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a b s t r a c t

A novel borrowing strength measure and an overall borrowing index to characterize the
strength of borrowing behaviors among subgroups are proposed for a given Bayesian
hierarchical model. The constructions of the proposed indexes are based on the Mallow’s
distance and can be easily computed using MCMC samples for univariate or multivariate
posterior distributions. Consequently, the proposed indexes can serve as meaningful
and useful exploratory tools to better understand the roles played by the priors in a
hierarchical model, including their influences on the posteriors that are used to make
statistical inferences. These relationships are otherwise ambiguous. The proposed meth-
ods can be applied to both the continuous and binary outcome variables. Furthermore,
the proposed approach can be easily adapted to various settings of clinical trials, where
Bayesian hierarchical models are deem appropriate. The effectiveness of the proposed
method is illustrated using extensive simulation studies and a real data example.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian hierarchical modeling has become a powerful tool in clinical trials and data analysis due to its flexibility
and adaptivity in dealing with complex settings involving subgroups. Identifying subgroups with similar or different
treatment effects and estimating the treatment effects in subgroups have become the bedrock of precision medicine.
Bayesian hierarchical models can be applied in the platform design or the basket design to enhance the efficiency of
treatment effect estimation (Woodcock and LaVange, 2017; Chen and Lee, 2019). Despite its popularity, one of the long
standing criticisms for Bayesian modeling lies in that it can be substantially affected by the choice of prior distributions,
whose impacts are often not fully understood. As a result, the dilemma routinely faced by statistical practitioners is
that while one wishes to maintain objectivity by reducing the impact of the priors and letting the data speak for itself
(e.g., Ye and Berger, 1991; O’Hagan et al., 2006; Gelman et al., 2008; Berger et al., 2009), the statistical inference can
be much improved if ‘‘correct knowledge" were effectively translated into the prior specifications (e.g., Consonni and
Veronese, 1995; Evans and Sedransk, 2001; Xu et al., 2015; Jiang et al., 2016). Although the later strategy appears
to be more attractive in clinical trials when the sample size is limited, such as in the pediatric trials or rare disease
settings (Lewis et al., 2019), it is also difficult, if not impossible, to validate the choice of prior as the one that reflects
the true knowledge. A related important problem is how to quantify the impacts of the prior on the posterior inferences
so that the practitioner can be informed of how influential the prior is. This is rather challenging and there is scarce
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literature on the topic. For example, Evans et al. (2006) studied how to check the conflicts between the prior and the data
in Bayesian modeling. Morita et al. (2008, 2012) defined an effective sample size of the prior to characterize its impacts on
the posterior inference. Built upon a similar idea, Reimherr et al. (2014) proposed a new data-driven diagnostic approach
to assessing prior informativeness and prior-data likelihood conflict. However, most existing approaches are model specific
and only applicable to certain classes of parametric Bayes models.

Our attention is restricted to the Bayesian subgroup analysis. During the course of drug development, a well-recognized
fact is that patients from different subpopulations may respond similarly or differently to the same treatment. For example,
cancer patients can be classified into different subtypes based on their gene mutations or prognoses and, some times, the
classification is made by subjective judgment of the clinician (Leon-Novelo et al., 2012). Identification of subgroups that
are more responsive (or less responsive) to a treatment is of critical importance in the new era of precision medicine. There
have been numerous proposals on this topic, e.g., Foster et al. (2011), Friede et al. (2012), Berger et al. (2014), but this will
not be the focus of this paper. Our main interest is to provide more informative subsequent analysis of clinical trial data
by pooling information across different subgroups that have been identified in the first stage and quantify the amount of
borrowing. There has been many studies on how to construct priors to encourage information borrowing within a cluster,
see, for example, Consonni and Veronese (1995), Evans and Sedransk (2001), Quintana and Iglesias (2003), Müller et al.
(2011), Leon-Novelo et al. (2012). However, to the best of our knowledge, there has yet been any study on how to quantify
the borrowing strength among different subgroups in cluster hierarchical models for a given set of priors; this paper aims
at filling this gap.

We propose two borrowing strength measures: (a) the individual borrowing strength (InBS) and (b) the overall
borrowing index (OvBI). The former serves to measure and compare the borrowing strengths across different subgroups,
while the latter is a fractional number that quantifies the overall borrowing strength for the Bayesian hierarchical model.
Compared to the existing literature, one distinctive feature of both InBS and OvBI is that they are completely data driven
and can be easily calculated using MCMC samples from the posterior distributions for a wide range of applications. For
this reason, it is straightforward to seamlessly extend our discussions on independent and hierarchical models with
continuous and binary outcomes to much more complicated Bayesian hierarchical models, regardless of whether the
posterior distributions have a closed form or not. An important use of InBS and OvBI is to study and quantify the roles
played by hyperparameters in encouraging or discouraging borrowing from other subgroups, such that the practitioner
can make more informed decision to adjust.

The rest of the paper is organized as follows. Section 2 sets up the model and notations. Section 3 gives a detailed
discussion on the motivation and the construction of the borrowing strength and borrowing index. Section 4 illustrates
the proposed indices with a simple example of continuous outcome in two subgroups. Simulation studies are conducted
in Section 5, and a real data application is considered in Section 6 to illustrate the effectiveness of the proposed method.
Section 7 gives some discussions on potential issues with the current proposal and some future research topics.

2. Model specification and notations

2.1. Continuous outcome models

We first consider the case when treatment outcome is continuous. Suppose we have J different subgroups of patients
with nj subjects in each subgroup and some measurements were taken from each subject after the treatment, denoted
by Yj1, . . . , Yjnj , j = 1, . . . , J . The first approach is to treat all subgroups separately and assume Yji ∼ N(µj, σ

2
j ), for all

subjects in the jth group. Consequently, the inference on parameters of interest, µj’s, will be made based only on the nj
subjects in that group for j = 1, . . . , J . For example, a popular model can be specified (which we shall refer to as the
‘‘Independent model" and denote as Mind) as follows:

Yji|µj ∼ N(µj, τ
−1
y,j ), µj|τµj ∼ N(0, τ−1

µj
), τy,j ∼ Gamma(ay, by), τµj ∼ Gamma(aµ, bµ), (2.1)

where ay, by, aµ, bµ are pre-specified hyperparameters. Note that N(a, b) represents the normal distribution with mean a
and variance b and Gamma(a, b) stands for the gamma distribution with the shape parameter a and the rate parameter
b. However, this strategy excludes the possibility that some of the subgroups may respond similarly, in which case
pooling information from similar subgroups may substantially improve the inference precision by reducing the estimation
variances of model parameters.

One natural remedy is to identify clusters that consist of subgroups with similar responses and borrow ‘‘information"
within the cluster to improve the efficiency of the resulting statistical inference. This approach is especially appealing
in areas like oncology, where the number of subjects in some subgroups with rare conditions is typically quite small
(Jones et al., 2011; Leon-Novelo et al., 2012; Berry et al., 2013). To illustrate, we consider a class of commonly used
models. Let S = {S1, S2, . . . , SK } be a partition of the index set {1, . . . , J} consisting of K non-empty and non-overlapping
clusters, the ‘‘cluster hierarchical model" can be summarized as

Yji|µj ∼ N(µj, τ
−1
y,j ), µj|S ∼ N(θk, τ−1

µ,k) if j ∈ Sk, θk|τθ ∼ N(0, τ−1
θ ),

τy,j ∼ Gamma(ay, by), τµ,k ∼ Gamma(aµ, bµ), and S ∼ p(S|γ0), k = 1, . . . , K , (2.2)

where ay, by, aµ, bµ, τθ , γ0 are set of hyperparameters that are pre-specified and p(S|γ0) is the prior distribution of the
partition, which reflects the investigator’s belief on how to effectively form clusters of similar subgroups that can borrow
information from each other. Throughout this paper, we assume that the number of clusters K is given.
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2.2. Binary outcome models

Instead of a continuous outcome, the treatment outcome is often categorized as binary, e.g., response/no response or
success/failure. In this case, data collected only consists of J data pairs, denoted by {(X1, n1), . . . , (XJ , nJ )} with Xj being
the number of subjects that respond positively in subgroup j with size nj. To deal with such data, an ‘‘Independent model"
with binary outcome can be described as

Xj|pj ∼ Bin(pj, nj), logit(pj) = θj, θj|µ, τθ ∼ N(µ, τ−1
θ ),

µ ∼ N(0, τ−1
µ ), τθ ∼ Gamma(aτ , bτ ), (2.3)

where τµ, aτ , bτ are a set of pre-specified hyperparameters. Consequently, the cluster hierarchical model for binary data
can be formulated as follows:

Xj|pj ∼ Bin(pj, nj), logit(pj) = θk, if j ∈ Sk, θk|µ, τθ ∼ N(µ, τ−1
θ ),

µ ∼ N(0, τ−1
µ ), τθ ∼ Gamma(aτ , bτ ), and S ∼ p(S|γ0), k = 1, . . . , K , (2.4)

where τµ, aτ , bτ , γ0 are a set of pre-specified hyperparameters.
In Bayesian modeling, the prior specifications have substantial impact on the posterior distributions of the parameters

of interest, i.e., µj’s or pj’s. Our main concern is to quantify the impacts of priors on the borrowing strength among
different subgroups. Heuristically, conditioned on the partition S , both cluster hierarchical models for continuous and
binary outcomes assume that subgroups in a cluster share the same cluster-specific mean θk, with the within-cluster
borrowing strength governed by the precision parameter τµ,k (for model (2.2) only) and the borrowing strength among
cluster centers controlled by the precision parameter τθ .

3. Borrowing strength and borrowing index

To quantify the borrowing strength, the first step is to find a baseline model where there is no borrowing at all, which
we refer to as the ‘‘Independent model’’. The ‘‘Independent model" essentially analyzes data from different subgroups
separately and can often be identified by setting the hyperparameters to some extreme values. For example, for the
continuous outcome model (2.2), one version of the ‘‘Independent model" can be simply defined as in (2.1), which is
equivalent to model (2.2) with K = J and τθ → ∞.

Let Θ be the set of parameters of interest, we can then generate MCMC posterior samples using models (2.1) and (2.2),
denoted by random variables ΘMind |Y and ΘMh |Y, respectively. Then the borrowing strength of model (2.2), denoted as
model Mh, can be defined as the distance between distributions of ΘMh |Y and ΘMind |Y, that is,

BS(Mh,Θ |Y) = d(FMh
Θ |Y, F

Mind
Θ |Y ), (3.1)

where FMh
Θ |Y and FMind

Θ |Y are distribution functions of ΘMh |Y and ΘMind |Y, respectively, and d(F1, F2) is a distance measure
between two distribution functions F1(·) and F2(·). Note that the notation BS(Mh,Θ |Y) stands for ‘‘the borrowing strength
of the hierarchical model Mh when making posterior inferences for parameters in Θ ’’.

Often in practice, it is more conceptually desirable to have an index that is between 0 and 1 to indicate the borrowing
strength. Such an index relies on specifying another baseline model where all subgroups borrow all information available
from other subgroups, which we refer to as the ‘‘Complete borrowing model’’. Similar to the ‘‘Independent model", the
‘‘Complete borrowing model" can be found by imposing the constraint on parameters of interest in different subgroups
to take the same value. For example, in model (2.2), we can set µ1 = · · · = µJ = µ and use the following ‘‘Complete
borrowing model", denoted as Mcmp,

Yji|µ ∼ N(µ, τ−1
y,j ), µ|τθ ∼ N(0, τ−1

θ ), τy,j ∼ Gamma(ay, by). (3.2)

It is straightforward to see that the model (3.2) is equivalent to the model (2.2), with K = 1 and aµ/bµ → ∞ (so
that τµ,1 → ∞ with probability 1). Then the borrowing index (BI) of the hierarchical model Mh, when making posterior
inferences for parameters in Θ , can be defined as

BI(Mh,Θ |Y) =
d(FMind

Θ |Y , FMh
Θ |Y)

d(FMind
Θ |Y , FMh

Θ |Y) + d(FMh
Θ |Y, F

Mcmp
Θ |Y )

. (3.3)

With such a definition, we can ensure that (a) BI(Mind,Θ |Y) = 0, (b) BI(Mcmp,Θ |Y) = 1 and (c) 0 ≤ BI(Mh,Θ |Y) ≤ 1.
However, it is worth pointing out that the borrowing index BI(Mh,Θ |Y) does not reflect the percentage of information
in posteriors ΘMh |Y that is borrowed from other subgroups. Rather, it indicates the percentage of available information
that can be borrowed from other subgroups that have actually been incorporated in the posterior distribution of ΘMh |Y.
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3.1. Mallow’s distance

In this subsection we introduce the Mallow’s distance (Mallows, 1972), which is the key building block of the proposed
strength borrowing measures.

Let X and Z be two random vectors in Rq with distribution functions FX (·) and FZ (·), such that the pth moments E∥X∥
p

and E∥Z∥
p exist for the Euclidean norm ∥ · ∥ in Rq. The p-Mallow’s distance between FX (·) and FZ (·) is then defined as

dp(FX , FZ ) = inf
FX,Z

{
EFX,Z (∥X − Z∥

p)
}1/p

, (3.4)

where the infimum is taken over all possible joint probability distributions FX,Z such that marginal distribution functions
for X and Z are FX and FZ , respectively. The Mallow’s distance was first introduced in Mallows (1972) and has proven
useful in many applications, see for example, Bickel and Freedman (1981), Levina and Bickel (2001), Alvarez-Esteban et al.
(2008). In particular, Levina and Bickel (2001) pointed out that the Mallow’s distance is the Earth Mover’s Distance (EMD,
Rubner et al., 2000), which is one of the most popular similarity measures in texture/image classification. The proven
usefulness of the EMD in machine learning (e.g. Grauman and Darrell, 2004; Fu et al., 2006; Ren et al., 2011) gives further
support for our choice of Mallow’s distance.

Estimating the Mallow’s distance is straightforward when q = 1, which takes a simple form

dp(FX , FZ ) =

{∫ 1

0
|F−1

X (u) − F−1
Z (u)|p du

}1/p

, (3.5)

where F−1
X (·) and F−1

Z (·) are quantile functions of X and Z , respectively. However, for multivariate distributions with q ≥ 2,
the Mallow’s distance does not have a closed form except for the multivariate normal distribution with p = 2, in which
case it is also referred to as the ‘‘Fréchet distance" (Dowson and Landau, 1982). Due to this appealing connection, we shall
use p = 2 for the rest of paper. The following lemma is a direct consequence of the theorem given in Dowson and Landau
(1982).

Lemma 1. Suppose that X ∼ N(µX ,ΣX ) and Z ∼ N(µZ ,Σ Z ), then the Mallow’s distance between these two multivariate
normal distribution functions with p = 2 takes the following form:

d2 {N(µX ,ΣX ),N(µZ ,Σ Z )} =

[
∥µX − µZ∥

2
+ tr (ΣX + Σ Z ) − 2

q∑
i=1

√
λi(ΣXΣ Z )

]1/2

, (3.6)

where λi(ΣXΣ Z ) stands for the ith largest eigenvalue of the matrix ΣXΣ Z .

Although the Mallow’s distance generally does not have a closed form for q ≥ 2, its estimation is straightforward.
Suppose we have independent samples {X1, . . . ,XB} and {Z1, . . . , ZB} from distribution FX (·) and FZ (·), respectively. Let
F̂X,B, F̂Z,B be the corresponding empirical distribution functions by assigning each data point an equal weight 1/B. Then
the Mallows distance between these two empirical distributions (Levina and Bickel, 2001) takes the form

d2 (̂FX,B, F̂Z,B) =

{
min

(l1,...,lB)

1
B

B∑
i=1

∥X i − Z li∥
2

}1/2

, (3.7)

where the minimum is taken over all possible permutations of indices 1, . . . , B. The computation of d2 (̂FX,B, F̂Z,B) can be
efficiently carried out using the Hungarian algorithm (Kuhn, 1955), which costs about O(B3) floating operations. By the
triangle inequality, we have that

|d2(FX , FZ ) − d2 (̂FX,B, F̂Z,B)|≤ d2(FX , F̂X,B) + d2(FZ , F̂Z,B) → 0 almost surely, as B → ∞ ,

where the last convergence result stems from the almost sure convergence of the empirical distribution functions F̂X,B
and F̂Z,B, e.g., del Barrio et al. (1999). Therefore, for a sufficiently large B, (3.7) provides a good estimator for d2(FX , FZ ).
In the case when the dimensions of random variables X and Z are large, the necessary sample size B for a sufficiently
good estimate may be too large to use the Hungarian algorithm. More computationally efficient algorithms can be used
to compute (3.7), e.g., Varadarajan (1998).

3.2. Estimating the InBS and OvBI

Using definitions (3.1)–(3.3), we can study the borrowing strength of hierarchical models for both the continuous and
binary outcomes. We shall only use the hierarchical model (2.2) for continuous outcome to illustrate the idea, where
parameters of interest are subgroup means µj’s. There are two types of borrowing strength we are interested in: (1) the
individual borrowing strength for each subgroup; (2) the overall borrowing index for all subgroups. The former refers
to the amount of strength borrowing that occurs in the posterior distribution of a particular µj under the hierarchical
model (2.2) and the latter refers to the overall amount of strength borrowing among posteriors of µj’s. While the individual
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borrowing strength reveals how much a particular group benefits from the hierarchical model, the overall borrowing index
quantifies how effective the hierarchical structure is in encouraging borrowing information across subgroups.

We start by studying the individual borrowing strength, denoted as InBS, of the posterior distribution of the mean
µj, in which case the target parameter Θ = µj is univariate. For univariate distributions, following (3.5), the estimated
Mallow’s distance between two posterior distributions under model M1,M2, denoted by FM1

µj|Y
and FM2

µj|Y
, takes the following

simple form:

d̂2
(
FM1
µj|Y

, FM2
µj|Y

)
= d2

(̂
FM1
µj|Y

, F̂M2
µj|Y

)
=

{
1
B

B∑
i=1

⏐⏐⏐µM1
j,(i) − µ

M2
j,(i)

⏐⏐⏐2}1/2

, (3.8)

where µ
Mk
j,(1) ≤ µ

Mk
j,(2) ≤ · · · µ

Mk
j,(B), k = 1, 2, are ordered MCMC samples. Note that the number of simulated samples B can be

made arbitrarily large and thus the estimation error can be controlled at a very low level without much computational cost.
Using the above estimated Mallow’s distance, the InBS for subgroup j under the hierarchical model can be estimated as

ÎnBSp(Mh, µj|Y) = d̂2
(
FMind
µj|Y

, FMh
µj|Y

)
, (3.9)

for j = 1, . . . , J . Roughly speaking, ÎnBSp(Mh, µj|Y) indicates how much information in FMh
µj|Y

is borrowed from other

subgroups. Comparing ÎnBSp(Mh, µj|Y)’s across all subgroups gives a better idea of which groups are borrowing more
information from others.

Our second interest lies in quantifying the overall borrowing strength of the Bayesian hierarchical model. One natural
way to characterize the overall borrowing strength is to compare joint posterior distributions of (µ1, µ2, . . . , µJ ) under
the ‘‘Independent model" (2.1), the ‘‘Complete borrowing model" (3.2), and the hierarchical model (2.2). In this case,
the target parameter Θ becomes multivariate, i.e., Θ = (µ1, . . . , µJ ). The building block for estimating BI(Mh,Θ |Y) as
defined in (3.3) is the Mallow’s distance between two multivariate empirical distribution functions (3.7). However, when
the number of groups J is large, using (3.7) requires a large number of MCMC samples for a desired precision. Although
we can generate as many MCMC samples as needed in practice, the computation of (3.7) may not be feasible when the
sample size B gets extremely large. For this reason, we propose an alternative distance measure between two multivariate
distributions, denoted by FM1

Θ |Y and FM2
Θ |Y under model M1 and M2, as follows:

d̂∗

2

(
FM1
Θ |Y, F

M2
Θ |Y

)
= max

⎡⎣d2
{
N(µ̂M1

, Σ̂M1 ),N(µ̂M2
, Σ̂M2 )

}
,

√ J∑
j=1

d̂2
2
(
FM1
µj|Y

, FM2
µj|Y

) ⎤⎦ , (3.10)

where µ̂Mk
and Σ̂Mk are the sample mean and sample covariance matrix of the posterior samples of Θ |Y generated under

model Mk, k = 1, 2 and d̂2
(
FM1
µj|Y

, FM2
µj|Y

)
’s are defined in (3.8) with p = 2. It is straightforward to check that d̂∗

2

(
FM1
Θ |Y, F

M2
Θ |Y

)
is a valid distance measure. Furthermore, the following theorem indicates that d̂∗

2

(
FM1
Θ |Y, F

M2
Θ |Y

)
defines a lower bound of

the Mallow’s distance estimator (3.7) for multivariate distribution functions.

Theorem 1. For posterior distributions of Θ = (µ1, . . . , µJ )|Y under model M1 and M2, the empirical distribution functions
F̂Mk
Θ |Y, k = 1, 2, based on MCMC samples of size B satisfy that

d̂∗

2

(
FM1
Θ |Y, F

M2
Θ |Y

)
≤ d2

(̂
FM1
Θ |Y, F̂

M2
Θ |Y

)
,

where the equality holds when both FM1
Θ |Y(·) and FM2

Θ |Y(·) are multivariate normal.

The proof is given in Appendix.
Note that Theorem 1 only applies to the case with p = 2 for the Mallow’s distance, which is the most popular

choice in practice. One way to interpret d̂∗

2 (·, ·) is that it quantifies the distance between FM1
Θ |Y and FM2

Θ |Y by the

discrepancy between their Gaussian approximations. The major advantage of d̂∗

2

(
FM1
Θ |Y, F

M2
Θ |Y

)
over d2

(̂
FM1
Θ |Y, F̂

M2
Θ |Y

)
is that

it is computationally much more efficient when the MCMC sample size needed is extremely large. With the newly defined
distance measure (3.10), the overall borrowing index (OvBI) can be estimated as follows:

ÔvBI
∗

(Mh,Θ |Y) =

d̂∗

2

(
FMind
Θ |Y , FMh

Θ |Y

)
d̂∗

2

(
FMind
Θ |Y , FMh

Θ |Y

)
+ d̂∗

2

(
FMh
Θ |Y, F

Mcmp
Θ |Y

) . (3.11)

When the number of subgroups J is not large or when it is more desirable for other choices of p, one can simply replace
d̂∗

2(·, ·) in (3.11) with the Mallow’s distance between empirical distributions as defined in (3.7) whenever its computation
is feasible.
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3.3. Why Mallow’s distance?

The key in the definition of Borrowing Strength (3.1) and Borrowing Index (3.3) is the use of Mallow’s distance measure
between two probability distributions. Although, in principle, it appears that any well-defined distance measure can
be used, the Mallow’s distance has some unique advantages. The first advantage is that it can be efficiently computed
using MCMC samples, as given in (3.8) and (3.10). On the contrary, other distance measures such as the Kullback–Leibler
divergence and the Hellinger distance (Pollard, 2002) typically require density functions for computations. For example,
the Hellinger distance of two posterior distributions, say FM1

Θ |Y and FM2
Θ |Y, can be computed as

H
(
FM1
Θ |Y, F

M2
Θ |Y

)
=

√
1
2

∫
Rq

(√
f M1
Θ |Y −

√
f M2
Θ |Y

)2

dΘ,

where f
Mj
Θ |Y’s are probability density functions of F

Mj
Θ |Y, j = 1, 2. The computation of H

(
FM1
Θ |Y, F

M2
Θ |Y

)
requires numerical

integrations on Rq and nonparametric density estimators based on MCMC samples, both of which can be difficult even
for a moderate dimension q.

The second advantage of the Mallow’s distance is that it is well defined for degenerate distributions, which is critical
for our definition of the overall borrowing index (OvBI). The OvBI requires the distance between FMh

Θ |Y and FMcmp
Θ |Y , where

the design of Mcmp in (3.2) suggests that FMcmp
Θ |Y is degenerate, in the sense that all components in Θ = (µ1, . . . , µJ )T are

restricted to be identical under (3.2). When FMcmp
Θ |Y is degenerate, the Kullback–Leibler divergence between FMh

Θ |Y and FMcmp
Θ |Y

is not well defined and the corresponding Hellinger distance has rather undesirable properties. For example, when FM1
Θ |Y

is non-degenerate multivariate normal and FMcmp
Θ |Y is degenerate multivariate normal, it is straightforward to show that

H
(
FM1
Θ |Y, F

Mcmp
Θ |Y

)
≡ 1.

Consequently, when both FMind
Θ |Y and FMh

Θ |Y are non-degenerate multivariate normal, they are always equally ‘‘close" to FMcmp
Θ |Y ,

which is not intuitively desirable.

4. An illustrative example with continuous outcomes

In this section, we give an illustrative example for the proposed InBS and OvBI for a simplified version of the hierarchical
model (2.2) for continuous outcome. Suppose we have two groups of samples from the following Bayesian hierarchical
model:

Model Mh: Yji ∼ N(µj, τ
−1
y ), µj ∼ N(µ0,

1
2
τ−1
µ ), µ0 ∼ N(0, τ−1

µ0
), i = 1, . . . , nj, j = 1, 2,

where τµ0 → 0 and τy and τµ are some pre-specified hyperparameters. The full posterior distribution of (µ1, µ2) can
then be written as proportional to the following:

τ
n1+n2

2
y τ

1
2

µ τ
1
2

µ0 exp

⎧⎨⎩−
τy

2

n1∑
i=1

(y1,i − µ1)2 −
τy

2

n2∑
i=1

(y2,i − µ2)2 − τµ

2∑
j=1

(µj − µ0)2 −
τµ0

2
µ2

0

⎫⎬⎭ .

By integrating out µ0 and letting τµ0 → 0, we have the marginal posterior (µ1, µ2), given Y, as

P(µ1, µ2|Y) ∝ τ
n1+n2

2
y τ

1
2

µ exp
{
−

n1τy + τµ

2
µ2

1 −
n2τy + τµ

2
µ2

2 + n1τyY 1µ1 + n2τyY 2µ2 + τµµ1µ2

}
,

where Y j = n−1
j
∑nj

i=1 Yji, j = 1, 2. It is then straightforward to show that the joint posterior distribution of (µ1, µ2)T |Y is
bivariate normal as follows:(

µ1
µ2

)
|Y ∼ N

[(
wY .. + (1 − w)Y 1

wY .. + (1 − w)Y 2

)
, τ−1

y

(
1−w
n1

+
w

n1+n2
, w

n1+n2
w

n1+n2
, 1−w

n2
+

w
n1+n2

)]

where w =
τµ/τy

n1n2
n1+n2

+τµ/τy
, Y .. =

n1Y1+n2Y2
n1+n2

. For this simple model, the ‘‘Independent model" can be easily identified by

setting w = 0 and the joint posterior becomes

Independent model Mind:

(
µ1
µ2

)
|Y1,Y2 ∼ N

[(
Y 1

Y 2

)
, τ−1

y

(
1
n1

0
0 1

n2

)]
.
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On the other hand, the ‘‘Complete borrowing model" can be found by setting w = 1 and the joint posterior becomes a
degenerate multivariate normal

Complete borrowing model Mcmp:

(
µ1
µ2

)
|Y1,Y2 ∼ N

[(
Y ..

Y ..

)
,

1
(n1 + n2)τy

(
1 1
1 1

)]
.

A straightforward application of Lemma 1 gives the Mallow’s distance between FMind
µ1|Y and FMh

µ1|Y with p = 2 as follows:

d2(F
Mind
µ1|Y, F

Mh
µ1|Y) =

√ 1
n1τy

{
n2w2

(n1 + n2)
T 2 +

(√
1 −

n2

n1 + n2
w − 1

)2
}

,

d2(F
Mh
µ1|Y, F

Mcmp
µ1|Y ) =

√ 1
n1τy

{
n2(1 − w)2

(n1 + n2)
T 2 +

(√
1 −

n2

n1 + n2
w −

√
n1

n1 + n2

)2
}

,

where T 2
=

(Y1−Y2)2τy

n−1
1 +n−1

2
. Consequently, the individual borrowing strength for group 1, i.e., µ1, can be computed as

InBS(Mh, µ1|Y) =

√ 1
n1τy

{
n2w2

(n1 + n2)
T 2 +

(√
1 −

n2

n1 + n2
w − 1

)2
}

. (4.1)

Similarly, InBS(Mh, µ2|Y) can be obtained by switching n1 and n2 in the above equation. As expected, the borrowing
strength is controlled by the quantity w =

τµ/τy
n1n2
n1+n2

+τµ/τy
. As w increases, the borrowing strength of µ1 becomes stronger

through two channels: (1) the posterior mean was shrunk towards the overall sample mean Y .. from the group mean
Y 1; (2) the variance was reduced from the group variance n−1

1 τ−1
y to the pooled variance (n1 + n2)−1τ−1

y . Note that
the quantity T 2 quantifies the difference between two subgroup sample means. From a frequentist point of view, T 2

follows a non-central χ2 distribution with 1 degree of freedom, i.e., T 2
∼ χ2(λ, 1) with the non-centrality parameter

λ =
(µ10−µ20)2τy

n−1
1 +n−1

2
, where µ10 and µ20 are ‘‘true values" of µ1 and µ2, respectively. More specifically, recall Eq. (3.6) in

Lemma 1, where the first part of the Mallow’s distance corresponds to the difference in distribution means (related to
mean borrowing) while the second part compares the difference in covariance matrices (related to variance borrowing).
Therefore, in the individual borrowing strength (4.1), the relative magnitude of T 2 compared to the second term inside the
bracket determines whether the major source of borrowing strength is from the ‘‘mean borrowing" or from the ‘‘variance
borrowing".

For better illustrations, Fig. 1 gives some examples of InBS with various values of T 2 and τy = 1. Sample sizes of two
subgroups were set to be n1 = 10 and n2 = 20. The left panel shows that the individual borrowing strength appears to
be a linear increasing function of w, with the smaller group borrowing more information than the larger group. The right
panel directly compares the InBS between two subgroups, which indicates that as T 2 increases, the ratio of individual
borrowing strength (smaller subgroup/larger subgroup) decreases. This is because when T 2

= 0, the only source of
borrowing strength is from ‘‘variance borrowing", which is determined by the sample sizes n1 and n2. In this case, the first
group with a smaller sample size tends to borrow more strength from the second group, rather than the other way around.
As T 2 increases, the major source of borrowing strength shifts from the ‘‘variance borrowing" to ‘‘mean borrowing", which
is less impacted by group sample sizes. Therefore, the amount of strength borrowing starts to become similar for the two
groups when T 2 is large.

Next, we proceed to study the overall borrowing index (OvBI) for Model Mh. In this example, the parameter of interest
Θ = (µ1, µ2). Using Lemma 1, the Mallow’s distance from posteriors of Θ under the ‘‘Independent model" or ‘‘Complete
borrowing model" to the model Mh, respectively, can be shown to have the following forms:

d22
(
FMind
Θ |Y , FMh

Θ |Y

)
= Cn

⎧⎨⎩ (n2
1 + n2

2)w(wT 2
− 1)

2(n1 + n2)2
+ 1 −

√
n1n2

n1 + n2

√
n2
1 + n2

2

n1n2
(1 − w) + w + 2

√
1 − w

⎫⎬⎭ ,

d22
(
FMh
Θ |Y, F

Mcmp
Θ |Y

)
= Cn

⎧⎨⎩ (n2
1 + n2

2)
2(n1 + n2)2

{
(1 − w)2T 2

− 1 − w
}

+ 1 −

√
n1n2

n1 + n2

√
1 −

(n1 − n2)2

(n1 + n2)2
w

⎫⎬⎭ ,

where Cn = 2
(
n−1
1 + n−1

2

)
τ−1
y . Then the OvBI is of the form

OvBI(Mh,Θ |Y) =
1

1 +

√ (n21+n22){(1−w)2T2−1−w}+2
{
(n1+n2)2−

√
n1n2

√
(n1+n2)2−(n1−n2)2w

}
(n21+n22)(w

2T2−w)+2
{
(n1+n2)2−(n1+n2)

√
(n21+n22)(1−w)+n1n2(w+2

√
1−w)

}
.
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Fig. 1. Illustrations of individual borrowing strength (InBS).

Fig. 2. Illustrations of overall borrowing index (OvBI).

Fig. 2 gives some examples of OvBI with various values of T 2 under the same setup of Fig. 1. The left panel shows that the
OvBI is still an increasing function of w, indicating as the w increases the overall borrowing strength induced by model M
becomes stronger. The middle and right panels illustrate two sets of realizations with T 2

= 0, 1 from three models with
the w = 0, 0.75, 1. The OvBI is stronger for the case with T 2

= 1 (0.62) than the case with T 2
= 0 (0.51) when w = 0.75,

which correctly reflects the similarities among observed distribution patterns of posterior MCMC samples generated from
three Bayesian hierarchical models.

5. Simulation studies

In this section, we apply the proposed InBS and OvBI measures to more complicated hierarchical models for continuous
as well as binary outcome data.

5.1. Continuous outcome models

We first consider the continuous outcome hierarchical model (2.2), where the partition prior distribution is specified
as the finite mixture model (Diebolt and Robert, 1994). More specifically, we assume that

Yij|µj ∼ N(µj, τ
−1
y,j ), µj ∼

K∑
k=1

πkN (θk, τ−1
µ,k), (π1, . . . , πK ) ∼ Dirichlet(α, . . . , α), (5.1)

where N (µk, τ
−1
µ,k) is the density function of the normal distribution N(µk, τ

−1
µ,k), j = 1, . . . , J and k = 1, . . . , K . Other

parameters such as θk’s and τµ,k’s follow the same settings as described in model (2.2). In particular, the hyperparameters
were set as ay = by = τθ = 10−6, α = 1/K , bµ = 0.01 while aµ and the number of clusters K may vary from case to case.
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Fig. 3. Illustrations of Individual BS and Overall BI for the continuous outcome.

The goal of the simulation study is to illustrate the impacts of aµ and K on the borrowing strength of the finite normal
mixture model (5.1) using our proposed InBS and OvBI measures.

The data yji’s were simulated as six groups of sizes n1 = 10, n2 = 20, n3 = 12, n4 = 25, n5 = 15, n6 = 30, respectively.
Groups 1 and 2 were simulated from N(0, 0.52), Groups 3 and 4 were from N(

√
6/7, 0.52) and Groups 5 and 6 were

from N(2
√
6/7, 0.52). Using calculations similar to those in Diebolt and Robert (1994), it is straightforward to show

that the posterior distributions of µj’s are completely determined by sample group means Y j’s and sample group second
moments Y 2

j ’s (the average of y2ji’s). In this simulation, we used a realization of yji’s with (Y 1, Y 2
1 ) = (0.09, 0.22), (Y 2, Y 2

2 ) =

(−0.22, 0.32), (Y 3, Y 2
3 ) = (0.77, 0.92), (Y 4, Y 2

4 ) = (0.91, 1.07), (Y 5, Y 2
5 ) = (2.05, 4.58), and (Y 6, Y 2

6 ) = (1.88, 3.85). Using
this data set, we compute the individual borrowing strength (InBS) and the overall borrowing index (OvBI) using MCMC
samples of µj’s collected from model (5.1), the ‘‘Independent model" (2.1) and the ‘‘Complete borrowing model" (3.2). For
each MCMC run, a sample of size 1,000 was collected from 20,000 iterations by taking one point out of every 20 iterations,
after a burning period of 2,000 iterations. Based on this sample, one set of estimates of InBS and OvBI can be calculated.
To reduce the variability due to MCMC sampling, we took averages of InBS and OvBI computed using 200 independent
MCMC posterior samples as our final outputs. The results are summarized in Fig. 3.

The intuitive understanding of the roles played by hyperparameters aµ and K on the borrowing strengths within
model (5.1) are quite clear: a bigger value of aµ encourages the borrowing within the same cluster, while a larger value of
K reduces the borrowing strength by creating more clusters. However, these qualitative insights do not paint a complete
picture. For example, in Fig. 3(a), we can see that, when K = 1, there is a steep jump around aµ = 10 in terms of individual
borrowing strengths. This phenomenon is also echoed by the sudden jump of the overall borrowing index around aµ = 10.
While statistical practitioners tend to choose a very small value for aµ in practice so that the prior is ‘‘non-informative",
these surprising patterns in Fig. 3(a)–(b) suggest that not much of difference would be made as long as aµ is less than
10. This observation can be explained by the fact that the sample means of groups 1–6 are quite different from each
other, thus a small value of aµ is not enough to force borrowing among different groups, see posterior densities of µj’s in
Fig. 3(c) for an illustration for the case with aµ = 8.

In Fig. 3(d)–(e), we study the impact of K , which controls the number of clusters. To force strong borrowing within
the same cluster, aµ is set to a high value 15. Generally speaking, the borrowing strength of the model (5.1) decreases as
K increases, which is as expected. However, an interesting observation in Fig. 3(d) is that the InBS of group 3 and group 4
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actually increases when K goes from 1 to 2, while the OvBI in Fig. 3(e) continues to decrease steadily as K increases. This
can be explained from Fig. 3(f). When K = 1, posterior distributions of groups 3–4 under the ‘‘Independent model" are
already quite close to those of the ‘‘Complete borrowing model" (which is also the poster of groups 3–4 under model (5.1)
with K = 1 and aµ = 15), hence the InBS is low in this case. However, when K = 2, groups 3–4 are forced to be split
up into two different clusters, steering away from their posterior distributions under the ‘‘Independent model’’. Hence,
groups 3–4 borrow more information from other groups when K = 2, yielding higher InBS scores.

5.2. Binary outcome models

We now consider the following binary outcome hierarchical model:

Xj|pj ∼ Bin(pj, nj), logit(pj) ∼

K∑
k=1

πkN (µk, τ
−1
µ,k), µk ∼ N(0, τ−1

µ ),

τµ,k ∼ Gamma(aµ, bµ), and (π1, . . . , πK ) ∼ Dirichlet(α, . . . , α), (5.2)

where all notations are the same as those defined in (5.1). The hyperparameters were set as α = 1/K , bµ = 0.01, while
aµ and the number of clusters K may vary from case to case.

In this simulation, we used a realization of six groups of binomial outcomes with (n1, X1) = (30, 5), (n2, X2) = (14, 2),
(n3, X3) = (15, 7), (n4, X4) = (25, 11), (n5, X5) = (15, 5) and (n6, X6) = (35, 10). Using this data set, we compute
the individual borrowing strength (InBS) and the overall borrowing index (OvBI) using MCMC samples of pj’s collected
from model (5.2), the ‘‘Independent model" (2.3) and the ‘‘complete borrowing" model by replacing (nj, Xj) in (2.3)
with (

∑J
j=1 nj,

∑J
j=1 Xj). For the ‘‘Independent model" and the ‘‘complete borrowing" model, we fix hyperparameters

τµ = aτ = 10−6 and bτ = 0.01. For each MCMC run, a sample of size 1,000 was collected from 20,000 iterations by
taking one point out of every 20 iterations, after a burning period of 2,000 iterations. Based on this sample, one set of
estimates of InBS and OvBI can be calculated. To reduce the variability due to MCMC sampling, we took averages of InBS
and OvBI computed using 200 independent MCMC posterior samples as our final outputs. The results are summarized in
Fig. 4.

The messages from Fig. 4 are similar to those from Fig. 3, except that Fig. 4(a)–(b) do not have a sudden increase of
borrowing strength as aµ increases. And the smallest OvBI in Fig. 4(b) is around 80%, as opposed to 0% in Fig. 3(b). This
suggests that the tuning parameter aµ may have a smaller role in enhancing strength of borrowing in the binary outcome
models, compared to its role in the continuous outcome models.

To sum up, our simulation studies clearly demonstrate that the proposed InBS and OvBI measures can effectively help
facilitate our understandings of the hyperparameters in a Bayesian hierarchical model, as well as discover irregularities
when using certain choices of hyperparameters.

6. Real data analysis

In this section, the proposed InBS/OvBI measures were used to study the nonexchangeable product partition model
(NEPPM) proposed in Leon-Novelo et al. (2012) with an application to a clinical study for sarcoma. Sarcoma is a rare
form of cancer that affects soft and connective tissues of human body and many subtypes have been identified based
on histology. In this clinical trial at MD Anderson Cancer Center, 179 patients with various subtypes of sarcoma were
recruited to receive a treatment with irinotecan, a chemotherapy agent. Of these 179 patients, 10 subtypes of sarcoma
were identified and classified by physicians into two categories (Intermediate prognosis and Good prognosis) based on the
patients’ characteristics. (Note: The data and the naming of the two prognosis groups were taken from Leon-Novelo et al.
(2012).) The treatment efficacy of a patient is evaluated using the tumor shrinkage at the end of the second treatment
cycle, with at least 30% shrinkage reported as a Success, and a 20% or more increase of tumor size as a failure. If a patient
did not meet either of above criteria, he/she would be evaluated at the fourth treatment cycle, and again would be declared
as a failure only if a 20% or more increase of tumor size was reported. The final results are summarized in Table 1. More
details about the clinical trial can be found in Leon-Novelo et al. (2012).

Let Xj and nj denote the number of successes and trials in the group of patients with subtype j, respectively, j =

1, . . . , 10. Let zj be the prognosis category of subtype j, which can take two possible values: ‘‘Intermediate prognosis"
and ‘‘Good prognosis’’. The NEPPM model proposed in Leon-Novelo et al. (2012) aims at analyzing this data set using the
model structure described in (2.4) with a specially designed partition prior p(S|γ0) as follows:

p
(
S = {S1, . . . , SK }|γ0

)
∝

K∏
k=1

{α(#Sk − 1)!}  
cD(Sk)

{ ∏C
c=1 mkc !

(#Sk + C − 1)!

}γ

  
d(Sk)

, α ∼ Gamma(aα, bα), (6.1)

where #Sk is the number of subtypes in cluster Sk, C = 2 is the number of prognosis categories, mkc is the number of
subtypes in cluster Sk that belong to prognosis category c , and γ0 = (aα, bα, γ ) is a set of positive numbers. In (6.1), cD(Sk)
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Fig. 4. Illustrations of Individual BS and Overall BI for the binary outcome.

Table 1
Reported number of Successes/Trials.
Subtype Successes/Trials Success Rate

Intermediate prognosis
1. Leiomyosarcoma 6/28 0.214
2. Liposarcoma 7/29 0.241
3. Malignant fibrous histiocytoma 3/29 0.103
4. Osteosarcoma 5/26 0.192
5. Synovial 3/20 0.150
6. Angiosarcoma 2/15 0.133
7. Malignant peripheral nerve sheath tumor 1/5 0.200
8. Fibrosarcoma 1/12 0.083

Good prognosis
9. Ewing’s 0/13 0
10. Rhabdo 0/2 0

can be viewed as the cohesion measure induced by a Dirichlet process prior and d(Sk) serves as a similarity function to
encourage subtypes from the same prognosis category to form a cluster.

One major advantage of the NEPPM model (6.1) lies in that the number of clusters is stochastic, thus no pre-specified
K is needed as required by the finite mixture model. However, the strength borrowing patterns of the NEPPM model
are also much less apparent. A first look at (2.4) suggests that the hyperparameters aτ , bτ control the magnitude of τθ ,
which in turn controls the borrowing strengths among different clusters. The formulation of the partition prior (6.1) also
suggests that the magnitude of α, controlled by hyperparameters aα and bα , determines the number of clusters formed
in each iteration, which also should have some impact on the borrowing strengths of the model.

To quantify the borrowing strength patterns of the NEPPM model, we fix τµ = 0.001, bτ = 0.1 in (2.4) and
γ = 1, bα = 0.5 in (6.1), as suggested in Leon-Novelo et al. (2012). The goal is to study the changing patterns of the
proposed InBS and OvBI measures for various values of aτ and aα . In order to compute the InBS and OvBI, the posterior
success rates from the ‘‘Independent model" is obtained by applying model (2.3) to each subtype group independently,
while those from the ‘‘Complete borrowing model" are obtained by applying model (2.3) to the pooled success/trials
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Fig. 5. Illustrations of InBS and OvBI for NEPPM model. The vertical lines indicate the hyperparameters used in Leon-Novelo et al. (2012) with
aα = 10 and aτ = 1/10.

(i.e., 28/179) data by ignoring the subtype-classifications among patients. The InBS and OvBI were computed by averaging
over 20 independent MCMC runs, and the results were summarized in Fig. 5.

The first noticeable feature in Fig. 5(a) is Group 9, whose individual borrowing strength decrease drastically as aα

increases from 1 to 5 and then stabilizes. This is because when aα is small, we can see from Fig. 5(c) that the number
of partitions is small, and hence all groups are forced to borrow from each other. This results in Fig. 5(a), where all
groups have similar borrowing strength when aα ≤ 1. As aα increases, the average number of partitions increases, and
the NEPPM model (6.1) encourages groups in the same category to be in the same partition. Therefore, when aα exceeds
5 or so, Groups 9 and 10 are increasingly more likely to form their own partition, and therefore they will only borrow
information from each other. This explains why both groups have stabilized InBS scores for aα ≥ 5. Another interesting
feature in Fig. 5(a) is that Groups 1,2,4,7 all have success rates greater than the overall success rate 28/179 = 0.156, and
their InBS scores all display increasing patterns as aα increases. On the contrary, the InBS scores of Groups 8,3,9, whose
success rates are less than the overall success rate, decreases as aα increases. Similar phenomena are observed in 5(d) when
aτ increases. From 5(b), we can see that the overall borrowing strength of the NEPPM model (6.1) decreases steadily as aα

increases, and then stabilizes after aα exceeds approximately 7. This echoes the observed pattern in Fig. 5(c), where the
average number of partitions increase as aα increases, yielding less overall borrowing across different subgroups. Lastly,
from Fig. 5(d)–(e), we can see that the role played by hyperparameter aτ , with regard to the borrowing strength, is quite
different from that of aα . Both InBS and OvBI scores are non-monotone functions of aτ , which contradicts the intuition
that aτ should always encourage strength borrowing across different partitions. However, one should also notice that the
magnitude of changes in OvBI scores caused by aτ is relatively smaller than aα , suggesting that the choice of aα plays a
more important role in determining the borrowing strength of the NEPPM model.

7. Discussion

We proposed an approach to quantify borrowing strength in Bayesian hierarchical models when applied to subgroup
analysis. The InBS score measures the individual borrowing strength for each subgroup, and the OvBI score quantifies the
overall borrowing strength of the model. Graphical representations of InBS and OvBI against different hyperparameters
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paint a more complete picture of their roles in the Bayesian model, and therefore provide the practitioner a more
quantitative understandings of the models under consideration. Such a graphical tool has the potential to help the
practitioner to make more informed decisions on choosing a sensible model, and to reduce the level of subjectivity in
choosing hyperparameters in data analysis.

However, the proposed approach does not tackle the problem of how to encourage ‘‘smart borrowing" among
subgroups. In other words, the InBS and the OvBI scores do not reveal whether borrowed information is correct or
incorrect. Various approaches have been proposed on this topic, e.g., Evans and Sedransk (2001), Quintana and Iglesias
(2003), Müller et al. (2011). One interesting future research topic is how to incorporate the InBS and OvBI scores into such
existing models, such that one can choose the hyperparameters that produce the largest amount of ‘‘correct" or ‘‘optimal"
information borrowing under the proper context.
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Appendix

Proof of Theorem 1. For any permutation (l1, . . . , lB) of (1, . . . , B), the definitions of d̂2
(
FM1
µj|Y

, FM2
µj|Y

)
in (3.8) ensure that

d̂2
2
(
FM1
µj|Y

, FM2
µj|Y

)
≤

1
B

B∑
i=1

|Θ
M1
i,j − Θ

M2
li,j

|
2, j = 1, . . . , J,

with Θ
Mk
1 , . . . , Θ

Mk
B being posterior samples of Θ |Y under model Mk, whose jth elements are µ

Mk
j,i ’s for k = 1, 2 and

j = 1, . . . , J . Therefore, we have
J∑

j=1

d̂2
2
(
FM1
µj|Y

, FM2
µj|Y

)
≤

1
B

J∑
j=1

B∑
i=1

|Θ
M1
i,j − Θ

M2
li,j

|
2
=

1
B

B∑
i=1

∥Θ
M1
i − Θ

M2
li

∥
2

for any permutation l1, . . . , lB, which further implies that
J∑

j=1

d̂2
2
(
FM1
µj|Y

, FM2
µj|Y

)
≤ d2

(̂
FM1
Θ |Y, F̂

M2
Θ |Y

)
,

where the inequality follows from the definition of d2
(̂
FM1
Θ |Y, F̂

M2
Θ |Y

)
in (3.7).

Next, by the inequality (6) in Dowson and Landau (1982), we have that

d2
{
N(µ̂M1

, Σ̂M1 ),N(µ̂M2
, Σ̂M2 )

}
≤ E∥XM1 − XM2∥

2,

where XMk ’s are random variables with mean µ̂Mk
and covariance matrix Σ̂Mk , k = 1, 2, and the expectation is taken over

all joint distributions of XM1 and XM2 . By Dowson and Landau (1982), the above equality holds when XMk ’s are normally
distributed. Since by definition, the empirical distributions F̂Mk

Θ |Y’s have means µ̂Mk
’s and covariance matrices Σ̂Mk ’s, we

have that

d2
{
N(µ̂M1

, Σ̂M1 ),N(µ̂M2
, Σ̂M2 )

}
≤ d2

(̂
FM1
Θ |Y, F̂

M2
Θ |Y

)
,

which completes the proof of inequality d̂∗

2

(
FM1
Θ |Y, F

M2
Θ |Y

)
≤ d2

(̂
FM1
Θ |Y, F̂

M2
Θ |Y

)
. □
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