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Topology now plays a central role in physics, yet its applications have so far been restricted to closed, lossless
systems in thermodynamic equilibrium. Given that many physical systems are open and may include gain and
loss mechanisms, there is an eminent need to reexamine topology within the context of non-Hermitian theories
that describe open, lossy systems. The generalization of the Chern number to non-Hermitian Hamiltonians
initiated this reexamination; however, there is no established connection between a non-Hermitian topological
invariant and the quantization of an observable. Using field-theoretical techniques, we show that no such
relationship exists between the non-Hermitian Chern number and the Hall conductivity, a consequence of the
discontinuous nature of Green’s functions of non-Hermitian Hamiltonians. Furthermore, we derive an exact
formula for the Chern-Simons Hall response of a generic two-level non-Hermitian Hamiltonian and present an
illustrative calculation for a non-Hermitian massive Dirac Hamiltonian in (2 + 1) dimensions. We conclude by
clarifying how these results extend to higher-dimensional systems and detailing their implications for recent
experiments.
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The topological classification of matter represents a signif-
icant enhancement in our understanding of the physical prop-
erties of a great variety of systems, both classical [1–3] and
quantum mechanical in nature [4,5]. Of central importance
within the topological classification of matter is the identifica-
tion of topological invariants, which are quantities that remain
unchanged in the presence of symmetry-allowed perturbations
[6–9]. While the topological classification of matter has en-
joyed much success, its achievements have to date been lim-
ited to idealized closed systems, as described by conventional
Hermitian Hamiltonians. Nonetheless, most physical systems
are more aptly described as open, defined by a connection
to large reservoirs of additional states. Proper theoretical de-
scriptions of open systems must include mechanisms of both
loss and gain that account for the flow of energy and particles
between the system and additional reservoirs [10–12]. The
inclusion of gain and loss mechanisms necessitates a non-
Hermitian Hamiltonian, whose complex eigenvalues induce
finite quasiparticle lifetimes. Non-Hermitian Hamiltonians
permit many topological phenomena that are discordant with
their Hermitian counterparts including exceptional points,
lines, and surfaces at which two eigenvectors merge into one
[13–19], unidirectional optical transport [20,21], bulk Fermi
arcs [22], expanded topological classifications [23–26], and a
modified bulk-boundary correspondence [15,27–36].

The breakdown of the conventional bulk-boundary corre-
spondence in non-Hermitian topological Hamiltonians calls
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for the reexamination of other predictions of topology in
non-Hermitian systems. One of the sacrosanct tenants of
topological physics is the connection between topological
invariants and quantized observables. Within the context of
gapped Hermitian Hamiltonians, the Chern number of the
energy bands is equivalent to the number of chiral edge states,
as required by the bulk-boundary correspondence [6,8,9]. The
connection between the number of edge states and the Chern
number, in turn, leads to a Hall conductivity quantized in
units of e2/h [37]. The Chern number thus provides both a
mathematical classification of the Hamiltonian and a physical
characterization of the resultant phase.

In this Rapid Communication, we demonstrate that the
intimate link between the Hall conductivity and the Chern
number no longer holds in a non-Hermitian Chern insula-
tor. Specifically, we show that the Chern-Simons response
coefficient in the effective action of a non-Hermitian Chern
insulator is not quantized, despite the quantization of the
Chern number, as a result of the discontinuous nature of
the Green’s functions of non-Hermitian Hamiltonians. Im-
portantly, we further show why the nonquantization of the
response is not contradictory to the quantization of the Chern
number. This is our central result. Additionally, we de-
rive an exact expression for the nonquantized Chern-Simons
(CS) Hall response of a generic non-Hermitian two-level
system. As a concrete demonstration of the disconnect be-
tween topology and observable, we calculate the Hall con-
ductivity of a non-Hermitian massive Dirac Hamiltonian in
(2 + 1) dimensions [(2 + 1)D], which has a nonzero Chern
number.

We begin by examining the Hall conductivity of a gapped,
translationally invariant Hermitian system in (2 + 1)D. As
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calculated via the Kubo formula, the Hall conductivity is

σxy = ie2h̄

V

∑
m,n

( fm − fn)
〈m|v̂x|n〉〈n|v̂y|m〉

(εm − εn)2 , (1)

where V is the volume of the system, fi = f (εi ) is the Fermi-
Dirac distribution function, v̂i = 1

h̄ dĤ/dki are the velocity
operators, εn and |n〉 are the energies and eigenstates of the
Hamiltonian Ĥ , and m, n index the eigenstates of Ĥ . For a
gapped Hamiltonian, Eq. (1) may be recast in terms of the
Chern number n, an integral of the Berry curvature over the
Brillouin zone [37],

n = i

2π

∑
q∈occ

∫
BZ

εi j〈∂i�q(k)|∂ j�q(k)〉d2k, (2)

where q indexes the occupied bands. The Hall conductivity
is proportional to the Chern number, which is an integer
topological invariant of the bands, and is thus quantized as
σxy = ne2/h, where n ∈ Z.

However, Eqs. (1) and (2) fail for non-Hermitian Hamil-
tonians as they explicitly rely upon the ability to distinguish
occupied and unoccupied eigenstates. The failure is caused by
the complex energy eigenvalues possessed by non-Hermitian
Hamiltonians, for which the Fermi distribution does not pro-
duce occupation probabilities. Although the Kubo approach
to the Hall conductivity is inappropriate for non-Hermitian
Hamiltonians, we may still construct the effective action of
an external U (1) gauge field to obtain the Hall conductivity,
an approach that is valid for both free and interacting theories
[38,39]. The Hall response of a gapped system is contained in
the topological Chern-Simons term of the effective action,

SCS[A] = CCS

4π

∫
d3x εμνρAμ∂νAρ, (3)

where Aμ is the electromagnetic vector potential. The Hall
conductivity is proportional to the response coefficient σxy =
CCSe2/h, which is topologically quantized to integer values.
Thus the electromagnetic response of the Chern-Simons term
is identical to the Kubo formula for the Hall conductivity and
we can identify CCS as the Chern number.

Many non-Hermitian Hamiltonians possess a finite spectral
density in the gap, which permits the presence of higher-order
and nonlocal terms in the effective action which contribute
to the Hall conductivity, in addition to the Chern-Simons
term. Although progress has been made towards evaluat-
ing these contributions [40,41], the quantization of the Hall
conductivity fundamentally relies on the quantization of the
Chern-Simons coefficient. As in the Hermitian case, the Chern
number can be defined as a topological invariant of the bands
of non-Hermitian Hamiltonians [13], but the identification
of the non-Hermitian Chern number with the Chern-Simons
coefficient is not generally possible. By careful evaluation
of the Chern-Simons coefficient, we identify the underlying
structure of non-Hermitian systems responsible for the dis-
connect between the Chern number and the Chern-Simons
coefficient. This disconnect prevents the quantization of the
Hall conductivity arising from the Chern-Simons term, which
we refer to as the Chern-Simons Hall response.

In the language of Green’s functions, the Chern-Simons
Hall response is calculated from the linear, antisymmetric part

of the polarization tensor as [42,43]

σxy = e2

h

εμνρ

24π2

∫
d3 p Tr

[
G

∂G−1

∂ pμ

G
∂G−1

∂ pν

G
∂G−1

∂ pρ

]
, (4)

where p = (ω, kx, ky), the frequency ω is integrated along the
imaginary axis of the complex plane, and G is the Matsubara
Green’s function. The Matsubara Green’s function in Eq. (4)
is defined as

G(ω, k) = [ω − H (k) − 
(ω, k)]−1, (5)

where H is the Hamiltonian and 
 is the self-energy. The self-
energy accounts for the presence of energy exchange between
the system and reservoirs as well as dissipative interactions,
both of which combine to imbue the quasiparticles with a
finite lifetime.

To clearly understand the topological quantization of
Eq. (4) for Hermitian systems, we recognize that the Green’s
function represents a homeomorphism, a continuous bijec-
tion with a continuous inverse, between (2 + 1)D momentum
space and the general linear group GL(N, C), where N is the
number of energy bands. Let us first consider the continuum
case, in which momentum space is isomorphic to R3. Since
the Green’s function approaches zero in the limits k → ∞
and ω → ∞, we can compactify momentum space into the
three-sphere S3 by adding a point at infinity. With the point
at infinity, the Green’s function now defines a three-loop in
GL(N, C) [44]. Therefore, the Green’s function is an element
of the third homotopy group of the general linear group
π3(GL(N, C)), which is isomorphic to Z. In the lattice case,
momentum space can be compactified into a pinched torus,
whose third homotopy group is also isomorphic to Z [42].
Equation (4) identifies to which element of Z the Green’s
function corresponds, guaranteeing the integer quantization of
the Hall conductivity in the Chern insulator.

In order to evaluate Eq. (4), we must construct the requisite
Green’s function of the non-Hermitian Hamiltonian, which we
refer to as the non-Hermitian Green’s function. Consider a
general non-Hermitian Hamiltonian, written as

H (k) = H0(k) + �(k), (6)

where the Hamiltonian has been broken up into Hermitian,
H0 = H†

0 , and anti-Hermitian, � = −�†, components. In this
formulation, the anti-Hermitian component is relegated to a
self-energy term, giving the Matsubara Green’s function

G(ω, k) = 1

ω − H0(k) − �(k)sgn(Im ω)
, (7)

where 
(ω, k) = �(k)sgn(Im ω). In order to preserve causal-
ity, we require the eigenvalues of �(k) to lie on the negative
imaginary axis [45].

The salient feature of the non-Hermitian Green’s func-
tion is the frequency dependence of the self-energy. The
self-energy depends on ω only via the signum function be-
cause it has been extracted from the Hamiltonian, which
has no dependence on ω. The frequency dependence of the
self-energy induces a discontinuity in every non-Hermitian
Green’s function at ω = 0, as demonstrated in the schematic
in Fig. 1. This discontinuity is avoided by the self-energy of
most common interactions by an additional dependence on ω
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FIG. 1. Schematic representation of the inverse of a (a) conven-
tional Green’s function and (b) non-Hermitian Green’s function, as a
function of iω. The non-Hermitian self-energy �(k)sgn(Im ω) causes
a discontinuity of magnitude 2�(k) = 2�0 at ω = 0.

that sets the magnitude of the self-energy to zero at ω = 0.
Such a discontinuous Green’s function is not a homeomor-
phism and cannot be identified via Eq. (4) with an element of
π3(GL(N, C)) ∼= Z.

The topological invariance of Eq. (4) may be proven by
demonstrating that the variation in the CS Hall response
induced by a variation of the Green’s function is identically
zero. Under the general distortion G → G + δG, the variation
is written as [45]

δσxy = −e2

h

εμνρ

24π2

∫
d3 p ∂μTr[δG∂νG−1G∂ρG−1]. (8)

For a smooth, continuous Green’s function, this expression
can be recast as a surface integral via the divergence theorem.
Since the distortion δG must go to zero at the boundary
(ω → ±∞), the variation is identically zero and the CS Hall
response is a topological invariant. However, the divergence
theorem only applies to continuous functions, and thus cannot
be used to evaluate the variation of non-Hermitian Green’s
functions. Since δG is arbitrary, the integral can effectively
take any value, thus the variation is finite and the CS Hall
response is not a topological invariant. The above discussion
is completely general to any non-Hermitian Hamiltonian as
we have not a priori assumed any particular form of the
self-energy.

To illustrate the impact of a discontinuity in the
Green’s function, we consider a general diagonal self-energy

(ω, k) = −i�0(ω, k)sgn(Im ω)I , where �0(ω, k) is positive
and real. This self-energy can be substituted into the frequency
variable in Eq. (8), resulting in a variation in the CS Hall
response of the form [45]

δσxy = e2

h

εi j

24π2

×
∫

d2k Tr
[
δG∂iG

−1
0 G0∂ jG

−1
0

]∣∣∣∣
ω′=i�0(0,k)

ω′=−i�0(0,k)

, (9)

where G0 is the bare Green’s function with no self-energy
and the indices i and j span the momenta kx and ky. If
�0(0, k) = 0, this expression is zero and the CS Hall response
is a topological invariant. The self-energy arising from any
Fermi-liquid interaction, for example, is identically zero at
ω = 0, and leaves the Hall conductivity an invariant. How-
ever, since 
(ω, k) = �(k) has no frequency dependence for

non-Hermitian Green’s functions, the terms in this expression
do not cancel each other and the result is finite. Since δG is
arbitrary we find a finite variation in the CS Hall response, as
predicted above.

We can further understand the nonquantization of the CS
Hall response by considering a generic, gapped, two-level
system described by the Hamiltonian

H (k) = d0(k)σ0 + d(k) · σ, (10)

where d0, di ∈ R and σ is a vector of the Pauli matrices. The
topological quantization of the Hall conductivity is made clear
by expressing it as [46]

σxy = e2

h

∫
d2k

4π
d̂ ·

(
∂ d̂

∂kx
× ∂ d̂

∂ky

)
. (11)

The integral in this expression measures the solid angle that
the vector d(k) sweeps out on S2 as the momentum is inte-
grated over the Brillouin zone. This geometric quantity must
be an integer, and is formally equivalent to the Chern number.

The non-Hermitian generalization of this Hamiltonian is

H (k) = [d0(k) + i�0(k)]σ0 + [d(k) + i�(k)] · σ, (12)

where �(k) is a vector of real numbers and must satisfy the
requirement that the eigenvalues of H (k) have negative imag-
inary components. In order to make the following calculation
more transparent, we suppress any momentum dependence
and use the following definitions: b0 = d0 + i�0, b = d + i�,
and b = √

b · b. Using Eq. (4) [45], we find the CS Hall
response of a generic two-level non-Hermitian Hamiltonian
to be [47]

σxy = −e2

h

∫
d2k

2π2
Re

{
b̂ ·

(
∂ b̂

∂kx
× ∂ b̂

∂ky

)

×
[
π

2
sgn(Re b) − ibb0

b2 − b2
0

− i arctanh

(
b0

b

)]}
. (13)

The infinitesimal angle swept out by the vector b(k) is now
multiplied by a function of the momentum, thus the integral
does not count the number of times b(k) covers the sphere.
This compact expression for the CS Hall response as an
integral over the Brillouin zone makes manifest the absence
of a topological interpretation.

To further elucidate the disconnection between Chern num-
ber and bulk topological invariant, we now analyze the CS
Hall response of a model non-Hermitian Chern insulator in
detail. To this end, we utilize an inversion-symmetric massive
Dirac Hamiltonian, given by

H0(k) = −μσ0 + νF k · σ + Mσz, (14)

where μ is the chemical potential, νF is the Fermi velocity,
and M > |μ| is the energy gap. When the chemical potential
is within the energy gap, the massive Dirac Hamiltonian has
a vanishing longitudinal conductance and a Chern number
C = − 1

2 [48], corresponding to a half-quantized Hall con-
ductance σxy = −e2/2h [49]. We generalize this model to a
non-Hermitian Chern insulator by adding a constant diago-
nal imaginary term that respects the same symmetry as the
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FIG. 2. The longitudinal conductivity and magnitude of the CS
Hall response for the non-Hermitian Chern insulator as a function of
the broadening �0 with μ = 0.1 eV and M = 1 eV. The CS Hall
response monotonically decreases from |σxy| = e2/2h to σxy = 0,
while the longitudinal conductivity monotonically increases from
σxx = 0 to σxx = 1

π
e2/h.

Hamiltonian,

H (k) = −(μ + i�0)σ0 + νF k · σ + Mσz. (15)

As the anti-Hermitian component of the Hamiltonian, �(k) =
−i�0σ0, is proportional to the identity matrix, the eigenvectors
of the Hamiltonian and the Chern number are unchanged from
the Hermitian case. Using Eq. (4), we calculate the CS Hall
response of this non-Hermitian massive Dirac Hamiltonian to
be [45]

σxy = e2

h

M

2π |M|
[

arctan

(
μ2 + �2

0 − M2

2�0|M|
)

− π

2

]
, (16)

in agreement with previous results on non-Hermitian massive
Dirac systems [50,51]. Equation (16) yields the properly
quantized value σxy = −e2/2h in the Hermitian limit �0 → 0,
as expected. However, for any finite value of broadening, �0,
the CS Hall response is reduced from its Hermitian value, as
shown in Fig. 2, approaching σxy = 0 as �0 → ∞. Because
the eigenstate topology of this non-Hermitian Hamiltonian
is identical to that of the original Hermitian Hamiltonian,
the tunable value of the CS Hall response makes clear the
disconnect between topology and observable.

With the loss of quantization in the Hall conductivity, one
expects an associated response in the longitudinal conductiv-
ity [52]. As the broadening increases, a finite spectral density
develops in the gap, allowing for conduction through the bulk
of the system. We may write the longitudinal conductivity in
terms of Green’s functions as [53]

σxx = − e2

2h

∫
d2k

(2π )2
Tr

[
Im GA(0, k)

∂H (k)

∂kx

× Im GA(0,−k)
∂H (k)

∂kx

]
, (17)

where GA(k, ω) is the advanced Green’s function [45]. Sub-
stituting the Green’s function of this non-Hermitian Chern
insulator into Eq. (17) gives the conductivity

σxx = μ2 + �2
0 − M2

4π�0μ

[
2�0μ

μ2 + �2
0 − M2

+ arctan

(
2�0μ

M2 + �2
0 − μ2

)]
e2

h
. (18)

In examining Eq. (18), we observe that in the Hermitian limit,
�0 → 0, the longitudinal conductivity goes to zero, as it must
for a Hermitian gapped system. In both the massless limit,
M → 0, and in the limit of infinite broadening, �0 → ∞, the
conductivity approaches the theoretical minimum conductiv-
ity of a single Dirac cone [53],

lim
M→0

σxx = lim
�0→∞

σxx = e2

πh
. (19)

Between these two limits, the longitudinal conductivity re-
mains finite.

A natural extension is to consider non-Hermitian systems
in dimensions higher than (2 + 1). To this point, we consider
the (4 + 1)D quantum Hall insulator, a higher-dimensional
analog of the Chern insulator that is described by the Chern-
Simons action

Seff = C2

24π2

∫
d4xdtεμνρστ Aμ∂νAρ∂σ Aτ , (20)

which corresponds a nonlinear Hall response of the form
[38,54]

jμ = C2

8π2
εμνρστ ∂νAρ∂σ Aτ . (21)

Here, the coefficient C2 is the second Chern number of the
non-Abelian Berry phase [38], which may be expressed via
Green’s functions as

C2 = −π2

15
εμνρστ

∫
d5 p

(2π )5
Tr

[
G

∂G−1

∂ pμ

G
∂G−1

∂ pν

× G
∂G−1

∂ pρ

G
∂G−1

∂ pσ

G
∂G−1

∂ pτ

]
. (22)

This integral is a higher-dimensional form of the topological
invariant in Eq. (4), as it identifies the Green’s function with
an element of π5(GL(N, C)) = Z, resulting in a quantized
nonlinear Hall response. The discontinuity in non-Hermitian
Green’s functions invalidates this topological quantization
argument, as it did in the (2 + 1)D case, again leading to a
disconnect between a topological invariant and a quantized
observable in a higher-dimensional Chern insulator.

The fact that non-Hermiticity results in a nonquantized
Hall conductivity despite a quantized Chern number seems to
be directly at odds with the clear experimental observations of
the quantized Hall conductivity in magnetically doped three-
dimensional time-reversal invariant topological insulators
[55–59]. Such a mesoscopic system is generally open and dis-
ordered, meaning it may be best described by a non-Hermitian
Hamiltonian that accounts for finite lifetimes. The reason
that the disconnect between topological observable and Chern
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number is not present in magnetically doped topological insu-
lators is that not all interactions result in non-Hermitian self-
energies with finite weight at ω = 0. For example, consider
the effect of magnetic impurity scattering on the surface of
a topological insulator. The anti-Hermitian component of the
self-energy resulting from magnetic impurity scattering is of
the form [51]


 = −i�0|ω|sgn(Im ω), (23)

where �0 quantifies the broadening induced by the magnetic
impurity scattering. We immediately notice that the linear
dependence of the self-energy on |ω| circumvents the dis-
continuity at ω = 0. The vanishing at ω = 0 of self-energies
derived from interactions is a common feature and is present,
for example, in all Fermi-liquid interactions. The resulting
Green’s function is continuous for all k and ω and is a legiti-
mate homeomorphism from momentum space to GL(N, C).
Therefore, Eq. (4) produces a quantized CS Hall response,
consistent with experimental results.

In summary, we have studied the connection between ob-
servables and topological invariants in non-Hermitian Chern
insulators. We have analytically shown via field-theoretical
techniques that there exists a disconnect between the Chern
number and the CS Hall response in (2 + 1)D non-Hermitian
Hamiltonians, the origin of which is the discontinuity present
in non-Hermitian Green’s functions. This result, which is ap-
plicable to all non-Hermitian Hamiltonians with eigenvalues
in the lower half of the complex plane, proves that there is no

simple relationship between the topology of eigenstates and
quantized observables in non-Hermitian systems. We derived
an exact formula for the CS Hall response of generic two-
level non-Hermitian Hamiltonians that clearly demonstrates
the disconnect from the Chern number. For the particular case
of a non-Hermitian massive Dirac Hamiltonian, we showed
that as broadening is introduced, despite the unchanging
eigenstates, the Hall conductivity deviates from its quantized
value and the system develops a longitudinal conductivity. We
have further shown that the disconnect between topology and
observable may be extended to higher-dimensional systems,
specifically addressing (4 + 1)D systems characterized by the
second Chern number. Importantly, we have illustrated that
our results are consistent with the experimental observations
of the quantum anomalous Hall effect in magnetically doped
topological insulators. Our results demonstrate the necessity
for reexamining perceived links between topology and the
quantization of observables in non-Hermitian systems.
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