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This paper describes a novel numerical algorithm for the simulation of the along-wind dynamic response of a
prototype of slender towers under turbulent winds, using a Layered Stochastic Approximation Monte Carlo
algorithm (LSAMC). The proposed algorithm is applied to derive the statistics of the dynamic response in the
presence of uncertainties in the structural properties and in the wind loading. Standard “brute force” Monte-
Carlo methods are also used for validating the LSAMC results. The proposed methodology efficiently estimates
structural fragility curves under extreme wind loads. The methodology enables a significant speedup in the

computing time compared to standard Monte Carlo sampling. Furthermore, it is demonstrated that accuracy in
the estimation of structural fragility curves is superior to ordinary reliability methods (e.g. “First-order reliability

methods” or FORM).

1. Introduction

Comprehensive research activities in the recent past have been
undertaken in the area of risk-based assessment of structural integrity
with a specific focus on earthquake engineering (performance-based
engineering) [1]. In performance-based engineering, the basic idea is to
ensure that a structure, for example subjected to various hazard levels
(as opposed to the largest predictable event), can achieve a selected
performance objective [2]. Performance-based engineering approaches
are frequently adopted for large structures and infrastructures, for
which a pre-scribed level of safety or a serviceability state level must be
guaranteed. The overall concept of performance-based engineering
provides an attractive alternative for owners, since it enables cost-ef-
fective design, reduces planning in the aftermath of a catastrophic event
and avoids expensive repairs of the system consequent to exceedance of
a limit state. Structural optimization under uncertainties has recently
gained importance in many engineering fields such as aerospace,
aeronautics, infrastructural engineering [2,3] and more recently in
wind engineering [4,5]. Randomness in the design variables is an im-
portant issue for the performance-based engineering approach, also
because uncertainty can regard various design variables [6]. In wind
engineering spectral-based and peak-estimation methods have been
recognized since the early stages of the research activities on high-rise
building response (e.g., [7-10]) due to the presence of random

turbulence in the structural loading and dynamic vibration. Never-
theless, the concept of performance-based engineering still deserves
careful consideration.

Researchers recently proposed several optimization methods for
wind-excited structures, considering uncertainty in structural para-
meters and wind loads [11-13] and uncertainties in the mass dis-
tribution [12,14]. Among wind sensitive structures, self-supporting
towers present specific design problems, related to the definition of
wind load and the dynamic properties of the structure (e.g. monopole
towers [15,16], wind turbine towers [17-19]).

Uncertainties can arise from errors in wind tunnel test, modeling
simplifications or as a result of unanticipated modifications of some
structural characteristics during structural lifetime [6]. Moreover, the
problem of icing can introduce uncertainties in the definition of both
dead and wind loads [20].

It is generally recognized that flexible structures, such as commu-
nication towers or masts utilized for meteorological measurements, are
very sensitive to wind effects and to uncertainties related to wind load
and structural dynamic characteristics [6,14]. For these reasons, the
optimal design of these structures cannot disregard the importance of
parameter uncertainties [16] with a focus on structural performance.

Generally, uncertainties can be grouped into two sets of variables
(e.g. [6]); the first set includes structural parameters such as mass,
stiffness and the size of structural elements; the second set characterizes
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Nomenclature

Abbreviations

BF “brute force” (Monte-Carlo sampling)

DOF degree of freedom

FORM first-order reliability method

LSAMC layered stochastic approximation Monte-Carlo
SA stochastic approximation

SGA stochastic gradient approximation

Symbols and variables

A projected area of communication devices installed on
monopole tower

ax gain parameter at step k (Stochastic Approximation)

a arbitrary constant of the gain parameter (Stochastic
Approximation)

Cc arbitrary constant of the gain parameter (Stochastic
Approximation)

Cp simulated drag coefficient (stochastic variable)

Cp,i i-the element of the simulated drag coefficient sequence
(stochastic variable)

E modulus of elasticity of the material (mast cross section)

Fr structural response fragility

f natural frequency [Hz]

fo1 fundamental-mode natural frequency of the monopole
tower [Hz]

g peak response factor

h monopole tower height

H() normalized mechanical admittance function for point-like

structure (Davenport Chain [50])
I moment of inertia of area of the reference cross section of
the tower mast

Mpase0  Overturning moment at the base of the monopole tower,
limit-state threshold

m simulated mass of the tower (lumped mass, stochastic
variable)

m; j-th element of simulated mass m sequence (stochastic

variable)

N number equally-probable sets (LSAMC approach)

n number of samples (Monte Carlo sampling)

P probability of exceedance

Praa probability of exceedance found by approximate approach
(FORM or LSAMCQ)

Pgpr probability of exceedance found by Monte-Carlo sampling
(BF)

P generic stochastic variable p (FORM)

Suu along-wind horizontal turbulence velocity spectrum

to reference duration of the observation for peak estimation

U mean wind speed at z = h (tower top)

Oy average value of the mean-wind speed corresponding to
structural response threshold crossing (MC approach)

Uy average value of the mean-wind speed corresponding to
structural response threshold crossing (LSAMC approach)

V, mean wind velocity at z = h (tower top)

Xpeak random variable (peak lateral displacement)

X mean along-wind displacement at z = h (tower top)

Xo peak lateral displacement threshold for the predefined
limit state at z = h (tower top)

Xpeak peak lateral displacement at z = h (tower top)

z elevation or vertical coordinate along the vertical axis of
the tower

S arbitrary constant of the gain parameter (Stochastic
Approximation)

Arcp r-th subset of simulated drag coefficient (stochastic vari-
able)

Asm s-th subset of simulated mass (stochastic variable)

Vi, arrival rate of up-crossings of the peak value (Davenport
Chain [50])

& generalized response variable (first lateral mode)

p air density

01 along-wind RMS response corresponding to generalized
response &;

Y(O) threshold function Eq. (4) (Stochastic Approximation)

D,(2) normalized lateral first-mode shape of the tower/mast

x) aerodynamic admittance function for point-like structure
(Davenport Chain [50])

Subscripts and superscripts

k index of k-th iteration step of SA algorithm (Eq. (5))

r index of r-th equally probable set of drag coefficient
(Ar,CD)

s index of s-th equally probable set of mass (A )

the dynamic load acting on the structure such as wind, wind speed,
turbulence spectra, tributary or projected areas of the loads and aero-
dynamic force coefficients.

In the present work, the along-wind response of a generalized model
of a monopole tower is employed as a first prototype application. This
structure is examined, without any loss of generality, as a point-like
structure; a generalized single Degree-Of-Freedom (DOF) model is uti-
lized to simulate the dynamic behavior of the considered monopole
tower. Two random variables are selected as representative examples of
the two fundamental problems, introduced above and usually asso-
ciated with the analysis of the structural performance via structural
fragility functions (e.g. [21,22]): experimental errors in the aero-
dynamic wind loads and insufficient knowledge of the structural
system. The two selected variables are, respectively, the aerodynamic
drag coefficient of the tower elements and the mass of the structure
[6,12]. Even though other sources of uncertainty are possible (e.g.
structural damping, etc. [23-25]), the two quantities above are em-
ployed as illustrative indicators for verification of the proposed method
along with the benchmark structural model.

Following recent advances in wind engineering of long-span bridges
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and tall buildings [22,26,27], performance-based structural analysis is
accomplished through construction of fragility functions. These are
usually assembled as the probability of exceeding a pre-selected limit-
state threshold, conditional on the value of mean wind speed at a re-
ference elevation (e.g. [21,22]). The Monte Carlo approach is con-
veniently employed for structural analysis and commonly applied for
the fragility analysis of wind-sensitive structures (e.g. [21,28]). In the
present paper a Layered Stochastic-Approximation-Monte-Carlo
(LSAMC) approach, based on implementation of the Stochastic Ap-
proximation (SA) is proposed [29,30] to accomplish this task. The
LSAMC approach enables the statistical assessment of the wind-induced
response in presence of “uncertain scenarios”. The LSAMC approach is
a viable alternative to a standard Monte Carlo simulation (“brute force
method”; e.g. [31]), which requires the generation of a large and sta-
tistically meaningful number of realizations of the stochastic problem to
determine the response to wind load.

Originally conceived as a tool for statistical computation, the SA has
been widely used in electrical engineering, subsequently extended to
study the non-linear dynamics of cable networks in cable-stayed bridges
[32,33] and the dynamic performance of tall buildings subjected to
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turbulent wind loads [29,34]. After briefly reviewing the main problem
and the SA fundamentals, this paper examines a novel implementation
of the SA to compute the higher-order statistical moments of the peak
random structural dynamic response in presence of “two-variable un-
certainty”, related to both wind loading and modeling simplifications.
For example, computation of higher statistical moments is needed if the
input random variables (namely the aerodynamic loads [21,35,36]) are
represented through non-standard probability distribution models (e.g.
gamma distribution) and, consequently, the fragility analysis of the
output structural response either requires evaluation of the skewness
coefficient or a distribution model that differs from the one commonly
employed in the practice (e.g. log-normal).

The main objective of this study is the formulation of the LSAMC
approach in wind engineering and its verification through application
to the dynamics of a monopole tower accounting for the two sources of
uncertainty defined above. The accuracy and efficiency of the algo-
rithm, in terms of computing time, are investigated through systematic
comparison against more computationally expensive Monte-Carlo
sampling methods (e.g. [31,37]) and another popular method, used for
structural reliability, i.e. the first-order reliability method (FORM, e.g.
[38,39]). Needless to say, other methods have been proposed for the
reliability analysis of wind-sensitive structures, such as Markov-Chain
Monte Carlo simulation methods (e.g. for offshore wind turbine design
[40]), subset simulation methods [41], response surface methods [42].
Nevertheless, the comparison and verification is restricted to the FORM
since it is widely employed in the wind engineering field (for example
in long-span bridge aerodynamics [43,44]) and can easily be adapted to
the numerical estimation of structural fragility curves (as later de-
monstrated in this study).

The article is organized as follows. In Section 2 a brief background
on dynamic response under turbulent loads is presented. In Sections 3
and 4 the LSAMC methodology is illustrated. Section 5 briefly in-
troduces the use of Monte-Carlo sampling methods and the derivation
of the FORM in relation to the estimation of structural fragility func-
tions. Section 6 contains the numerical verification of the proposed
algorithm, the numerical fragility results and the comparisons against
the FORM. The conclusions are summarized in Section 7.

2. Background: dynamic response under turbulent wind loads

The proposed methodology utilizes standard frequency-domain
random-vibration analysis for the estimation of wind-induced loading
and dynamic response on a slender vertical structure. The procedure
assumes that the dynamic behavior of the monopole structure under
consideration is linear-elastic. The approach is employed to analyze the
dynamic response at large wind velocities, for which buffeting response
is the main concern. The aerodynamic loading is based on equivalent
quasi-steady formulation of wind forces [8,10,45]. Mean direction of
the incident wind is considered horizontal and orthogonal to the prin-
cipal lateral plane of structural deformation. The wind force is con-
centrated on the top of the structure where a lumped mass m is used to
simulate the weight of the monopole tower; distributed loads along the
vertical shaft are neglected. Load induced by vortex shedding is also
neglected in this preliminary investigation, since aeroelastic effects due
to vortex shedding are primarily important at lower wind speeds, and
are usually less critical for displacements as opposed to accelerations
[10,46]. Other aeroelastic instabilities are not considered in the present
formulation. Fig. 1 is a schematic depicting both the prototype appli-
cation and the structural mode with axis orientation, concentrated wind
loading F4(t), and lateral bending displacements as a result of the dy-
namic response; displacements are considered continuous along the
cantilever structure, x(z, t), and simulated through the product of a
first-mode generalized model [dimensionless mode shape ®;(z), nor-
malized to 1 at z = h] and a generalized time-dependent coordinate
&,(t) (coincident with the tower-top lateral displacement at z = h).

The first-mode generalized model of the structure, considered
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herein as a prototype of a monopole tower, essentially consists of one
dynamic degree of freedom, where the quantities m and A are respec-
tively used to simulate the lumped mass and the projected area of the
communication devices which are the main source of mass (weight) and
wind loads. The main properties of the structure are summarized in
Table 1. It is noted that several authors have used a similar formulation,
i.e., a generalized equivalent SDOF model, accounting for first-mode
vibration only to describe the structural response of lighting support
structures, masts and utility poles [23-25].

Even though the distributed mass of the mast and aerodynamic
forces acting on the mast are neglected at this stage, the same approach
can be readily extended to a more detailed structural system. Since the
main objective of this study is the characterization, verification and first
implementation of the LSAMC approach, more complete applications
will be considered in future studies.

The wind loads are simulated by exclusively considering the along-
wind (drag) forces acting on the communication devices, located at the
top of the tower. The loads account for both the wind pressure effect
associated with both horizontal mean wind speed (U) and along-wind
horizontal turbulence component (1) at the elevation of the commu-
nicating devices (z = h). The turbulent component of the wind velocity
is modeled as a zero-mean stationary random process, whose prob-
abilistic properties are completely defined by its power spectral density
function [S,, (f)]. In the present study the power spectrum proposed by
Kaimal [47] is employed. The conversion from turbulence spectrum to
wind load spectrum utilizes the Davenport approach for point-like
structures [48,49] (i.e., the “Davenport chain”, [50]). This approach
includes derivation of aerodynamic admittance function y (f) and me-
chanical admittance function H (f) (with f frequency in Hz), and sub-
sequent evaluation of the peak response through peak-factor analysis
[50].

The standard deviation and the spectrum [S,,(f)] of the turbulent
component of the wind velocity at z = h are obtained from wind load
information derived from the Eurocode 1 standard for exposure terrain
category II [51].

The main equations for the evaluation of dynamic response of the
system in the along-wind direction can be summarized as follows (e.g.,
[49]):

2 _ © _ (IOCDAU)2 Al
= [ Saa(df = 52— o) STHOPK P (S udf o
Xpeak = X + 801 (2)
U+u(t) E(@) *
[ A |:> x(h,t)igl(t)
h h x(z,0)=0(2)&(®)
(a) (b)

Fig. 1. Monopole tower: (a) Schematic of the structure, (b) generalized model,
orientation, loading and displacements.
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Table 1 Table 2

Main properties of the monopole structure. Mean values and coefficient of variation of the uncertain model parameters.
Structural or geometrical property Units Value assigned Statistical moments Cp [-] m [kg]
Lumped mass m [kgl 600 Mean value 1.20 600
Total reference height h [m] 35.0 Coefficient of variation 0.42 0.17
Moment of inertia I [m*] 2.04 x 1072
Modulus of elasticity E [MPa] 2.00 x 10°

. 2

Projected area A [m7 8.0 been employed to statistically derive the along-wind stochastic dynamic
Fundamental-mode structural frequency [Hz] 0.7 ¢ 1 deled lized
Structural damping ratio =] 0.02 response or a prototype monopole tower, modeled as a generalize

0.577
g = [2In(ogto) + ——27
T PIn(ug o) @)

In Eq. (1) the variance of the lateral along-wind generalized response
& (¢) is found from the integration along the frequency axis f [Hz] of the
combined complex aerodynamic admittance and mechanical ad-
mittance functions. The response depends on the aerodynamic load
through the Cp drag coefficient, the lumped mass m of the tower point-
like structural model, the fundamental-mode natural frequency f;, and
the air density p; Eq. (2) provides, through the peak coefficient g [Eq.
(3)], the peak displacement x,q of the monopole tower top at z = h; t,
is the reference duration of the observation (equivalent to averaging
time of wind speed, 10 min) and v, is the up-crossing rate of the given
response threshold (equal to the rate of zero crossings for a narrow
band process, in accordance with Davenport’s theory, [49]). The Da-
venport chain and its relationship to wind-induced response and un-
certainty analysis are presented in Fig. 2.

3. Formulation of the LSAMC approach

This chapter discusses the fundamentals of the LSAMC approach and
its algorithmic implementation. In the present paper, the algorithm has

system (first-mode response).

Without any loss of generality, the proposed methodology has been
applied to an SDOF dynamic problem with uncertainties in the wind
loading and in the structural properties. Uncertain parameters are the
drag coefficient Cp and the lumped mass m, which respectively simulate
the effect of variable shapes and weight of the communication devices
[14,53]. In the present work, the lognormal distribution model is used
to describe the two uncertain parameters; the two random parameters
are uncorrelated [6]. Previous studies [6,21,29] indicated that the
number of random samples n must be adequately chosen to examine the
empirical probability distribution of the output variable X,.q, and to
evaluate its mean and standard deviation. Contrary to standard appli-
cation of the Davenport Chain, the peak value becomes a random
variable because of the random Cp and m; mean values and coefficient
of variation of the uncertain model parameters were calibrated using
literature results (e.g., [21]). Numerical values are described in Table 2.

3.1. Brute force approach

The stochastic response of the considered system can be examined
by repeatedly solving Egs. (1)-(3) assuming a random sequence of drag
coefficient values {Cp 1, Cpp, ...,Cp,} and mass values {my, my, .., my}.
To apply the SA approach, combined with Monte Carlo sampling, it is
useful to re-define the problem of xp.. exceeding a pre-selected

|

I

li | ! Hl |
b 1 M A

R s i

i) yirt Wiy P u
Gust| Aero Aero Force Mechanical Res;Jonse
Spectrum Admittance Spectrum Admittance Spectrum

1

Sampling

PDF

l

Response

PDF

Limit State 3

Fig. 2. Davenport Chain and its relationship to wind-induced response and uncertainty analysis.

Image reproduced from [52].
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threshold x,. The function below is defined:
Y (U, Coje» M) = [X Uk, Cp,e, M) + 801 (Uk, Cp i M) ]—o. @

In the previous equation Y} is a function that depends on Eq. (2), which
has been appropriately rewritten as function of the random variables Cp
and m. This equation implies that the gust effect factor g remains ap-
proximately constant despite the randomness in the mass m and Cp; v,
(Eq. (3)) is approximately constant if the overall shape of the response
spectrum (i.e., the integral in Eq. (1)) does not considerably change
with the randomness in the variables Cp and m. The present approx-
imation is acceptable in the context of this exploratory study. Fur-
thermore, it may be further relaxed in the implementation of the
LSAMC approach but it was not discussed herein also to enable the
comparison against other probability-based methods (e.g. FORM), later
presented in the paper. In any case, it can be considered in future
studies.

The roots of this equation correspond to the crossing of the
threshold x,, i.e. the mean wind speed at the monopole tower top Uy
that yields Yx = 0 for a given value of Cpj and my. This equation must
be numerically solved for each k-th value of the n samples to find the
roots.

Once a threshold related to the limit state x; is selected, Eq. (4) with
k=1, ..,n leads to the sequence corresponding to the first-threshold
crossings values of the mean-wind speed {0, U, ...,U,}, at which the
predefined limit state is reached. It must be noted that the lateral dis-
placement limit state at the monopole top (i.e., the threshold x;) can be
easily replaced by the corresponding bending moment acting at the
base of the monopole through the relationship Myus. o = 3EIh~2x,, where
E is the elastic modulus of the mast cross section and I the moment of
inertia of area.

3.2. Stochastic approximation algorithm (estimation of the mean wind
speed Uyp)

Originally conceived as a tool for statistical computations, the SA
has been widely used in engineering. The areas of “adaptive signal
processing” in communication engineering and of control engineering
have extensively employed the SA algorithms. A similar algorithm,
called stochastic gradient approximation (SGA), has been introduced
for optimization problems in Variational Quantum Monte Carlo Many-
Body Physics [54]. In the present work the SA is used to find the sto-
chastic response under preselected “uncertain scenarios”, which simu-
late the presence of structural uncertainties, modeling simplifications

1200 T ; T T

1000 M 1

800 [ 1

600 1

Occurrences

400 - J

200 r 1

0 1 2 3 4 5
Drag Coefficient CD

(a)
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and aerodynamic load variability.

According to the Robbins-Monro Theorem [55,56] and to previous
works performed by the authors [30,57], an approximate value Uy, of
the true average value U;; (average of the mean wind speed at threshold
crossing) related to the sequence {U, U, ...,U,} can be found recur-
sively, at the k-th step, as follows:

U;\S/I,k+1 = UX/Lk—akYk(U}t{,k, Co.k my), (5)

where Uy, represents the independent variable (mean wind speed [m/
s]) of the function Y;, which is needed to find the root [m] (Eq. (4)), and
ay is the damping term [1/s] utilized for the convergence of the pro-
cedure.

The SA simple recursive formula estimates the average of the mean
wind speed at first crossing of x at the k-th step, Uy ;, from the random
sequence of drag coefficients Cp; and mass distribution my. At each k-th
iteration, the recursive procedure selects Cp ; and my randomly from the
distributions of the sampled random variables [30,57] without solving
for Y, = 0 at each step. The recursive procedure stops when the varia-
tion of the solution is below a predefined tolerance, assuming
Uit = Usrrsr- Eq. (5) uses a “damping term” a; that satisfies the
Robbins-Monro condition [56].

0 0
2
Z ai < oo and Z ag = oo.
k=1 k=1 (6)

A possible solution for a; can be written as [55]

ax = 4‘1 5

(k+1+C)y )
where 0.5 < § < 2.0, a and C are arbitrary constants that are chosen to
accelerate the numerical convergence. Previous studies [33,57] have
suggested that, in standard conditions and for the problem analyzed
herein, the values § = 0.51, a = 10 and C = 0 are good choices for
convergence of the method.

Figs. 3-5 illustrate, as a proof-of-concept, the application of the SA.
The procedure examines three cases: Cp random and deterministic mass
m, deterministic Cp and m random, both Cp and m are random vari-
ables. Inspection of Figs. 3-5 reveals that the SA tends to an approx-
imate value of Uy;; it also shows a direct comparison between the ap-
proximate value Uj;, obtained by SA, and the “exact” value of Uy,
which is obtained by Monte Carlo sampling since evaluation of a closed-
form solution is usually impractical.

1000 ‘ - : : :
— ]
U =29.39
M TS| Y T =31.04
800 | ! / M 1
Lt
) mnin
8 L
S 600 ) .
£ i
St
= -
=
S
o) 400 r 1
1
200 | p ]
1
1
0 .
10 20 30 40 50 60 70

Mean Wind Speed at z=h

(b)

Fig. 3. (a) Empirical distribution of uncertain drag coefficient Cp, (n = 10, 000) of the monopole structure with deterministic mass m = 600 kg; (b) sequence of first-
threshold-crossing mean-wind speed for the limit state corresponding to xo = 0.70 m.
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U, 2758
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28

Fig. 4. (a) Empirical distribution of uncertain mass m (n = 10, 000 as an example) of the monopole structure with deterministic drag coefficient Cp = 1.2; (b)
sequence of the first-threshold-crossing mean-wind speeds for the limit state corresponding to xo = 0.70 m.

3.3. Description of the LSAMC approach

According to Eq. (4), the analysis of the along-wind response ex-
ceeding a predefined limit state provides the corresponding sequence of
mean wind speeds {Uy} for threshold crossing, based on the random
sequences {Cp x} and {my}.

The LSAMC approach extends the standard SA algorithm, described
in the previous section, and estimates, in a computationally efficient
way, mean and higher statistical moments of the sequence {U}.

The approach considers a layered sampling from the sequences of
the continuous random variables {Cp,} and {my}, forming a finite
number of sub-sets A, ¢, and A ,,, respectively identified by indices r
and s. Each sub-set is based on a subdivision of the original set into
adjacent non-overlapping equally-probable sets (i.e., the intervals to-
ward the tail of the distribution are larger in extension compared to the
ones near the mean value of the distribution). The continuous random
variables over each sub-set can be replaced by a discrete random
variable with given probability mass function, centered at the mean
value for each set. For example, Cp x € A, ¢, and my € Ay, are sampled
from the N by N equal-probability independent intervals or “sets”, with
r=1, ..,N and s = 1, ..,N. The following equations must be satisfied:

1200

1000 ¢
800 |
600

400 1

g

Occurrences
PR
g8 8

:

400 f

200

400

Occurrences

UArcp = {Cp} and N Arcp = @, ®

UAs,m
s

{m} and OAM . ©)
The standard SA is independently applied to each sub-set, and the
average of the mean-wind speed corresponding to the crossing of the
threshold xo is found as (Uyy x41) cpasm USIng EQ. (5). The subscript
in the variable (Uyy k+1)(ar.cp s ) PETtains to the index associated with a
generic set A, ¢, and A, . This proposition yields:

(UX/I,k+1)(Ar,cD,AS,m) = (UI\*/I,k)( Ar,CcpAsm )
_akYk[(U;/[,k)(/\,ycn,/\sym)’ (CD,k)(AhCD), (M) g m)]-
(10)

The recursive Eq. (10), applied separately in each A, ¢, and Ay, set,
converges to a representative discrete point which is the local expected
value of Uy, ; the notation is simplified and A, ¢, and A, are simply
denoted by their indices r and s. Consequently, the SA is applied N by N
times, “layering” the sampling to each A, ¢, and Ay ,,; this procedure is
similar to the Latin Hypercube sampling often employed for better

1000 T o T r -
—%
UM—ZS.&
800 | - U =29.39 1
. M
600 s 1
400 F ]
200 1
0
10 20 30 40 50 60 70

Mean Wind Speed at z=h

(b)

Fig. 5. (a) Empirical distributions of uncertain parameters C, and m (n = 10, 000 as an example); (b) sequence of first-threshold-crossing mean-wind speed for the

limit state corresponding to xo = 0.70 m.



G.F. Giaccu, L. Caracoglia

convergence of the Monte Carlo method [31,37].

In the case of a single uncertain variable (e.g., random Cp and de-
terministic mass m), the proposed approach is applied with probability
mass function PMF = 1/N [30] to approximate the mean, standard
deviation (SD) and skewness (SK) coefficient of the continuous target
random variable U at first crossing of the threshold x,:

N
Eg ~ Uy = ), (Uy,-PMPF),
r=1

an
N 0.5
SDg =~ ((T.~Ti)PMF) |
U E M M 12
N
>, (T1,~T3)PMPF)
SKg ~ =L —
[SD(D)P (13)

Although the skewness coefficient is not directly needed if the log-
normal model is employed for fragility curve estimation, this additional
moment can be useful in case that other distribution models are em-
ployed. Furthermore, the evaluation of Eq. (13) is useful for the ver-
ification of the numerical approach and, consequently, it is included in
the numerical simulations of Section 4.

Fig. 6 illustrates, as a proof-of-concept, application of the LSAMC to
the present case. The algorithm converges to an approximate value of
U,;, standard deviation (SD) and skewness coefficient (SK) are also
indicated; the total number of realizations is 10,000, according to Egs.
(11)-(13) for N =4 equally-probable sets, designated by variables
Cpx € Ay cp with r =1, ...,N and constant mass m. The four areas, de-
limited by the vertical dashed lines and enclosed by the empirical dis-
tribution bins in Fig. 6, are the same.

The SA algorithm has been separately applied to each r-th set, A, ¢,
with the random variable Cp; € A, ¢, corresponding to the data mar-
kers with red dots in Fig. 6a. The algorithm converges to an approx-
imate value U, of the “exact” mean speed Uy, obtained by Monte Carlo
sampling; the equivalent discrete points are indicated by red-dot mar-
kers in Fig. 6b.

In presence of two uncertain parameters (Cp and m), mean, standard
deviation and skewness continuous target random variable U at first
crossing of the threshold x, are evaluated, with probability mass
function PMF = 1/N?, as:

1200
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M=
M=

Eg~ Ui = (Uj.r.s PMF),
=1 s=1 a4
N 0.5
SDg ~ | Y, Y, (T~ TUs)*PMF) |
r=1 s=1 (15)
N N
. D (Ui, s—Tn)*PMF)
SKg ~ =1 3=1 —
v [SD(D)F (16)

The same approach illustrated in Fig. 6, can be readily extended to the
case of two-variable uncertainty, where the stochastic variables are Cp
and m. In this second case, the SA algorithm can separately be applied
to each r-th set, A, ,, and s-th set, A ,, with the random variables
Cpx € Ay cp, My € A, and with r and s varying between 1 and N.

Fig. 7 illustrates a second application of the LSAMC algorithm in the
case of two uncertain parameters. The procedure is applied to assess an
approximate value of mean, standard deviation and skewness of U with
random variables Cp and m; the total number of realizations (n) is
10,000. According to Egs. (14)-(16) the procedure employs a layering
that comprises N X N = 4 X 4 equally-probable sets, designated as A, ¢,
with r =1, ..,N and A, withs =1, ..,N.

4. Verification of the layered LSAMC algorithm

Verification of the LSAMC algorithm is illustrated in this section.
Comparison between LSAMC (approximate) and Monte Carlo (BF) re-
ference solutions is carried out. We examine the mean, standard de-
viation and skewness of the random mean-wind speed U, which is re-
lated to the dynamic response of the monopole structure crossing the
threshold x,. Figs. 8-10 illustrate various verification examples with
both one uncertain input random variable and two uncertain input
random variables.

The sensitivity of the “exact” solution by Monte Carlo simulation
(BF) is also studied by varying the sample size n; each Monte Carlo
simulation is also repeated twenty times. Figs. 8-10 present the scatter
plots with the results of the 20 consecutive Monte Carlo simulations
(small-size markers), as a function of the sample size
n € {500, 5000, 10, 000, 15, 000}.

The figures also show the approximated values of the mean, stan-
dard deviation and skewness of U obtained by LSAMC (large-size

markers), as a function of the number of the subsets
0.3 T T T
» U, ~29.08
1
S RN B
- e 1 _
E ool | Upr 1 1 ) SD=512. |
= | 1| SK=023
w
4 \ [ [ [
= 0.15 ! o ! 1
> | | 1| |
= \ o |
2 01t \ [ [ [ f
=2 | \ 1 |
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U

(b)

Fig. 6. Random estimations of the mean-wind speed U (at z = h), relative to the response limit state corresponding to threshold crossing xo, = 0.70 m with random
drag coefficient:(a) empirical histogram of the random input Cp with indication of the “layered sub-sets” A, ¢, (N = 4; note: equally-probable sub-sets are sche-
matically illustrated), (b) PMF of the output discrete Uy, derived by LSAMC (mean value Uy, standard deviation, SD, and skewness, SK, computed from the discrete

U}, points are also indicated).
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Fig. 7. Random estimations of the mean-wind speed U (at z = h), relative to the response limit state corresponding to threshold crossing x, = 0.70 m with both
random drag coefficient and mass: (a) empirical histograms of the random input Cp and m with indication of the “layered sub-sets” A, ¢, and Ay (N X N = 4 X 4;
note: equally-probable sub-sets are schematically illustrated), (b) PMF of the output discrete Uy, . derived by LSAMC (mean value Uy, standard deviation, SD, and

skewness, SK, computed from the discrete U}y, ; points are also indicated).

N € {10, 20, 40, 60}. The results in Fig. 8 are presented for the three
cases of: random Cp and deterministic mass m (Fig. 8a); deterministic
Cp and random mass m (Fig. 8b) and both Cp and m random (Fig. 8c).
Inspection of the results reveals that the LSAMC method provides a very
precise estimation of the mean value for N = 20 sub-sets (equally-
probable sets) in the case of one input random variable (e.g., for N = 20
the relative error between LSAMC and BF is less than 0.2% in Fig. 8a
and b); in the case of two random variables (Fig. 8c) the same precision
of the LSAMC requires a larger number of sub-sets
N X N =10 x 10 = 100.

Furthermore, as can be seen from Fig. 8, the precision increases with
the number of sets N.

Fig. 9 shows the comparisons between the two approaches related to
the estimation of the standard deviation of U, which is connected to the
dynamic response of the monopole structure crossing the threshold xo.

Initial examination of Fig. 9 suggests that a good approximation of
the SD is achieved at N = 20 (error less than 2%) in the case of one
input random variable (Fig. 9a and b), and N X N = 20 X 20 = 400 with
two input random variables. Even in this second scenario, the precision
of the LSAMC increases with the increment of the number of subsets
(Fig. 8).

It is also noted in Fig. 9b that, despite the small SD values, the
LSAMC achieves a very precise approximation with a relative small
number of sub-sets (e.g., with N = 20 the relative error of SD estimation
is less than 3%); this remark proves that the LSAMC algorithm can be
considered a reliable approach even in the case that the estimated
quantity has of small magnitude.

Fig. 10 suggests that the LSAMC algorithm is apparently less accu-
rate in estimating the skewness coefficient of U. The normalized error is
about 10% with one input random variable (Fig. 10a and b) and
N = 60; in case of two random variables, the number of sub-sets needed
to achieve the same precision becomes N X N = 60 X 60 = 1200. The
“exact” value of the skewness of U, suggested by Monte Carlo sampling,
is in fact very small. This leads to larger relative errors of the LSAMC
estimators, around 15%. Nevertheless, the SK estimation by LSAMC
method is adequate, despite seemingly larger errors, as it can still
preserve sufficient information on the probability distribution of the
random U for fragility analysis. It will be demonstrated in the sub-
sequent section that the relative errors in case of a fragility analysis are
smaller and that the LSMAC is quite accurate. It is also observed that
the small discrepancies, noted for the skewness values obtained by the
LSAMC, do not affect the fragility results later shown in this paper.
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The same procedure described in this section was extended to other
threshold levels x,; results are similar but are not shown for the sake of
brevity. Information on mean and standard deviation of U will be
employed in the next section to evaluate the structural fragility curves,
directly by LSAMC.

The results, shown in Figs. 8-10, confirm the high potentialities of
the proposed LSAMC algorithm, which allows determining very precise
approximations of mean and standard deviation of U with a very small
number of subsets. Moreover, examination of Figs. 8-10 suggests that
the standard Monte Carlo method needs a much higher number of
samples n to achieve good estimations of the same quantities since the
procedure needs to solve for the roots of Eq. (4) for all repetitions.

Table 3 shows the comparison of the normalized computing times
needed to obtain the results shown in Figs. 8-10 by Monte Carlo sam-
pling and LSAMC approach for various sample sizes n. Numerical effi-
ciency of the LSAMC approach is evident from the data shown in the
table.

5. Fragility analysis by stochastic methods: theoretical
background

Fragility analysis has been recently examined for performance-
based structural analysis against wind hazards [58-61]. The objective
of a fragility analysis is the computation of the conditional probability
of exceedance of representative limit states through the assessment of
indicators (designated as “engineering demand parameters”), which
correspond to a specific feature of the dynamic response. Examples are:
the maximum lateral drift of the tower, the internal bending moments
or shear forces in the generic section. A set of thresholds is usually
defined to represent different levels of structural performance, based on
such indicators, which may be selected by the designer.

Complementary cumulative distributions functions (CCDF) are used
to derive the structural fragility (Fr), i.e., to find the probability that the
generic random variable x,.(e.g., peak response of monopole tower
top) exceeds a preselected threshold T, conditional on the presence of a
wind storm with mean speed V, = U at the reference height z = h, as

Fr(Vp) = PrOb[Xpeak > TV, = Ul. a17)
In the derivation of Eq. (17) the effect of random variables simulating
uncertainty in the wind load estimation and modeling errors (i.e.,
random variables Cp and m in the specific application) can readily be
included.
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Fig. 8. Comparison between expected value of U, found by Monte Carlo
method (Brute Force, BF) for various sample sizes n, and approximated
averages obtained by LSAMC with different N subsets: (a) random Cp and
constant mass m, (b) constant Cp and random m, (c) both Cp, and m random
variables.

5.1. Fragility functions via Monte-Carlo sampling (Brute force approach)

Traditionally, fragility curves are numerically estimated through
Monte Carlo sampling [21,22], for example utilizing Eq. (2) to em-
pirically estimate the peak response (random variable X, in equation
above) and compare it against threshold T through sampling. This ap-
proach is usually preferred by researchers due to its accuracy and ro-
bustness. Nevertheless, large computing time is usually needed and
represents the “bottle-neck” of this method. Details are omitted in this
study for the sake of brevity but examples may be found in previous
studies (e.g. [21,22]).

5.2. Fragility functions via LSAMC approach

The LSAMC approach, presented above, can also be employed for
the fragility analysis of wind-sensitive monopole towers. The LSAMC
algorithm allows determining the mean and standard deviation of U,
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Fig. 9. Comparison between standard deviations (SD) of U, found by Monte
Carlo method (Brute Force, BF) at various sample sizes n, and approximated SD
values obtained by LSAMC with different N subsets: (a) random Cp and con-
stant mass m, (b) constant Cp and random m, (c) both Cp and m random vari-
ables.

mean wind speed associated with peak lateral response that corre-
sponds to the first crossing of the threshold x,. The quantity U is a
random variable, as shown in the previous sections. Information about
mean and statistical moments of the random U can be used to construct
the curves in Eq. (17), noting that V; = U and using the cumulative
distribution function of U to approximate the structural fragility curve.
Preliminary investigation is necessary to determine the distribution
model that best describes the random U which is needed to postulate
the model of the fragility function.

5.3. Fragility functions via implementation of perturbation methods
(FORM)

In the case of a uni-variate random property, such as Cp and m, the
quantity Xpex (Eq. (2)) becomes a random variable. Estimation of the
probability density function of x.q, affected by random Cp and m, can
be approximated through perturbation methods. Implementation of the



G.F. Giaccu, L. Caracoglia

1.00

0.90 8

0.80

0.70

= 0.60
[

=]

X

5]

0.50

E

BF (n): < 500

QOO0 WD O O

0.40 05000 10000 © 15000

0.30 LSAMC (N):0 10 020 40 60

0.20

(a)

0.20

0.00 o

-0.20

SK of U

-0.40

OO WDOOBO

RT: 1.00 RT: 2.26

-0.60

BF (n): 2500  ©5000 10000 © 15000

-0.80

LSAMC (N):¢10 0120 40 60

-1.00

(b)

1.00
0.90 3

0.80
0.70

SK of Uy,

0.60
0.50

:

BF (n):2 500

GO OB O O

0.40

05000 10000 © 15000

0.30

LSAMC (N):©10x10 020x20 A40x40 ©60x60

0.20
(c)

Fig. 10. Comparison between skewness coefficients (SK) of U, found by Monte
Carlo method (Brute Force, BF) at various sample sizes n, and approximated SK
values obtained by LSAMC with different N subsets: (a) random Cp and con-
stant mass m, (b) constant Cp and random m, (c) both Cp and m random vari-
ables.

FORM [38,39] can be used for this purpose, along with the functional
relationship between X, and the input random properties (Cp and m),
evaluated at each U.

The treatment is based on the single-input single-output functional
relationship between input random property (either Cp or m) and xpeqx-
Extension to multiple random-variable input is readily available but is
not presented herein. Derivations are briefly summarized in this sub-
section.

It must be noted that implementation of the FORM is considered in a
non-conventional setting, contrary to standard reliability engineering
applications [38,39]. The perturbation method is in fact employed to
approximate the functional relationship between input random prop-
erty and Xpe. Consequently, the FORM is used to only indirectly ex-
amine the limit-state probability that x,., exceeds the threshold x,
conditional on the value of U [i.e., structural fragility functions; Eq.
ani.

Since x,.qx depends on both mean response X and the fluctuations
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Table 3

Examination of normalized computing times needed to estimate mean, standard
deviation and skewness (refer to the results in Figs. 8-10; computing time is
related to each single operation, shown by a marker in the figures, and nor-
malized to BF time with two random variables and sample size n = 10, 000).

BF LSAMC

Sample size n Computing time Subsets N Computing time
(BF) (LSAMC)

Cp (Fig. 8)

500 0.0473 10 0.0002
5000 0.4794 20 0.0005
10,000 0.9452 40 0.0010
15,000 1.3927 60 0.0015
m (Fig. 9)

500 0.0464 10 0.0002
5000 0.4886 20 0.0005
10,000 0.9498 40 0.0010
15,000 1.3790 60 0.0013
Cp and m (Fig. 10)

500 0.0476 10 x 10 0.0022
5000 0.4977 20 x 20 0.0092
10,000 1.0000 40 x 40 0.0399
15,000 1.4429 60 x 60 0.0880

o, the perturbation approach must be applied twice to independently
determine two relationships (for X and o) and the input random
property (either Cp or m). Moreover, as previously outlined, the gust
effect factor g varies slowly with stochasticity and it is assumed con-
stant, independent of randomness.

Denoting the generic input stochastic variable p (to designate either
Cp or m) the two functions X and oy, are expressed by Taylor series
about a “reference design point” and truncated to the first order of the
expansion. This reference point is determined using the mean input
value p, i.e. in the absence of input randomness. This expansion is il-
lustrated in Egs. (18) and (19):

dg |

p=p

x(p)+[ ](p—p)=yo<p)+ [fjl
g

o
p=p (18)

](p—ﬁ)=y1(ﬁ)+ [zyl
g _

p=p

) ) °!
g1 ( p) = o ( p +
a a dp

-
p=P
19)

In the previous expressions the quantities y, and y, designate the non-
linear functional relationship between either X or o, and generic input
random variable p, i.e. X = y,(p) and o, = y,(p), evaluated in the
proximity of the reference design point (p = p). From the definition of
peak response (Eq. (2)) and the hypothesis of constant g (Eq. (3)), the
mean, mean square value and the variance (VAR) of Xp. can be
evaluated, using the reference design point p = p = E[p], as:

E[xpear] =X (@) + 8o (@) = 5,(@) + g, P), (20)
E[Xpear] # E[(X + g021)*] = E[¥?] + E[0f]g + 2gE[Xy], (21)
VAR[xpeak] ~ E[xﬁeak]_(E [xpcak] )2; (22)

where the symbol E[.] designates expectation operator. To approxi-
mately derive the probability distribution of xpeq, the mean value and
the standard deviation (or the variance, VAR) of X, are needed. The
former quantity is directly derived from Eq. (20) above, whereas the
latter requires the estimation of the second statistical moments E[x?],
E[crgl] and E[Xo]. These quantities are also approximately found by
FORM as:
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d
EIx?] ~ E[2 ()] + [di ] E[(p-p )],
P lp=p (23)
2
2 2/ dy, —\2
Eloal = Eyy ()] + [d ] E[(p—-D)*],
P lp=p 24
EB%JQEWNHM@H+EKF?V49& }[91 }
dp p=p dp p=p (25)

In deriving Eq. (25) the relationship E[p—p | =0 is used; the derivatives
of y, and y, with respect to p are evaluated at the reference design
point. After rewriting the variance term as E[(p—p)?] = VAR[p] and
combining Egs. (23)-(25) with Egs. (21) and (22) the variance of the

peak response, VAR xpeak 5 becomes:
](il ]
p=p p=p

2
dy,
+2g| =22

d
VAR [Xpeat] ~ VAR[p]{ | 22

dp pP=p
2

+ gz [% ]
p=p

dp
Egs. (20) and (26) can be used to find an expression for the probability
distribution function of X at each wind speed U, using p = E[p] and
VAR|p]; the probability model describing the response variable X, is
in fact the same as the one of the input random variable p owing to the
approximate linear relationship established by FORM. This information
can be employed to re-construct the cumulative distribution function of
Xpeake at each U and, consequently the complementary cumulative dis-
tribution function dictated by the fragility relationship ((Eq. (17)), after
the threshold level x is chosen. Since the relationships y, and y, cannot
typically be found in closed form, numerical estimation of the deriva-
tives in Eq. (26) is found by sampling these functions in the proximity of

p=p =E[pl

(26)

6. Structural fragility analysis: Results and comparisons (LSAMC,
FORM and BF)

6.1. Computation of structural fragility functions with one input random
property (either Cp or m)

This sub-section examines the structural fragility analysis of the
single-DOF generalized model of the prototype monopole tower under
the influence of both wind loading (Cp variable) and structural property
uncertainties (mass m). As described earlier, randomization of these
parameters reflects the presence of either measurement errors in the
wind tunnel or structural uncertainties related to the modification of
the structural mode shape or structural mass during the lifetime.

The main purpose is to evaluate the effectiveness of the LSAMC
approach. The comparisons of the fragility curves include the various
methods (Monte Carlo sampling, LSAMC approach and FORM). In this
investigation, fragility curves are evaluated by computation of the
probability that the along-wind peak dynamic response at z = h ex-
ceeds a pre-selected threshold x,, corresponding to the limit state of the
peak lateral displacement at the monopole tower top.

For the Monte-Carlo simulations, the number of samples n = 10, 000
has been considered as the reference value. From the verification results
of the LSAMC approach, presented in the previous section, it is sug-
gested that the lognormal model can be used to replicate the cumulative
distribution function of U and, consequently, the fragility function.

Table 4 summarizes the predefined threshold levels, utilized for the
fragility analysis xo € {T1, T2, T3, T4, T5}. Threshold T5 is related to a
possibly unrealistic peak displacement, but is utilized herein mainly for
verification of the proposed procedure. Table 4 also presents the cor-
responding base bending moment thresholds M,, derived from x, and

Engineering Structures 174 (2018) 462-477

the properties of the monopole structure; this second quantity can be
used to examine the ultimate limit state either associated with either
maximum overturning moment of the tower or material strength in the
base cross section.

The main results are presented in Figs. 11 and 12. Fig. 11 shows the
fragility curves calculated for random Cp (random aerodynamic loads)
and deterministic mass m = 600 kg. Fig. 12 similarly depicts the fragi-
lity curves for deterministic aerodynamic load (Cp) and random mass
m. In both Figs. 11 and 12 the graphs found with Monte-Carlo sampling
(Brute Force, BF) are used as the reference solution; the left panels of
both figures present the comparisons with the LSAMC whereas the right
sides illustrate the results found with the FORM.

Comparison of Fig. 9(a) with (b) indicates that the standard de-
viation of the random U is larger in the case of a Cp random variable
and becomes almost negligible in the case of deterministic Cp and
random mass m. This observation is also confirmed by examination of
the fragility curves shown in Fig. 12, where a small variation of the
wind speed U induces an abrupt performance loss; the steep slope lo-
cally exhibited by the fragility curves is indeed an indicator of limited
sensitivity to randomness.

Overall, as anticipated by the small errors found with the LSAMC in
Figs. 8 and 9, the agreement of the approximated LSAMC estimations
with the “exact” curves, found by Monte-Carlo sampling, is very good in
both Figs. 11 and 12. The FORM is still adequate when uncertainty
propagation considers the random Cp (Fig. 11(b)), whereas substantial
discrepancies are observed in Fig. 12(b) with random mass m. From a
cursory analysis of the results shown in Figs. 11 and 12, it is noted that
LSAMC provides a good approximation of fragility curves with relative
small differences (or errors). Estimation errors can be qualitatively
noticed by inspection of the fragility curves.

The LSAMC approach is usually adequate, in particular when small
variability in the random input property or parameter leads to “step-
like” fragility functions in Fig. 12(a). On the contrary, the FORM is
unable to replicate the structural fragility in Fig. 11(b). The estimation
error of the LSAMC, approximately evaluated by inspection of the fra-
gility curves, is about few percent. A quantitative examination of the
error is presented in the next sub-section.

6.2. Analysis of simulation errors with one input random property (either Cp
orm)

The relative estimation error provided by the two approximated
approaches (AA) is defined as (P 4a—Pr pr)/Ps pr, Where Pg 44 and Py pr
respectively designate probability of exceedance obtained by approx-
imate solution (LSAMC or FORM) and “exact” probability of ex-
ceedance obtained by Monte-Carlo sampling (Brute Force, BF).
Estimation error calculations are carried out by comparing the graphs
in Figs. 11 and 12 at several values of U; results are illustrated in Fig. 13
for random drag coefficient Cp and Fig. 14 for random mass m. In each
case, the left panels present the SLAMC results while the right panels
the FORM ones, enabling cross-examination of the two methods.

In Fig. 13, the error of the LSAMC is larger at low wind speeds U and
decrease to about 4% for wind speeds greater than 40 m/s; the FORM
gives considerably larger errors for all considered wind velocities. In

Table 4
Thresholds for fragility analysis of the generalized model of the monopole
structure.

Threshold level xq Tower top displacement

threshold level [m]

Base bending moment
threshold level [kN m]

T1 0.010h = 0.35 3488
T2 0.020h = 0.70 6977
T3 0.036h = 1.26 12, 558
T4 0.052h = 1.82 18, 140
T5 0.068h = 2.38 23,722
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Fig. 11. Fragility curves obtained by Monte-Carlo (BF) sampling, LSAMC and FORM approaches. Analysis of monopole structure with random aerodynamic load (Cp
variable) and limit state associated with the lateral peak displacement at z = h and the thresholds T1 — T5 (Table 3): (a) Comparison between Monte Carlo (BF) and
LSAMC, (b) Comparison between Monte Carlo (BF) and FORM.
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Fig. 12. Fragility curves obtained by Monte-Carlo (BF) sampling, LSAMC and FORM approaches. Analysis of monopole structure with random structural properties
(m mass variable) and limit state associated with the lateral peak displacement at z = h and the thresholds T1 - T5 (Table 3): (a) Comparison between Monte Carlo
(BF) and LSAMC, (b) Comparison between Monte Carlo (BF) and FORM.
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Fig. 13. Relative error of LSAMC and FORM compared to the “exact” solution (Monte Carlo, BF) — Cp random variable and T2, T5 thresholds: (a) Comparison
between Monte Carlo (BF) and LSAMC, (b) Comparison between Monte Carlo (BF) and FORM [notes: relative errors shown in the range of wind speeds between
25m/s and 70 m/s; “60” = number of equiprobable sets].
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Monte Carlo (BF) and LSAM, (b) Comparison between Monte Carlo (BF) and FORM notes: relative errors shown in the range of wind speeds between 25 m/s and

70m/s; “60” = number of equiprobable sets].

Fig. 14, the discrepancy between Monte-Carlo and approximate solu-
tions is exacerbated by a considerably smaller random variability in-
troduced by the random mass m in the estimation of the Xj. Clearly,
the FORM is not adequate as relative errors are very large while the
estimation errors associated with the LSAMC approach are still rea-
sonably small. This figure is important since it suggests that, even in the
presence of a limiting case associated with small random variability and
“steeper” fragility functions for intermediate values of U (thus leading
to abrupt variations in exceedance probabilities), the LSAMC approach
still provides better results compared with FORM.

General examination of Figs. 13 and 14 suggests that the estimation
error in the case of LSAMC is localized; fragility curves usually exhibit
good agreement with the ones obtained numerically by Monte-Carlo
sampling. On the contrary, the error committed by FORM is not ac-
ceptable. This problem can be explained accounting for the limitation
introduced by the FORM and used for determining the variance of xpea,
as illustrated in Eq. (26). Finally, even though verification of the
LSAMC procedure has been examined, further validation may be de-
sirable in the future (e.g., through testing and experimental assessment
of structural fragility).
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6.3. Computation of structural fragility functions with two input random
properties (both Cp and m)

Fig. 15(a) presents the structural fragility curves when both Cp and
m are the input random properties. This investigation is restricted to the
comparison between LSAMC and Monte-Carlo sampling, since the
FORM is unable to provide adequate estimation of the fragility curves
when the contribution of a random m is incorporated. In this last sce-
nario with two input random variables the relative deviations (errors)
between the approximate fragility curves found by LSAMC and the
“exact” curves determined by Monte Carlo sampling are illustrated in
Fig. 15(b). The relative error, computed as explained in Section 6.2 is
slightly smaller than the error found for the first scenario with random
Cp only and shown in Fig. 13(a).

The supplementary numerical results illustrated in Fig. 15 confirm
the good performance of the LSAMC approach. Qualitative differences
between approximate and Monte-Carlo fragility curves (Fig. 15(a)) are
almost imperceptible. The relative error between LSAMC and Monte-
Carlo sampling is less than 5% for wind speeds U larger than 35m/s.

All the results presented in Figs. 11-15 are preliminary since they
are based on the analysis of a generalized structural model of a
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Fig. 15. Fragility curves obtained by Monte-Carlo (BF)sampling and LSAMC approach. Analysis of monopole structure with random structural properties (m mass
variable) and random aerodynamic loads (Cp variable) for limit state associated with lateral peak displacement at z = h and thresholds T1 - T5 (Table 3): (a) fragility
curves, (b) relative errors [note: relative errors shown between 25 m/s and 70 m/s].
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monopole tower. They require further investigation prior to general-
ization of the LSAMC algorithm and its implementation to other and
more complex wind-sensitive vertical structures (tall buildings, wind
turbines, etc.). This task is, however, beyond the scope of this study and
will be considered in the future.

6.4. Examination of computing time savings

Computational efficiency of the proposed methodology is examined
in this sub-section Fig. 16 summarizes the results of this investigation.

The computing time of the LSAMC algorithm is examined as a
function of the number of equiprobable sets (N). The execution time is
normalized with respect to Monte-Carlo computing (BF-normalized)
and compared against the FORM computing time.

The results illustrated in Fig. 16 indicate that, in the case of a single
input random variable, the LSAMC achieves sufficient approximation
(illustrated in Figs. 11-15) with equiprobable sets N = 60 and a BF
normalized computing time equal to 0.18%. In Fig. 16(a) and (b) the
computing time of LSMAC is modestly longer than the time required by
FORM. As expected, in case of two input random variables (Fig. 16(c))
the normalized computing time increases since it is proportional to the
number of equiprobable sets needed to obtain the same accuracy, which
are 3600 (60 x 60). Examination of Fig. 16(c) suggests that, in the case
of two random variables, the LSAMC algorithm is less performing. Even
though the performance of the LSAMC approach may progressively
deteriorate as the number of input random variables increase, the
LSAMC approach is still 90% faster than Monte-Carlo sampling with
two random variables, indicating that it may still be adequate for or-
dinary applications in performance-based wind engineering.

7. Discussion and conclusions

This study summarizes the results of a research activity aiming at
the derivation of computationally-efficient performance-based meth-
odologies for the estimation of structural fragility curves of wind-sen-
sitive structures. Implementation of SA algorithms was employed to
derive the dynamic response of a prototype structure, a monopole
tower, under stationary wind loads in the frequency domain.

Uncertainty and measurement errors were considered by suitable
random perturbation of selected but representative variables (physical
properties) of the structure and the load, following implementations
presented in previous work [21,22]. The numerical procedure, desig-
nated as LSAMC algorithm, was employed to analyze the effects of
uncertainty and errors in the modeling of structural properties and in
the estimation of wind forces, often carried out in wind tunnel. Linear
elastic along-wind dynamic response was considered.

In the first part of the study, initial verification of the LSAMC al-
gorithm was conducted by comparing the simulated results against
Monte Carlo sampling results. The comparison was based on the ana-
lysis of mean values, variance and skewness coefficients embedded in
the implicit stochastic function (Eq. (4)).

In the second part, the LSAMC approach was employed to derive
structural fragility curves of the prototype monopole tower, associated
with various limit states. The peak lateral response at the top of the
tower was employed as the control variable, or engineering demand
parameter. Five different limit-state thresholds were considered to as-
sess the stochastic response of the prototype system and evaluate
computation of the fragility curves. For the sake of completeness and to
identify advantages and potential limitations of the LSAMC, the in-
vestigation also examined another popular approach for reliability
analysis, the FORM.

Numerical simulations confirm that the LSAMC approach is ade-
quate for approximate estimation of structural fragility curves. The
error is usually limited to few percent values. Furthermore, the LSAMC
outperforms the FORM when the propagation of uncertainty is either
influenced by nonlinearity (mass m) or the steepness in the fragility
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curves is large (refer to error comparisons in Section 6).

The LSAMC also proves to be an efficient algorithm from the com-
putational point of view, since a significant speedup in the computing
time was observed in comparison with Monte-Carlo sampling results
(Fig. 16). For example, in the case of single input random property or
variable, the computing time required by LSAMC is less than 1%
compared to the time needed by Monte-Carlo simulation. In the case of
two input random properties or variables, the computing time of
LSAMC is about 12% compared to standard sampling approach;

0.20%
D
E
o0 0.15%
|
=
=
(="
=
S 0.10%
=
Q
8|
=
E 0.05%
) LSAMC
7
E FORM
0.00%
10 15 20 25 30 35 40 45 50 55 60
Equiprobable sets NV
(a)
0.20%
L
E
0,
%D 0.15%
=
=
(=}
g
S 0.10%
=
5
N
=
E 0.05%
=} LSAMC
7
= FORM
)
0.00%
10 15 20 25 30 35 40 45 50 55 60
Equiprobable sets N
(b)
12.00%
]
E 10.00%
=
g
= 8.00%
-
=
=
S 6.00%
=
S
= 4.00%
<
E ‘
= LSAMC
S 2.00%
= FORM
)
0.00%
0 1000 2000 3000 4000

Equiprobable sets NxV
(c)

Fig. 16. Computing time of LSAMC and FORM, as a function of the number of
equiprobable sets, normalized to the Monte-Carlo (BF) time: (a) random Cp, (b)
random m, (c¢) random Cp and m.
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computing time reductions were obtained by preserving adequate ac-
curacy in the approximated structural fragility curves. It is noted that,
even though the computing time savings progressively deteriorate
when the number of input random variables increase, they appear to be
adequate for ordinary applications and conventional structures.

The study primarily examined two types of random behavior, i.e.
uncertainty in the aerodynamic loads (simulated through static coeffi-
cient Cp) and modeling uncertainty due to imperfect knowledge of the
structure (simulate through mass m). Clearly, these two variables are
provided as examples, since several other parameters or structural
properties (e.g. damping ratios) are perhaps equally relevant [23-25] to
the dynamic response. Consequently, more investigation is needed to
extend these results to other random variables. Nevertheless, the main
objective of the study was the examination of the LSAMC approach as a
computationally efficient method for structural fragility analysis.

Future studies should include more complex structural systems,
examine other parameter uncertainties, account for across-wind re-
sponse in addition to along-wind response, and expand the treatment to
the stochastic structural analysis in the presence of high-dimensional
problems (multi-degree-of-freedom structures).
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