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Topological d-wave superconductivity and nodal line-arc intersections in Weyl semimetals
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Superconducting Weyl semimetals present a novel and promising system to harbor new forms of uncon-
ventional topological superconductivity. Within the context of time-reversal-symmetric Weyl semimetals with
d-wave superconductivity, we demonstrate that the number of Majorana cones equates to the number of
intersections between the d-wave nodal lines and the Fermi arcs. We illustrate the importance of nodal line-arc in-
tersections by demonstrating the existence of locally stable surface Majorana cones that the winding number does
not predict. The discrepancy between Majorana cones and the winding number necessitates an augmentation of
the winding number formulation to account for each intersection. In addition, we show that imposing additional
mirror symmetries globally protects the nodal line-arc intersections and the corresponding Majorana cones.
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I. INTRODUCTION

Dirac and Weyl semimetals (WSMs) feature promi-
nently in the study of topological materials alongside other
semimetallic systems such as nodal line semimetals and
semimetals with higher-order degeneracies [1–4]. The low-
energy excitations of isolated gapless points (Weyl nodes) in
the bulk Brillouin zone (BZ) of WSMs are Weyl fermions
[5–7]. Weyl nodes are twofold band degeneracies that are
present in systems with either broken time-reversal symmetry
(TRS) or inversion symmetry (IS) [7–10]. In WSMs, open
boundaries host topologically protected surface Fermi arcs
connecting Weyl node projections of opposite chirality in mo-
mentum space [5]. WSMs have been experimentally observed
in a wide range of materials, most notably in the transition
metal monopnictide class [7,11–15].

The combination of WSMs and superconductivity is a
powerful and robust platform for realizing novel topological
phases of matter. In a topological superconductor (TSC),
the quasiparticle spectrum has topologically protected, gap-
less Majorana modes that are essential to many topological
quantum computing implementations [16]. Recent theoretical
studies have primarily considered conventional (s-wave) or
unconventional (d-wave) pairing in IS WSMs via bulk doping
[17–21] or proximity effects [17,22–25]. In the case of TRS
WSMs, TRS superconducting pairing between Weyl nodes of
opposite momentum and equal chirality opens a bulk super-
conducting gap as long as the pairing potential does not vanish
at the Weyl nodes [26]. In fully gapped superconductors, the
sign of the pairing potential, combined with Fermi surfaces
possessing nonzero chirality, define the topological invariants
for classes of three-dimensional TRS TSCs [27]. Within the

weak superconducting pairing limit, the relevant topological
invariant is the winding number, given by

Nw = 1

2

∑
s

Cssgn�s. (1)

Here Cs denotes the first Chern number on the sth discon-
nected Fermi surface, and �s denotes the effective pairing gap
on the sth Fermi surface. Equation (1) determines the number
of protected gapless modes along an open boundary. Further-
more, Eq. (1) indicates sign changes in the pairing potential
are an important ingredient to realize TSC, as a constant
pairing potential implies, by the Nielsen-Ninomiya theorem, a
trivial winding number [28]. However, unconventional nodal
superconductivity, such as TRS d-wave superconductivity,
naturally possesses sign changes in the pairing potential.
Therefore, a TRS WSM with d-wave superconductivity is a
natural candidate for TSC.

In this work, we study TSC in TRS WSMs with d-wave
superconductivity. We demonstrate that intersections between
the Fermi arcs and the nodal lines in the pairing potential
naturally host Majorana cones. Interestingly, we show that
additional, locally stable Majorana cones occur at the nodal
line-arc intersections (NAIs) that the winding number can-
not account for. Confronting this winding number limitation
prompts a more careful study of the interplay between the
WSM topology and the superconducting pairing potential to
determine the presence of TSC. We address the limitation by
recasting Eq. (1) to give an alternative definition of the wind-
ing number as a function of NAIs. Motivated by the mirror
symmetries present in TRS WSMs such as TaAs and TaP
[11,13–15], we consider the addition of mirror symmetries
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and determine the augmented topological classification that
crucially depends upon the nature of NAIs.

II. THE WINDING NUMBER

We begin with a phenomenological Bogoliubov–de
Gennes (BdG) Bloch Hamiltonian that describes TRS WSMs
with d-wave pairing,

hBdG(k) =
(

h0(k) �(k)
�†(k) −h∗

0(−k)

)
. (2)

In this formulation, hBdG(k) acts on the Nambu spinor �k =
(�k, �

†
−k)T [17,29], and �(k) and h0(k) denote the d-wave

pairing matrix and the TRS WSM Bloch Hamiltonian, re-
spectively. The full Hamiltonian written in terms of Eq. (2)
commutes with both the TRS and particle-hole symmetry
operators. In terms of hBdG(k), these symmetries are written
as UK, where U is a unitary operator, and K is complex
conjugation. UT := isy,UC := iτx act on hBdG(k) as

UT h∗
BdG(−k)U −1

T = hBdG(k),
(3)−UChBdG(−k)U −1

C = hBdG(k),

where τ, s denote the Pauli spin vectors in the Nambu and
spin spaces, respectively. Due to TRS, a Weyl node and
its TRS partner have the same chirality, thereby ensuring a
gapped bulk quasiparticle spectrum in the presence of d-wave
superconductivity, as long as the Weyl nodes do not occur at
nodal lines [26]. TRS further prohibits a complex phase in the
pairing potential [21], implying that sign changes accompany
nodal lines in the superconducting order parameter.

We now consider an open boundary in the ẑ direction and
assume that the superconducting pairing potential has no de-
pendence on kz. Figure 1 depicts a hypothetical configuration

FIG. 1. Schematic of Fermi arcs (green) in a TRS WSM inter-
secting nodal lines in the dxy-pairing potential at an open boundary.
The blue (red) points depict surface Weyl node projections of neg-
ative (positive) chirality. The same coloring scheme indicates the
different signed regions of the dxy-pairing potential. The tangential
arrows ûi depict chiral flow from the positive- to negative-chirality
Weyl node projections.

of Fermi arcs connecting Weyl node projections at the open ẑ
boundary where the nodal lines of a dxy-pairing potential are
superimposed. By Eq. (1), the winding number is Nw = 2 for
this configuration of Weyl nodes. In general, a nonzero Nw

implies that, for any normal phase Fermi arc configuration, at
least |Nw| intersections between Fermi arcs and nodal lines in
the pairing potential must occur, as shown in Fig. 1.

To relate the NAIs and the bulk winding number, we
introduce an orientation of the Fermi arcs that starts at
the positive-chirality Weyl node projection and ends at the
negative-chirality Weyl node projection. The oriented NAIs
allow us to recast the winding number as

Nw = −
∑

i

sgn(∇�i · ûi ), (4)

where i sums over all the NAIs in the BZ, ∇�i is the gradient
of the pairing gap function at the intersection, and ûi is a unit
vector tangent to the Fermi arc at the intersection and pointing
along the orientation of the arc.

To illustrate the importance of NAIs in understanding the
nature of the surface physics, we note that, by definition,
�(k) = 0 at NAIs. At these momenta, hBdG(k) decouples into
particle and hole sectors

hBdG(k) ∼= h0(k) ⊕ −h∗
0(−k). (5)

A Fourier transform in the open boundary direction ẑ
leaves hBdG(k‖, z) block diagonal, where k‖ = (kx, ky). If
u(k‖, z) is a zero-energy surface eigenstate of h0(k‖, z), then
v(k‖, z) := u∗(−k‖, z) is a zero-energy surface eigenstate of
h∗

0(−k‖, z). Similarly, by TRS, T h∗
0(−k‖, z)T −1 = h0(k‖, z);

thus, Tu(k‖, z)T −1 = v(k‖, z), which implies u∗(−k‖, z) =
v(k‖, z). Therefore, the Bogoliubov transformation,

γk‖,z = u(k‖, z)�k‖,z + v(k‖, z)�†
−k‖,z, (6)

which is the eigenstate of the surface Hamiltonian, satisfies
γ

†
k‖,z = γ−k‖,z. This is precisely the criterion for a Majorana

operator under open boundary conditions [30]. The linear
dispersion of both the Fermi arc and the pairing potential at
the nodal line ensures Majorana surface cones occur at every
NAI.

Equation (4) makes clear that the total number of NAIs
and thus Majorana cones is not equivalent to the number of
topological Majorana cones. Thus, additional Majorana cones
beyond those required by the winding number occur as pairs
in the quasiparticle spectrum. Due to chirality, these additional
unprotected Majorana gap pairwise when brought together in
momentum space by an adiabatic deformation of the Fermi arc
configuration. Therefore, if the number of NAIs is preserved,
then the accidental Majorana cones are stable in the clean
limit.

III. MIRROR SYMMETRY AUGMENTATION

The inclusion of mirror symmetries such as those present
in TaAs and TaP fundamentally alters the topological struc-
ture of the BdG Hamiltonian, thus changing the number of
topologically protected Majorana modes at NAIs. To illus-
trate how the topological protection at NAIs changes under
mirror symmetry, we consider the tight-binding TRS WSM
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Hamiltonian [31]

h0(k) = [mz + A(3 − cos k0 cos 2kx − cos ky − cos kz]σz

+ B sin k0{cos 2kx[(1 − λ) + λ cos 2ky]}σx

+ B cos k0 sin 2kxσxsy + B sin kzσy

+ A sin k0 sin 2kxσzsy + λ

2
(sin kysx − sin kxsy), (7)

where σi are the Pauli matrices that act on orbital space.
The parameters A, B, and λ break IS that, by definition,
sends k → −k. The last term is a Rashba coupling term that
alters the connectivity of the Fermi arcs when λ is changed,
as described below. h0(k) also respects the mirror symme-
tries Mx/y := isx/y. The superconducting pairing matrix takes
the form

�(k‖) := i�α (k‖)σ0sy, (8)

where �α denotes the two types of d-wave pairing gap
functions, either �xy or �x2−y2 , given by

�xy(k‖) = �0 sin kx sin ky,

�x2−y2 (k‖) = �0(cos kx − cos ky). (9)

Since the pairing potential vanishes at nodal lines for both
intra- and interorbital pairing, we include only intraorbital
pairing and set the magnitude to be �0 = 1.

In the BdG Hamiltonian, hBdG(k) satisfies Mi symmetry if

MihBdG(ki, k)M−1
i = hBdG(−ki, k̃), (10)

where k̃ denotes the momenta unaffected by Mi. For dx2−y2

pairing, the mirror symmetries are given by Mx = iτzsx, My =
isy, while for dxy pairing the mirror symmetries are written
as Mx = isx, My = iτzsy. The difference in the form of Mi

between the two types of d-wave pairing arises from a U (1)-
gauge choice in the hole sector of hBdG(k) [17]. Specifically,
if M0

i acts on h0(k), then MBdG
i = M0

i τ0 or MBdG
i = M0

i τz,
depending on whether or not the pairing potential changes
sign under the mirror reflection.

To determine the topological classification under Mi sym-
metry, we utilize the minimal Dirac Hamiltonian method,
briefly summarized in Appendix B, which involves analyz-
ing the existence or nonexistence of additional symmetry-
preserving extra mass terms in topological Dirac Hamilto-
nians [32–34]. The extra mass terms depend upon indices
ηi

T , ηi
C , which, respectively, satisfy [35]

MiUTK = −ηi
T UTKMi,

MiUCK = −ηi
CUCKMi. (11)

There is a profound difference in the topological classi-
fication of the BdG Hamiltonian depending on the values
of ηi

T , ηi
C . To illustrate the difference, we begin with dx2−y2

pairing, which corresponds to ηT = −1, ηC = −1. We find
that dx2−y2 pairing is always topologically trivial under both
Mx and My symmetries. We may understand the emergence
of trivial topology in the presence of dx2−y2 pairing by con-
sidering a bulk Weyl node situated away from any high-
symmetry points in the BZ and its TRS partner of the same
chirality. Upon including either Mx or My symmetry, both
Weyl nodes now have a partner of opposite chirality, as

(a) (b)

FIG. 2. (a) and (b) Allowed Fermi arc connectivities under a
fixed configuration of Weyl nodes on an open boundary with the
dx2−y2 -pairing potential superimposed on the plot. Here the winding
number is trivial, as the minimal number of NAIs is zero in (b).

depicted in Fig. 2(a). Neighboring nodes of opposite chirality
always occur in regions of the same sign of the pairing
potential. Equation (4) then implies that the contribution
of each pair of neighboring nodes to the winding number
vanishes. Furthermore, for dx2−y2 pairing there always exists
a Fermi arc configuration wherein neighboring Weyl nodes
in the same sign of pairing potential may be connected,
thus implying the winding number vanishes, as shown in
Fig. 2(b).

In contrast to dx2−y2 pairing, dxy pairing, corresponding to
ηT = −1, ηC = 1, supports a Z ⊕ Z classification [32]. The
first Z index corresponds to the winding number as given in
Eq. (4), while the latter index corresponds to the mirror strong
index NMiZ. While the topological classification is extended
under dxy pairing to include two invariants, the number of pro-
tected Majorana modes is given by max(|NMiZ|, |Nw|) [32].
Assuming a generic h0(k) respects My symmetry, we block
diagonalize hBdG(k) into hBdG,+i(k) ⊕ hBdG,−i(k), where ±i
are the eigenvalues of My. The mirror strong index is then
given by [32]

NMyZ = sgn
(
MZBdG

0 − MZBdG
π

)(∣∣MZBdG
0

∣∣ − ∣∣MZBdG
π

∣∣).
(12)

Here the mirror Chern number MZBdG
i is defined as

MZBdG
i = 1

2

(
C+,BdG

i − C−,BdG
i

)
, (13)

where C+,BdG
i denotes the Chern number for hBdG,+ on the

surface ky = i in the bulk Brillouin zone [36].
Turning to the tight-binding model given in Eq. (7), we

choose the parameters A, B, k0, and mz such that eight zero-
energy Weyl nodes are located in the BZ, as shown in
Fig. 3(a). In Fig. 3(a), we show the Zak phase correspond-
ing to h0(k) (λ = 0) along the ẑ boundary, defined to be
γ Z (k‖) = ∮

dkzA(k), where A(k) is the Berry connection. The
regions where the Zak phase equals π denote the locations
of the four Fermi arcs, while the vorticity at the Weyl node
projections indicates the sign of the chirality of the bulk Weyl
node [37,38]. Including dxy pairing and using Eq. (4), we
find Nw = 0, while, in contrast, |NMyZ| = 4. We describe the
details of this calculation in Appendix A. The nonzero value
of the mirror strong index is evident from the geometrical
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0-
- --

(a) (b) (c)

FIG. 3. The changing of the Fermi arc connectivity (black lines) in the presence of My symmetry. (a) The initial Fermi arc configuration
(λ = 0) is shifted in (b) a mirror-symmetric manner (λ = 0.1), such that (c) the mirror Chern number forces a dangling Dirac cone to appear
once the Weyl node connectivity is changed (λ = 0.5). Here we have chosen mz = A/(−2 + √

2), k0 = π/4, A = B = 2.

configuration of the Fermi arcs. Since the pairing potential
vanishes along the mirror plane, the mirror strong index
is simplified to |NMyZ| = |MZ0|, where MZ0 denotes the
mirror Chern number of h0(k). As My symmetry conserves
the Chern number in each mirror sector, Fermi arcs with
opposite chirality cannot hybridize to produce a gap at ky = 0.
Therefore, the number of zero modes intersecting ky = 0 must
be preserved. Since there are four Fermi arcs crossing ky = 0
[two Fermi arcs per mirror sector, as shown in Fig. 3(a)], the
mirror strong index is |NMZ| = 4. Correspondingly, the four
locations where the Fermi arcs cross ky = 0 exhibit Majorana
modes.

We further elucidate the relation between NAIs and NMyZ

by considering mirror-symmetric deformations of the Fermi
arcs that change the connectivity of the Weyl nodes, as
shown in Fig. 3. Noting that the mirror planes and nodal
lines coincide, the particle and hole sectors decouple, and we
may restrict our analysis to the normal-phase Hamiltonian.
Starting from Fig. 3(a), we increase λ while preserving My

symmetry, thereby changing the Fermi arc configuration to
that shown in Fig. 3(b) (λ = 0.1) and, finally, arriving at
Fig. 3(c) (λ = 0.5). Figure 3(c) shows the final altered Fermi
arc configuration after reconnecting the Weyl nodes where,
despite changing the Weyl node connectivity, the number of
zero modes crossing ky = 0 is conserved by the creation of
a disconnected Dirac cone [39]. These dangling Dirac cones
ensure that the Z mirror Chern number remains unchanged in
the normal phase. The coincidence of nodal lines and mirror
planes in dxy pairing ensures the topological protection from
the mirror symmetry carries through from the normal phase to
the superconducting phase. Moreover, in the superconducting
phase, after the deformation four surface Majorana cones
appear at the NAIs along kx = 0. Thus, the mirror symmetry
ensures that the number of NAIs is preserved even when the
Weyl node connectivity is changed.

IV. CONCLUSION

In conclusion, we considered a TRS WSM with d-wave
superconductivity and analyzed the resulting topological clas-
sification and gapless surface modes. We demonstrated, both

analytically and numerically, the existence of locally stable
Majorana cones at NAIs that the DIII winding number does
not predict. Consequently, we provided an augmentation of
the winding number formalism that specifies both the number
and location of all Majorana cones that occur along an open
boundary in the ẑ direction. Given the mirror symmetries
inherent in many experimentally observed TRS WSMs, such
as TaAs, TaP, and NbAs, we further analyzed how the topo-
logical classification changes when we incorporate the mirror
symmetries of both the TRS WSM and the d-wave pairing
potential. We found that the mirror symmetries of the two
d-wave pairing potentials considered, dxy and dx2−y2 pairing,
give rise to drastically different topological classifications.
The mirror symmetry under dxy pairing protects surface Majo-
rana cones, even when the Fermi arc connectivity is changed
in a mirror-symmetric manner, while the mirror symmetry of
dx2−y2 pairing renders the system topologically trivial. Our
results further extend predictions of topological superconduc-
tivity in TRS WSMs and highlight the crucial roles unconven-
tional superconductivity, crystalline symmetries, and Fermi
arcs play in understanding these exotic systems.
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APPENDIX A: NUMERICAL MIRROR CHERN
NUMBER CALCULATION

In this Appendix, we review a numerical approach for
finding the Chern number for a mirror sector. In doing so, we
closely follow the notation given in [40].
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We begin with a generic n-band Bloch Hamiltonian, where
we label |n(k)〉 as the (normalized) nth band wave function.
We define a “link” variable [40] as

Uμ(kl ) = 〈n(kl )|n(kl + μ̂)〉 /Nμ(kl ), (A1)

where μ̂ is a lattice unit vector and kl denotes a momentum in
the (discretized) lattice. Here Nμ(kl ) = | 〈n(kl )|n(kl + μ̂)〉 |.
Then the Chern number (explicitly summing over occupied
bands) is given by

C1 = 1

2π i

∑
n∈occ

∑
l

F n
i j (kl ), (A2)

where the nth band field strength F n
i j (kl ) is given by

Fi j (kl ) = ln Ui(kl )Uj (kl + î)Ui(kl + ĵ)−1Uj (kl )
−1. (A3)

Here î, ĵ label unit lattice vectors, and Fi j (kl ) is defined
within the principal branch of the logarithm [40]. In the
case of degeneracies in the occupied bands, the non-Abelian
connection must be used, and the link variable is replaced
with

Uμ(kl ) = det[〈ψ (kl )|ψ (kl + μ̂)〉]/Nμ(kl ). (A4)

Here as before Nμ(kl ) = | det 〈ψ (kl )|ψ (kl + μ̂)〉 |, and ψ (kl )
denotes the multiplet (|n1〉 , . . . , |nm〉), where m is the largest
degeneracy in the occupied bands.

If we have a mirror symmetry Mi for a Bloch Hamiltonian
h(k) that satisfies Mih(k)M−1

i = h(−ki, k̃), where k̃ denotes
the momenta unchanged by Mi, then, in the plane ki = 0,
h commutes with Mi. h is then block diagonal in the two
Mi sectors (labeled by ±i); that is, h = h+ ⊕ h−. With this
definition, a Chern number C+/− may be computed for each
sector. Furthermore, a mirror Chern number defined for the
plane is given by [36]

nMi = (C+ − C−)/2. (A5)

Using nMi gives the number of gapless modes along the mirror
plane boundary, as seen in the main text.

APPENDIX B: MINIMAL DIRAC
HAMILTONIAN METHOD

Here we give a brief overview of the minimal Dirac Hamil-
tonian method used to determine the topological classification
under the mirror symmetry [32]. Note that we keep the mirror

symmetry representation such that the eigenvalues are ±i, in
contrast to [32].

We write a Hamiltonian in d spatial dimensions as

H = mγ0 +
d∑

i=1

kiγi. (B1)

Here m is constant, and we have the commutation and anti-
commutation relations

{γi, γ j} = 2δi jI, i = 0, 1, . . . , d,

[γ0, T ] = 0, {γi �=0, T } = 0, (B2)

{γ0,C} = 0, [γi �=0,C] = 0,

where T,C denote time-reversal symmetry and particle-hole
symmetry, respectively. If it is possible to write an extra mass
term to be added into the Hamiltonian such that the new mass
term anticommutes with γ0, respects the given symmetries,
and opens a gap in the spectrum of the system such that
varying m in the mass term mγ0 keeps the system in the same
topological phase, then we denote this term as a symmetry-
preserving extra mass term (SPEMT). If no such SPEMT term
exists, then the system possesses either Z2 or Z topology.
To differentiate between Z2 and Z, we consider an enlarged
Hamiltonian,

H ′ =
∑

i

kniγni ⊗ σz +
∑

remain

knj γn j ⊗ I, (B3)

where ni ∈ (0, 1, . . . , d ). The second summation is over the γ

matrices not included in the first summation. If a SPEMT can
be added to this larger minimal Dirac Hamiltonian, then the
topological classification is Z2.

To find the topological classification under mirror symme-
try, we construct an operator γ1R satisfying

{γ1R, H} = 0. (B4)

The above operator may be added either as an extra mass
term or an extra kinetic term, depending on the indices ηT , ηC

stated in the main text. The addition of this operator as an
extra kinetic term increases the effective dimension of the
Hamiltonian, while the addition of γ1R as an extra mass term
decreases the effective dimension of the Hamiltonian. The
topological invariants for these higher- (lower-) dimensional
Hamiltonians without reflection symmetry are in one-to-one
correspondence with the topological invariants of the Hamil-
tonian with the reflection symmetry.
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