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In the superconducting regime of FeTe(;_)Se,, there exist two types of vortices which are distinguished by the
presence or absence of zero-energy states in their core. To understand their origin, we examine the interplay of
Zeeman coupling and superconducting pairings in three-dimensional metals with band inversion. Weak Zeeman
fields are found to suppress intraorbital spin-singlet pairing, known to localize the states at the ends of the
vortices on the surface. On the other hand, an orbital-triplet pairing is shown to be stable against Zeeman
interactions, but leads to delocalized zero-energy Majorana modes which extend through the vortex. In contrast,
the finite-energy vortex modes remain localized at the vortex ends even when the pairing is of orbital-triplet
form. Phenomenologically, this manifests as an observed disappearance of zero-bias peaks within the cores
of topological vortices upon an increase of the applied magnetic field. The presence of magnetic impurities
in FeTe(_, Se,, which are attracted to the vortices, would lead to such Zeeman-induced delocalization of
Majorana modes in a fraction of vortices that capture a large enough number of magnetic impurities. Our results
provide an explanation for the dichotomy between topological and nontopological vortices recently observed in

FeTe“_x)SeX.
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Introduction. To date, one of the major impediments in the
search for Majorana fermions (MFs) is the required intrinsic
[1,2] or induced [3-6] topological superconductivity. Of the
available materials that possess topology, superconductivity,
and magnetism, iron-based superconductors are of recent in-
terest [7—15]. In particular, FeTeq 55Sep45 (FTS) has recently
been shown to have band inversion that results in a helical,
topologically protected, Dirac cone on the surface [16-19].
The phenomenology of vortices, proliferated in the presence
of magnetic fields, is also noteworthy in FTS [20-23]. The
low charge density in FTS is experimentally advantageous as
it results in large Caroli-de Gennes—Matricon (CDM) vortex-
mode gaps [24] which facilitate the spectral detection of
zero-energy vortex modes via scanning tunneling microscopy
(STM).

While evidence of MFs in FTS has been observed, a com-
prehensive understanding of the salient physics of the vortex
composition is lacking. More precisely, the energy spectra of
the vortices follow two different hierarchies relative to the
CDM vortex gap, § = %2, where A is the bulk superconduct-
ing gap and p is the chemical potential. The trivial vortex en-
ergy spectrum scales as (n + 1/2)§ (with n € Z), which does
not include the zero mode, whereas the topological vortices
follow n§. Additionally, the percentage of vortices with zero-
energy modes decreases as the perpendicular magnetic field
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increases, even though the intervortex distances are larger
than the superconducting coherence length [20,21,25,26].
Moreover, the distribution of vortices with and without a
zero mode has no correlation with the charge disorder on
the surface of the material [21]. These features, on aggregate,
suggest that the properties that distinguish the two classes of
vortices stem from the bulk properties of the individual vortex
rather than those of the surface states. In particular, the effects
of magnetic field, beyond the generation of vortices, might
crucially affect the properties of the superconducting state and
the vortices.

Motivated by experimental observations, we examine the
effects of Zeeman coupling on the vortex modes in FTS.
As the topological properties of FTS are driven by band
inversion, we eschew more complex band models and utilize a
simple model of a doped three-dimensional (3D) time-reversal
symmetric (TRS) topological insulator (TT) which has been
used as an appropriate toy model to investigate the properties
of vortices in FTS [27-29]. Due to the strong spin-orbit
coupling, the Zeeman field splits the degenerate Fermi surface
in TRS TIs into two helical Fermi surfaces with opposite
helicity [30]. In this Rapid Communication, we show that the
split Fermi surfaces prefer an orbital-triplet superconducting
pairing which delocalizes the MF modes at the ends of the
vortices on the surface. To make a direct connection with the
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dichotomy of vortices in FTS we note that the Zeeman field
would result from the magnetic impurities along the vortex
core [31,32]. Interestingly, such magnetic Fe impurities are
known to exist in FTS [33,34] and interact with the vortices
[31]. In addition, an increase of magnetic field naturally leads
to the enhancement of Zeeman coupling, which further desta-
bilizes the topological vortices, as is experimentally observed.
We should also note that neutron scattering measurements
have shown evidence of ferromagnetic clusters of Fe atoms in
FTS [33]. Therefore, the decrease of the concentration of Fe
impurities is directly linked to an increase of the fraction of
topological vortices. The observation of clusters of vortices,
with and without zero-energy vortex modes, would further
support our theory.

Model Hamiltonian. The 3D TRS TI is represented
by the tight-binding Hamiltonian Hyx =), WII [T dg.0 +
mgT, — 1]k, where Pauli matrices o; and 7; act on spin
and orbital space, respectively, di, = 2t sin(k;), my = M +
mo Zi cos(k;), and M, my, t are parameters of the model,
and p is the chemical potential. By varying the parameters,
this model Hamiltonian represents both strong and weak TRS
TIs [35]. The tight-binding model is used for the numerical
calculations while our analytical results are based on the
effective model,

H = hvpto - K+ my T, )

where my; = m + €k? is the effective mass term and k is the
momentum relative to the center of the Brillouin zone. The
trivial (topological) insulator corresponds to me > 0 (< 0).
Without loss of generality, we take fivy = 1.

With the Hamiltonian defined, we begin our analysis in
the metallic phase, when u > |m|. The model displays two
degenerate Fermi surfaces that split by a Zeeman field Ay.
Since the bulk band structure gap is large compared with su-
perconducting gap, we use the effective Hamiltonian resulting
from projecting the Hamiltonian in Eq. (1) into the states at the
two Fermi surfaces,

H= / d*KfI(Ex — pvo + dic - v]fic. )

Here, v;’s are the identity or Pauli matrices acting on the space
K2+k2 k
m, X 'y Kz
E_:z k]| 0, k )
represents the Zeeman field and fi is the fermion fields

Yk projected onto the Fermi surfaces [30]. The two Fermi
spin-split Fermi surfaces are identified by diagonalizing the
projected Hamitonian (2) in the v space.

A previous analysis [36] identified two types of super-
conductivity in doped TIs which are energetically favorable:
an intraorbital spin singlet, [ d*ry/"Aitgo,y ™ + H.c., and
an interorbital orbital-triplet spin singlet, [ d 2k1ﬁ;£i T;ﬂy‘ﬁi +
H.c. Henceforth, we will refer to these superconducting pair-
ings as intraorbital-singlet and interorbital-triplet pairings,
respectively.

Upon projection onto the Fermi surfaces, the superconduct-
ing pairing potentials assume the following form,

of two Fermi surfaces. The vector dy = %(_

A, . _
> / ke v, T (3)
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FIG. 1. Phase boundaries between regions with superconducting
order parameters A; or A, as a function of the ratio U/V of
interaction strengths of each channel and the field magnitude Az (red
solid curve). The blue dashed line is a guide for the eye of the case
when Az = 0. The parameters of the Hamiltonian are m = —0.5 and
€ = 0.5. Increased Zeeman coupling results in larger regions where
interorbital-triplet pairing is the ground state.

where for the intraorbital-singlet pairing o« =1 and for
interorbital-triplet pairing o = 0. Examination of the super-
conducting pairing term in Eq. (3) in comparison with the ki-
netic Hamiltonian in Eq. (2) shows that the intraorbital-singlet
pairing A corresponds to pairing electrons between different
Zeeman split Fermi surfaces. In contrast, the interorbital-
triplet pairing A pairs electrons solely within each of the
Zeeman split Fermi surfaces. Thus, the effect of Zeeman
coupling is to break the TRS within the model and unbalance
the two pairing potentials in favor of A, which couples
the electrons solely within each Zeeman split Fermi surface
[37].

To examine the outlined effect of Zeeman coupling on the
dominant form of superconducting pairing, we utilize a linear
gap equation [30] to determine the critical temperatures of the
two superconducting pairings [36,38—40]. The corresponding
U-V model, in which U and V are the intra- and interorbital
interactions, leads to the equation

Uz -1 Ux

det =
YN Ve va-1

L V=1 “

Here, %, xi, and x, are the superconducting suscepti-
bilities characterizing intraorbital spin-singlet pairing and
Xo describes the interorbital spin-triplet pairing. x =
— fi‘}lﬁl) D(&)tanh (£/2T)/2&dE is the standard s-wave sus-
ceptibility, D(£) is the density of states, and wp is the Debye
frequency.

By numerically solving the U-V Eq. (4), we obtain the
critical temperature 7. for each pairing channel. Figure 1
shows the resulting phase boundaries that delineate the re-
gions where either Ay or A; correspond to a higher critical
temperature and so is the dominant form of pairing. In Fig. 1,
we plot the phase boundary as we vary Az and the ratio
U/V. It is evident in Fig. | that the inclusion of the Zeeman
effect results in an enhancement of the triplet (Ap) pairing and
the suppression of the singlet one (A;) at a given chemical
potential.
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Vortex modes. Having established the phase diagram of
the superconducting pairing, we proceed to study the internal
structure of the vortices as we insert a w-flux tube into the
pairing potential: A, (r) = |Ay(r)|e? [41,42]. Since the co-
herence length FTS is in the range of 2-10 nm [19,20,25] and
the observed distance between vortices is around 30 nm for
magnetic fields up to 6 T [21,22], we disregard intervortex hy-
bridization effects and concentrate on the physical properties
of a single vortex. We fix k, = 0 as we are interested in points
where the topological Z, index changes and this only occurs
at k, = 0 or &. Since the vortex modes stem from states close
to the Fermi energy, their wave functions can be expressed in
terms of a superposition of the T conduction band eigenstates
in the cylindrical coordinates x;’, [30]. Here, [’s are angular
momentum quantum numbers and v = &£ correspond to the
two energy bands of Hamiltonian (1) which are split by
Zeeman coupling.

Given the rotational symmetry of the vortex profile, the
vortex modes with different /’s do not hybridize and the
vortex Hamiltonian decouples into sectors with fixed /. Also,
for interorbital-triplet pairing, the vortex does not mix the
v’s. On the other hand [30], the translation symmetry in the
plane perpendicular to the vortex is broken and different radial
momenta k, as well as Nambu particle-hole states, are mixed
by the vortex. The effective vortex Hamiltonian acting in the
radial momentum and Nambu particle-hole spaces take the
form of a 1D Jackiw-Rebbi model [43],

AO)"I) (k)
&o

The IT matrices act on a Nambu space, &, is the super-
hmk

conducting coherence length, and Ao, (k)/&é) = k + ﬁ” —
w. The Jackiw-Rebbi lowest-energy solutions are localized
at the Fermi surface where the coefficient A,(k;) changes

kp+k o, ,
sign. These states have the form ¢ e KMk )(l, D7 in the
Nambu particle-hole basis and have energy E;,(kr). Notice
that vortex-mode wave functions are exponentially localized
around the Fermi wave vector. Since the Bogoliubov—de
Gennes (BdG) Hamiltonian in Eq. (5) is in the basis of the
TI conduction band states, the full wave function of the two
vortex modes (each associated with one Zeeman split Fermi
surface) takes the form Wy (l,r)~ Xl‘ko(r)(l, DI, where
(1,1 )ﬁ is the spinor in Nambu particle-hole space. Previously,
a similar result was obtained for the intraorbital spin-singlet
case [41,42]. In that case, solutions were again centered at
the metallic phase Fermi surface, with corresponding energies
E,‘jl = ﬁ(an + 7 + vep). ¢p is a Berry-phase-like term
which permits zero modes whenever ¢p = m. In contrast,
for the interorbital-triplet case, the energies of the vortex
modes are El‘jo = k?—go(an ). Therefore, in the interorbital-
triplet case, a zero-energy channel exists along the vortex
which delocalizes the MFs on the sample surface and sup-
presses the zero-bias signal in STM.

In Fig. 2 we verify the analytic results using a 3D lattice
model with periodic boundary conditions along the z direc-
tion. Figure 2(a) shows the spectrum of the vortex modes
for intraorbital-singlet pairing where the vortex gap closes

solely when ¢p = 7. In contrast, Fig. 2(b) shows that for

A
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FIG. 2. Dependence of the vortex-mode energies on the chem-
ical potential ;1 obtained from the 3D lattice model with periodic
boundary conditions along the z direction for k, = 0. (a) Intraorbital-
singlet pairing A; = 0.4 for Az = 0. (b) Interorbital-triplet pairing
Ay = 0.4 and Az = 0.2. The parameters for the model are M = 4.5,
my = —2.0, and t = 1.0 with the calculation performed on a 48 x 48
lattice in the x-y plane. We observe a zero-energy mode state exists
for all chemical potentials inside the conduction band when the
pairing is interorbital-triplet type.

interorbital-triplet pairing, once the chemical potential is in
the conduction band, the system develops vortex zero modes
which remain gapless for all chemical potentials. Thus, in-
creasing the Zeeman coupling results in a shift of the Fermi
surfaces that destabilize the intraorbital-singlet pairing in
favor of the interorbital-triplet pairing leading to the om-
nipresence of a zero mode in the vortex core.

In Fig. 3, we examine the manifestation of the change in
superconducting pairing by inserting a vortex in the tight-
binding lattice model. We set ;© = 1.1z, where ¢ is the hopping
amplitude in the lattice model. For small Zeeman couping, the
intraorbital-singlet channel is dominant and the MFs are local-
ized at the ends of the vortex on the surface. As the Zeeman
splitting is increased, we destabilize the intraorbital-singlet

(a)a=0.0 {b)a=0.2 (c)a=04 10
0.8
\ 0.6
[ z z z Bos
/ 0.2
X Y X Y 0
(d) =06 10
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FIG. 3. Spatial profile of the lowest-energy vortex mode in 3D
slab geometry for different values of parameter «, which controls the
amplitude of the interorbital-triplet pairing Ay = aAY, intraorbital
s-wave A = (1 —a)AY, and Zeeman field A, = ¢ AY around the
vortex. The calculation is performed on a 24 x 24 x 24 lattice. The
parameters used are 0 = 1.1, AJ = 0.4, A’ =04, AY =02, M =
4.5,my = —2.0,and t = 1.0.
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FIG. 4. k, momentum dependence of the vortex modes for (a) in-
traorbital s-wave pairing A; = 0.4 and (b) interorbital-triplet pairing
Aog = 0.4 with Az = 0.2 and the chemical potential set to be u =
1.1. Additional parameters of the model are the same as in Fig. 2.

pairing channel in favor of interorbital-triplet pairing allowing
MFs to penetrate into the bulk. At sufficiently high Zeeman
coupling, intraorbital-singlet pairing is fully suppressed and
MFs on the surface delocalize through the vortex modes and
extend into the bulk of the superconductor. As will be shown
below, this mechanism would only delocalize the Majorana
zero modes and not the finite-energy states.

Effective 1D vortex model. Using the vortex-mode wave
functions W} ([, r), we now derive an effective Hamiltonian
for the modes along the vortex line connecting the sample
surfaces [44]. To this end, we calculate the matrix elements
of the k,-dependent terms in the Hamiltonian (1), within the
space of the two families of vortex modes Wy, (/, r). Defining
n; as Pauli matrices acting on the space of the two sets of
modes, the effective vortex Hamiltonians have the general
form

H (k) =

EY+E~ Ef—E~
L 5 L +< L 5 L +€1k§)nz—ﬁzkznx.

(6)

Here, E} are the energies of the /th vortex modes coming
from the Fermi surface corresponding to v = &+ and increasng
monotonically with [ for fixed v. & and ¥, are parameters of
the k.-dependent terms, projected into the /th vortex mode.
Nambu particle-hole symmetry is given by P~'[H], (k,)]P =
Hy'(—k;) = —H},(k;), which implies E*, = —E;" and ¢ =
—&_; as shown in Ref. [30]. For each / # 0, Eq. (0) realizes a
Z, topological state with modes with an angular momentum
I localized at the ends of the vortex and finite energy if
(E1+ — E)& < 0 [45]. Since the Zeeman field is along the
flux line, we have k;* < k., which implies sgn(E," — E;" ) =
sgn(/) and reduces the above condition to € < 0O; this is true
for FTS, whose normal state corresponds to a doped TI. The
particle-hole partner of these states corresponds to angular
momentum —/. The perturbations could modify the energy
of these modes in pairs such that particle-hole symmetry is
respected.

In contrast, Nambu particle-hole symmetry implies E(;i =
0 as well as €y = 0, so the vortex is gapless when the pairing is
of purely interorbital-triplet form. As shown in Fig. 4(b), the
effective vortex Hamiltonian for the zero-energy states is lin-
early dispersing with momentum along the vortex. However,
Nambu symmetry permits a mass term o,; indeed, remnant

singlet pairing outside of the vortex induces the scattering
between vortex modes coming from different Fermi surfaces,
producing a term ny,AY™ [30]. AY™ is k, independent, thus
making the vortex topologically trivial and devoid of zero
modes at its ends.

We note that the energy levels at the vortex ends g; are
equally spaced and are labeled by integers /, which corre-
sponds to the angular momentum associated with the rota-
tional symmetry of the vortex. The only patterns for such
vortex-mode energies that are consistent with particle-hole
symmetry are & « [ and & o[ + 1/2. The former contains
a zero mode while the latter does not. Since, as argued
above, the vortex is topologically trivial and lacks zero modes
at its ends when the Zeeman-driven orbital-triplet pairing
dominates, & o/ + 1/2 in this case. On the other hand,
if intraorbital-singlet pairing dominates, the vortex ends up
being topological and its ends have a spectrum containing
the zero modes [41] and satisfies &; o [. These results are
in accordance with the two types of vortex spectra seen in
Ref. [22].

A Zeeman coupling in the vortex regions can be mediated
by the magnetic impurities present along the vortex. For such
an effect to have a notable experimental signature, however, it
is crucial for the vortices to be attracted to the magnetic atoms.
A comparison of the energies of states where the vortices
are far from the magnetic impurities with the case where the
vortex is passing through the impurity is the direct method to
examine the vortex impurity interactions. In addition to the
surface tension of a vortex, the energy of the in-gap Shiba
states at the magnetic impurity site [46—48] and the CDM
modes define the energy cost of vortex creation. A recent
study directly compared the energy of these in-gap states for
the case where the vortex and impurity are at the same location
with the energy for the isolated vortex and impurity [31]. This
study, which was performed for strongly spin-orbit coupled
materials and aimed to study the effect of magnetic impurities
in FTS, showed that the sum of the energy of the CDM and
Shiba modes decreases when the vortex passes through the
impurity. This general reduction in energy resulting from plac-
ing a vortex on the impurity provides a strong suggestion for
the attractive interaction between vortices and impurities. The
result of this attraction motivates our considerations which, as
seen, leads to a depiction of the FTS vortex phenomenology in
accordance with experimental data, without the need to invoke
MF hybridizations.

Conclusion. We have examined the effect of Zeeman cou-
pling on the structure of vortex modes in FTS. We find that
intraorbital-singlet pairing, which supports MFs at the ends of
the vortices, is suppressed by the Zeeman field and is replaced
with interorbital-triplet pairing, with only finite-energy vortex
modes at the ends of the vortex.

The property of the FTS that facilitates our models is the
degenerate Fermi surfaces that are split into two helical Fermi
surfaces by the Zeeman field. The size of the superconducting
gap in FTS is of the order of 2.5 meV for the hole pocket
and 4.2 meV for the electron pocket [18,33,34], and the sizes
of the Fe impurity dipole moments are of the order of 5 up
[31,33]. Given the average distance of the Fe impurity atoms,
their associated Zeeman coupling is of the order of Ay ~
7.84 meV. It is then evident that the Zeeman coupling can
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affect the form of the superconducting pairing. We demon-
strate that the nature of the vortices in FTS is inextricably
linked to the effect of Zeeman coupling, which determines
the form of superconducting pairing and indicates that sup-
pression of Zeeman coupling, by the reduction of magnetic
impurities, stabilizes the vortex MFs in FTS. The importance
of our proposed mechanism can be checked by observation
of the effect of the density of the magnetic impurities on the
fraction of vortices with MF vortex modes.
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