant that depends on the geometry of the manifold and E0 is the initial
value of the functional E .This is similar to the monotonicity results obtained by Hamilton for
the harmonic map heat flow and the Yang–Mills flow in [27]. Other versions of monotonicity
results had been obtained for the harmonic map flow in [7,8,40] and for the Yang–Mills flow
in [9,29,34].

In Sect. 7, we define theF -functional, which essentially replaces k in Z by the heat kernel
of the backwards heat equation. Applying the monotonicity formula allows us to prove an
ε-regularity result for solutions of (1.1) in Theorem 7.1, which says that if F ≤ ε for some
ε > 0, then the flowmay always be smoothly extended. This then leads on to global existence
of solutions for sufficiently small initial energy density Λ0 = |DV (0)|2. This again builds
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upon prior work on the harmonic map heat flow and the Yang–Mills flow. An elliptic version
of ε-regularity for harmonic maps was originally introduced by Schoen and Uhlenbeck in
[38], and parabolic versions were given by Struwe [40], Chen and Ding [7], Grayson and
Hamilton [19]. For the Yang–Mills flow, ε-regularity results were given by Chen and Shen
in [9] and Weinkove in [42].

In Sect. 8, we consider a special case when the flow takes place in the presence of a torsion-
free G2-structure, that is, the metric has holonomy contained in G2. In that case, we can take
the background G2-structure to be torsion-free, and consider the flow (1.1) starting from an
arbitrary octonion section. That particular torsion-free G2-structure is then represented by
constant octonion sections ± 1. Therefore, it makes sense to decompose the unit octonion
V (t) into real and imaginary parts and then the evolution of the real part f (t) = Re V (t) is of
particular interest. Indeed, we find that f 2 satisfies theMinimum Principle, so that pointwise,
it is bounded below by its infimum at t = 0 , and moreover, if initially inf | f (0)| > 0 , then
the L1-norm of f grows monotonically along the flow, with the time derivative bounded
below by a constant multiple of E . This is significant because clearly | f (t)| is bounded
above by 1, and hence if the flow exists for all t ≥ 0 (such as under the condition from Sect.
7), then it must reach a torsion-free G2-structure, i.e. a global minimum of E . This is again
very similar to the behavior of the harmonic map heat flow, where if the flow satisfies a small
initial energy condition and the initial map is homotopic to a constant map, then the heat flow
will converge to a constant map [7].

Note that two days after the initial version of this paper appeared on arXiv, a paper by
Dwivedi, Gianniotis, and Karigiannis [14] that has a substantial but independent overlap with
this paper has also been posted. However, while a number of conclusions and techniques are
similar, the points of view on the flow (5.1) are different. In this paper, we regard this as a
flow of octonion sections, while in [14] a more traditional geometric flows approach is used.
Both approaches are valuable and complementary and provide different perspectives on the
same phenomenon. Since the appearance of the initial versions of these two papers, there has
been a very useful cross-pollination of ideas and in the final version of the present paper in
some instances we allude to [14] for additional clarity and completeness.

Even more recently, a preprint by Loubeau and Sá Earp [37] appeared, where a similar
flow is studied but from yet another point of view. In [37], a more general concept of a
harmonic geometric structure is defined, which in the G2 case reduces to critical points of
the functionalE—that is,G2 -structureswith divergence-free torsion. Similarly, the harmonic
flow of geometric structures then reduces to the flow (1.1) in the G2 case.

2 G2-structures

The 14-dimensional groupG2 is the smallest of the five exceptional Lie groups and is closely
related to the octonions,which is the noncommutative, nonassociative, 8-dimensional normed
division algebra. In particular, G2 can be defined as the automorphism group of the octonion
algebra. Given the octonion algebra O, there exists a unique orthogonal decomposition into
a real part, that is isomorphic to R, and an imaginary (or pure) part, that is isomorphic
to R

7

O ∼= R ⊕ R
7 (2.1)

Correspondingly, given an octonion a ∈ O, we can uniquely write

a = Re a + Im a
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where Re a ∈ R, and Im a ∈ R
7. We can now use octonion multiplication to define a vector

cross product × on R
7. Given u, v ∈ R

7, we regard them as octonions in ImO, multiply
them together using octonion multiplication, and then project the result to ImO to obtain a
new vector in R

7

u × v = Im (uv) . (2.2)

The subgroup ofGL (7,R) that preserves this vector cross product is then precisely the group
G2. A detailed account of the properties of the octonions and their relationship to exceptional
Lie groups is given by John Baez in [2]. The structure constants of the vector cross product
define a 3-form on R

7, hence G2 is alternatively defined as the subgroup of GL (7,R) that
preserves a particular 3-form ϕ0 [30].

Definition 2.1 Let
(
e1, e2, . . . , e7

)
be the standard basis for

(
R
7
)∗
, and denote ei ∧ e j ∧ ek

by ei jk . Then define ϕ0 to be the 3-form on R7 given by

ϕ0 = e123 + e145 + e167 + e246 − e257 − e347 − e356. (2.3)

Then G2 is defined as the subgroup of GL (7,R) that preserves ϕ0.

In general, given a n-dimensional manifold M , aG-structure on M for some Lie subgroup
G of GL (n,R) is a reduction of the frame bundle F over M to a principal subbundle P
with fibre G. A G2-structure is then a reduction of the frame bundle on a 7 -dimensional
manifoldM to aG2-principal subbundle. The obstructions for the existence of aG2-structure
are purely topological. It well-known [16–18] that a manifold admits a G2-structure if and
only if the Stiefel-Whitney classes w1 and w2 both vanish.

It turns out that there is a 1–1 correspondence between G2 -structures on a 7-manifold
and smooth 3-forms ϕ for which the 7-form-valued bilinear form Bϕ as defined by (2.4) is
positive definite (for more details, see [5] and the arXiv version of [28]).

Bϕ (u, v) = 1

6
(u�ϕ) ∧ (v�ϕ) ∧ ϕ (2.4)

Here the symbol � denotes contraction of a vector with the differential form, which can be
written in local coordinates as

(u�ϕ)mn = uaϕamn (2.5)

where we have also used the Einstein summation convention, which we will be using hence-
forth whenever dealing with expressions in local coordinates.

A smooth 3-form ϕ is said to be positive if Bϕ is the tensor product of a positive-definite
bilinear form and a nowhere-vanishing 7-form. In this case, it defines a unique Riemannian
metric gϕ and volume form volϕ such that for vectors u and v, the following holds

gϕ (u, v) volϕ = 1

6
(u�ϕ) ∧ (v�ϕ) ∧ ϕ (2.6)

An equivalent way of defining a positive 3-form ϕ, is to say that at every point, ϕ is in
the GL (7,R)-orbit of ϕ0. It can be easily checked that the metric (2.6) for ϕ = ϕ0 is in
fact precisely the standard Euclidean metric g0 on R

7. Therefore, every ϕ that is in the
GL (7,R)-orbit of ϕ0 has an associated Riemannian metric g that is in the GL (7,R)-orbit
of g0. The only difference is that the stabilizer of g0 (along with orientation) in this orbit
is the group SO (7), whereas the stabilizer of ϕ0 is G2 ⊂ SO (7). This shows that positive
3-forms forms that correspond to the same metric, i.e., are isometric, are parametrized by
SO (7) /G2 ∼= RP

7 ∼= S7/Z2 . Therefore, on a Riemannian manifold, metric-compatible
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G2-structures are parametrized by sections of anRP7-bundle, or alternatively, by sections of
an S7-bundle, with antipodal points identified.

The intrinsic torsion of a G2-structure is defined by ∇ϕ, where ∇ is the Levi-Civita
connection for the metric g that is defined by ϕ. Following [32], we have

∇aϕbcd = 2T e
a ψebcd (2.7a)

∇aψbcde = −8Ta[bϕcde] (2.7b)

where Tab is the full torsion tensor, note that an additional factor of 2 is for convenience, and
ψ = ∗ϕ is the 4-form that is the Hodge dual of ϕ with respect to the metric g. In general
we can split Tab according to irreducible representations 1, 7, 14, and 27 of G2 into torsion
components

2T = 1

4
τ0g − τ1�ϕ + 1

2
τ2 − 1

3
τ3 (2.8)

where τ0 is a function, and gives the 1 component of T . We also have τ1, which is a 1-form
and hence gives the 7 component, τ2 is a 2-form in the 14 representation, and τ3 is a traceless
symmetric 2-tensor, giving the 27 component. As shown by Karigiannis in [32], the torsion
components τi relate directly to the expression for dϕ and dψ . In fact, in our notation,

dϕ = τ0ψ + 3τ1 ∧ ϕ + ∗iϕ (τ3) (2.9a)

dψ = 4τ1 ∧ ψ + ∗τ2. (2.9b)

Here iϕ is amap that takes symmetric 2-tensors to 3 -forms and given a decomposable 2-tensor
α ⊗ α, where α is a 1-form,

iϕ (α ⊗ α) = 1

3
α ∧ (α�ϕ) .

Note that in [20–22,25] a different convention for the torsion is used is used: τ1 in that
convention corresponds to 1

4τ0 here, τ7 corresponds to −τ1 here, iϕ (τ27) corresponds to
− 1

3τ3, and τ14 corresponds to 1
2τ2. The notation used here is widely used elsewhere in the

literature.
An important special case is when the G2-structure is torsion-free, that is, T = 0. This

is equivalent to ∇ϕ = 0, and hence torsion-free G2-structures are also called parallel G2-
structures. Also, by Fernández and Gray [16], this condition is also equivalent to dϕ = dψ =
0. Moreover, a G2-structure is torsion-free if and only if the holonomy of the corresponding
metric is contained in G2 [30]. On a compact manifold, the holonomy group is then precisely
equal toG2 if and only if the fundamental group π1 is finite. If dϕ = 0, then we say ϕ defines
a closed G2-structure. In that case, τ0 = τ1 = τ3 = 0 and only τ2 is in general non-zero. In
this case, T = 1

4τ2 and is hence skew-symmetric. If instead, dψ = 0, then we say that we
have a co-closed G2-structure. In this case, τ1 and τ2 vanish in (2.9b) and we are left with
τ0 and τ3 components. In particular, the torsion tensor Tab is now symmetric. There are of
course other, intermediate, torsion classes. For example, if τ1 is the only non-zero torsion
component, the G2 structure is said to be locally conformally parallel, since it is known
[10,21] that a conformal transformation can at least locally give a parallel G2-structure. If τ1
is exact, then a suitable conformal transformation gives a global parallel G2-structure.

3 Octonion bundle

In [23], the author defined the octonion bundle on a manifold with a G2 -structure.
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Definition 3.1 Let M be a smooth 7-dimensional manifold with a G2-structure (ϕ, g). The
octonion bundle OM ∼= Λ0 ⊕ T M on M is a rank 8 real vector bundle equipped with an
octonion product of sections given by

A ◦ϕ B =
(

ab − g (α, β)

aβ + bα + α ×ϕ β

)
(3.1)

for any sections A = (a, α) and B = (b, β) . Here we define ×ϕ by g
(
α ×ϕ β, γ

) =
ϕ (α, β, γ ) and given A ∈ Γ (OM), we write A = (Re A, Im A). The metric on T M is
extended to OM to give the octonion inner product 〈A, B〉 = ab + g (α, β).

The product (3.1) is non-associative and the associator for ◦ϕ is given by

[A, B,C]ϕ = A ◦ϕ

(
B ◦ϕ C

) − (
A ◦ϕ B

) ◦ϕ C

= 2 (ψ (·, α, β, γ ))� (3.2)

where α, β, γ are the imaginary parts of A, B,C and (ψ (·, α, β, γ ))� is the vector field
obtained from the 1-form ψ (·, α, β, γ ) using the metric.

Given the octonion bundle OM with the octonion algebra defined by the G2-structure ϕ

with torsion tensor T , we can extend the Levi-Civita connection ∇ to sections of OM . Let
A = (a, α) ∈ Γ (OM) , then define the covariant derivative on OM as

∇X A = (∇Xa,∇Xα) (3.3)

for any X ∈ Γ (T M). Then, as shown in [23]

∇X (AB) = (∇X A) ◦ϕ B + A ◦ϕ (∇X B) − [TX , A, B] (3.4)

where TX = (0, X�T ). We can then define an adapted octonion covariant derivative.

Definition 3.2 Define the octonion covariant derivative D such for any X ∈ Γ (T M) ,

DX : Γ (OM) −→ Γ (OM)

given by
DX A = ∇X A − A ◦ϕ TX (3.5)

for any A ∈ Γ (OM). As before, TX = (0, X�T ) ∈ Γ (ImOM).

From now on, let us suppress ◦ϕ for octonion product defined by ϕ. As shown in [23], D
satisfies a number of useful properties. In particular, it is metric-compatible, and satisfies a
partial product rule

DX (AB) = (∇X A) B + A (DX B) . (3.6)

We can also see that
DX1 = −TX . (3.7)

For a fixed vector field X , we have TX = (0, X�T ) ∈ Γ (ImOM), so the full torsion tensor
T may now be interpreted as a 1-form with values in ImOM , that is, T is a map from
Γ (T M) to Γ (ImOM) that takes X to TX . So as in [23], we will regard T ∈ Ω1 (ImOM).

Recall from [23], that given a unit octonion section V on OM we may define a modified
product on OM

A ◦V B = (AV )
(
V−1B

) = AB + [A, B, V ] V−1 (3.8)
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This product then induces a new G2-structure that is compatible with the same metric g as
ϕ and is given by

σV (ϕ) = (
v20 − |v|2) ϕ − 2v0v�ψ + 2v ∧ (v�ϕ) (3.9)

where V = (v0, v). It was explained by Bryant in [6] that all G2-structures that are isometric
to ϕ are given by (3.9) for some V . In particular, this also gives an explicit parametrization
of G2-structures that are compatible with g as sections of an S7/Z2 ∼= RP

7 -bundle over M .
In [23] it was shown that given two unit octonion sections U and V ,

σU (σV (ϕ)) = σUV (ϕ) . (3.10)

This allows to move easily between isometric G2-structures. Moreover, it was also shown
how the torsion and hence the octonion covariant derivative D depend on the choice of V .

Theorem 3.3 ([23]) Let M be a smooth 7-dimensional manifold with a G2 -structure (ϕ, g)
with torsion T ∈ Ω1 (ImOM) and corresponding octonion covariant derivative D. For a
unit section V ∈ Γ (OM) , consider the G2-structure σV (ϕ) . Then, the torsion T (V ) of
σV (ϕ) is given by

T (V ) = − (DV ) V−1. (3.11)

Also, let D(V ) be the octonion covariant derivative corresponding to σV (ϕ) . Then, for any
octonion section A, we have,

D(V )A = (D (AV )) V−1. (3.12)

We will refer to a particular choice of a G2-structure on M as a background G2-structure.
Namely, given a background G2 -structure ϕ, we will write any other isometric G2-structure
as σV (ϕ) , or will just refer to it as the G2-structure defined by the octonion section V .
Similarly, the octonion derivative D will be defined relative to ϕ and its torsion T . From
(3.10) and (3.12) we see that we can easily change the background G2-structure.

For some tensor bundle T on M, define T ⊗ OM to be the bundle of octonion-valued
tensors. Then we can extend D to sections of T ⊗OM , and in particular we can also define
the covariant exterior derivative on sections Ω p (OM) of the bundle of octonion-valued
differential forms (ΛpT ∗M) ⊗ OM

dD : Ω p (OM) −→ Ω p+1 (OM). (3.13)

such that
dDQ = d∇Q − (−1)p Q

◦∧ T (3.14)

where d∇ is the skew-symmetrized∇ and
◦∧ is a combination of exterior product and octonion

product. Also define the divergence of a p-form P with respect to D as the (p − 1)-form
Div P, given by

(Div P)b2...bp = Db1 P
b1
b2..bp

. (3.15)

In [23] we found the following properties of T as a ImOM-valued 1-form

Proposition 3.4 Suppose the octonion product on OM is defined by the G2-structure ϕ with
torsion T . Then,

dDT = 1

4
(π7 Riem) (3.16)

Div T = |T |2 + div T (3.17)
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whereπ7 Riem ∈ Ω2 (ImOM)∼= Ω2 (T M)- a vector-valued2-formgivenby (π7 Riem) c
ab =

(Riem)abmn ϕmnc. Also, div T ∈ Ω0 (ImOM) is given by (div T )a = ∇bT a
b and |T |2 ∈

Ω0 (ReOM) is given by |T |2 = TabT ab.

In particular, using Proposition 3.4, we can now work out the commutator [Da, Db] on
octonion-valued tensors.

Lemma 3.5 Suppose P ∈ Γ (T ⊗ OM). Then,

DaDbP − DbDa P = Riem (P)ab − 1

4
P (π7 Riem)ab (3.18)

where Riem (P) gives the action of the Riemann curvature endomorphism on P regarded as
a section of T ⊕ (T ⊗ T M) .

Proof From the definition of D (3.5) as well as the product rule property (3.6), we have

DaDbP = Da (∇b P − PTb)

= ∇a∇b P − (∇b P) Ta − (∇a P) Tb − P (DaTb)

and hence,

DaDbP − DbDa P = ∇a∇b P − ∇b∇a P − P (DaTb − DbTa)

= Riem (P)ab − 1

4
P (π7 Riem)ab

where we have also used (3.16). ��
For convenience, we’ll denote the curvature operator by F , so that

Fab (P) = Riem (P)ab − 1

4
P (π7 Riem)ab (3.19)

Define the Laplacian operator ΔD on OM-valued tensors as

ΔDP = DaDa P (3.20)

where P ∈ Γ (T ⊗ OM) . More explicitly, this is given by

ΔDP = Da (Da P)

= Da (∇a P − PTa)

= Da (∇a P) − (∇a P
)
Ta − P

(
DaTa

)

= ΔP − 2 (∇a P) T a − P (Div T ) (3.21)

For a tensor product of two OM-valued tensors, we find

ΔD (P ⊗ Q) = Da ((∇a P) ⊗ Q + P ⊗ (DaQ))

= (ΔP) ⊗ Q + 2 (∇a P) ⊗ (
DaQ

) + P ⊗ (ΔDQ) (3.22)

We will also need to know how to commute ΔD and D.

Lemma 3.6 Suppose P ∈ Γ (T ⊗ OM). Then,

Db (ΔDP) − ΔD (DbP) = −2
(
Riemab ∇a) (P) + 1

4

(∇a P
)
(π7 Riem)ab

−Ricbc ∇c P − Riem a
b (PTa) + Riemab (P) T a
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+1

4
P

(
Da (π7 Riem)ab

) − (div Riem)b (P) . (3.23)

where Riem is the Riemann curvature endomorphism on an appropriate tensor bundle.

Proof Using (3.18) and (3.6) repeatedly, we have

Db (ΔDP) = DbD
aDa P = DaDbDa P + F a

b (Da P)

= ΔDDbP − Da (Fab (P)) + F a
b (Da P)

More concretely,

Da (Fab (P)) = Da
(
Riemab (P) − 1

4
P (π7 Riem)ab

)

= (∇a Riemab
)
(P) + (

Riemab ∇a) (P) − Riemab (P) T a

−1

4

(∇a P
)
(π7 Riem)ab − 1

4
P

(
Da (π7 Riem)ab

)
(3.24)

F a
b (Da P) = −Riem (∇a P)ab − Riem a

b (PTa) (3.25)

We also have
Riem (∇a P)ab = Ricbc ∇c P + (

Riema
b ∇a

)
P

where
(
Riema

b ∇a
)
P means a composition of operators∇ and Riem, both acting on sections

of the bundle T ⊕ (T ⊗ T M), as opposed to Riem (∇a P)ab , where Riem acts on ∇P as a
section of the bundle T ∗M ⊗ (T ⊕ (T ⊗ T M)). Combining everything, we obtain (3.23).

��
In (3.23), note that

Da (π7 Riem)ab = ∇a
(
Riemabcd ϕcdmδm

)
− (π7 Riem)ab T

a

= (div Riem)bcd ϕcdmδm + 2Riemabcd T
aeψ cdm

e δm

− (π7 Riem)ab T
a (3.26)

where δ is the canonical ImOM-valued 1-form that gives the isomorphism from T M to
ImOM, so in local coordinates, for any value of the index m, δm is an imaginary octonion.
We see that any terms in (3.23) that do not involve derivatives of P , either involve div Riem
or a combination of Riem and T . Hence, we can schematically write

D (ΔDP) = ΔD (DP) + Riem ∗DP + (div Riem+Riem ∗T ) ∗ P (3.27)

where ∗ denotes some contraction involving g and/or ϕ.
Consider 〈ΔDP, P〉

〈ΔDP, P〉 = 〈
DaD

a P, P
〉

= ∇a
〈
Da P, P

〉 − |DP|2
= ∇a

(∇a |P|2 − 〈
P, Da P

〉) − |DP|2
where we have used metric compatibility of D. Thus,

div 〈DP, P〉 = 1

2
Δ |P|2 (3.28)

and hence,

〈ΔDP, P〉 = 1

2
Δ |P|2 − |DP|2 . (3.29)
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In particular, for a unit octonion section V ,

〈ΔDV , V 〉 = − |DV |2 . (3.30)

4 Energy functional

Given a 7-dimensional Riemannian manifold that admit G2-structures, we have a choice of
G2 -structures that correspond to the given Riemannian metric g. As we have seen, after
fixing an arbitrary G2-structure ϕ in this metric class, all the other G2-structures that are
compatible with g are parametrized by unit octonion sections, up to a sign. Given a unit
octonion section V , the corresponding G2-structure σV (ϕ) will have torsion T (V ) given
by T (V ) = − (DV ) V−1, where D is the octonion covariant derivative with respect to
ϕ. The question is how to pick the “best” representative of this metric class. The choice
of a particular G2-structure in a fixed metric class is similar to choosing a gauge in gauge
theory. Obviously, if the metric has holonomy contained inG2, then the “best” representative
should be a torsion-freeG2 -structure that corresponds to that metric. On compact manifolds,
a reasonable approach would be to pick a gauge that minimizes some functional. The natural
choice is the L2-norm of the torsion. Suppose M is now compact, in [23] the author defined
the functional E : Γ (SOM) −→ R , where SOM is the unit sphere subbundle, by

E (V ) =
∫

M

∣∣∣T (V )
∣∣∣
2
vol (4.1)

=
∫

M

∣∣(DV ) V−1
∣∣2 vol (4.2)

=
∫

M
|DV |2 vol . (4.3)

This is simply the energy functional for unit octonion sections. It should be noted that E (V )

is independent of the choice of the background G2-structure and thus really only depends
on the G2 -structure σV (ϕ). So it may equivalently be considered as a functional on the
space of G2-structures that are compatible with the metric g. A similar energy functional for
spinors has been studied by Ammann, Weiss and Witt [1], however in their case, the metric
was unconstrained, and so the functional was both on spinors and metrics.

Using the properties of D, we easily obtain the critical points.

Proposition 4.1 ([23]) The critical points of E satisfy

ΔDV + |DV |2 V = 0 (4.4)

and equivalently
div T (V ) = 0. (4.5)

The condition (4.5) comes from the identity

ΔDV + |DV |2 V = −
(
div T (V )

)
V . (4.6)

We see from (4.5) that the critical points of E correspond to G2-structures that have
divergence-free torsion. This description fits very well with the interpretation of the G2-
structure torsion as a connection for a non-associative gauge theory. The condition div T = 0
is then simply the analog of the Coulomb gauge. It is well-known (e.g. [12,13,41]) that in
gauge theory, given some reference connection A0, a connection A = A0 + a is said to be in
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the Coulomb gauge relative to A0 if d∗
A0
a = 0 and A is gauge equivalent to A0. Moreover,

a then corresponds to critical points of the L2-norm of A − A0 within the gauge group
orbit of A0. In our situation, we have a very similar thing happening, where the Levi-Civita
connection ∇ plays the role of the reference connection A0 and T has the role of a. The
divergence-free torsion condition can equivalently be written as d∗∇T = 0.

In general, unless DV = 0 (and hence T (V ) = 0), critical points of E with div T (V ) = 0
will not be local extrema of E .

Proposition 4.2 Suppose V (s, t) is a two-parameter family of unit octonion sections, then
the Hessian of E at a critical point is given by

∂2E (V (s, t))

∂s∂t
= 2

∫

M

(〈
DV̇ , DV ′〉 − |DV |2 〈

V̇ , V ′〉) vol (4.7)

where V̇ = ∂
∂t V (s, t) and V ′ = ∂

∂s V (s, t).

Proof To enforce the condition |V |2 = 1,we may rewrite E as a functional on Γ (OM)with
a Lagrange multiplier λ

E (V ) =
∫

M

(|DV |2 − λ
(|V |2 − 1

))
vol

where λ = |DV |2 at a critical point. From [23] we know that the first variation is given by

∂

∂t
E (V (s, t)) =

∫

M

(
∂

∂t
|DV (s, t)|2 − λ

∂

∂t
|V (s, t)|2

)
vol

= 2
∫

M

(〈
D

∂

∂t
V (s, t) , DV (s, t)

〉
− λ

〈
V (s, t) ,

∂

∂t
V (s, t)

〉)
vol

and hence, the second variation is

∂2E (V (s, t))

∂s∂t
= 2

∫

M

(〈
D

∂

∂t
V (s, t) , D

∂

∂s
V (s, t)

〉
+

〈
D

∂2

∂s∂t
V (s, t) , DV (s, t)

〉

− λ

〈
∂

∂s
V (s, t) ,

∂

∂t
V (s, t)

〉
− λ

〈
V (s, t) ,

∂2

∂s∂t
V (s, t)

〉)
vol

= 2
∫

M

(〈
D

∂

∂t
V (s, t) , D

∂

∂s
V (s, t)

〉
− λ

〈
∂

∂s
V (s, t) ,

∂

∂t
V (s, t)

〉

−
〈

∂2

∂s∂t
V (s, t) ,ΔDV (s, t) + λV (s, t)

〉)
vol,

where we have integrated by parts. However, at a critical point λ = |DV |2 and (4.4) is
satisfied, hence the second derivative term vanishes and at a critical point obtain (4.7). ��

The characterization of divergence-free torsion as corresponding to critical points of the
functional E shows that G2-structures with such torsion are in some sense special. On the
other hand, it is quite a broad class of G2-structures. In [23], a Dirac operator /D was defined
on the octonion bundle. For an octonion section V , nn local coordinates it is given by /DV =
δa ◦ϕ (DaV ), where δ is the canonical ImOM-valued 1-form as defined in Sect. 3 and ◦ϕ

is the octonion product defined by the G2-structure ϕ. This definition is analogous to the
standard definition on spinors using Clifford multiplication. It was then shown that unit norm
eigensections of /D are critical points ofE .These correspond toG2-structureswith torsion that
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have constant τ0 and vanishing τ1, but with arbitrary τ2 and τ3. An almost complementary set
of G2-structures also yields divergence-free torsion—these are locally conformally parallel
G2 -structures with τ0 = τ2 = τ3 = 0 and τ1 �= 0. Overall, we have the following.

Theorem 4.3 Suppose ϕ is a G2-structure on a 7 -dimensional manifold, with torsion T and
components of torsion τ0, τ1, τ2, τ3. Then, div T = 0 if one of the following holds

1. τ0 is constant and τ1 = 0 and arbitrary τ2 and τ3
2. τ0 = τ2 = τ3 = 0 and arbitrary τ1

Proof The condition 1 is proved in [23, Prop. 10.5]. For condition 2, recall from [16], that if
τ0 = τ2 = τ3 = 0, then dτ1 = 0. Then, from (2.8) and (2.7a), we have

(div T )b = −∇a

(
τ c1ϕab

c

)
= −τ c1∇aϕ

ab
c

= 2τ c1 Tadψ
adb

c = −τ c1 τ e1ϕeadψ
adb

c

= −4τ c1 τ e1ϕ b
ce = 0.

��

5 Heat flow

In general, however, we don’t know if the functional E has any critical points for a given
metric. However, another approach, that has been successful in the study of harmonic maps
and in Yang–Mills theory is to consider the negative gradient flow of E . This gives the
following initial value problem for a time-dependent unit octonion section V (t) ∈ Γ (SOM)

{
∂V
∂t = ΔDV + |DV |2 V
V (0) = V0,

(5.1)

which was introduced in [23]. Here D is defined with respect to some background G2-
structure ϕ with torsion T . This will be unambiguous because time-dependent G2-structure
along the flowwill be denoted byϕV = σV (ϕ) with torsion T (V ) andHodge dual 4-formψV .
Although initially we have to make a choice of background ϕ,we find that the flow is actually
invariant under a change of the background G2-structure. Indeed, suppose ϕ̃ = σU (ϕ) , for
some unit octonion section U , then from (3.10),

σV (ϕ) = σVU−1 (σU (ϕ)) = σVU−1 (ϕ̃) . (5.2)

Moreover, from (3.12),
D(U )

(
VU−1) = (DV )U−1 (5.3)

where D(U ) is the covariant derivative defined with respect to ϕ̃. Now, consider the corre-
sponding Laplacian ΔD(U )

ΔD(U )

(
VU−1) = −

(
D(U )

)∗
D(U )

(
VU−1)

= −
(
D(U )

)∗ (
(DV )U−1)

= (ΔDV )U−1 (5.4)

where we have applied (5.3) twice. Hence, if we set W = VU−1, we find that (5.1) is
equivalent to {

∂W
∂t = ΔD(U )W + ∣∣D(U )W

∣∣2 W
W (0) = V0U−1 . (5.5)
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Therefore, we can always change the background G2-structure as convenient.
The flow (5.1) is clearly parabolic and by standard parabolic theory, therefore has short-

time existence and uniqueness. In [3,14], this flow was reformulated explicitly in terms of
the imaginary part of V and was explicitly shown to be parabolic as a PDE on vector fields.

Theorem 5.1 There exists an ε > 0 such that there exists a unique solution of (5.1) on
M × [0, ε).

From (4.6), an equivalent way of writing the flow (5.1) is

∂V

∂t
= −

(
div T (V )

)
V . (5.6)

Moreover, as an evolution equation for ϕV (t) = σV (t) (ϕ), it can also be rewritten as

∂ϕV (t)

∂t
= 2 (div T (t))�ψV (t) (5.7)

which we can obtain from the following simple lemma.

Lemma 5.2 Suppose a one-parameter family of unit octonion sections V (t) satisfies the
evolution equation

∂V

∂t
= −QV (5.8)

for some time-dependent sections Q (t) ∈ Γ (ImOM) . Then, the corresponding G2-
structure 3-forms ϕV (t) = σV (t) (ϕ) satisfy the evolution equation

∂ϕV (t)

∂t
= 2Q (t)�ψV (t) . (5.9)

and the torsion T (V ) satisfies

∂T (V )

∂t
= ∇Q (t) + 2T (V ) ×V Q (t) (5.10)

where ×V is the cross-product defined by the G2 -structure ϕV (t).

Proof We can extract ∂ϕV (t)
∂t by considering what happens to the modified product ◦V (t) (3.8).

Let A and B be two fixed octonions, then

∂

∂t

(
A ◦V (t) B

) = ∂

∂t

(
(AV )

(
V̄ B

))

=
(
A

∂V

∂t

) (
V̄ B

) + (AV )

(
∂ V̄

∂t
B

)

where we have used V−1 = V̄ since V is a unit octonion. Using (5.8) and ∂ V̄
∂t = V̄ Q, we

then obtain

∂

∂t

(
A ◦V (t) B

) = − (A (QV ))
(
V̄ B

) + (AV )
((
V̄ Q

)
B

)

= − ((A ◦V Q) V )
(
V̄ B

) + (AV )
(
V̄ (Q ◦V B)

)

= − (A ◦V Q) ◦V B + A ◦V (Q ◦V B)

= [A, Q, B]V

where we have again used the definition (3.8) of ◦V and [·, ·, ·]V is the associator with respect
to ◦V . Using the relationship (3.2) between the associator and ψ , we obtain (5.9).
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Similarly,

∂T (V )

∂t
= −∂

(
(DV ) V−1

)

∂t
= (D (QV )) V−1 − (DV )

(
V−1Q

)

= D(V )Q + T (V ) ◦V Q (5.11)

= ∇Q + 2T (V ) ×V Q. (5.12)

��
By definition of the negative gradient flow, the energy functional E is decreasing along

the flow (5.1) whenever div T �= 0. More precisely, E (t) satisfies the following equation,
which follows immediately from (5.10) with Q = div T .

Lemma 5.3 Along the flow (5.1), the functional E satisfies

dE

dt
= −2

∫

M

∣
∣
∣div T (V )

∣
∣
∣
2
vol (5.13a)

d2E

dt2
= 4

∫

M

(∣
∣
∣D(V )

(
div T (V )

)∣
∣
∣
2 −

∣
∣
∣T (V )

∣
∣
∣
2 ∣
∣
∣div T (V )

∣
∣
∣
2
)
vol (5.13b)

where we regard div T (V ) as sections of ImOM and T (V ) ∈ Ω1 (ImOM) . The norm |·| is
obtained by extending the metric to Ω1 (OM).

Proof Using (5.10) with Q = div T (V ), we have

dE

dt
= 2

∫

M

〈
T (V ),

∂T (V )

∂t

〉
vol

= 2
∫

M

(〈
T (V ),∇Q

〉
+ 2

〈
T (V ), T (V ) ×V Q

〉)
vol

= −2
∫

M
|Q|2 vol

where the second term in the second line vanishes by symmetry considerations and the first
term is integrated by parts.

Using (5.11), and suppressing ◦V , we have
d2E

dt2
= −4

∫

M

〈
Q, div

(
∂T (V )

∂t

)〉
vol

= −4
∫

M

〈
Q, div

(
D(V )Q + T (V )Q

)〉
vol

= 4
∫

M

〈
∇Q, D(V )Q + T (V )Q

〉
vol

= 4
∫

M

〈
D(V )Q + QT (V ), D(V )Q + T (V )Q

〉
vol

= 4
∫

M

(∣∣∣D(V )Q
∣∣∣
2 +

〈
QT (V ) + T (V )Q, D(V )Q

〉

+
〈
QT (V ), T (V )Q

〉)
vol . (5.14)

Note that Q and T (V ) are both imaginary octonions, so QT (V ) + T (V )Q only has a real part.
On the other hand, in

D(V )Q = ∇Q − QT (V ),
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the derivative term ∇Q is pure imaginary so the real part comes from QT (V ). Hence
〈
QT (V ) + T (V )Q, D(V )Q

〉
= −

〈
QT (V ) + T (V )Q, QT (V )

〉
.

Thus, overall,
d2E

dt2
= 4

∫

M

(∣
∣
∣D(V )Q

∣
∣
∣
2 −

∣
∣
∣QT (V )

∣
∣
∣
2
)
vol .

However, note that more explicitly, we can write
∣
∣
∣QT (V )

∣
∣
∣
2 = gab

〈
QT (V )

a , QT (V )
b

〉

= gab
〈
Q̄

(
QT (V )

a

)
, T (V )

b

〉
= gab

〈(
Q̄Q

)
T (V )
a , T (V )

b

〉

= |Q|2
∣
∣
∣T (V )

∣
∣
∣
2

and hence we obtain (5.13b). ��
Remark 5.4 To work out the second derivative, we could alternatively use (5.10) to obtain

d2E

dt2
= −4

∫

M

〈
Q, div

(
∇Q + 2T (V ) ×V Q

)〉
vol

= 4
∫

M
|∇Q|2 + 2

〈
∇Q, T (V ) ×V Q

〉
vol . (5.15)

This is then essentially the same expression that appears in Lemma 5.10 in [14].

In [14], the second derivative of E was estimated using the first non-zero eigenvalue of the
Laplacian on vector fields as long as the pointwise norm square of the torsion was sufficiently
small. From (5.13b), we can say that

d2E

dt2
≥ 4λ1 (V )

∫

M

∣∣∣div T (V )
∣∣∣
2
vol (5.16)

where λ1 (V ) is lowest (non-zero) eigenvalue of the operator HV = −ΔD(V ) − ∣∣T (V )
∣∣2 . By

compactness of M , this operator clearly has a discrete spectrum. Also, from (3.7) and (3.17),
we see that div T (V ) = −HV (1), and hence, div T (V ) is L2-orthogonal to the kernel of HV .
The operator −ΔD(V ) has a non-negative spectrum that is independent of V , which can be
seen from the covariance property (5.4), however HV will in general have a spectrum that

depends on V , and does not have to be non-negative. On the other hand, if
∣∣T (V )

∣∣2 is less
than first non-zero eigenvalue of −ΔD(V ) , then λ1 (V ) will be positive, and thus we obtain
an analogue of the estimate from [14].

Corollary 5.5 Let λ > 0 be first non-zero eigenvalue of the operator −ΔD . Then, whenever∣∣T (V )
∣∣2 = |DV |2 ≤ 1

2λ,

d

dt

∫

M

∣∣∣div T (V )
∣∣∣
2
vol ≤ −λ

∫

M

∣∣∣div T (V )
∣∣∣
2
vol . (5.17)

We will adapt the techniques introduced by Shi for the Ricci flow [39], that were later
used in [19] for the harmonic map heat flow and in [36] for the Laplacian flow of closed
G2-structures, to prove estimates for a finite time blow-up for the flow (5.1). Let us introduce
the quantity

Λ(x, t) = |DV (x, t)|2 . (5.18)
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Of course, from (3.11), we see that Λ(x, t) = ∣
∣T (V ) (x, t)

∣
∣2 .

At every t ∈ R for which (5.1) is defined, let us also define

Λ(t) = sup
x∈M

Λ(x, t) . (5.19)

Let Λ(0) = Λ0 be the maximal initial energy density, and equivalently the maximal initial
pointwise norm squared of the torsion tensor supx∈M

∣
∣T (V ) (x, 0)

∣
∣.

Our main result in this section is the following

Theorem 5.6 Suppose V (t) is a solution to (5.1) on a finite maximal time interval [0, tmax).
Then

lim
t−→t−max

Λ(t) = ∞ (5.20)

and moreover,

Λ(t) ≥ 1

2 (tmax − t)
− C0 (5.21)

where C0 > 0 depends on the curvature and torsion of the background G2-structure.

The above theorem in particular shows that as long asΛ (t) , and equivalently
∣∣T (V ) (x, t)

∣∣,
is bounded, a solution to (5.1) will exist. To prove Theorem 5.6, we will use the following
strategy

1. We will work out the evolution of DV and hence |DV |2 in Lemma 5.7. From the Maxi-
mum Principle, this will also give an upper bound for Λ (t) in Theorem 5.9.

2. We will obtain the evolution of
∣∣D2V

∣∣2 and
∣∣D3V

∣∣2, and then in Theorem 5.10, by

induction we will obtain bounds on
∣∣DkV

∣∣2 in terms of Λ.

3. These bounds will then be used to show that whenever Λ (t) is finite, the flow V (t) may
be smoothly extended further. This will then prove (5.20).

In the estimates that follow,wewill use∗ to denote anymultilinear contraction that involves
g, g−1, ϕ, ψ, and we will drop irrelevant constant factors. Sometimes we will generically
use C for a constant, which may denote a different constant in different places.

Lemma 5.7 Along the flow (5.1), |DV |2 evolves as
∂

(|DV |2)
∂t

= ΔD |DV |2 − 2
∣∣D2V

∣∣2 + 2 |DV |4 − 4Riema m
b n

〈(∇av
n) δm, DbV

〉

− 2Ricbc
〈
∇bV , DcV

〉
+ 1

2

〈(∇aV
)
(π7 Riem)ab , DbV

〉

− 2 (div Riem) m
b n vn

〈
δm, DbV

〉
+ 1

2

〈
V Div (π7 Riem)b , DbV

〉

− 2
〈
Riemab (V ) T a − Riem a

b (V Ta) , DbV
〉

(5.22)

where v = Im V . Moreover, the evolution of |DV |2 satisfies the following inequality

∂ |DV |2
∂t

≤ Δ |DV |2 − 2
∣∣D2V

∣∣2 + 2
(|DV |4 + 2R1 |DV |2 + R2 |DV |) (5.23)

where R1 is a constant multiple of supM |Riem| and R2 is a linear combination of
supM |div Riem| and supM |T | |Riem|.
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Proof We have V satisfying the flow

∂V

∂t
= ΔDV + |DV |2 V (5.24)

and hence, using Lemma 3.6,

∂ (DV )

∂t
= D

(
∂V

∂t

)
= D

(
ΔDV + |DV |2 V )

= D (ΔDV ) + (∇ |DV |2) V + |DV |2 DV

= ΔD (DV ) + Riem ∗DV + (div Riem+Riem ∗T ) ∗ V

+ (∇ |DV |2) V + |DV |2 DV . (5.25)

Moreover, now,

∂ |DV |2
∂t

= 2

〈
∂ (DV )

∂t
, DV

〉

= 2 〈D (ΔDV ) , DV 〉 + 2 |DV |4 . (5.26)

Using (3.29), we then obtain (5.22). The inequality (5.23) follows immediately using (3.27).
��

Corollary 5.8 If the background G2-structure ϕ is torsion-free, then |∇V |2 satisfies the fol-
lowing evolution equation

∂
(|∇V |2)

∂t
= Δ |∇V |2 − 2

∣∣∇2V
∣∣2 + 2 |∇V |4 + 4Riem (∇v,∇v) (5.27)

where Riem (∇v,∇v) = Riemabcd (∇avc)
(∇bvd

)
for v = Im V .

Proof If T = 0, then D = ∇. Also then π7 Riem = 0, and hence Ric = 0, and similarly
div Riem = 0. Then, (5.27) follows immediately from (5.22). ��

The expression (5.27) is similar to the evolution of the energy density of harmonic maps in
[15], however we have the additional |∇V |4 term that is quadratic in the dependent variable.
As it is well-known in the theory of semilinear PDEs, such quadratic terms in general lead to
blow-ups. We can however get an estimate on the maximal time for which the energy density
is finite.

Theorem 5.9 Suppose V (t) is a solution to (5.1) on a finite maximal time interval [0, tmax).
Then for any t ∈ [0, tmax),

Λ(t) ≤ 2R1(
1 + 2R1

Λ0+R2

)
e−4R1t − 1

− R2, (5.28)

where R1 is a constant multiple of supM |Riem| and R2 is a linear combination of
supM |div Riem| and supM |T | |Riem|.
Proof From (5.23), using Young’s inequality, we can say that for any ε > 0

∂ |DV |2
∂t

≤ Δ |DV |2 − 2
∣∣D2V

∣∣2 + 2

(
|DV |4 + 2 (R1 + εR2) |DV |2 + 1

8ε
R2

)

≤ Δ |DV |2 − 2
∣∣D2V

∣∣2 + 2
(
εR2 + |DV |2)2 + 4R1

(
εR2 + |DV |2)
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− 2ε2R2
2 − 4εR1R2 + 1

4ε
R2. (5.29)

Taking ε such that 4εR1 ≥ 1
4ε , then redefining R2 as εR2, and using h (x, t) = R2 +

|DV (x, t)|2, we get
∂h

∂t
≤ Δh − 2

∣
∣D2V

∣
∣2 + 2h2 + 4R1h. (5.30)

Note that in the torsion-free case, from (5.27), we can set R1 = supM |Riem|. Now, h is a
subsolution of the equation

∂u

∂t
= Δu + 2u2 + 4R1u. (5.31)

By theMaximum Principle, h (x, t) is dominated by solutions of (5.31) ifΛ(x, 0) ≤ u (x, 0)
for all x . Since for t = 0, h (x, 0) ≤ h (0), we can take u = u (t) with u (0) = h (0) =
Λ0 + R2. Solving the ODE du

dt = 2u2 + 4R1u with these initial conditions, then gives us the
bound (5.28). ��

Given a solution V to (5.1), define Λ(m) (t) = supx∈M
(
|DmV (x, t)|2

)
. Then we have

the following estimates.

Theorem 5.10 For any positive integer m ≥ 2 there exists a constant Cm > 0 that only
depends on M and the background G2-structure, such that if V (t) is a solution to (5.1) for
t ∈ [0, t0) with Λ(t) ≤ K, with K ≥ 1, then

Λ(m) (t) ≤ CmK
m for t ∈ [0, t0). (5.32)

Proof Consider first the evolution of D2V . From (5.25) and (3.27), we can write schemati-
cally

∂
(
D2V

)

∂t
= D

∂DV

∂t
= DΔD (DV ) + D2 (|DV |2 V )

+ D (Riem ∗DV ) + D ((div Riem+Riem ∗T ) ∗ V ) .

Applying (3.27) again, we have

∂
(
D2V

)

∂t
= ΔD

(
D2V

) + ∇2 (|DV |2) V + 2∇ (|DV |2) DV + |DV |2 D2V

+ Riem ∗D2V + (∇ Riem+Riem ∗T ) ∗ DV

+ (∇ (div Riem) + ∇ Riem ∗T + Riem ∗T ∗ T + Riem ∗∇T ) ∗ V

(5.33)

and thus,

∂
(∣∣D2V

∣∣2
)

∂t
= Δ

∣∣D2V
∣∣2 − 2

∣∣D3V
∣∣2 + 2

〈∇2 (|DV |2) V , D2V
〉

+ 4
〈∇ (|DV |2) DV , D2V

〉 + 2 |DV |2 ∣∣D2V
∣∣2

+ 〈
Riem ∗D2V , D2V

〉 + 〈
(∇ Riem+Riem ∗T ) ∗ DV , D2V

〉

+ 〈
(∇ (div Riem) + ∇ Riem ∗T + Riem ∗T ∗ T + Riem ∗∇T ) ∗ V , D2V

〉
.

(5.34)
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Also, note that

〈V , DaDbV 〉 = ∇a 〈V , DbV 〉 − 〈DaV , DbV 〉 = − 〈DaV , DbV 〉 (5.35a)

∇a∇b |DV |2 = ∇a
(〈
DbDcV , DcV

〉 + 〈
DcV , DbD

cV
〉)

= 2
〈
DaDbDcV , DcV

〉 + 2
〈
DbDcV , DaD

cV
〉

(5.35b)

∇ (|DV |2) = 2
〈
DV , D2V

〉
. (5.35c)

Thus,
〈∇2 (|DV |2) V , D2V

〉 = 2
〈
DaDbDcV , DcV

〉 〈
V , DaDbV

〉

− 2
〈
DbDcV , DaD

cV
〉 〈
DaV , DbV

〉

and hence,
∣
∣〈∇2 (|DV |2) V , D2V

〉∣∣ ≤ 2
∣
∣D3V

∣
∣ |DV |3 + 2

∣
∣D2V

∣
∣2 |DV |2

〈∇ (|DV |2) DV , D2V
〉 ≤ 2 |DV |2 ∣

∣D2V
∣
∣2 .

Overall, we then get

∂
(∣∣D2V

∣∣2
)

∂t
≤ Δ

∣∣D2V
∣∣2 − 2

∣∣D3V
∣∣2 + 4

∣∣D3V
∣∣ |DV |3 + C1 |DV |2 ∣∣D2V

∣∣2

+C2
∣∣D2V

∣∣2 + C3
∣∣D2V

∣∣ |DV | + C4
∣∣D2V

∣∣ . (5.36)

Now, using Young’s inequality for any ε1 > 1 we have

∣∣D3V
∣∣ |DV |3 ≤ ε1

2

∣∣D3V
∣∣2 + 1

2ε1
|DV |6

and hence (5.36) becomes

∂
(∣∣D2V

∣∣2
)

∂t
≤ Δ

∣∣D2V
∣∣2 − 2 (1 − ε1)

∣∣D3V
∣∣2 + C1 (Λ (x, t) + 1)

∣∣D2V
∣∣2

+C2
(
Λ(x, t) + Λ(x, t)3

)
.

Now, by hypothesis, Λ(x, t) ≤ K , and K ≥ 1, so we have

∂
(∣∣D2V

∣∣2
)

∂t
≤ Δ

∣∣D2V
∣∣2 − 2 (1 − ε1)

∣∣D3V
∣∣2 + C1K

∣∣D2V
∣∣2 + C2K

3, (5.37)

where we assume ε1 < 1. From (5.23), we also have

∂Λ (x, t)

∂t
≤ ΔΛ − 2

∣∣D2V
∣∣2 + C3K

2. (5.38)

Now let
h = (8K + Λ(x, t))

∣∣D2V
∣∣2 . (5.39)

Then,

∂h

∂t
= ∂Λ (x, t)

∂t

∣∣D2V
∣∣2 + (8K + Λ(x, t))

∂
(∣∣D2V

∣∣2
)

∂t

≤ ∣∣D2V
∣∣2 ΔΛ(x, t) + (8K + Λ(x, t))Δ

∣∣D2V
∣∣2
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− 2
∣
∣D2V

∣
∣4 − 16 (1 − ε1) K

∣
∣D3V

∣
∣2

+C1K
2
∣
∣D2V

∣
∣2 + C2K

4 (5.40)

for some new constants C1 and C2. On the other hand,

Δh = ∣
∣D2V

∣
∣2 ΔΛ(x, t) + (8K + Λ(x, t)) Δ

∣
∣D2V

∣
∣2 + 2∇aΛ∇a

∣
∣D2V

∣
∣2

and

2∇aΛ∇a
∣
∣D2V

∣
∣2 ≥ −2

∣
∣∇ |DV |2∣∣

∣
∣
∣∇ ∣

∣D2V
∣
∣2

∣
∣
∣

≥ − 8 |DV | ∣∣D3V
∣
∣
∣
∣D2V

∣
∣2

≥ − 16ε2K
∣
∣D3V

∣
∣2 − 1

ε2

∣
∣D2V

∣
∣4 ,

where we have used Young’s Inequality with ε2 > 0. Thus, overall,

∣
∣D2V

∣
∣2 ΔΛ(x, t) + (8K + Λ(x, t)) Δ

∣
∣D2V

∣
∣2 ≤ Δh + 16ε2K

∣
∣D3V

∣
∣2

+ 1

ε2

∣∣D2V
∣∣4 , (5.41)

and so we obtain

∂h

∂t
≤ Δh + 16K (ε1 + ε2 − 1) K

∣∣D3V
∣∣2 +

(
1

ε2
− 2

) ∣∣D2V
∣∣4

+C1K
2
∣∣D2V

∣∣2 + C2K
4

≤ Δh + 16K (ε1 + ε2 − 1) K
∣∣D3V

∣∣2 +
(
1

ε2
+ ε3 − 2

) ∣∣D2V
∣∣4

+
(
C1

4ε2
+ C2

)
K 4, (5.42)

where we again applied Young’s Inequality with some ε3 > 0. Then, since
∣∣D2V

∣∣2 ≤ h
8K ,

after an appropriate choice of ε1, ε2, ε3, we find that there exists a positive constant C such
that

∂h

∂t
≤ Δh − h2

CK 2 + CK 4. (5.43)

Now considering solutions of the ODE

du

dt
= − u2

CK 2 + CK 4,

we find that
u ≤ CK 3.

Therefore, by the Maximum Principle, we also find that

h ≤ CK 3,

and hence ∣∣D2V
∣∣2 ≤ CK 2 (5.44)
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for some other constant C > 1. Note that using (5.44) we can rewrite ( 5.37) as

∂
(∣
∣D2V

∣
∣2

)

∂t
≤ Δ

∣
∣D2V

∣
∣2 − 2ε1

∣
∣D3V

∣
∣2 + C3K

3 (5.45)

for ε1 < 1.
Now assuming bounds for the first and second derivative we will obtain a bound for∣

∣D3V
∣
∣2. From (5.33) and (3.27), it is not difficult to see that

∂
(
D3V

)

∂t
= ΔD

(
D3V

) + D3 (|DV |2 V ) + Riem ∗D3V

+R2 ∗ D2V + R2 ∗ DV + R0 (5.46)

where Ri for i = 0, 1, . . . , k − 1 are some tensors that combine derivatives of Riem and T .
Now, taking the inner product of (5.46) with D3V and applying (3.29), we obtain

∂
∣
∣D3V

∣
∣2

∂t
≤ Δ

∣
∣D3V

∣
∣2 − 2

∣
∣D4V

∣
∣2 + 〈

D3 (|DV |2 V )
, D3V

〉

+C
∣∣D3V

∣∣2 + C
∣∣D2V

∣∣ ∣∣D3V
∣∣ + C |DV | ∣∣D3V

∣∣ + C
∣∣D3V

∣∣ . (5.47)

Let us focus on the third term on the right-hand side of (5.47). Schematically, ignoring indices
on derivatives, we have

D3 (|DV |2 V ) = (∇3 |DV |2) V + 3
(∇2 |DV |2) DV + 3

(∇ |DV |2) D2V

+ |DV |2 D3V (5.48)

and since D3 〈V , V 〉 = 0 we also have
〈
V , D3V

〉 = −3
〈
DV , D2V

〉
.

Thus,
〈
D3 (|DV |2 V )

, D3V
〉 = −3

(∇3 |DV |2) 〈
DV , D2V

〉

+ 3
(∇2 |DV |2) 〈

DV , D3V
〉

+ 3
(∇ |DV |2) 〈

D2V , D3V
〉 + |DV |2 ∣∣D3V

∣∣2 , (5.49)

and applying bounds |DV | ≤ CK
1
2 ,

∣∣D2V
∣∣ ≤ CK , we, get

∣∣〈D3 (|DV |2 V )
, D3V

〉∣∣ ≤ CK 2
∣∣D4V

∣∣ + CK
∣∣D3V

∣∣2 + CK 4

≤ 2ε
∣∣D4V

∣∣2 + CK
∣∣D3V

∣∣2 + CK 4,

where we also used Young’s Inequality on the first term. So overall, we have

∂
∣∣D3V

∣∣2

∂t
≤ Δ

∣∣D3V
∣∣2 − 2 (1 − ε)

∣∣D4V
∣∣2 + C1K

∣∣D3V
∣∣2 + C2K

4. (5.50)

Similarly as before, let

h =
(
8L + ∣∣D2V

∣∣2
) ∣∣D3V

∣∣2 , (5.51)
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where L is a constant such that K 2 ≤ L ≤ CK 2 (which is possible since C > 1) and∣
∣D2V

∣
∣2 ≤ L. Then, using (5.50) and (5.45), we find that

∂h

∂t
≤ Δh − h2

CK 4 + CK 6, (5.52)

and this then gives us the bound ∣
∣D3V

∣
∣2 ≤ CK 3 (5.53)

for some constant C . By induction can similarly obtain bounds (5.32) for higher derivatives.
��

Proof of Theorem 5.6 Suppose a solution V (t) to (5.1) exists on the finite maximal time
interval [0, tmax). We will proceed by contradiction to prove (5.20). Suppose (5.20) does not
hold. This implies that there exists a constant K such that

sup
M×[0,tmax)

Λ (x, t) ≤ K . (5.54)

We then know from (5.32) that for some constant C2 > 0

sup
M×[0,tmax)

Λ(2) (x, t) ≤ C2K
2.

So in particular,
∣∣D2V

∣∣ is bounded, and thus from the flow equation (5.1), there exists a
constant C > 0 such that

sup
M×[0,tmax)

∣∣∣∣
∂V

∂t

∣∣∣∣ ≤ C .

Then, for any 0 < t1 < t2 < tmax, we have

|V (t2) − V (t1)| ≤
∫ t2

t1

∣∣∣∣
∂V

∂t

∣∣∣∣ dt ≤ C (t2 − t1) . (5.55)

Therefore, we see that as t −→ tmax, the octonion sections V (t) converge continuously to a
section V (tmax) . Clearly, this will also have unit norm. Locally, for some 0 < t < tmax we
can then write

V (tmax) = V (t) +
∫ tmax

t

(
ΔDV (s) + |DV (s)|2 V (s)

)
ds. (5.56)

Now, by Theorem 5.10, all derivatives of V are uniformly bounded, hence all derivatives
of V (tmax) are also bounded. Thus, V (tmax) is a smooth section and V (t) converges to it
uniformly in any Cm-norm as t −→ tmax. Now we have smoothly extended the flow from
[0, tmax) to tmax. However, using short-time existence and uniqueness of the flow, we can
uniquely extend it further starting from t = tmax to t = tmax + ε for some ε > 0. Therefore,
the flow exists on [0, tmax + ε) and this contradicts the maximality of tmax. We then find that
(5.54) fails, and can conclude that

lim
t−→tmax

Λ(t) = ∞. (5.57)

From (5.30), we see that

d (Λ (t) + C0)

dt
≤ 2 (Λ (t) + C0)

2
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where C0 = R1 + R2 is a constant that depends on the curvature and the torsion of the
background G2-structure. Thus,

d (Λ (t) + C0)
−1

dt
≥ −2

and thus, integrating, and taking the limit as t −→ tmax, we obtain

Λ(t) ≥ 1

2 (tmax − t)
− C0 (5.58)

for all t ∈ [0, tmax). Thus, we obtain (5.21). ��

6 Monotonicity

In order to be able to get a better control on the flow, it is useful to find quantities that are
monotonic, or otherwise well-behaved along the flow. Following Hamilton [27], let k be a
positive scalar solution of the backwards heat equation

∂k

∂t
= −Δk (6.1)

for 0 ≤ t ≤ t0, with some initial condition at t = t0 and evolving towards t = 0, such that∫
M k vol = 1. Then, consider the quantity

Z (t) = (t0 − t)
∫

M
|DV |2 k vol . (6.2)

Theorem 6.1 Suppose V is a solution of the flow (5.1) for 0 ≤ t < t0 with initial energy
E (0) = E0. Then, there exists a constant C > 0, that only depends on the background
geometry, such that for any t and τ satisfying t0 − 1 ≤ τ ≤ t < t0, Z (t) satisfies the
following relation

Z (t) ≤ CZ (τ ) + C (t − τ)

(
E0 + E

1
2
0

)
(6.3)

Proof Differentiating Z(t), we find

dZ

dt
= −

∫

M
|DV |2 k vol+ (t0 − t)

∫

M

∂

∂t

(|DV |2) k vol

− (t0 − t)
∫

M
|DV |2 Δk vol . (6.4)

Consider the second term on the right-hand side of (6.4).We use the evolution equation (5.26)
for |DV |2 and then integrate by parts

∫

M

∂

∂t

(|DV |2) k vol = 2
∫

M

(〈
Di (ΔDV ) , DiV

〉
+ |DV |4

)
k vol

= −2
∫

M

(|ΔDV |2 − |DV |4) k vol

− 2
∫

M

〈
ΔDV , DiV

〉
∇i k vol . (6.5)
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Let us now rewrite (6.5) by completing the square
∣
∣ΔDV + |DV |2 V + 1

k∇i kDi V
∣
∣2

∫

M

∂

∂t

(|DV |2) k vol = −2
∫ ∣

∣
∣
∣ΔDV + |DV |2 V + 1

k
∇i kD

i V

∣
∣
∣
∣

2

k vol

+ 2
∫

M

〈
ΔDV , DiV

〉
∇i k vol+2

∫

M

1

k

(∇i k∇ j k
) 〈
DiV , D jV

〉
vol

(6.6)

and finally, let us integrate the second term by parts, so that overall, we get

∫

M

∂

∂t

(|DV |2) k vol = −2
∫

M

∣
∣
∣
∣ΔDV + |DV |2 V + 1

k
∇i kD

i V

∣
∣
∣
∣

2

k vol

− 2
∫

M

(〈
D jV , Dj D

i V
〉
∇i k +

〈
D jV , DiV

〉
∇ j∇i k

)
vol

+ 2
∫

M

1

k

(∇i k∇ j k
) 〈
DiV , D jV

〉
vol . (6.7)

Now consider the third term of the right-hand side of (6.4). Integrating by parts, we get
∫

M
|DV |2 Δk vol = −2

∫

M

〈
DjV , Di D j V

〉
∇i k vol

= −2
∫

M

〈
DjV , D j Di V + Fi j (V )

〉
∇i k vol

= −2
∫

M

〈
DjV , D j Di V

〉
∇i k vol

+ 2
∫

M

〈
DiV , Fi j (V )

〉
∇ j k vol . (6.8)

Combining all the terms, (6.4) becomes

dZ

dt
+ 2W = −2 (t0 − t)

∫

M

[
∇i∇ j k − 1

k

(∇i k∇ j k
) + kgi j

2 (t0 − t)

] 〈
DiV , D jV

〉
vol

− 2 (t0 − t)
∫

M

〈
DiV , Fi j (V )

〉
∇ j k vol, (6.9)

where we set

W = (t0 − t)
∫

M

∣∣∣∣ΔDV + |DV |2 V + 1

k
∇i kD

i V

∣∣∣∣

2

k vol . (6.10)

Applying integration by parts to the last term in (6.9), we get

dZ

dt
+ 2W = −2 (t0 − t)

∫

M

[
∇i∇ j k − 1

k

(∇i k∇ j k
) + kgi j

2 (t0 − t)

] 〈
DiV , D jV

〉
vol

− 2 (t0 − t)
∫

M

〈
D jV , Di (Fi j (V )

)〉
k vol

− (t0 − t)
∫

M
|F (V )|2 k vol . (6.11)

For the first term on the right-hand side of (6.11) we apply Hamilton’s matrix Harnack
inequality from [26]: there exist constants B and C that depend only on the geometry of M
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such that

∇i∇ j k − 1

k

(∇i k∇ j k
) + kgi j

2 (t0 − t)
≥ −C

(

1 + k ln

(
B

(t0 − t)
7
2

))

gi j . (6.12)

Note that the trace of this estimate gives the well-known Harnack estimate by Li and Yau
[35].

Let us now consider the second term in (6.11). From (3.24), we know that

Da (Fab (V )) = (∇a Riemab
)
(V ) + (

Riemab ∇a) (V ) − Riemab (V ) T a

− 1

4

(∇aV
)
(π7 Riem)ab − 1

4
V

(
Da (π7 Riem)ab

)
(6.13)

and therefore, ∣
∣
∣
〈
D jV , Di (Fi j (V )

)〉∣∣
∣ ≤ R1

(|DV |2 + |DV |) , (6.14)

where R1 is a constant that depends on the curvature and torsion. Now using (6.12) and (6.14)
in (6.11), and noting that

∫
M k vol = 1, we have

dZ

dt
+ 2W ≤ 2 (t0 − t) R (E (t) + 1) + 2R

(

1 + ln

(
B

(t0 − t)
7
2

))

Z , (6.15)

where for convenience we now take R to be the greater of R1 and C . Let

q = (t0 − t)

(
9

2
+ ln

(
B

(t0 − t)
7
2

))

, (6.16)

so that
dq

dt
= −

(

1 + ln

(
B

(t0 − t)
7
2

))

(6.17)

and hence,

d

dt

(
e2Rq Z

)
+ 2e2RqW ≤ 2 (t0 − t)Ce2Rq

(
E (t) + E (t)

1
2

)
≤ 2Ce2Rq

(
E0 + E

1
2
0

)

(6.18)
for t0 − 1 ≤ t < t0. We can always take B to be large enough so that q ≥ 0 and we can also
bound e2Rq . Now integrating from τ to t, we find that for any t0 − 1 ≤ τ ≤ t < t0

Z (t) ≤ e2R(q(τ )−q(t))Z (τ ) + 2Ce−2Rq(t) (t − τ)

(
E0 + E

1
2
0

)

≤ CZ (τ ) + C (t − τ)

(
E0 + E

1
2
0

)
, (6.19)

thus completing the proof. ��
Remark 6.2 In [26], it is shown that in the case when ∇ Ric = 0 and the sectional curvature
of M is non-negative, the quantity of the left-hand side of (6.12) is actually non-negative, and
in [27], this leads to the corresponding quantity Z for the harmonic map flow and the Yang–
Mills flow to be monotonically decreasing along the flow. In our case, we have an additional
curvature term in (6.11), which doesn’t immediately give a non-positive term in this case.
On the contrary, in this case, it gives a non-negative Riem (∇v,∇v) term. Therefore, it is not
clear if there are some reasonable conditions under which Z (t) is monotonically decreasing.
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7 "-regularity

In this section we will use the results on the behavior of Z (t) from the previous section
as well as the a priori estimates from Sect. 5, to obtain an ε-regularity result and from it,
long-time existence for small initial energy density (i.e. small pointwise torsion).

Let px0,t0 (x, t) be the backward heat kernel on M , that is, the solution of the backward
heat equation (6.1) for 0 ≤ t ≤ t0 that converges to a delta function at (x, t) = (x0, t0).
Then, given a time-dependent octonion section V (x, t), define the F -functional

F (x0, t0, t) = (t0 − t)
∫

M
|DV (x, t)|2 px0,t0 (x, t) vol (x) . (7.1)

Clearly this is just Z with a particular choice of the backward heat equation solution k. The
key result in this section is the following.

Theorem 7.1 Given E0, there exist ε > 0 and β > 0, both depending on M and β also
depending on E0, such that if V is a solution of the flow (5.1) on M × [0, t0) with energy
bounded by E0, and if

F (x0, t0, t) ≤ ε (7.2)

for t ∈ [t0 − β, t0), then V extends smoothly to Ux0 × [0, t0] for some neighborhood Ux0 of
x0 with |DV | bounded uniformly.

Before we go on to prove Theorem 7.1, here is an important corollary.

Corollary 7.2 There exists an ε > 0 such that if the initial energy density Λ0 = |DV |2
satisfies Λ0 < ε, then a solution V of the flow (5.1) exists for all t ≥ 0. The limit V∞ =
limt−→∞ V (t) corresponds to a G2 -structure with divergence-free torsion.

Proof Suppose V is a solution of the flow (5.1) on a maximal time interval [0, tmax) with
initial energy E0. By Theorem 6.1, F satisfies the following inequality for any t and τ

satisfying tmax − 1 ≤ τ ≤ t < tmax and any x0 ∈ M

F (x0, tmax, t) ≤ CF (x0, tmax, τ ) + C (t − τ)

(
E0 + E

1
2
0

)
. (7.3)

Using standard properties of the heat kernel, for some constant C we have

F (x0, tmax, τ ) ≤ C

(tmax − τ)
5
2

E (τ )

If tmax ≥ 1, then set τ = tmax − 1, and then we get a bound on F in terms of E . Otherwise,
set for example τ = tmax

2 , and from (5.21) we have 1
tmax

≤ 2 (Λ0 + C0) for a constant C0 that
only depends on the background geometry, hence in this case,

F (x0, tmax, τ ) ≤ C (Λ0 + C0)
5
2 E (τ ) .

Now, E (τ ) ≤ E0 ≤ Λ0Vol (M), where Vol (M) is the total volume of the manifold, so
overall from (7.3) we obtain a bound onF (x0, tmax, t) in terms of Λ0. Hence, choosing Λ0

small enough, the conditions of Theorem 7.1 are satisfied, and the solution extends smoothly
to [0, tmax]. Restarting the flow from t = tmax, with initial energy E (tmax) ≤ E0, by short-
time existence we can then extend it to [0, tmax + ε) for some ε > 0, thus contradicting the
maximality of tmax.
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Now we have a solution that exists for all t > 0, with |DV | and, from Theorem 5.10, all
higher derivatives bounded uniformly. Thismeans that choosingΛ0 sufficiently small, we can
make sure that |DV | is also sufficiently small, so that it satisfies the conditions of Corollary

5.5 for all time. As in [14], this then implies that
∫
M

∣
∣div T (V )

∣
∣2 vol −→ 0 exponentially and

hence, V (t) converges in L1 to a unique limit V∞. By uniform bounds on the derivatives,
the limit is then smooth and has div T (V ) = 0. ��

To prove Theorem 7.1, similarly as in [19] , we need to carefully understand the local
behavior of solutions to the flow (5.1).

Definition 7.3 For any x0 ∈ M and t0 ∈ R, define a parabolic cylinder Pr (x0, t0) = B̄r (x0)×[
t0 − r2, t0

]
, where B̄r (x0) is a closed geodesic ball of radius r centered at x0.

We have the following useful Lemma from [19].

Lemma 7.4 ([19, Lemma 2.1]) Let M be a compact manifold. There exists a constant s > 0,
and for every γ < 1, a constant Cγ , such that if h is a smooth function satisfying

∂h

∂t
≤ Δh − h2 (7.4)

whenever h ≥ 0 in Pr (x0, t0) for some r ≤ s, then

h ≤ Cγ

(
1

r2
+ 1

t

)
(7.5)

on Pγ r (x0, t0).

Lemma 7.4 can be used to modify the proof of Theorem 5.10 to give a local ver-
sion on a parabolic cylinder. Define ΛBr (x0) (t) = supx∈Br (x0) Λ (x, t) and Λ

(m)
Br (x0)

(t) =
supx∈Br (x0)

(
|DmV (x, t)|2

)
.

Theorem 7.5 There exists a constant s > 0 and, for any positive integer m ≥ 2, a constant
Cm, that only depend on M and the background G2-structure, such that, if V (t) is a solution
to (5.1) in a parabolic cylinder Pr (x0, t0) for r < min {s, 1} and satisfies ΛBr (x0) ≤ K for
K > 1

r2
, then

Λ
(m)
Brk (x0)

(t) ≤ CmK
m on Prk (x0, t0), (7.6)

where rk = 21−kr .

Proof The proof is essentially the same as that of Theorem 5.10. As in [19], the main
difference is that when we obtain differential inequalities (5.43) and (5.52) for h and for∣∣D2V

∣∣2 and
∣∣D3V

∣∣2, respectively, we need to make further changes of variables to get these
inequalities into the form (7.4). Then, rather than using the Maximum Principle directly,

we need to apply Lemma 7.4. In particular, when proving the bound for
∣∣D2V

∣∣2 , we take

h = (8K + Λ(x, t))
∣∣D2V

∣∣2 as in (5.39) and then as in (5.43), we obtain

∂h

∂t
≤ Δh − h2

CK 2 + CK 4. (7.7)

Now, let

h̃ = h

CK 2 − K (7.8)
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for the same constant C . Hence, we have

∂ h̃

∂t
≤ 1

CK 2 Δh − h2

C2K 4 + K 2

≤ Δh̃ − h̃2 − 2K h̃

and therefore, when h̃ ≥ 0 we have

∂ h̃

∂t
≤ Δh̃ − h̃2.

Therefore, applying Lemma 7.4 with γ = 1
2 , we find that for some constantC , on Pr

2
(x0, t0)

we have

h̃ ≤ C

r2
≤ CK (7.9)

and thus
h ≤ CK 3,

and for some constant C2,
Λ

(2)
Br2 (x0)

(t) ≤ C2K
2.

A similar argument follows for higher derivatives. ��
We now need a lemma similar to Lemma 3.1 in [19].

Lemma 7.6 There exist constants δ > 0 and γ ∈ (0, 1) that depend only on M and the
background G2-structure, such that, if V is a solution of the flow (5.1) in a parabolic cylinder
Pr (x0, t0) for r ≤ 1 such that

|DV (x0, t0)| = 1

r

and

|DV (x, t)| ≤ 2

r

for all (x, t) ∈ Pr (x0, t0) , then for θ = t0 − γ r2 we have

F (x0, t0, θ) ≥ δ. (7.10)

Proof From (5.25), we have
∣∣∣∣
∂

∂t
(DV )

∣∣∣∣ ≤ |ΔD (DV )| + C1 |DV | + C2

+2
∣∣D2V

∣∣ |DV | + |DV |3 . (7.11)

��
By hypothesis, |DV |2 is bounded on the parabolic cylinder Pr (x0, t0) by 4

r2
, hence by

Theorem 7.5, there exist constants C2 and C3 such that
∣∣D2V

∣∣2 ≤ C2
r4

on Pr
2
(x0, t0) and

∣∣D3V
∣∣2 ≤ C3

r6
on Pr

4
(x0, t0) . Therefore, from (7.11) we find that on Pr

4
(x0, t0),

∣∣∣∣
∂

∂t
(DV )

∣∣∣∣ ≤ C

r3
(7.12)
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for some constant C > 0. Note that the octonionic derivative D, being metric-compatible,
satisfies Kato’s Inequality, so in particular we have

∣
∣D2V

∣
∣ ≥ |∇ |DV ||

whenever |DV | �= 0. Hence, in some neighborhood around x0,

|∇ |DV || ≤ C

r2
(7.13)

for some constant C > 0. Overall, the time-derivative bound (7.12) and space derivative
bound (7.13) show that there exists some γ ∈ (0, 1) such that for all (x, t) ∈ Pγ r (x0, t0),

|DV (x, t)| ≥ 1

2r
. (7.14)

Now, for θ = t0 − γ r2, we have

F (x0, t0, θ) = (t0 − θ)

∫

M
|DV (x, θ)|2 px0,t0 (x, θ) vol (x)

≥ γ r2
∫

Bγ r (x0)
|DV (x, θ)|2 px0,t0 (x, θ) vol (x)

≥ 1

4
γ

∫

Bγ r (x0)
px0,t0 (x, θ) vol (x) .

However, from Corollary 2.3 of [26], on Pγ r (x0, t0), we have px0,t0 (x, θ) ≥ c
r7

for some
constant c that depends only on M . Therefore, for some δ > 0, we do obtain (7.10).

Now we can proceed with the proof of Theorem 7.1.

Proof of Theorem 7.1 Suppose first that V is a solution of the flow (5.1) on M ×[0, t0]. From
the proof of Theorem 3.2 in [19] and from Theorem 3.1 in [26], we know that for any η > 0,
any constant C > 1, and any x0 ∈ M and any t̃0 = t0 −α ∈ (0, 1], there exists a ρ > 0 such
that for all (ξ, τ ) ∈ Pρ (x0, t0)

(τ − α) pξ,τ (x, t) ≤ C (t0 − α) px0,t0 (x, t) + η

2E0
. (7.15)

Multiplying (7.15) by |DV |2, and integrating we find

F (ξ, τ, α) ≤ CF (x0, t0, α) + ηE (α)

2E0
≤ η (7.16)

as long as ε in the hypothesis is chosen such that η
2 ≥ Cε. Then, similarly as in the proof of

Theorem 3.2 in [19], define

q (x, t) = min

{
ρ − d (x0, x) ,

√
t − (

t0 − ρ2
)}

.

In some sense this gives the shorter of the distances from (x, t) to the spatial boundary
of Pρ (x0, t0) and the lower temporal boundary. Now, the function q (x, t) |DV (x, t)| will
attain its maximum in Pρ (x0, t0) at some point (ξ, τ ) in the interior of Pρ (x0, t0), so that
σ = q (ξ, τ ) > 0. Since σ ≤ ρ − d (x0, ξ) and σ 2 ≤ τ − (

t0 − r2
)
, it is easy to see that

Pσ (ξ, τ ) ⊂ Pρ (x0, t0) . Moreover, we can also see that q (x, t) ≥ σ
2 on Pσ

2
(ξ, τ ). Now,

define r such that 1
r = |DV (ξ, τ )|, then for all (x, t) ∈ Pρ (x0, t0) , we have

|DV (x, t)| ≤ σ

rq (x, t)
. (7.17)
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Suppose r ≥ σ
2 . Then, since q (x, t) ≥ ρ

2 on Pρ
2

(x0, t0), we obtain a bound |DV (x, t)| ≤ 4
ρ

for all (x, t) ∈ Pρ
2

(x0, t0) . Otherwise, suppose r ≤ σ
2 . In that case, from (7.17) we find that

for all (x, t) ∈ Pr (ξ, τ ),

|DV (x, t)| ≤ 2

r
. (7.18)

We can now apply Lemma 7.6 to obtain a δ > 0 and a γ ∈ (0, 1) such that for θ = τ − γ r2

we have
F (ξ, τ, θ) ≥ δ. (7.19)

Now, by Theorem 6.1, we find that if α ≤ θ < τ,

F (ξ, τ, θ) ≤ CF (ξ, τ, α) + C (θ − α)

(
E0 + E

1
2
0

)

≤ Cη + C (θ − α)

(
E0 + E

1
2
0

)
(7.20)

where we have used (7.16). Since θ − α ≤ t0 − α, let us find a β such that β ≥ t0 − α, and

Cβ

(
E0 + E

1
2
0

)
< δ

2 . Choosing η < δ
2C gives us F (ξ, τ, θ) < δ, which contradicts (7.19).

Thus we find that there exist ε > 0 and β (where β depends on E0), such that for any
(x0, α) ∈ M × [t0 − β, t0) there exists a ρ > 0 and a finite B, such that ifF (x0, t0, α) ≤ ε,
then |DV | ≤ B is bounded on Pρ (x0, t0) . It should be noted that ρ and B only depend
on t0 − α, rather than t0 and α individually. Now suppose the solution V only exists on
M × [0, t0). Then, by applying the gradient bounds to the translates Ṽ (x, t) = V (x, t − ζ )

and taking ζ −→ 0, we obtain uniform bounds on |DV | for t < T . From Theorem 7.5 we
then get estimates on higher derivatives, and thus conclude that the solution extends smoothly
to t = t0 in some neighborhood of x0. ��

8 Heat flow in the presence of a torsion-freeG2-structure

The flow (5.1) and the octonion covariant derivatives are defined with respect to some fixed
background G2-structure that corresponds to the unit octonion V = 1 (or V = −1). In fact,
due to the covariance of D with respect to change of the background G2-structure (3.12),
this choice is arbitrary. However, if we would like to understand if the flow reaches some
particularG2-structure ϕ within the givenmetric class, then we can without loss of generality
set the background G2-structure to be ϕ, and then all that remains to be checked is whether
the flow reaches V 2 = 1 within the maximum time interval [0, tmax). Equivalently, this
corresponds to v = 0 where v = Im V . In this section we will analyze the behavior of the
real and imaginary parts of V along the flow, particularly in the case when a torsion-free G2

-structure exists in the given metric class.
Let V = f + v be the decomposition of the unit octonion V into real and imaginary

parts. Then, we also have f 2 + |v|2 = 1. Also, suppose that the initial octonion is given by
V0 = f0+v0. The backgroundG2-structureϕ = σ1 (ϕ)will have torsion T (whichwewill set
to 0 shortly), the initialG2 -structure ϕ0 = σV0 (ϕ)will have torsion T0 = − (DV0) V

−1
0 , and

the G2-structure ϕV = σV (ϕ) that corresponds to V , will have torsion T V = − (DV ) V−1.
Here D is with respect to ϕ.
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Lemma 8.1 The evolution of f and |v|2 along the flow (5.1) is given by

∂ f

∂t
= Δ f + f |∇V |2 + 〈v, div T 〉

+ 2
〈∇aV , (1 − f V ) T a 〉 (8.1a)

∂ |v|2
∂t

= Δ |v|2 − 2 f 2 |∇V |2 + 2 |∇ f |2 − 2 〈v, f div T 〉
+ 4 f

〈∇aV , ( f V − 1) T a 〉 . (8.1b)

Proof Taking the inner product of (5.1) with 1, we get

∂ f

∂t
= 〈ΔDV , 1〉 + |DV |2 f . (8.2)

However,

Δ f = Δ 〈V , 1〉
= 〈ΔDV , 1〉 + 2

〈
DaV , Da1

〉 + 〈V ,ΔD1〉
= 〈ΔDV , 1〉 − 2

〈∇aV − V Ta, T
a 〉 − 〈

V , div T + |T |2〉

= 〈ΔDV , 1〉 − 2
〈∇aV , T a 〉 − 〈v, div T 〉 + f |T |2 (8.3)

and

|DV |2 = |∇V − V T |2
= |∇V |2 − 2

〈∇aV , V T a 〉 + |T |2 . (8.4)

Thus, overall, (8.2) becomes

∂ f

∂t
= Δ f + f |∇V |2 + 〈v, div T 〉 + 2

〈∇aV , (1 − f V ) T a 〉 .

Multiplying by 2 f , we further obtain

∂ f 2

∂t
= Δ f 2 + 2 f 2 |∇V |2 − 2 |∇ f |2 + 2 〈v, f div T 〉

+ 4 f
〈∇aV , (1 − f V ) T a 〉 . (8.5)

Since |v|2 = 1 − f 2, ∂|v|2
∂t = − ∂ f 2

∂t , and hence we then get (8.1b). ��

Lemma 8.2 Let u = f 2 − |v|2 = 2 f 2 − 1, and suppose T = 0. Then, along the flow (5.1),
u satisfies the inequality

∂u

∂t
≥ Δu +

(
u

1 − u2

)
|∇u|2 (8.6)

Proof From (8.5), setting T = 0, we have

∂u

∂t
= Δu + 2 (u + 1) |∇v|2 + 2 (u − 1) |∇ f |2 . (8.7)

Assume first that u2 �= 1, so that f �= 0 and v �= 0. Since ∇u = 4 f ∇ f , we find

|∇ f |2 = 1

16 f 2
|∇u|2 = 1

8 (u + 1)
|∇u|2 . (8.8)
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With this, (8.7) becomes

∂u

∂t
= Δu + 2 (u + 1) |∇v|2 + 1

4

u − 1

u + 1
|∇u|2 . (8.9)

From Kato’s inequality,

|∇v|2 ≥ |(∇ |v|)|2 = 1

4 |v|2
∣
∣(∇ (

f 2
))∣∣2 = 1

8 (1 − u)
|∇u|2 ,

using which, (8.9) becomes

∂u

∂t
≥ Δu +

(
u

1 − u2

)
|∇u|2 . (8.10)

It should be noted that generally, Kato’s inequality holds whenever v �= 0 , however in our
case, when v = 0, ∂u

∂t = 0 since u = 1 − 2 |v|2 . However, (8.7) becomes

∂u

∂t
= Δu + 4 |∇v|2 = −4 |(∇ |v|)|2 + 4 |∇v|2 = 0. (8.11)

Hence |∇v|2 = |(∇ |v|)|2 and thus the inequality still holds. Now suppose u = −1, so that
f = 0 and hence |v| = 1. Then, (8.7) becomes

∂u

∂t
= Δu − 4 |∇ f |2 = 0.

On the other hand, in (8.9), as u −→ −1, u
1−u2

|∇u|2 −→ −4 |∇ f |2 , so

0 = ∂u

∂t
≥ −ε2

2
|∇u|2

which is of course true. We conclude that (8.10) holds everywhere. ��
To be able to apply the Maximum Principle to (8.6) we need to rewrite it in a different

form. This will then allow us to obtain lower bounds on u, and hence f .

Lemma 8.3 Suppose T = 0, then along the flow (5.1), f (t)2 is bounded by

inf
M

[ f (t, x)]2 ≥ inf
M

[ f (0, x)]2 (8.12)

as long as the flow exists.

Proof In (8.6), let u = sin θ for some function θ such that θ ∈ [−π
2 , π

2

]
, Then,

∇u = (cos θ)∇θ

Δu = − (sin θ) |∇θ |2 + (cos θ)Δθ

and hence we can rewrite (8.6) as

(cos θ)
∂θ

∂t
≥ (cos θ)Δθ

Overall, for −1 < u < 1, and hence cos θ > 0, the inequality (8.6) becomes

∂θ

∂t
≥ Δθ. (8.13)
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Hence, by the Maximum Principle, we conclude that if infM [ f (0)]2 > 0, then, as long as
the flow exists,

inf
M

θ (t, x) ≥ inf
M

θ (0, x) (8.14)

and thus, in any case, infM [ f (t, x)]2 ≥ infM f [(0, x)]2. ��
Thus, we have shown that in the presence of a torsion-free G2 -structure, f 2 is bounded

below by its initial value and hence, |v|2 is bounded above by its initial value. This shows
that pointwise, V (t) never gets further away from the torsion-free G2-structure than at the
initial point. We can do even better though. It turns out that if initially, f is nowhere zero,
then the integral of | f (t)| increases monotonically along the flow as long as V is not parallel.

For convenience, we define a new functional

G (t) :=
∫

M
| f (t)| vol (8.15)

which is just the L1-norm of f at time t . Recall that E (t) in this case is just the L2-norm of
∇V .

Lemma 8.4 Suppose T = 0, and k := infM | f (0, x)| > 0, then along the flow (5.1),

∂G (t)

∂t
≥ kE (t) . (8.16)

Proof Recall from (8.1b) that along the flow (5.1), for T = 0,

∂ f

∂t
= Δ f + f |∇V |2 (8.17)

We know from Lemma 8.3 that in this case, infM f 2 (t, x) ≥ infM f 2 (0, x) > 0, so we can
rewrite (8.17) as

∂ | f |
∂t

= Δ | f | + | f | |∇V |2 , (8.18)

since f is never zero along the flow. Integrating over M , we get

∂G (t)

∂t
=

∫

M
| f | |∇V |2 vol ≥ inf

M
| f (t)| E (t)

and hence we get (8.16). ��
Remark 8.5 Lemma 8.4 shows that as long as initially f (t) is nowhere zero (and equivalently
infM | f (0, x)| > 0), its L1 norm is increasing monotonically as long as E (t) �= 0. Of
course, | f | ≤ 1, and so G (t) ≤ Vol (M) . Recall from Lemma 5.3 that E (t) is decreasing
monotonically, with stationary points corresponding to divergence-free G2-structures. In
particular, if the flow reaches a stationary point with div T (V ) = 0, but E (t) > 0, G (t) will
still increase. On the other hand, suppose M has a parallel vector field. An octonion section
which has this vector as the imaginary part and has a constant real part will then also define
a torsion-free G2-structure. So if the flow reaches this section, at that point E (t) will vanish,
so it is possible that | f | = 1 will never be reached in that case, even though a torsion-free
G2-structure has been reached. If on the other hand, the flow exists for all t ≥ 0, then we
see that it will have to converge to a torsion-free G2-structure, again not necessarily the one
defined by | f | = 1.
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Combining Corollary 7.2 and Lemma 8.4, we obtain the following theorem. If we assume
that a torsion-free G2-structure is given byU ∈ Γ (SOM), rather than by the section 1, then
the condition infM | f (0, x)| > 0 is replaced by the condition that initially |〈V (0, x) ,U 〉| >

0.

Theorem 8.6 Suppose (ϕ, g) is a G2 -structure on a compact 7-dimensional manifold M.
Suppose there exists a unit octonion section U such that σU (ϕ) is torsion free. Then there
exists ε > 0, such that if the flow (5.1) has initial energy density Λ0 < ε and the initial
octonion section V0 satisfies |〈V0,U 〉| > 0 on M, then a solution exists for all t ≥ 0, and as
t −→ ∞, V (t) −→ V∞ where V∞ defines a torsion-free G2-structure. If (M, g) admits no
parallel vector fields, then V∞ = U.

Proof From Corollary 7.2 we already know that a solution V (t) will exist for all t ≥ 0.
Recall that we may switch over to the torsion-free G2-structure σU (ϕ) as our background
G2-structure. In particular, from (3.10), σV (t) (ϕ) = σV (t)U−1 (σU (ϕ)) . Hence we can now

consider Ṽ (t) = V (t)U−1 . Let us write Ṽ (t) = f (t) + v (t). Now the condition
|〈V0,U 〉| > 0 is equivalent to | f (0)| > 0 . Thus, from Lemma 8.4 we know that G (t)
is growing monotonically along the flow, however G (t) is also bounded above by Vol (M),
hence it must converge to someG∞ ≤ Vol (M), and in particular this shows that E (t) −→ 0.
Hence, the limit V∞ = limt−→∞ V (t) must define a torsion-free G2-structure.

If the backgroundG2-structure is torsion-free, then the torsion of theG2-structure defined
by a unit octonion V will be given by T (V ) = − (∇V ) V−1. Hence torsion-freeG2 -structures
in the samemetric class are given byunit octonion sectionsV forwhich∇V = 0. In particular,
the imaginary part of V is then parallel vector field. So any torsion-free G2-structures apart
from the background G2-structure are defined by parallel vector fields. Hence, if there are
no parallel vector fields on M , then the torsion-free G2 -structure that is compatible with g
is unique, and thus V∞ = U . ��

9 Concluding remarks

The results in this paper are just the beginning of the study of the heat flow of isometric
G2-structures as well its stationary points: G2-structures with divergence-free torsion. In the
study of the harmonic map heat flow and the Yang–Mills flow, results such as monotonicity
formulas and ε-regularity led to a rich study of singularities and solitons of these flows.
Clearly, this should also be possible in our setting, with the interesting added challenge of
interpreting this in terms of the geometry of G2-structures. Other related concepts such as
entropy, that have been defined in the harmonic map and Yang–Mills cases [4,34] also have
an analog and interpretation in our case. Some progress in this direction has been already
made in the recent paper [14]. Another possible direction is to consider the flow in some
particular simpler settings, such as warped product manifolds with SU (3) -structure that
have been considered as models for the Laplacian coflow [22,33], in which case the octonion
section should reduce to a unit complex number, or even with SU (2) -structure, in which
case the octonion section may reduce to a quaternion section. Understanding the behavior of
the flow in such special settings may inform further directions of study.

One property of the flow (5.1) that hasn’t been fully used yet is the gauge-invariance,
i.e. invariance of the flow under the change of the background G2-structure, as discussed
in Sect. 5. We used this in Sect. 8 to more conveniently describe the behavior of the flow
in the presence of a torsion-free G2-structure. In [14], similar ideas were used to show an

123



175 Page 36 of 37 S. Grigorian

“Uhlenbeck-type trick”, using which the evolution of the torsion had a more tractable form.
It is however likely that this gauge-invariance can lead to a better understading of the flow.
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