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Abstract

In systems and synthetic biology, much research has focused on the behavior and
design of single pathways, while, more recently, experimental efforts have focused
on how cross-talk (coupling two or more pathways) or inhibiting molecular function
(isolating one part of the pathway) affects systems-level behavior. However, the theory
for tackling these larger systems in general has lagged behind. Here, we analyze how
joining networks (e.g., cross-talk) or decomposing networks (e.g., inhibition or knock-
outs) affects three properties that reaction networks may possess—identifiability
(recoverability of parameter values from data), steady-state invariants (relationships
among species concentrations at steady state, used in model selection), and multista-
tionarity (capacity for multiple steady states, which correspond to multiple cell deci-
sions). Specifically, we prove results that clarify, for a network obtained by joining two
smaller networks, how properties of the smaller networks can be inferred from or can
imply similar properties of the original network. Our proofs use techniques from com-
putational algebraic geometry, including elimination theory and differential algebra.

Keywords Reaction network - Mass-action kinetics - Multistationarity -
Identifiability - Steady-state invariant - Grobner basis
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1 Introduction

Cells transmit information via molecular interactions which are complicated and
numerous: a typical eukaryotic cell contains approximately 8 x 10? molecules. Under-
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standing the function and behavior of such a large number of molecules is challenging
and often intractable. Therefore, much effort in the field of systems biology focuses on
first understanding and predicting the behavior of smaller sets of interacting molecular
species, called signaling pathways. Advances in experimental technology have enabled
the possibility of measuring more species, prompting questions about what happens
when two or more specific pathways interact (Donato et al. 2013). This problem of
predicting the effect of joining pathways is the focus of our work.

Whenever two or more pathway models are combined, it is reasonable to expect
that some model properties of the larger model may be inferred predictably from
properties of the component models. Within this context, our work focuses on three
important properties of pathway models: identifiability, whether the parameter values
can be determined from data, steady-state invariants, which characterize a model and
provide a framework for hypothesis testing with limited data, and multistationarity,
which is the capacity for multiple positive steady states. We prove results on how
these properties are affected when we combine two or more models. We consider,
first, linear models, and then extend our results, where possible, to nonlinear models.

A biological example to motivate our study is signaling in apoptosis (programmed
cell death). Activation of the death signal can be initiated by either the intrinsic path-
way (via stress) or the extrinsic pathway (via ligand-receptor binding). Mathematical
models of each pathway have been developed (Eissing et al. 2004; Legewie et al. 2006),
and analyses of these models have revealed that both pathways have the capacity for
two steady states, which correspond to a cell-death state and a cell-alive state (Bagci
etal. 2000; Eissing et al. 2004; Legewie et al. 2006; Ho and Harrington 2010), meaning
that the models are multistationary. Analyses of cell death models have also focused
on identifiability (Eydgahi et al. 2013) and steady-state invariants (Ho and Harrington
2010). Since models by Eissing et al. (2004) and Legewie et al. (2006), additional
models have been constructed with a focus on the molecular network between the
intrinsic and extrinsic pathways at the mitochondrial membrane (Bagci et al. 2006;
Albeck et al. 2008; Cui et al. 2008) as well as joining both pathways into a single
model (Harrington et al. 2008; Fussenegger et al. 2000). However, predicting how
joining pathways affects cell death checkpoints and other model properties is difficult.
Pursuing this question for general pathway networks is similar in some respects to
analyzing retroactivity and modules within a larger network (Del Vecchio et al. 2008;
Menon and Krishnan 2016).

In this work, we are interested in signaling pathway models that describe molecular
interactions via biochemical reactions. In particular, we will study chemical reaction
networks, directed graphs in which the nodes are molecular complexes and the edges
are reactions weighted by rate constants (parameters). Under the assumption of mass-
action kinetics, each reaction graph gives rise to a system of polynomial differential
equations. Thus, in essence, we are interested in how this polynomial system of dif-
ferential equations changes as we construct larger networks from smaller ones. Since
our emphasis is on the structure of the equations, not the value of the parameters, our
analysis focuses on properties that hold in general.

Reaction networks can be joined naturally in various ways; two such ways are
shown in Fig. 1. As shown in Fig. 1A, one way we can glue together two networks X
and Y is via a new or shared edge. Networks obtained by gluing over new or shared
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A B

Fig. 1 a Gluing two networks via a new edge. Biologically, this may correspond to distinct networks of
the same pathway. b Gluing two motifs that have a shared species (node). Biologically, this may be called
cross-talk

edges arise naturally when considering linear compartmental models and are central
to Sect.3. Another way to glue together X and Y is via a shared node (Fig. 1B); such
gluing allows us to investigate cross-talk, interactions between signaling pathways
X and Y that have at least one shared molecule. Currently, cross-talk is an active
area of research in biology, especially for predicting the effects of drug targets on
cells. Networks obtained by gluing over shared nodes are analyzed in terms of their
steady-state invariants in Sect. 4.

Our main results are as follows. Consider joining two networks X and Y to obtain
anew network Z. We show that, under certain hypotheses, if X and Y are identifiable,
then so is Z (Theorem 3.17). Similarly, for certain monomolecular networks, not only
does identifiability of X and Y imply identifiability of Z, but also identifiability of
Z and X implies that Y is identifiable (Theorems 3.30 and 3.35). Also, we clarify
how the steady-state invariants of Z, after projecting them to involve only species and
reactions in Nj;, are related to the steady-state invariants of N;. We give conditions
when the projected steady-state invariants yield all invariants of N; (Theorems 4.7
and 4.8), and when the steady-state invariants of X and Y can together recover the
steady-state invariants of Z (Theorem 4.9).

The outline of our work is as follows. Section 2 introduces the background and
definitions. Next, Sects. 3, 4, and 5 each correspond to a property of interest: identifi-
ability, steady-state invariants, and multistationarity (respectively). The proofs of our
results rely on techniques from computational algebraic geometry, such as elimina-
tion theory and differential algebra; indeed, algebraic tools are increasingly used in
the analyses of reaction networks [see the survey by Dickenstein (2016)]. Finally, a
discussion appears in Sect. 6.

2 Background

Valuable information may be obtained by translating a chemical reaction network into
a system of differential equations. In our setting, we form a polynomial dynamical
system which is amenable to algebraic analysis described in the subsequent sections.
First, we begin with an example of a chemical reaction: A+B — 3A+C,where A, B,
and C are chemical species. These species could represent various proteins modifying
one another. In this reaction, the reactant forms the left hand side of the reaction (one
species A and one of B), which react to form the product (three A and one C).
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We follow convention and denote concentrations of the species by lower case x4,
xp, and xc, which will change in time as the reaction occurs. Here, we assume mass-
action kinetics, that is, species A and B react at a rate proportional to the product of
their concentrations, where the proportionality constant is the reaction rate constant k .
Noting that the reaction yields a net change of two units in the amount of A, we obtain
the differential equation %x A = 2kxaxp, where ¢ is time. The other two equations
arise similarly: %xB = —kxaxp and %xc = KXAXB.

A chemical reaction network consists of finitely many reactions (see Definition 2.1
below). The mass-action differential equations that a network defines are a sum of the
monomial contributions from the reactants of each chemical reaction in the network;
these differential equations will be defined in Eq. (2).

2.1 Chemical reaction networks

We now provide precise definitions.

Definition 2.1 A chemical reaction network G = (S, C, R) consists of three finite
sets S, C, and R.

(1) A set of chemical species S = {Ay, Az, ..., Ap}, where n € N denotes the
number of species.
(2) AsetC ={y1, y2, ..., yp}of complexes (finite nonnegative-integer combinations

of the species), where p € N denotes the number of complexes.
(3) A setof reactions, ordered pairs of the complexes: R € (C x C)\ {(yi, ¥i) | yi €
C}.

Throughout this work, the integer unknown r denotes the number of reactions. A
subnetwork of a network G = (S, C, R) is anetwork G = (S,C, R) with R C R.

We also make a simplifying assumption: every complex in C must appear in at least
one reaction in R, and every species in S must appear in at least one complex in C.
This assumption does not restrict the class of networks we can study, just how they
are represented.

A network can be viewed as a directed graph whose nodes are complexes and
whose edges correspond to the reactions. Like for all network analysis, properties of
the connectedness of the graph can be useful. A reaction y; — y; is reversible if it
is bi-directional, i.e., the reverse reaction y; — y; is also in R; these reactions are
depicted by y; = y;.

Writing the i-th complex as y;1 Ay + yi2A2 + -+ + yin Ay (Where y;; € Zso,
for j = 1,2,...,n, are the stoichiometric coefficients), we introduce the following
monomial:

(By convention, the zero complex yields the monomial x (0 = 1.) For example,
the two complexes in the reaction A + B — 3A + C considered earlier give rise
to the monomials x4 xp and xf\xc, which determine the vectors y; = (1, 1,0) and
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y2 = (3, 0, 1). These vectors define the rows of a p x n-matrix of nonnegative integers,
which we denote by ¥ = (y;;). Next, the unknowns x1, x2, ..., x, represent the
concentrations of the n species in the network, and we regard them as functions x; ()
of time 7.

We distinguish between monomolecular complexes (e.g., A or B), bimolecular
complexes (e.g., 2A or A + B), and others (e.g., 0 or A + 2B), as follows. A complex
Vi1A14+Yi2 Ao+ - -+ yin A, is monomolecular if exactly one stoichiometric coefficient
yij equals 1, and all other y;;’s are 0. A complex y;1 Ay + yi2A2 + -+ + yinAy is
at-most-bimolecular if the sum of the stoichiometric coefficients y;; is at most 2. A
reaction network is itself monomolecular (respectively, at-most-bimolecular) if all its
complexes are monomolecular or the zero complex (respectively, all its complexes are
at-most-bimolecular). The reaction systems arising from monomolecular networks are
known as linear compartmental models (see Sect. 2.4).

For a reaction y; — y; from the i-th complex to the j-th complex, the reaction
vector y; — y; encodes the net change in each species that results when the reaction
takes place. The stoichiometric matrix T is the n x r matrix whose k-th column is the
reaction vector of the k-th reaction i.e., it is the vector y; — y; if k indexes the reaction
Yi = Yj-

We associate to each reaction a positive parameter «;;, the rate constant of the
reaction. In this article, we will treat the rate constants «;; as positive unknowns in
order to analyze the entire family of dynamical systems that arise from a given network
as the «;;’s vary.

2.2 Chemical reaction systems

The reaction kinetics system defined by areaction network G and reaction rate function
R :RY, — R’ is given by the following system of ODEs:

& _ bR 1
i “R(x) . (€))

A steady state of a reaction kinetics system (1) is a nonnegative concentration vector
x* € RY, at which the ODEs (1) vanish: I" - R(x*) = 0.

For mass-action kinetics, which is the setting of this paper, the coordinates of R are
Ry (x) = k;jx”, if k indexes the reaction y; — y;. A chemical reaction system refers
to the system of differential equations (1) arising from a specific chemical reaction
network (S, C, R) and a choice of rate constants (x;;) € R_ ; (recall that r denotes the
number of reactions) where the reaction rate function R is that of mass-action kinetics.
Specifically, the mass-action ODEs are:

dx .
ar Z kijx¥'(y;i —yi) = fie(x). )
Yi—yj isin R
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The stoichiometric subspace is the vector subspace of R"” spanned by the reaction
vectors y; — y;, and we will denote this space by S:

S = ]R{yj—yily,-—>yjisin72}. (3)

Note that in the setting of (1), one has S = im(I"). For the network consisting of the
single reaction A + B — 3A + C, we have y; — y; = (2, —1, 1), which means that
with each occurrence of the reaction, two units of A and one of C are produced, while
one unit of B is consumed. This vector (2, —1, 1) spans the stoichiometric subspace S
for the network. Note that the vector ‘é—;‘ in (1) liesin S for all time ¢. In fact, a trajectory
x(t) beginning at a positive vector x(0) = x° e R , remains in the stoichiometric

compatibility class, which we denote by
P = "+85NRY,, (4)

for all positive time. In other words, P is forward-invariant with respect to the dynam-
ics (1).

2.3 Combining networks

Here we introduce operations that allow two or more networks to be ‘glued’ together
to form a single network. These operations encompass many natural operations that
arise in biological modeling, for instance, connecting two networks by a one-way
flow, or extending a model to include additional pathways. The aim of this work is
to investigate how these operations affect three properties of networks: identifiability,
steady-state invariants, and multistationarity.

Definition 2.2 The union of reaction networks N1 = (S1,C1,R1) and N =
(52,02, Ro) is

NIUN; ;= (§1US,, CiUC, R1UR,) .

The union of finitely many reaction networks N; is defined similarly.

Next, we classify the union N1 U N, according to whether their respective sets of
complexes (or reactions) of N; are disjoint. The possible relationships among these
sets are constrained by the following implications:

SINS=0 = CiNC=0@orCiNC={0} = RINR,=9.

If the two species sets are disjoint (S} N Sy = @), then the networks N and N, are
completely disjoint, so analyzing their union is equivalent to analyzing N and N,
separately. Thus, we are interested in the three remaining cases:

Definition 2.3 The union N; U Ny of N| = (S1,C1, R1) and Ny = (S2,Cr, Rp) is
formed by:

@ Springer



Joining Reaction Networks

(1) gluing complex-disjoint networks it S| NS> # ¥ and the two networks have no
complex in common except possibly the zero complex, i.e., C; N C, C {0} (and
thus Ry N Ry = 0),

(2) gluing over complexes if the two networks have at least one non-zero complex in
common (i.e., C; N C2 € {0}) but no reactions in common (i.e., R1 N Ry = ),

(3) gluing over reactions if the two networks have at least one reaction in common
(e, RiNRy £ D).

Notation. We will denote the species of N; U N; as X = xy, ..., x,, and the species
of Ny and N7 as x(1) = {x1,...,x;} and X(2) = {xg, ..., X,}, respectively. Here,
k < j, because the species sets overlap. We let k(1) and k (2) be the rate constants of
the reactions in R and R, respectively, and we let k = k(1) U k(2) denote the rate
constants of N.

Remark 2.4 1f networks N1 and N; are monomolecular, then they are complex-disjoint
if and only if they are species-disjoint (S; NS = ). Thus, we can not glue complex-
disjoint networks that are monomolecular.

We introduce more operations, in which N1 and N, may have disjoint species sets:

Definition 2.5 Consider networks N; = (S1, C1, R1) and Ny = (Sy, Ca, R»).

(1) Let {y — '} denote a network that consists of a single reaction that is not in
R UR, and for which y € C; and y’ € C;. The network obtained by joining Ny
and N, by a new reaction' y — y' is:

NiUNU{y — y'}.

(2) Let R’ and R” be sets of reactions for which R’ € (Ri UR3)and R N (R U
R») = @, and every reaction y — y’ in R” satisfies y € C; and y" € C,. Let N3
denote the network that consists of the reactions in R”. The network obtained by
Jjoining N1 and N3 by replacing reactions R’ by R” is:

(S1,C1, RI\R) U (8,0, R2\R') U N3.

Joining by a new reaction, in Definition 2.5(1), adds a one-way flow from one network
to another. As for replacing reactions, in Definition 2.5(2), we describe an instance
of this. Suppose that a large network is formed by two subnetworks M| and M3, plus
areaction X — Y from M to M». Then, to study each subnetwork separately, we
might consider Ny = M; U{X — 0} and N, = M, U {0 — Y}. Later, when we
want to put these two networks together, we join N1 and N, by replacing reactions
{(X—>0—->Y}by{X > Y}.

Example 2.6 Consider the following networks:
N ={0—-A—>B}, N ={A—- B+« C(C}, and N3 = {C < D}.
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The network N1 U N, formed by gluing over the shared reaction A — B is {0 —
A — B < C}. Also, the network obtained by joining N; and N3 by a new reaction
B—-Cis{0—> A— B— C < D}.

Remark 2.7 Using the definitions above and recalling our assumption that networks
include only those species or complexes that take part in reactions, we see that a
network N is a subnetwork of G if there exists a network N’ for which G = N U N'.
In this case, to obtain the mass-action ODEs (2) for N from those of G, simply set
all rate constants to zero for those reactions not in N. As for the ODEs obtained by
gluing networks as in Definition 2.3, we clarify them in Lemma 2.8.

The next result follows from the fact that the mass-action ODEs are a sum over
reactions.

Lemma 2.8 Consider networks N = (S1,Ci, R1) and N = (S, Ca, Rp), and
denote their mass-action ODEs (2) by, respectively, dx/dt = f and dx/dt = g.
Define f; := 0 (respectively, g; := 0) for speciesi € S\ S| (respectively,i € S1\Sz).
Let N = N1 U N3 be the reaction network obtained by gluing N1 and N». Then the
mass-action ODEs for N are given by:

(1) dx/dt = f + g, if R1 N Ry = 0 (i.e., gluing complex-disjoint networks or over
complexes).

(2) dx/dt = f+ 3, if Ri N Ry # @ (i.e., gluing over reactions), where dx /dt = g
denotes the mass-action ODEs for the subnetwork of No comprising only reac-

tions in Ry \ R1.

Remark 2.9 A related approach to gluing networks, introduced by Johnston (2014),
involves translating some of the complexes in such a way that the translated networks
(taken with certain general kinetics) define the same dynamical systems as the original
network (taken with mass-action kinetics). We do not consider translated networks in
this work.

Our results on joining and decomposing networks are summarized in Tables 1 and
2 . Additionally, examples pertaining to multistationarity and gluing over complexes
or joining by a new reaction are given in Sects. 5.5 and 5.4 , respectively. Some of

Table 1 Summary of results on joining networks

Identifiability Steady-state invariants
Glue over complexes Theorem 4.7
Theorem 4.9
Glue over reactions Theorem 4.8
Join by a new reaction Theorem 3.32
Theorem 3.35
Join by replacing reactions Theorem 3.17

Theorem 3.25
Theorem 3.30
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Table2 Summary of results on decomposing networks

Identifiability Steady-state invariants
Unglue over complexes Theorem 4.7
Theorem 4.9
Unglue over reactions Theorem 4.8
Decompose via a lost reaction Theorem 3.35
Decompose by replacing reactions Theorem 3.30

our results on identifiability are in the context of monomolecular networks, which can
be viewed as linear compartmental models (after some input and output species are
specified). We turn to this topic now.

2.4 Monomolecular networks and linear compartmental models

A special class of reaction networks that we will consider is that of monomolecular
networks. Recall that this means that each complex of the network is either a single
species (e.g., X1 or X») or the zero complex. The associated differential equations (2)
therefore are linear; the general form is:

dx(t)
dt

=Ax(t)+u, 5)

where A is a matrix with nonnegative off-diagonal entries, and u is a nonnegative
vector of inflow rates. Both A and u are composed of rate-constant parameters (and
some zeroes).

Monomolecular networks have many applications in areas such as pharmacokinet-
ics, cell biology, and ecology, and they commonly arise as part of linear compartmental
models (Godfrey 1983). In this setting, the input vector u is viewed as a control vector
u(t) (at least one component of u is assumed to be controlled, which is unlike in stan-
dard mass-action kinetics, and the non-controllable components u; (¢) are constants).
Thus, Eq. (5) becomes!:

dx(t)
dt

=Ax(®)+u@), (6)

and the matrix A is called the compartmental matrix. Also, each species concentra-
tion x;(¢) is called a state variable in this setting, representing the concentration of
material in compartment i. Note that u; (t) = 0 when there is no inflow of material
to compartment i (i.e., no inflow reaction 0 — X;). Outflow reactions of the form
X; — 0 are called leaks. The dictionary between these terms is in Table 3.

! The standard definition of a linear compartmental model incorporates an extra matrix B as follows:

% = A x(t) + B u(t); our work therefore considers, for simplicity, the case when B is the identity
matrix. We hope in the future to extend our results to accommodate more general B.
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Table 3 Dictionary between reaction networks and compartmental models

Reaction networks Compartmental models
Monomolecular network Linear compartmental model
Species Compartment

Species concentration State variable

Inflow reaction (production) Input

Outflow reaction (degradation) Leak

For identifiability problems, we assume as part of the setup that some of the
species concentrations x;(#) can be observed. This is summarized as an output (or
measurement) vector z(7), in which each coordinate? is one of the observed species
concentrations x; (¢). In literature, the vector y(¢) is usually used, but we use z(f) to
reserve y for complexes.

Alternatively, we can define a linear compartmental model in terms of a directed
graph & = (V, E) with vertex set V and set of directed edges E, and three sets
In, Out, Leak C V. Each vertex i € V is a compartment in the model, while each
edge j — i in E represents the flow of material (reaction) from the j-th to the i-th
compartment. The sets In, Out, Leak are the sets of input (inflow-reaction), output,
and leak (outflow-reaction) compartments, respectively. Thus, we can write a linear
compartmental model M as M = (8, In, Out, Leak).

Remark 2.10 We use the convention in this paper that, for linear compartmental mod-
els, the rate constant describing the reaction from the j-th compartment to the i-th
compartment is written as a; j, whereas for monomolecular networks (and for chemical
reaction networks, in general) we use « j; to describe the reaction rate constant from
species X ; to species X;.

K21

Example 2.11 The chemical reaction network {0 4 x 15 X 20, 0} is a
K12

monomolecular network with ODEs as follows (when we view the inflow rate u;

as time dependent):

)Ci _ —K12 K21 X1 + ul(t)
x) K12 —Kk20 — k21 ) \ X2 (U
If we view the network as a linear compartmental model, we use the following notation:
X\ _ (—a  an ay i)y
x5 a1 —ag —aipz) \x2 0

If we assume a measurement (output) from the first compartment, we have an
additional equation z1 () = x1(¢), which we call an output equation.

2 The standard definition of a linear compartmental model incorporates an extra matrix C as follows:
z(t) = C x(t); our work therefore considers the case when each row of C is a canonical-basis vector.
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3 Identifiability

We are interested in two identifiability problems for linear and nonlinear state space
models. The first concerns joining two identifiable submodels. The second concerns
restricting a model to smaller components (subnetworks).

3.1 Background: identifiability and input-output equations

Structural identifiability, which was introduced by Bellman and Astrom (1970), con-
cerns whether it is possible to uniquely recover the parameter values of a model given
perfect input-output data. Numerous techniques to address this question have been
developed (Chappell and Gunn 1998; Denis-Vidal and Joly-Blanchard 2004; Evans
and Chappell 2000; Hong et al. 2018; Sontag 2017), and a particularly fruitful approach
involves using differential algebra. This approach, which was introduced by Ljung and
Glad (1994) and Ollivier (1990), is described briefly below.

The setup for an identifiability problem is as follows. A model consists of the
following:

(1) parametrized differential equations—in our setting, mass-action differential equa-
tions (2) arising from a network G where the parameters are the rate constants,
and

(ii) a specification of which compartments (e.g., species) have inflow rates that are
controlled by the experimenter (these rates u;(¢) are called input variables) and
which are output variables (there must be at least one output variable). The reac-
tions associated to the inflows are incorporated in the differential equations, while
the specification of output variables yields additional equations called the output
equations.

We assume that the resulting output vector z(¢) can be measured. That is, we assume
perfect (noiseless) input-output data (u(¢), z(7)).

The first step of the differential algebra approach transforms the state space equa-
tions (that is, the differential equations of the model in which u(#) is the vector of
inflow-rate constants for all input vectors) into a system of differential equations, called
input-output equations, that involve only the parameters, input variables, output vari-
ables, and their derivatives. More precisely, the parametrized differential equations,
the output equations, and each of their M derivatives (where M is the number of
output variables) generate an ideal, and then, using Grobner bases, all species con-
centrations (equivalently, state variables) except the input and output variables are
eliminated (equivalently, the ideal is intersected with the subring with only input and
output variables and their derivatives) (Meshkat et al. 2018).

Equations in this elimination ideal, the input-output equations, involve only the
parameters, input variables, output variables, and their derivatives. Each input-output
equation therefore has the following form:

Y i) Yiu,2) =0 @
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where the sum is finite, the coefficients c; («) are rational functions in the parameter
vector k = (k1, ..., k), and the ¥;(u, z)’s are differential monomials in u(¢) and
z(1).

Another method for finding input-output equations is to form the characteristic set,
defined precisely by Saccomani et al. (2003). This is a triangular system that generates
the same dynamics as the original system. The equations in this triangular system that
involve only the input variables, output variables, and parameters, generate the input-
output equations. Also, if the derivatives of the state variables do not appear in the last
n equations of the characteristic set (here n is the number of state variables), the model
is algebraically observable (Saccomani et al. 2003), i.e., the last n equations of the
characteristic set involve polynomials purely in u(t), u’(¢), ..., z(¢), Z'(¢), ..., k, and
x; () for each state variable x; (7). In this case, as stated in the literature, “one can, in
principle, solve for x1, ..., x, in the triangular set of algebraic equations recovering the
state as an (instantaneous) function of the input-output variables and their derivatives”
(Saccomani et al. 2003). One can also define algebraic observability without reference
to the characteristic set (Diop and Wang 1993).

Regardless of the method of obtaining input-output equations, we choose M monic,
algebraically independent input-output equations (where M is again the number of
output variables) (Ollivier 1990). Assume, additionally, that each such input-output
equation is minimal in the following sense: there is no nonzero input-output equation
involving a strict subset of the monomials v; (¢, z) as in (7). Minimality of input-output
equations for linear compartmental models is addressed in recent work of Ovchinnikov
etal. (2019). Now consider the vector of all of their coefficients ¢ = (¢ («), ..., c7 (k)).
This induces a map ¢ : R” — RT, called the coefficient map.

The next step of the differential algebra approach assumes that the coefficients ¢; (k)
of the input-output equations can be recovered uniquely from input-output data, and
thus are presumed to be known quantities (Soderstrom and Stoica 1989). This assump-
tion is reasonable because, given perfect data, we have values for u(t), u'(r), u” (1), ...
and z(¢), 7/(¢t), 7 (¢), ... at many time instances. This results in a system of linear equa-
tions in the coefficients c;(«), and so, for a general input function u(¢) and generic
parameters, there is a unique solution for the coefficients c; («).

Therefore, the identifiability question is: Can the parameters of the model be recov-
ered from the coefficients of the input-output equations?

Definition 3.1 (Preliminary definition of identifiability) Consider a model, and let ¢
denote its coefficient map.

e The model is generically globally identifiable if there is a dense open subset 2 C
R’ such that ¢ : @ — R is one-to-one.

e The model is generically locally identifiable if there is a dense open subset 2 C R”
such that around every k € 2 there is an open neighborhood U, € €2 such that
¢: U, = RT is one-to-one.

e The model is generically unidentifiable if there is a dense subset 2 € R” such
that ¢! (c(k)) is infinite for all k € Q.

This ability to distinguish between local and global identifiability sets the differential
algebra approach apart from other methods to analyze identifiability, such as the simi-
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larity transformation approach (Chappell and Gunn 1998; Evans and Chappell 2000),
which can detect local identifiability only.
Identifiability is well defined (Ollivier 1990).

Remark 3.2 In this paper, we focus on generic identifiability, so we will say “globally
identifiable” in place of “generically globally identifiable”. Similarly, “locally identi-
fiable” or “unidentifiable” will mean generically so. Furthermore, for brevity, we will
simply say “identifiable” when we mean “locally (respectively, globally) identifiable.”
The locus of non-generic parameters, for linear compartmental models, was analyzed
by Gross et al. (2017).

Remark 3.3 In many applications, it is reasonable to restrict the domain of the coeffi-
cient map c to some natural, open, biologically relevant parameter space ® € R". For
instance, ® = R’  is an appropriate parameter space for the vector of rate constants
k. Here, however, we use R” to be consistent with the literature on compartmental
models.

In several results (Theorems 3.17 and 3.25 and Corollary 3.18), we will use a notion
of identifiability that generalizes Definition 3.1 in two ways. We now explain the
motivation behind these two generalizations. First, we wish to allow for identifiability
under “changes of variables” as follows. Consider two models M and M’, where
M’ is identifiable. Assume also that starting from the ODEs of M, after replacing
input variables u; of M with some known functions it; of measurable quantities (e.g.,
output variables), we obtain precisely the ODEs of M’. Then, if we have input-output
data (u(2),u’(t),...,z(t),Z/(¢),...) at many time points for M, we can compute
(@(r), '(t),...), and then use this as part of the input-output data for M’, thereby
recovering the parameters. It is therefore reasonable to say that M is identifiable.
Such an argument was used, for instance, in the proof of Proposition 6 in the article
of Meshkat et al. (2015).

Secondly, we will extend the definition of identifiability to allow for adding inputs.
The motivation is as follows. Suppose a model M is obtained from a model N by
adding one or more inputs. Then an experimenter could collect data from M without
using the extra inputs, so these data would effectively arise from model V. So, if N
is identifiable, we also want to say that M is identifiable.

Accordingly, we allow both types of extension in the following recursive definition.

Definition 3.4 A model M is locally (respectively, globally) identifiable if M is
locally (respectively, globally) identifiable as in Definition 3.1 or if there exist:

(1) asubset {Aq, ..., At} of the set of parameters {1, ..., k,} of M (as shorthand,
we write k = (A, u) € RE x R"F),

(2) a dense open subset 2 € R”, such that for all «* = (A%, u*) € Q, there exist
only finitely many (respectively, a unique) 1** € R¥ such that

e, 1w = e, 1),
where ¢ : R” — R is the coefficient map of M,
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(3) nested subsets {x;, ..., x;} € {xj,,...,xj,} of the state variables {x1, ..., x,}
of M, such that x;,, ..., x;, are not input variables of M,

(4) an Rf-valued function gy, u; x j1s--+»Xj,) that depends on (a) a vector y of
some parameters of M that are disjoint from A, (b) a vector & of some of the
inputs of M, and (c) the variables x,, ..., xj,,

(5) a non-constant function f; (for every i = 1,...,¢) of the input and output
variables of M, their derivatives, and also the A;’s,

such that the following hold:

(i) the ODEs of M for the state variables x;,, ..., x;, are as follows:
/
Xy
= g(%i, xj]a-“a-xj/[)'i_(fleil+"'+f€eik) 5 (8)
x’,

Je

where e; denotes the i-th canonical basis vector in RY,

(ii) when each f; in the Eq. (8) is replaced by a new variable #;,, then the resulting
ODEs are those of a model M’ (with state variables x j1s - -+ Xj,, paTameters y,
and inputs ¥ and %), and

(iii) when M’ is taken so that the output variables are precisely those of M in
{xj,...,xj,}, then M’ is locally (respectively, globally) identifiable or can be
obtained from some locally (respectively, globally) identifiable model by adding
one or more inputs.

We do not know whether Definition 3.4 encompasses more models than Defini-
tion 3.1, so we pose the question here.

Question 3.5 Is there a model that is identifiable in the sense of Definition 3.4, but not
in the sense of Definition 3.1?

The differential algebra approach to identifiability has been used to analyze models
in systems biology, e.g., via the software DAISY by Bellu et al. (2007) [see also soft-
ware comparisons by Hong et al. (2018)], but has received surprisingly little attention
in the reaction network community. That is not to say that few identifiability analyses
have been performed on reaction networks, only that such investigations used other
techniques (Chis et al. 2011; Davidescu and Jgrgensen 2008), focused on somewhat
different questions, or both (Gross et al. 2016). One such work is that of Craciun and
Pantea, which we describe now.

Craciun and Pantea answered the following questions: when can the rate constants
of a reaction network be recovered given its dynamics, and also when can the reaction
network itself (the set of reactions, but not their rate constants) be recovered from its
dynamics (Craciun and Pantea 2008)? For the former question, the “dynamics” refers
to time-course data x () (all variables are therefore viewed as output, i.e., measurable,
variables). This is a natural starting point when considering identifiability problems
arising from reaction networks. Also, their results yield sufficient conditions for a
network to be unidentifiable (in the sense of Definition 3.1), i.e. if the network is
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unidentifiable with all state variables measured, then the network is unidentifiable
when only a subset of state variables are measured. These results, to our knowledge,
are the only general results pertaining to identifiability of reaction networks.

In this section, we prove more results that apply to general networks. Note, however,
that our setup differs from that by Craciun and Pantea (2008): we assume the network
is known, but that only some of the concentrations x; () can be measured, and then
aim to recover the rate constants.

More precisely, we focus on models (G, Z, O) defined by a reaction network G =
(S,C,R), input set Z C &, and output set O C S. Also, we make the following
assumption:

the set of input species consists of all inflow-reaction species, i.e.:
T = {X; | 0 = X;is areaction in G}.

A model therefore is specified by a network G and its output-species set O, and so we
will write (G, O) in place of (G, Z, O).

Notation 3.6 Following the literature, we indicate output species, when depicting reac-
tion networks, by this symbol: ¢ . For instance, the monomolecular network depicted
below, which arises from the network G = {0 — X; = X» — 0}, has one input
species (Z = {X1}) and one output species (O = {X3}):

0 — X1 ——Xo—— 0

s

Thus, the inflow rate of the reaction 0 — X, denoted by u1(?), is assumed to be
controllable, whereas the other three reaction rates are fixed constants:

uy (t
o0 0, 1()X1 e X, 20

Remark 3.7 In contrast with the general setup for identifiability analysis, the leaks
in our setting are specified by the network G itself, and thus need not be specified
separately.

3.2 Priorresults

This subsection compiles two results, from our work (Gross et al. 2019), on iden-
tifiability of monomolecular reaction networks (i.e., linear compartmental models).
We will use these results to prove results on joining networks. For more results on
identifiability of linear compartmental models, we refer the reader to (Godfrey 1983;
Gross et al. 2019; Meshkat et al. 2015).

Proposition 3.11, which is (Gross et al. 2019, Theorem 3.8), states that an input-
output equation involving an output variable z; corresponds to an input-output equation
arising from the “output-reachable subgraph” to z;.
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Definition 3.8 For a linear compartmental model M = (&, In, Out, Leak), leti €
Out. The output-reachable subgraph to i (or to z;) is the induced subgraph of &
containing all vertices j for which there is a directed path in & from j to i.

Definition 3.9 For a linear compartmental model M = (&, In, Out, Leak),let H =
(Vi , Eg)be aninduced subgraph of & that contains at least one output. The restriction
of M to H, denoted by My, is obtained from M by removing all incoming edges
to &, retaining all leaks and outgoing edges (which become leaks), and retaining all
inputs and outputs in &; that is,

My = (H, Inyg, Outy, Leaky) ,
where Inyg := In N Vg and Outy := Out N Vg, and the leak set is
Leaky = (LeakNVy)U{i € Vg | (i, j) € E(®) for some j ¢ Vy}.
Also, the labels of edges in H are inherited from those of &, and labels of leaks are:

aox + Z{jﬁVHKk,j)EE(@)} Ajk if k € Leak N VH

label of leak from k™ compartment = { .
i€V (k. j)eE(®)} Gjk if k ¢ Leak N Vg .

Example 3.10 Consider the following model M:

u(t a a a uq(t
0 1()X1 2, y, 9% X3 8,y 4(1)

(/ a2 a34</

The output-reachable subgraph toi = 1 is X; < X». Thus, the restriction Mg is as
follows:

u(t
0 1()X1 a X as 0

O/ a2

The corresponding compartmental matrix is

Ay = <—a21 an ) '
a1 —app —azxn
Proposition 3.11 (Input—output equations (Gross et al. 2019)) Let M =
(8, In, Out, Leak) be a linear compartmental model. Let i € Out, and assume
that there exists a directed path in & from some input compartment to compartment-i.
Let H = (Vy, Eg) denote the output-reachable subgraph to z;, and let A g denote the
compartmental matrix for the restriction Mpy. Assume In N Vi is nonempty. Define
dl to be the |Vy| x |Vy| matrix in which every diagonal entry is the differential
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operator d /dt and every off-diagonal entry is 0. Then the following is an input-output
equation for M:

det(d] — Ap)zi = Z (=D det @I — Ap)jiuj 9)
jelnNVy

where (01 — Ap) j; denotes the matrix obtained from (31 — Ap) by removing the row
corresponding to compartment-j and the column corresponding to compartment-i.
Thus, this input—output equation in Eq. (9) involves only the output-reachable sub-
graph to z;.

Example 3.12 (Example 3.10, continued) We continue with the model M and the
restriction My (with compartmental matrix A g ) displayed earlier in Example 3.10 .
By Proposition 3.11, an input-output equation for M involving output variable z; is
as follows

det(d] — Ap)zy = (=)' det 31 — Ag)q ur ,
which reduces to

2
Zg )+ (a2 + ax1 + an)z) + azianzi = u} + (a12 + az)uy,

where zgz) refers to the second derivative of z;.

Remark 3.13 In Sect. 3.4, we will analyze identifiability using the coefficient maps
arising from the input—output Eq. (9).

The next result, which is (Gross et al. (2019), Theorem 4.3), analyzes the effect of
adding an outflow.

Definition 3.14 The non-flow subnetwork of a reaction network G is the subnetwork
obtained by removing from G the zero complex, all outflow reactions (leaks), and
inflows.

Lemma 3.15 (Adding one outflow (Gross et al. 2019)) Let G = (S,C,R) be a
monomolecular reaction network with no outflow reactions and at least one inflow
reaction. Assume that the non-flow subnetwork of G is strongly connected. Let O C S,
and let G be obtained from G by adding one outflow reaction. Then, if (G, O) is gener-
ically locally identifiable, then so is ((~3, 0).

3.3 Joining by replacing reactions

This section considers the question, After joining two identifiable networks by replac-
ing reactions, is the resulting network identifiable ? Theorem 3.17 states that the answer
is ‘yes’ if the two networks are joined by a “one-way flow” (see Definition 3.16),
the two networks have disjoint sets of species, and the first network is algebraically
observable.
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Models joined by a “one-way flow” are considered by Meshkat et al. (2015) and
are common in physiologically based pharmacokinetic models (see e.g. DiStefano
and Feng 1988; McMullin et al. 2003; Pilo et al. 1990), where often one models
the pharmacokinetics of a substance and its metabolites (so that each step in the
metabolism of the substance forms a ‘tier’ in the overall model). These structures are
also common in aging models, wherein individual movement or states are modeled as
a single submodel, and then a discrete aging process is included, generating multiple
copies of the submodel connected by a one-way flow (Meshkat et al. 2015).

Letus precisely explain what we mean by a “one-way flow”. There are four scenarios
considered in this section. In the first, one or more outflow reactions (leaks) X; — 0
in one network correspond to some 0 — X ;’s in the other network, i.e. each leak in
the first network is an input in the second. Joining these networks therefore creates
new reactions X; — X, as summarized here:

SCENARIO 1: Joining | X; - Oland | 0 —> X yields | X; — X

In the second scenario, certain reactions X; — 0 are replaced by new reactions
Xi — Xj:

SCENARIO 2: Joining | X; — 0| and X yields X; — X;

In the third scenario, the new reactions X; — X ; are added, and none are replaced:

SCENARIO 3: Joining | X; and X yields | X; — X;

In the fourth scenario, certain reactions 0 — X are replaced by new reactions
Xi — Xj:

SCENARIO 4: Joining | X; and|0 —> X; yields | X; — X

Here we define these scenarios precisely:

Definition 3.16 Let N1 = (51, C1, R1) and N» = (S», Ca, R») be reaction networks
with disjoint sets of species S| = {X1,..., X;y} and So = {Xpy1, ..., Xp} A
network G is obtained by joining N1 and Ny by a one-way flow if there exist a
nonempty subset J C [m] and a function ¢ : J — {m + 1, ..., n} such that one of
the following holds:
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e SCENARIO I:Theset R := {X; — 0| i € J}is a set of outflow reactions of Ny,
the set R}, := {0 — X4y | i € J} is a set of inflow reactions of N>, and G is
obtained by joining N1 and N, by replacing R} U R} by {X; — Xy | i € J}.

e SCENARIO 2: Theset R := {X; — 0| i € J} is a set of outflow reactions of Ny,
and G is obtained from N and N; by replacing R by {X; — X4 | i € T}.

e SCENARIO 3: G is obtained by joining N; and N> by the new reactions {X; —
X¢(,’) |i e j}

e SCENARIO 4: The set R}, := {0 — Xy | i € J}is a set of inflow reactions of
N3, and G is obtained from N; and N; by replacing R/z by {X; — X4y |1 € T}

Recall our assumption that the set of input species in a model consists of all inflow-
reaction species. Then this set, for the network obtained by joining by a one-way flow
(Definition 3.16), is as follows. Let Z; € S; be the input-species set for species set S;
fori € {1, 2}. Let

7 |- {Xg) | i €T} if G is obtained via Scenario 1 or 4
2 o) if G is obtained via Scenario 2 or 3.

Then the input-species set for the joined network G is Z; U 7.

Consider a network G obtained by joining Ny = (S51,C1,R1) and Ny =
(82, C2, R) by a one-way flow (via a joining function ¢ : 7 — {m + 1,...,n}).
Let O1 € S and Oy € &5 be nonempty. Then (G, O U O,) is the model obtained
by joining (N1, O1) and (N3, O7) (via ¢).

Our first main result generalizes (Meshkat et al. 2015, Proposition 6), which ana-
lyzed a subcase of Scenario 1.

Theorem 3.17 Let N1 = (S1,C1, R1) and Ny = (S, Ca, Ro) be reaction networks
with disjoint sets of species. Let O1 C Sy and Oy C S be nonempty. Assume (N1, Oy)
is algebraically observable. Let G be a network obtained by joining N1 and N, by
a one-way flow via Scenario 1 or 2. Then, if (N1, O1) and (N2, O3) are identifiable,
then (G, O1 U D) is identifiable.

Proof Let N1, N», and G be as in the statement of the theorem. Then network G arises,
as in Definition 3.16, by way of a set J and a joining function ¢.

We consider first the case of Scenario 1. We write the ODEs of N as follows:

/

X

1

D o= fed™ ) =) B (10)
xr/n ieJ

where D = uM(7) is the input vector (that is, the experimenter-controlled vector
of inflow rates for the species in Z1), « is the vector of non-inflow rate constants for
reactions not in R’l ={X; - 0]i € T}, and B;, fori € T, denotes the rate constant
for the outflow reaction X; — 0in R’l . Also, e; denotes the i-th canonical basis vector.
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Similarly, we write the ODEs of N, as follows (recall that we are in Scenario 1):

X1
~(2
= g0 U Xt )+ Y T8 (11)
X} jed(3)
~(2) ~(2)

where y is the input vector of non-inflow rate constants, ", x; = Uosx, 0 for

J € ¢(J), is the (controlled) rate for the to-be-replaced reaction 0 — X ;, and u?® =
u@ (1) is the vector of all remaining inflow rates.
The joined network G has ODE:s as follows:

X

_ f(a, u(l); xlv"'vxm) _ Cx PR .
L (8()’, u®; g1, xn) Zﬂm (€ = cow)- (2
)C,/, ieJd

Notice that the first m of the ODEs of G are equal to the ODEs of Ny, as given in (10).

We claim that identifiability of (N1, Op) implies identifiability of the rate constants
of the vectors « and 8 of G. To see this, we consider a coefficient map cy, for Ny
arising from a choice of || minimal, monic, algebraically independent input-output
equations of N (which are also input-output equations of G), and then extend it to
a coefficient map (cy,, ¢) for G by extending to a set of |O; U 02| minimal, monic,
algebraically independent input-output equations of G. Thus, as cy, is generically
locally (respectively, globally) one-to-one, thereby allowing the vectors « and S to be
recovered for N1, we conclude that o and 8 can be recovered for G.

Thus, to finish the proof in Scenario 1, we need only show that identifiability of
(N2, O») implies identifiability of the rate constants y for G. The last (n — m) ODEs
of G, from equation (12), are:

/
xm—i—l

: = g, u?; Xy, oo xn) + Z,Bixied)(i) (13)

x;, ieJ

n

= g u®: xppr.x)+ Y > Bixiej.
J=m+1 \{ieJ|¢ ()=}

As N is algebraically observable, the state variables x1, .. ., x,, can be written as a

function of u, z(V . and B. Therefore, for j € ¢(J), the sum Z{iejlcp(i):j} Bix;i is
a function of uV, z(V o, and B, and so we may treat these sums as known quantities
or as controlled inflow rates, thereby recovering the parameters y . More precisely, for
j € @), letting it j := Z{iejl¢(i)=j} Bixi, then the last (n — m) ODEs of G, in (13),
match those of the identifiable network N3, in (11). Hence, by Definition 3.4, G is
identifiable.
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For Scenario 2, let N3 be obtained from N, by adding inflows 0 — X ; (inputs) for
all j € ¢(J). Then, by definition, N3 is identifiable, and G is obtained from Ny and
N3 by a one-way flow via Scenario 1. So, following the above proof (for Scenario 1),
G is identifiable. m|

We define inductively what it means to join several networks by a one-way flow. A
network is obtained by joining networks Nu, . .., Np by aone-way flow if itresults from
joining, by a one-way flow, N1 and a network obtained by joining N>, ..., N, by a
one-way flow. Similarly, a model obtained by joining models (N, O1), ..., (Np, Op)
by a one-way flow arises from a network obtained by joining Ny, ..., N, by a one-way
flow, and the output setis O; U --- U O,

Now the following result is immediate from Theorem 3.17:

Corollary 3.18 Let N1 = (S1,C1, R1), ..., Np = (Sp, Cp, R)p) be reaction networks
with pairwise disjoint sets of species. Let O; C S; be nonempty fori = 1, ..., p.
Assume (N1, O1), ..., (Np—1, Op_1) are algebraically observable. Let G be a net-
work obtained by joining N1, ..., N, by a one-way flow via Scenario 1 or 2. Then, if
(N1, O1), ..., (Np, Op) are identifiable, then (G, O U --- U O,) is identifiable.

Example 3.19 Consider three networks, which we call (Ny, O1), (N2, O2), and
(N3, O3):

2X1+ Xp= X +2X,— 0 0—X3— 0 X3=—=X4— 0
0 —X

S

(¢

Each model is globally identifiable, and (N1, Oy) is algebraically observable (e.g.,
using DAISY, Bellu et al. 2007). So, by Theorem 3.17, the model depicted below,
which is obtained by joining Ny and N> via Scenario 1 (by replacing the reactions
X1+ 2X, — 0and 0 — X3 by the reaction X1 4+ 2X> — X3), is also globally
identifiable:

2X14+ Xy — X1 +2Xp —Xz3— 0 0 — X,

s s

Similarly, by the same theorem, joining N and N3 via Scenario 2 (by replacing
X1 +2X, - 0by X + 2X7 — X3), yields a model that is globally identifiable:

2X14+ X, — X142X, 2 X3——=X4— 0 0 — Xy

s s

Informally, Theorem 3.17 above stated the following: assuming that (N1, Oy) is
algebraically observable, if identifiable networks Nj and N, are joined via Scenario
1 or 2, then the result is still identifiable. We now consider the converse: If the joined
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model is identifiable, can we conclude that (N1, O1) and (N,O;) are also identifi-
able? For N,, in general, we can not (see Example 3.20 below and Example 3.28 in
the next subsection); but, under extra hypotheses, we can (see Theorem 3.30 in the
next subsection). As for Ny, we give a counterexample in the next subsection (see
Example 3.27).

Example 3.20 Consider two models, which we call (N, O;) and (N3, O»):

2X1+ Xy — X1 4+2Xo— 0 0 ——X5—=X4——0

00— X

o

The first model is the same as in the previous example, which we noted is algebraically
observable. The model below, obtained by joining Nj and N, via Scenario 2 (by
replacing X1 + 2X, — 0 with X| + 2X, — X3), is globally identifiable (e.g., using
DAISY, Bellu et al. 2007):

2X1+ Xy —/— X1+2Xy) — Xs— Xy — 0 —— X
0

However, (N2, O3) is unidentifiable (Meshkat et al. 2015).

3.4 Monomolecular networks

The previous subsection focused on networks G formed by joining two networks by
a one-way flow via Scenario 1 or 2. We examined the extent to which identifiability
can be “transferred” from subnetworks N; to G (Theorem 3.17).

The current subsection considers the case when all networks are monomolecular
(the case of linear compartmental models). In this setting, we obtain stronger conclu-
sions than in Theorem 3.17 (see Theorems 3.25 and 3.30). We also consider more
scenarios for joining by a one-way flow (Theorems 3.32 and 3.35). We informally
summarize our results as follows: Let G be obtained by joining monomolecular net-
works N1 and N> by a one-way flow via Scenario 1, 2, 3, or 4. Then (1) if N1 and
Ny are identifiable, then G is identifiable, and (2) if N1 and G are identifiable in
the case of Scenario 1 or 4, then N is identifiable. (For the precise statements, see
Theorems 3.25, 3.30, 3.32, and 3.35 and Corollary 3.36).

Remark 3.21 The results in the rest of this section pertain to monomolecular networks
that have at least one inflow reaction (i.e., at least one input). This requirement allows
us to use a prior result pertaining to input-output equations (Proposition 3.11). (Recall
that we already required, in Sect. 3.1, that every model has at least one output.)
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Following Gross et al. (2019), we allow identifiability of linear compartmental
models to be analyzed from the input-output equations arising from output-reachable
subgraphs:

For monomolecular networks, we extend the definition of identifiability to allow
(as in Definition 3.1) coefficient maps arising from input-output equations given
in (9).

It is conjectured that this extended definition is not actually an extension, i.e., that
the definition does not encompass more models than the previous definition (Gross
et al. 2019, Remark 3.10).

3.4.1 Joining output connectable, monomolecular networks via Scenario 1 or 2

The results in the previous subsection required some of the models (N;, O;) to be
algebraically observable. This condition is in general difficult to verify, but automati-
cally holds for monomolecular networks that satisfy a condition that is easier to check,
namely, being “output connectable” (Definition 3.22 and Lemma 3.23). Therefore, we
can state a version of Corollary 3.18 for monomolecular networks (see Theorem 3.25).

Definition 3.22 A linear compartmental model is output connectable if every com-
partment has a directed path leading from it to an output compartment (Godfrey and
Chapman 1990).

Thus, a monomolecular-reaction-network model (G, O) is output connectable if
for every species X; there is a directed path in G from X; to some output species
X; € O. Such models are algebraically observable:

Lemma3.23 LetG = (S, C, R) be amonomolecular reaction network, andlet O C S
be nonempty. If (G, O) is output connectable, then (G, O) is algebraically observable.

We prove Lemma 3.23 in “Appendix”, where the lemma is restated as follows:
Every output connectable linear compartmental model is algebraically observable
(Corollary A.3).

Remark 3.24 A linear compartmental model is output connectable if and only if it is
structurally observable (Godfrey and Chapman 1990). Lemma 3.23 therefore extends
this result to algebraic observability. In fact, for such models, we give explicit algebraic-
observability relationships for each state variable in terms of inputs, outputs, and
parameters (see Proposition 3.29 and its proof).

Theorem 3.25 Let Ny, ..., N, be monomolecular networks with pairwise disjoint sets
of species Sy, ..., Sp. Let O; € S; be nonempty fori =1, ..., p. Assume that, for
i =1,...,p — 1, the network N; has at least one inflow reaction and (N;, O;) is
output connectable. Let G be a network obtained by joining Ny, ..., N, by a one-
way flow via Scenario 1 or 2. Then, if (N1, O1), ..., (Np, O,) are identifiable, then
(G, 01U ---UQO)) is identifiable.

Proof This follows directly from Corollary 3.18 and Lemma 3.23. O
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Output connectable models include models arising from strongly connected graphs
(more precisely, when the non-flow subnetwork is strongly connected). See the fol-
lowing examples.

Example 3.26 Consider three models, which we call (N, O1), (N2, O3),and (N3, O3):

0 —X1=X>—0 0—X3—0 X3=—X4—0

Each model is identifiable (Meshkat et al. 2015), has one inflow reaction, and has
strongly connected non-flow subnetwork. So, by Theorem 3.25, the model depicted
below, which is obtained by joining N and N; via Scenario 1 (by replacing the
reactions X» — 0 and 0 — X3 by the reaction X, — X3), is also identifiable:

0 —Xi—X,—X35—— 0
e e

Similarly, by the same theorem, joining N; and N3 via Scenario 2 (by replacing
X7 — 0by X2 — X3), yields the model M displayed earlier in Example 3.10, which
is identifiable.

The next examples show that partial converses to Theorem 3.25 do not hold: in
Scenario 2, if (G, O] U O,) is identifiable, it does not follow that N, is identifiable,
nor Nj.

Example 3.27 Consider two models, which we call (N1, O1) and (N,, O»):

0 — X i —X,— 0 0 ——X53—X4— 0

s s

Each N; has one inflow reaction and has strongly connected non-flow subnetwork.
The model below, obtained by joining N1 and N> via Scenario 2 (by replacing X» — 0
with X» — X3) is at least locally identifiable (Meshkat et al. 2015):

0 — X1 1—Xp—X3———X4—— 0

0

However, (N1, O1) is unidentifiable (Meshkat et al. 2015). (On the other hand, it is
straightforward to check that (N,, O,) is globally identifiable.)
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Example 3.28 Consider two models, which we call (N, O) and (N3, O»):

0 ——X1—Xo,— 0 0 ——Xs———Xy——0

s

Each N; has one inflow reaction, with strongly connected non-flow subnetwork.
The model below, obtained by joining N1 and N; via Scenario 2 (by replacing X, — 0
with X» — X3), is at least locally identifiable (Meshkat et al. 2015):

0 — X1 1—Xp— X3 ——— Xy ——
0

However, (N;, O») is unidentifiable (Meshkat et al. 2015). (The model (N1, Oy) is
globally identifiable, as it is equivalent to the model (N2, O;) in Example 3.27.)

In Theorem 3.25, we saw that if identifiable, output connectable, monomolecular
networks N; are joined by a one-way flow (via Scenario 1 or 2), then the result is
still identifiable. The next main result, Theorem 3.30, states that if N; and each of the
inductively joined networks Nj and N, N1 and N> and N3, etc., are identifiable, we
also conclude that N, N3, ... are identifiable — as long as we are in Scenario 1 and
the joining is “in a row” over a single reaction. In contrast, in Scenario 2, we can not
obtain the same conclusion (recall Example 3.28).

To prove Theorem 3.30, we need the following strengthening of (Meshkat et al.
2015, Lemma 3).

Proposition 3.29 (Equations for algebraic observability) Let G = (S,C, R) be a
monomolecular network, and let O C S be nonempty. Assume that there exists
a species i € S such that for every species X; € S\ {X;}, there exists a
sequence of reactions X; — --- — X; in G from X; to X;. Then for every
such X; € S\ {X;}, there exists an equation of the form x; = g that holds (for
generic values of the rate constants) along all solutions of (G, O), where g is a

Q {kix | I = k is a reaction in G})-linear combination of x; and the inflow-reaction

(@) (q)

variables u, (for inflow reactions 0 — X ) and their derivatives x;"" and u, ", and

()

the coefficient of at least one of the x;*"’s is nonzero.

We prove Proposition 3.29 in the “Appendix”.

The next result pertains to networks joined by a one-way flow “in a row”. For
networks Ny, ..., N, joined by a one-way flow, we say they are joined in a row if
the new reactions are from N to N, from N to N3, and so on; more precisely, the
joining functions ¢, : Iy — {i | X; € Sy41U---US,} (forg =1, ..., p—1) satisfy
$Tg) S i | Xi € Sgr).
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We also require a stronger condition than output connectable, where each of the
networks formed by joining Ny, Na, ..., Ni,fork = 1, ..., p—1, is output connectable,
which can be considered as inductively output connectable.

Additionally, we consider the following version of identifiability: a model M
obtained by joining two models (N, Op) and (N», Oz) by a one-way flow over a
single reaction is identifiable after substitution if the model is identifiable when, for
each output variable, the input-output equation is obtained from either:

(1) Definition 3.1,

(2) the corresponding defintion from (9) for M, or

(3) for outputs in O, the corresponding input-output equation in (9) for (N2, O3)
and then substituting an expression for the inflow rate in N> (for the unique inflow
reaction that is replaced in M ) that is valid along all trajectories of M.

We again do not know whether this (possibly stronger) version of identifiability
encompasses fewer models than Definition 3.1. Also, although checking whether a
model is identifiable after substitution is difficult, our results only pertain to finitely
many input-output equations, those arising as in (18) in the following proof.

Theorem 3.30 Let G be a network obtained by joining, in a row, monomolecular

networks Ny, ..., N, with pairwise disjoint sets of species S1, ..., S, by a one-way
flow — but only via Scenario 1. Let O1 € Sy, ..., 0, C S, be nonempty. Assume the
following:

(1) each joining by a one-way flow is over a single reaction,

(2) every N; (fori =1, ..., p) has at least one inflow reaction,

(3) forevery X, € O; (foranyi =1, ..., p) there is a directed path in N; from an
inflow-reaction (input) species to X,

(4) forq =1, ..., p—1, there exists a species X;, € O such that for every species
Xj € S1U---US;\{X,,}, there exists a sequence of reactions X j — --- — X;,
inG from X to Xiq,

(5) thefollowing p— 1 models are identifiable after substitution: (N1, O1), the model
obtained by joining (N1, O1) and (N3, O), .. ., and the model obtained by joining
(N1, O1), (N2, 02), ... (Np—1, Op_1) (via the same joining functions as for G ).

Then if (N2, O2), ..., (Np, Op) are all identifiable, then (G, Oy U --- U O,) is
identifiable. Conversely, if (G, O1 U ---U O),) is identifiable after substitution, then
(N2, O2), ..., (Np, Op) are identifiable.

Proof The forward direction (“=") follows from Theorem 3.25.

For the backward direction (“<="), assume that (G, O; U ---U O,) is identifiable.
We prove by induction that (N2, O2), ..., (N,, O,) are identifiable. By assumption
(N1, Oy) is identifiable. So, for induction, assume that (N,_1, O,_1) is identifiable
for some 2 < r < p. We must show that (N,, O,) is identifiable.

The N;’s are joined “in a row”, so we let M denote the network obtained by joining
Ni, ..., N,_1 by a one-way flow, and let M be obtained from joining M and N,
(via the same joining functions as for G). By hypothesis, M is obtained from joining
M and N, over a single reaction: for some species X; and X j/, the outflow reaction
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Xi — 0in M and the inflow (input) reaction 0 — X - are replaced by the new reaction
X; — X . Also by hypothesis, (M,0;U---UO, )1s identifiable.

Let n and m denote the number of species of, respectively, M and M. Following
the proof of Theorem 3.17, specifically, from equation (11), the ODEs of N, are as
follows:

= g u?; Xy, ... xn)+u0_>x e, (14)

where y is the input vector of non-inflow rate constants, and , “0 X, is the rate for the

reaction 0 — X ;» and u® = u@ (1) is the vector of all remaining 1nﬂ0w rates.
Similarly, using equation (13), the last (n — m) ODEs of M are:

Xi1
= g(y,u(z); Ximt1s « -+ Xn) + KioXi€jr . (15)

Here, ;o denotes the rate constant for the outflow reaction X; — 0in M.
By assumption, there exists X; , € O,_; such that for every species X; € S U
-U 8,1\ {X;,_,}, there exists a sequence of reactions X; — --- — X; , in M
(and thus in M) from X ; to X;,_,. Hence, M and X;,_, together satisfy the hypotheses
of Proposition 3.29.
Thus, there exists an equation of the form x; = g; that holds (for generic choices of
the rate constants) along solutions of M, where g; isa Q ({xjx | [ — k is a reaction in

M})-linear combination of z;,_, = x;,_, and the inflow-reaction variables and their

derivatives, and the coefficient of at least one z(q) is nonzero. Thus, from Eqs. (14)

and (15), when we make the following substltutlon into the ODEs of N, :

~(2
uggx = Ki0gi s (16)

we get differential equations satisfied by solutions of the dynamical system defined
by M.

Hence, any input-output equation for N, can be transformed into an input-output
equation for M by making the substitution (16). Specifically, when we make this
substitution into the following input-output equations for N, (one for each X, € O,)
from Proposition 3.11 (which applies because of hypothesis (3) in the statement of
Theorem 3.30):

det@ — Ap)ze = ) (=D det (31 — Ap,);,uj (17)
jelnNVy,
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we obtain the following input-output equations for M (one for each £ € O,):

det(3] — Ap,)zy = > (=D det (31 — Ap,);,u;  (18)
je(lnrmVH()\(P(jr—l)

+ (=) det (91 — ARy iy Kiogi

where Hy = (Vpy,, Ey,) is the output-reachable subgraph (of the directed graph
underlying the non-flow subnetwork of N,) to £, and Ay, is the corresponding com-
partmental matrix. Also, /n, denotes the set of all inflow species in N,.

Next, we claim that the input-output equations for M obtained from Proposition 3.11
are also input-output equations for M. Indeed, there are no reactions in M from outside
of M into M, so for any output variable X;+ € O; U --- U O,_1 in M, the output-
reachable subgraph (of M) to X;+ is contained in M. Thus, our claim follows from
Proposition 3.11.

Thus, the following are |O;| + - - - 4+ |O, | input-output equations for M:

(1) the |Oq| + - -+ + |O,—1]| input-output equations for M obtained from Proposi-
tion 3.11 (which are the same equations M obtained from Proposition 3.11 for
those outputs in Oy U - -- U O,_1), and

(2) the |O,| equations in (18).

These input-output equations are algebraically independent, because they each involve
adistinct output. Also, by the “identifiable after substitution” assumption, the equations
in (18) can be used to assess identifiability (after substitution). Thus, as we have
01U --UO;| = |01+ --+]O,| algebraically 1ndependent input-output equations,
we get a coefficient map for M, which we denote by ¢ = (¢¥; ¢). By hypothesis,
c= (c ey )) is finite-to-one. Here and in the remainder of this proof, we write “finite-
to-one” to mean “generically finite-to-one (respectively, generically one-to-one)”.
Let ¢V denote the coefficient map for N, arising from the input-output equa-
tions (17). We claim that (¢™; ¢™r) is finite-to-one. Indeed, comparing equations (17)
and (18), we see that for each coefficient in (the expansion of) equation (17)
(i.e., each coordinate of ¢r), either this coefficient also appears as a coefficient
in (18), or a (nonzero) F-multiple of it is a coefficient of some x(rq) in (18), where
F := Q ({«ix | I — k is areaction in M}). Conversely, each coefficient in (the expan-
sion of) equation (18) (i.e., each coordlnate of ¢™), if not also a coordinate of ¢
is an F-multiple of a coordinate in ¢". From generic input- output data, any ratlonal
function in F can be recovered (up to finitely many values) using ¢, and so the fact
that (cM; ¢) is finite-to-one implies that (c¢*; ¢r) is finite-to-one, as we claimed.
The function ¢ depends only on the parameters in M, and similarly ¢™V- depends
only on the parameters in N,. So, the fact that (c¥; ¢™7) is finite-to-one implies that
¢ is finite-to-one. Hence, N, is identifiable. O

Example 3.31 In Example 3.26, the model formed by joining N1 with N, is identifiable.
We also know that N is identifiable. Hence, by Theorem 3.30, N, is also identifiable.
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3.4.2 Joining strongly connected, monomolecular networks via Scenario 3 or 4

In this subsection, we show that joining certain monomolecular networks by new reac-
tions — namely, strongly connected networks without leaks — preserves identifiability
(Theorem 3.32).

Theorem 3.32 Let Ny, ..., N, be monomolecular networks with pairwise disjoint
sets of species Sy, ...,Sp. Let O1 € Sy,...,0, € S, be nonempty. Assume, for
i=1,...,p—1, that N; has no outflows and at least one inflow reaction, and that
the non-flow subnetwork of Nj is strongly connected. Let G be obtained by joining
N1, ..., Np by a one-way flow via Scenario 3 or 4. Assume, moreover, that each
Jjoining by a one-way flow is over a single reaction. Then, if (N1, Oy), ..., (N, Op)
are all identifiable, then (G, O1 U ---U O)) is identifiable.

Proof Fori =1,...,p—1,let ﬁi denote the network obtained from N; by adding an
outflow reaction (leak) at the compartment from which a new one-way-flow reaction
emerges in G. By construction, G is obtained by joining Ni,..., ﬁp_l, and N, by
Scenario 1 or 2.

Assume that (N1, Oy), .. s (Np, O),) are identifiable. Then (fori =1, ..., p—1),
by Lemma 3.15, the model (N;, O;) is identifiable (here we use the fact that N; has no
outflow reactions and is strongly connected). So, by Theorem 3.25, (G, O U- - -UQO),)
is identifiable. O

Example 3.33 Both linear compartmental models below are at least locally identifi-
able (Meshkat et al. 2015):

0 —Xi—X, Xs——X4—— 0

s s

Thus, by Theorem 3.32, joining the networks by Scenario 3 yields the model from
Example 3.10, below, that is at least locally identifiable:

0 — X1 1—Xp—X3——X4—— 0

s s

Example 3.34 Like Theorem 3.25 earlier, Theorem 3.32 can not be extended to con-
clude that, if (G, O U ---U O,) is identifiable, then (N2, O3), ..., (N,, O,) are
also. We can see this by modifying Example 3.28. In that example, we saw that the
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following model is locally identifiable:

0 — X1—Xp—X3——X4——0

0

This model is formed by joining the following models, (N{, O}) and (N2, O2), by
Scenario 3:

0 — X1 —X» 0 —— Xs3——Xyu——0

s

As noted earlier in Example 3.28, model (N,, O;) is unidentifiable.

Our final theorem in this section is a partial converse to Theorem 3.32: If N; and
each of the inductively joined networks Nj and N>, N1 and N, and N3, etc., are all
identifiable (in Scenario 4), then each N; is identifiable.

Theorem 3.35 Let G be a network obtained by joining, in a row, monomolecular

networks Ny, ..., N, with pairwise disjoint sets of species S1, ..., S, by a one-way
flow — but only via Scenario 4. Let O1 € Sy, ..., Op € S), be nonempty. Assume the
following:

(1) each joining by a one-way flow is over a single reaction,

(2) every N; (fori =1, ..., p) has at least one inflow reaction,

3) fori =1, ..., p—1, the network N; has no outflows and the non-flow subnetwork

of N; is strongly connected,

(4) for every £ € O, there is a directed path in N, from an inflow-reaction species
(input) to Xy,

(5) thefollowing p — 1 models are identifiable after substitution: (N1, O1), the model
obtained by joining (N1, O1) and (N2, ©»), ..., and the model obtained by joining
(N1, O1), (N2, O3), ..., and (N1, Op_1) (via Scenario 4 and the same joining
functions as for G).

Then if (N2, 02), ..., (Np, O,) are all identifiable, then (G, O U --- U O,) is
identifiable. Conversely, if (G, O1 U ---U O),) is identifiable after substitution, then
(N2, O3), ..., (Np, Op) are identifiable.

Proof The forward direction (“="") follows from Theorem 3.32.

We now prove the backward direction (“<”). Fori =1,..., p — 1, let ﬁ,- denote
the network obtained from N; by adding an outflow reaction (leak) at the compartment
from which a new one-way-flow reaction emerges in G. It follows, by construction,
that for 1 < j < k < p, the model obtained by joining (N;, O;), (Nj41, Oj41), ...
, and (N, O) (via Scenario 4 and the same joining functions as for G) equals the
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model obtained by joining (ﬁj, 0)), (IVHI, Ojs1)s . ,(]Vk_l, Or_1), and (N, Or)
via Scenario 1 (and the same joining functions as for G). We use this fact below.
We prove the following (stronger) claim: Fori =1, ..., p,

(a) the model (N;, O;) is identifiable (and hence, by Lemma 3.15, (ﬁi, O))also is, if
i<p-—1) and

(b) ifi < p—1, the model (M;, O1 U ---U Q) is identifiable, where M; denotes the
network obtained by joining (ﬁ] ,OD, ..., (ﬁi, O;) via Scenario 1 (and the same

Jjoining functions as for G).

We prove this claim by strong induction on i. For the base case, i = 1, part (a)
holds by assumption, and (b) follows, as noted above, from Lemma 3.15.

For the inductive hypothesis, assume that (a) and (b) hold fori = 1,2,...,m — 1
for some 2 < m < p. We prove the i = m case of the claim by showing that
Theorem 3.30 (the “«=” direction) applies to the networks N Lsoses ﬁi_l, gnd N;. As
noted above, the network obtained by joining the networks (N, O1), (N2, O2), ...
, (1\7[,1, 0;i_1), and (N;, O;) by Scenario 1 equals the network obtained by joining
(N1, Oy), ... ,and (N;, O;) by Scenario 4, which by hypothesis is identifiable. Also, by
the inductive hypothesis, the models (M1, Oy), ..., (M;—1, O1 U---U O;_1) are all
identifiable. Finally, hypotheses (3) and (4) in the statement of Theorem 3.30 apply to
the networks Ny, ..., N;_1, and N;, because of hypotheses (3) and (4) in the statement
of Theorem 3.35. Therefore, Theorem 3.30 (the “«” direction) applies, and so N; is
identifiable. This verifies (a).

For (b), assume i < p — 1. By part (a) of the inductive hypothesis, the networks
ﬁl, e, IVi are identifiable. Hence, by Theorem 3.25, the model (M;, O; U ---U O;)
is identifiable. O

Strongly connected networks are output connectable, so we obtain the following
unifying corollary to Theorems 3.25, 3.30, 3.32, and 3.35.

Corollary 3.36 Let Ny, ..., N, be monomolecular networks with pairwise disjoint
sets of species Sy, ..., Sp. Assume, fori =1, ..., p, that N; has at least one inflow
reaction and that the non-flow subnetwork of N; is strongly connected. Let O; C S;
be nonempty fori =1, ..., p.

(1) Let G be a network obtained by joining N1, ..., N, by a one-way flow via Sce-
nario 1, 2, 3, or 4. If the joining is by Scenario 3 or 4, assume additionally that
each joining is over a single reaction, and that, fori = 1,..., p — 1, the net-
work N; has no outflows. Then, if (N1, O1), ..., (Np, Op) are identifiable, then
(G, 01U ---UQO,) is identifiable.

(2) Let G be a network obtained by joining, in a row, Ny, ..., N, by a one-way
flow via Scenario 1 or 4. Assume that each joining is over a single reaction and
that the following models are identifiable after substitution: (N1, O1), the model
obtained by joining (N1, O1) and (N2, O2), ..., and the model obtained by joining
(N1, O1), ..., and (Np_1, Op_1) (via the same joining functions as for G ). If the
Jjoining is by Scenario 4, assume that, fori = 1, ..., p—1, the network N; has no
outflows. If (N2, 02), ..., (N,, Op) are all identifiable, then (G, O1U---UQ0))
is identifiable. Conversely, if (G, O1U---UQ,) is identifiable after substitution,
then (N2, O3), ..., (Np, Op) are identifiable.
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4 Steady-state invariants

In this section, we move away from identifiability and toward the problem of under-
standing how steady-state invariants of networks obtained by gluing are related to the
steady-state invariants of the joined networks before gluing. Steady-state invariants are
polynomial equations satisfied by the species concentrations at steady state (Gunawar-
dena 2007; Manrai and Gunawardena 2008; Karp et al. 2012). These polynomials are
used for model comparison and are particularly useful when only incomplete data are
available (Harrington et al. 2012, 2016; MacLean et al. 2015). Specifically, when only
some of the species concentrations are measurable, an ideal obtained by eliminating
non-measurable species variables from the steady-state equations is computed, and
then the generators of this ideal are used to test goodness-of-fit.

However, eliminating the unobservable variables to obtain a set of steady-state
invariants can be computationally challenging, and the resulting Grobner basis, when
it can be computed, is often large and difficult to interpret. One of our aims, therefore,
is to determine how the steady-state invariants of a large network can be built from
those of smaller subnetworks.

Our progress toward this aim is as follows. Consider a network N obtained by gluing
two networks N1 and N, over complexes or reactions. We are interested in determining
how the steady-state invariants of N, after projecting them to involve only species and
reactions in N;, are related to the steady-state invariants of N;. First, we show that
every such projection is a steady-state invariant of N; (Proposition 4.4). However,
in general, some of the steady-state invariants of N; are not projected steady-state
invariants of N. This motivates us to find conditions when all steady-state invariants
of N; arise as projections. We succeed for certain monomolecular networks obtained by
gluing two networks over a species (Theorem 4.7) or a single reaction (Theorem 4.8).
Moreover, in the case of monomolecular networks glued over a species, under some
hypotheses, we recover the entire elimination ideal from the elimination ideals of the
smaller networks N; (Theorem 4.9).

4.1 Connection to related work

Steady-state invariants are not the only situation in which species variables of a reac-
tion network are eliminated. Another context arises when analyzing a network’s steady
states, specifically its capacity for multistationarity. Here certain variables (usually
intermediate complexes) often can be eliminated (usually linearly) so that there are
effectively fewer steady-state equations to solve (Conradi and Shiu 2018). Thomson
and Gunawardena (2009) performed such eliminations for post-translational modi-
fication networks, and subsequently Feliu and Wiuf and co-authors extended these
ideas to signaling networks (Feliu and Helmer 2019; Feliu et al. 2012; Feliu and Wiuf
2012b, 2013b), gave graphical criteria for when such elimination succeeds (Sdez et al.
2017), and proved that the Grobner basis of the steady-state ideal of a network extends
to one that includes intermediates (Sadeghimanesh and Feliu 2019).

Here we too are interested in eliminating species from the steady-state equations
that are experimentally unobservable. However, our setup and the questions we ask
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differ from those in the above references. For us, the set of variables to eliminate is
given, and we would like to know how joining networks affects these eliminations.
Earlier authors, in contrast, focused on eliminating as many species as possible.

A second situation involving elimination in reaction networks pertains to quasi-
steady state and other approximations (Pantea et al. 2014; Sweeney 2017). Here,
elimination is performed to obtain a lower-dimensional approximation of the system,
which is valid when certain assumptions on the rate constants are met (Gunawardena
2012). In our work, however, we are interested in steady states of the full system, not
areduced system.

4.2 Setup

We begin by introducing steady-state ideals and steady-state invariants.

Definition 4.1 Let N = (S, C, R) be a network with mass-action ODEs:

dx -
= i = (i), LW, )
yi—yjisin R
Wecall fi, fa, ..., fu the system polynomials of N, and they generate the steady-state

ideal:
Iv = (i), A, .. ful0) € Qi)

Every g € I vanishes at steady state and so we say that g is a steady-state invariant.
As mentioned earlier, we are interested in steady-state invariants that involve certain

observable variables X, Xj,, . .., Xj,, namely, elements in the elimination ideal:
elim . .
IN™ = Iy N Qlk; Xj, Xy, .05 X ]

When eliminating a single species X, we use the notation:

elim(xg) | .
IN = IN N Q[Kv X11X27"'3Xl—1’xl+lvxe+29"'1Xn] .

We consider the following setup: a set of observable variables X;,,Xj,, ..., X},
and a network N obtained by gluing two networks N; and N, over com-
plexes or reactions. We consider the corresponding elimination ideals: Ii}ilm
Iy, N Qle(i); Xjy,Xj,,...,X;], for i = 1,2, where k(i) denotes the vector of
rate constants for network N;.

We aim to investigate how Iﬁ,ﬁm is related to Ilf,llim and Iﬁ};m. Specifically, when

can Iﬁ}im be used to compute Iﬁ,llim and Ilf,lzim, and, conversely, when is knowing I]?}lim
and I;’,lzim sufficient for reconstructing I]f,“m? One way we address these questions
is by comparing qb,-(lf\’,“m) to Ilf,l’_im (for i = 1, 2), where ¢; is the projection to the
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species variables and rate constants of network N;. More precisely, ¢; is the ring
homomorphism defined on generators as follows:

¢i : Qs x] — Qle(i); x(@)]

Kkq 1if kg € k(D)
Kg .
0 ifxg & K@)

xq, if x4, € x(@)
Xg > .
0 if x, ¢ x(@)
Remark 4.2 Recall from Lemma 2.8 that each system polynomial /#; of N can be
written in the form i ; = f; +¢; where f; is the j-th system polynomial of Ni and g
is the j-th system polynomial of the network obtained from N, by removing reactions
in Ny. It follows that ¢1(h;) = f;.

We will prove the containment ¢; (1 ,e\,lim) clI ,‘\’,hm (Proposition 4.4), and then inves-
tigate when the containment is an equality.

4.3 Results

We begin by showing that, before elimination, our ideals of interest, ¢;(Iy) and Iy,
are in fact equal.

Lemma4.3 Let N be the reaction network obtained by gluing two networks N1 and
N3y over a set of complexes or a set of reactions. Then, for i = 1,2, we have the
following equality:

Iy, = ¢iIn) € Qle(), x()] .

Proof Let f1, f2,..., fn be the system polynomials of Ny = (S1,Cy, R1), and
g1, &2 - - -, &n the system polynomials of Np = (S, Ca, R2), where f; := 0 (respec-
tively, g; := 0) for species i € S; \ Sy (respectively, i € Sy \ S2). Let hy, ha, ..., hy
be the system polynomials of N.

By symmetry, we may assume i = 1. As ¢y is surjective, we have

$1Un) = p1({h1 ha, o b)) = (@1(h1), 1(h2), ..., ¢1(h)) = (fi, fo, oo fu) = INny s

where we also used Remark 4.2.
O

Proposition 4.4 Let N be a reaction network obtained by gluing two networks Ni
and N> over a set of complexes or a set of reactions. Consider a set of (observable)
variables X, Xj,, ..., X,. Fori = 1,2, we have the following containment:

¢I(IN mQ[K;le,ij, ~~-7Xj]]) Cc [Nl‘ mQ[K(l)9X]1’X]27 ~'-»Xj]] . (19)

In other words, ¢;(I$™) C I;’,ll,im .
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Proof Let h e Iy N Qlk;X;,Xj,,...,X;]. We must show ¢;(h) € Iy N
Qlr(i); Xj;, Xj,, ..., X;]. To see this, first note that ¢;(h) € ¢;(Iy) = In,, by
Lemma 4.3. Also, i € Q[k; X}, X},,...,X;,] implies that ¢; (h) € Q[k(i); X, X},,
..., Xj,], and this completes the proof. O

Here we give two counterexamples to equality of the containment (19) in Proposi-
tion 4.4.

Example 4.5 (Gluing over complexes) Consider the networks N1 = {X A x 2} and
Nr» = {X e X1}. Then by gluing over complexes, we obtain N = Nj U Ny =
K2
{X1 & X»}. The corresponding steady-state ideals are:
K1

Iy = (—Kk1x1 +k2x2), In, = {k1x1), INn, = {K2%2) .

Elimination of x gives:

I;:/lim(xl) = (0), ij/llim(XI) = (0), I:/lzim(m) = (kpx2) .

=

Then ¢» (Ilev“m(x')) = (0) C Ilevlzim(x‘), so the containment (19) in general is not an
equality for gluing over complexes.

Example 4.6 (Gluing over reactions) Let Ny = {X3 “ X1+ X3, X4 ey X»>} and
Ny ={X4 it X7, X» 8 X1 + X»}. Gluing over the reaction X4 ey X» yields

N=NUM={X32X1+X5, Xu3X, X22XI+X2}. (20
The corresponding steady-state ideals are:
Iy = (kK1x3 + k3x2, k2X4),  In; = (K2X4, K1X3),  IN, = (K2X4, K3X2).
Elimination of x3 gives:

Ielim(X3) — (

elim(x3) __
Np I -

K2x4), Iy, (k2X4, K3X2).

I;zlim(x3) = (k2x4),

Again, we find ¢ (];hm(m ) = (Kkpx4) C Ilf,lzimm), so equality of the containment (19)
does not hold in general for gluing over reactions.
These counterexamples prompt the question: Are there combinatorial conditions

on N that guarantee equality of the containment qb,-(li,lim) - Ilf,ll_im in (19)? Some
positive results in this direction are the focus of the next subsections.
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4.3.1 Monomolecular networks

In this section, we prove three results for monomolecular networks. Throughout the
section, we make the following simplifying assumption:

monomolecular networks do not involve the zero complex.

For such a network N, the mass-action ODEs (and hence the system polynomials)
are linear in the x;’s and can be written in matrix notation as x’ = A,fx , where A,
is the negative Laplacian of the reaction graph of N. Recall that an n x n Laplacian
matrix has rank at most n — 1. Indeed, the column vectors of a Laplacian matrix always
sum to the zero vector. Hence, the system polynomials of a monomolecular network
sum to zero, so we can always delete one system polynomial before generating the
steady-state ideal. Our proofs will harness this fact.

Theorem 4.7 Let N be a network obtained by gluing monomolecular networks N
and N; over a single species, say, Xi. Then for every species Xy, the following holds
fori=1,2:

¢i (I:/lim(xl)) — ijjl[im(x‘f) .
Proof Let X1, ..., Xy be the species of Ny, and let Xy, ..., X be the species of N;.
Without loss of generality, assume i = 1. Since Proposition 4.4 gives us the inclusion
¢1(I;}hm(”)) c I;’,lllm(x’), we only need to show I;,lllm(x’) C qﬁl(lfjhm(”)). We will do
this by showing Iy, C Iy. This suffices, as itis straightforward to check that Iy, C Iy

implies that I;,]]im(xl) - I;,]im(x’), and hence I;’,]Iim(xl) = ¢1(I;,llim(x’)) - ¢1(Ilevlim(x’)),

where the equality follows from the fact that I;’,l:m(x’) C Qe (); x(D].

Now let fi, f2,..., fx denote the system polynomials of Nj. Since Np is
monomolecular, the sum of all the system polynomials is 0, and thus, Iy, is generated
by fi,..., fk—1. Since N, doesn’t contain the species X1, ..., Xx_1, the polynomi-
als f1,..., fr—1 are also system polynomials of N (recall Remark 4.2). Therefore,
Iy, € Iy.andso, Iy C ¢y (15"™). O

Theorem 4.8 Let N be obtained by gluing two monomolecular networks N and N,
over a single reaction X j, — X j, or over a pair of reversible reactions X j = X j,.
If X j, does not belong to any other reaction in N, and X j, does not belong to any
other reaction in N1, then for every species Xy, the following holds fori =1, 2:

¢i(1§]1im(xé)) — I;,/liim(w) )
Proof Let N be obtained by gluing monomolecular networks N1 and N, over a single
reaction X j — X, or over a pair of reversible reactions X ;, = X j,. Let the species
set of Ny be Sy = {X1,..., Xj,—1, X}, X},}, and let the species set of N be S; =
{Xj, Xjp» Xji+1, ..., Xn}. Leti = 1. As explained in the proof of Theorem 4.7, it is

enough to show Iy, C Iy.Let fi,..., fj,—1, fj» fj, denote the system polynomials
of Nj. Since N; is monomolecular, I, is generated by f1, ..., fj, -1, fj, . Since every
reaction in N involving the species X1, ..., X, 1, X, appears in N1, it follows that
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fi.-.., fji=1, fj, are system polynomials for N. Hence, Iy, € Iy. Wheni = 2,
a similar argument can be applied, as all the reactions in N involving the species
Xj,, Xjp41, ..., X, appear in N;. O

The following result concerns networks for which we can use the elimination ideals
of N1 and N to directly compute the elimination ideal of N.

Theorem 4.9 Let N be obtained by gluing two monomolecular networks N and N3
over a single species, say, Xi. If the flow through Xy is unidirectional (i.e., whenever
X is the product of a reaction, the reactant is in N1, and whenever Xy, is the reactant,
the product is in Ny; or vice-versa), then, for every species X,

elim(xp) _ yelim(xp) elim(xg)
I = Iy" 4t

Proof We may assume that all reactions to X are from N and all reactions from
Xy are towards Np. Assume the species of Nj are X1, X3, ..., Xk, and those of
Ny are Xy, Xg+1, ..., Xs. Let f1, f2, ..., fr denote the system polynomials of Ny;
and let gx, gk+1, - - -, & denote those of N;. Then the system polynomials of N are
fis f2, ooy f=1, fx + &k» &k+1, - - - &. For monomolecular networks, the sum of all
system polynomials is 0. Thus, we can delete one polynomial (here, the k-th) from
those of NV, and still generate the steady-state ideal of N — and similarly for N1 and
Nj:

In = (f1,..., Si=1: 8k+1, .- &) = (f1, fas -+ -, Je—1) + (k415 8k425 - &) = Iny + 1IN, .

The variables (the x;’s and «;;’s) in fi,..., fr—1 are disjoint from those in
8k+1, - - -, &s- S0, a Grobner basis (with respect to an ordering for eliminating x¢)
of I, is obtained by taking the union of Grobner bases (with respect to the same
ordering) of each ideal Nj and N». The reason for this is, in Buchberger’s algorithm,
we need only take s-pairs of two polynomials with leading terms with at least 1 variable
in common (Cox et al. 2007, Chapter 2.9). Thus, we are done. O

4.3.2 Beyond monomolecular networks

In the future, we hope to generalize results we proved for monomolecular networks
to the non-monomolecular setting. Specifically, we pose the following problem:
Problem 4.10 Find conditions that guarantee the equality ¢; (Iﬁ}im) = 1/‘:',1}‘“.

We end this subsection with two examples involving non-monomolecular networks,
which may point the way toward progress on Problem 4.10.

Example 4.11 We revisit, from Example 4.6, the networks Ni = {X3 4 x 1+
X3, X4 ey X5} and Ny = {X4 =y X7, X» el X1 + X»}. Gluing over the shared
reaction X4 =y X», we obtain the network N = N U N; shown in (20). Recall that
the corresponding steady-state ideals are:

Iy = (kK1x3 +K3x2, K2X4), In; = (K2Xx4, K1x3), [N, = (K2X4, K3X2).
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In Example 4.6, we eliminated x3; here we instead eliminate x4, which gives:

I;}lim(m) — ( Ielim(X4) — Ielim()m) —

K1x3 +k3x2), Iy, (k1x3), Iy, (k3x2).

Notice that (for i = 1, 2) we have the equality ¢; (I,e\,lim(“)) = I,e\,liim(“).

Example 4.12 (Phosphorylation) Protein modification plays a crucial role in protein
activation and de-activation. Generally, an enzyme binds to a substrate, forms an
enzyme-substrate complex, and then modifies the substrate by adding, for instance, a
phosphate (phosphorylation) or removing one (dephosphorylation). Consider two one-
site phosphorylation cycles Ny = {So+E S X — S1+E, S1+F S Y — So+ F}
and N = {1+ E S X1 > S+ E, S+ F S Yy, —» S+ F}. Identifying
the shared complexes S; + E and also S; + F in each of the networks and gluing
over them, we obtain N = Nj U Nj, a two-site phosphorylation cycle (Feliu and
Wiuf 2012a). For every species j of N and for both networks, i.e., i = 1, 2, we have

li i li j . . .. . .
bi (I;lm(xj)) = Iz[lm(xj). This result is surprising, and it prompts us to ask, For which

protein modification networks does the equality ¢; (Ilf}im) = Ilf}iim hold?

4.4 Discussion

Decomposition results like the ones in this section are a common theme in algebraic
statistics and phylogenetic algebraic geometry (Allman and Rhodes 2008; Drton et al.
2009; Engstrom et al. 2014), and thus one of our aims is to deepen the interaction
between the fields of algebraic statistics and algebraic systems biology. A guiding
question for the future therefore is as follows: Can we use techniques from algebraic
statistics to analyze the steady-state invariants in larger classes of models?

Additionally, we hope that our results set the stage for obtaining more than just
steady-state invariants. Specifically, just as elimination techniques helped build a
framework for understanding a network’s capacity for multistationarity (multiple
steady states) (Feliu and Wiuf 2013a), in the future our results may also contribute to
understanding this topic, which we turn to next.

5 Multistationarity

For a network with a decomposition into two subnetworks, the previous sections related
its identifiability properties and steady-state invariants to that of the two subnetworks.
Now we turn to a third topic, multistationarity, and show through several examples
that this property is sometimes preserved and sometimes lost when going from a
subnetwork to a network.

5.1 Background

Recall that a steady state of a reaction kinetics system is a nonnegative concentration
vectorx* € R’;O at which the ODEs (1) vanish. We are interested in networks that admit
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multiple steady states, and if so whether these multiple positive states are stable (i.e.,
accessible). This is of particular biological importance for cellular decision making. If
a system has two positive steady states, but only one is ever stable, the system cannot
choose between states, for example, cell fate.

Definition 5.1

(1) A steady state x™* is nondegenerate if Im (df, (x*)|s) = S. (Here, df, (x*) is the
Jacobian matrix of f; at x™*.)

(2) A nondegenerate steady state is exponentially stable if each of the o := dim(S)
nonzero eigenvalues of df, (x*) has negative real part.

Also, we distinguish between positive steady states x* € R” , and boundary steady
* n n
states x* € (Rzo \ R>0)'

Definition 5.2 (1) A reaction network is multistationary if, for some choice of posi-
tive rate constants «;;, the resulting mass-action kinetics system (2) admits two or
more positive steady states in some stoichiometric compatibility class (4). Other-
wise, the network is monostationary.

(2) Analogously, a network is nondegenerately multistationary or multistable if
it admits multiple nondegenerate or exponentially stable, respectively, positive
steady states.

5.2 Monomolecular networks are not nondegenerately multistationary

We begin by showing that monomolecular networks are not nondegenerately multi-
stationary.

Proposition 5.3 If G is a reaction network in which each reactant complex is either
monomolecular or the zero complex, then G is not nondegenerately multistationary.

Proof Let G be a network in which all nonzero reactants are monomolecular. Let
P=u"+95n R, be a stoichiometric compatibility class of G, and let {k;;} be
any choice of positive rate constants. We must show that the resulting system does not
admit more than one nondegenerate positive steady state in P. The steady states in P

are the solutions of the system comprising the following equations:

(1) the equations obtained by setting all right-hand sides of the ODE:s to zero (these
are linear because the reactants of G are at-most-monomolecular), and

(2) the linear equations (x —x% v(@)) =0, where v(1), v(2), ..., v(T) form a basis
of St.

Thus, the steady states in P form the solution set of a system of linear equations; hence
there are 0, 1, or infinitely many. If there are infinitely many, then the set of steady
states in P is a positive-dimensional affine subset of P, and so every steady state in
‘P is degenerate. O

Remark 5.4 We can not remove ‘nondegenerately’ from the statement of Proposi-
tion 5.3. This fact was illustrated by Joshi and Shiu (2017) via the network G =
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{0 <~ A — 2A}. Its only reactant, A, is monomolecular. If the two rate constants are
equal, then every positive value of x4 is a degenerate steady state. When the two rate
constants differ, then the resulting system admits no positive steady states. Thus, G is
multistationary, but only degenerately so.

5.3 “Lifting” multistationarity from subnetworks and other networks

When can we “lift” multiple steady states from a subnetwork to the full network? That
is, from simply knowing that a subnetwork (or other related network) is multistationary,
when can we conclude that the full network is, too? Investigating this question is
currently an active area of research. A typical result in this area, described informally,
is as follows: if N is a subnetwork of G and both networks contain all possible flow
reactions, then if N is multistationary then G is as well (Joshi and Shiu 2013). Another
is the following: if N is obtained from G by removing “intermediate” complexes, then
if N is multistationary then G is too (Feliu and Wiuf 2013a). A survey of these types
of results is in (Joshi and Shiu 2015, §4), and additional results appear in recent work
by Banaji and Pantea (2018).

We end this subsection with a cautionary example, which illustrates why results in
this area are nontrivial. If a subnetwork of a given network is multistable, it is tempting
to conclude that the larger network is as well. As explained above, in some cases we
have results that guarantee that this will work, but this does not hold in general:

Example 5.5 (Having a multistable subnetwork does not imply multistability.) The
following network is multistable (Joshi 2013):

0« A 2A«3A.

However, adding the reaction A — B to the network yields a network with no positive
steady states (for any choice of rate constants). Indeed, the concentration of B goes to
00.

The main question guiding the remainder of this section is: for two networks N1
and N that are joined together in some way, how is the capacity for multistationarity
of the overall network related to that of N1 and N»? We are interested in two ways of
joining the networks: adding a single reaction from Np to N (Sect. 5.4), and “gluing”
over a (unique) complex that is common to both N1 and N; (Sect. 5.5).

5.4 Joining two networks by a new reaction

We show by example that by joining multistationary networks N1 and N> (with no
complex in common) by a new reaction (from a complex in N to one in N3), the new
network may be non-multistationary or multistationary.

Example 5.6 (Resulting network is not multistationary) The idea behind this example
is the following: if we add a new reaction to join one multistationary network Nj to
another one N, then if both networks are mass-preserving and their respective species
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sets are disjoint, then the new network “drains” all species concentrations from N1 and
hence no positive steady states exist. Concretely, let Ny = {3A = 2A+B, A+2B S
3B}, and let Ny = {3C <= 2C + D, C + 2D < 3D}. Clearly, the two networks
are equivalent. Each network is multistationary (multistable, in fact (Shiu 2008)).
However, adding the reaction 3A — 3C to join the two networks yields a network
with no positive steady states (for any choice of reaction rate constants).

Example 5.7 (Resulting network is multistationary) Let N = {0 <— A, 2A — 3A <«
4A},andlet N = {SA < 6A, TA — 8A < 9A}. Each network N; admits 2 positive
steady states (Joshi and Shiu 2017, §3). Adding the reaction 4A — 5A to join the two
networks yields a network that admits 5 positive steady states (Joshi and Shiu 2017).

Example 5.8 (Resulting network is multistationary, even if species sets of N| and N,
are disjoint) Let Ny = {0 = A, 2A — 3A}, and let N = {B < 2B, 3B — 4B}.
Each network N; admits 2 positive steady states (Joshi and Shiu 2017, §3). Adding
the reaction A — B to join the two networks yields a network that admits 4 positive
steady states (networks N1 and N are decoupled, so the maximum number of positive
steady states multiplies).

5.5 Joining two networks by gluing over a complex

The following examples show that by joining two multistationary networks N and
N; by a single shared complex, the resulting network may be non-multistationary or
multistationary.

Example 5.9 (Resulting network is not multistationary) Let Ny = {0 < A+B, 3A —
4A 4+ B},andlet Ny = {A+ B — 2A, 2A + 3B < 3A + 2B}. Each network N;
admits multiple positive steady states (Joshi and Shiu 2017). Gluing the networks over
the unique shared complex, A + B, yields a network that (it is easy to check) always
has a unique positive steady state.

Example 5.10 (Resulting network is multistationary) Let N = {0 = A, 2A — 3A},
and let N = {3A < 4A, 5A < 6A}. Each network N; admits 2 positive steady
states (Joshi and Shiu 2017). Gluing the two networks over the unique shared complex
3 A yields a network that admits 5 positive steady states (Joshi and Shiu 2017).

The above examples motivate some problems for future work.

Problem 5.11 Formulate necessary or sufficient conditions under which two multi-
stationary networks, when joined by a new reaction or glued over a complex, yield
another multistationary network.

We are also interested in obtaining a Bézout-type upper bound on the maximum
number of positive steady states arising when two networks are joined. Specifically,
if N1 admits m positive steady states, and N, admits my, does it follow that the
joined network admits at most mm, positive steady states? Finally, the biological
interest goes beyond multistationarity, to multistability, so we ask, when does joining
two multistable networks yield another multistable network?
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6 Discussion

As mentioned earlier, systems biology is in need of theory pertaining to what hap-
pens when biological pathways are joined or decomposed. Accordingly, this work
contributes to starting such a theory. Our results and examples investigated the effects
of joining or decomposing networks on three properties: identifiability, steady-state
invariants, and multistationarity. Many of our results focused on monomolecular net-
works, and we also provided initial steps for systems with higher molecularity. Going
forward, the techniques presented in this work could be used to extend our results to
more complex systems, such as bimolecular networks, including signaling networks
such as the so-called MESSI systems (Pérez Millan and Dickenstein 2018).

Another future direction is to extend our results to allow for more ways of joining
networks. For instance, our results on identifiability pertained only to joining networks
by a one-way flow, while our results on steady-state invariants focused on gluing
over complexes or reactions. It would be interesting, therefore, to prove identifiability
results for networks obtained by gluing over complexes or reactions, and also steady-
state invariants results for networks joined by a one-way flow. Indeed, this work forms a
starting point for understanding fundamental questions about joining and decomposing
networks, and opens new avenues for tackling more complicated networks.
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Appendix: Proof of Proposition 3.29

We prove Proposition 3.29, which we restate here in the language of compartmental
models:

Proposition A.1 Consider a linear compartmental model M = (&, In, Out, Leak),
with & = (V, E). Assume that there exists a compartment i such that the output-
reachable subgraph to i is &. Then for every j € V \ {i}, there exists an equation
of the form x; = g that holds (for generic values of the parameters ay;) along all

solutions of M, where g is a Q(ay;)-linear combination of the variable x; and the

(q) (q)

input variables up, (for p € In) and their derivatives x;"" and u,’, and the coefficient

(4) >

of at least one of the x;""’s is nonzero.

We first need Lemma A.2 below, which requires several definitions. A directed O-tree
T onvertices {0, 1, ..., n — 1} is a directed graph such that the underlying undirected
graphis cycle-free and forevery j = 1, ..., n—1thereisadirectedpathj — --- — 0
in T from j to 0. A walk in a directed graph is a sequence of edgesi| — ip — --- — i
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(repeated edges allowed). If W is a walk in an edge-labeled directed graph, then a"
denotes the product of the edge labels of W.

LemmaA.2 Letn > 2. Let T be a directed O-tree on vertices {0, 1, ..., n — 1} with
edgesi — j labeled by aj;. Let T be the directed graph obtained from T by adding,
for each edge i — j, a self-loop at vertex i labeled by —aj;. Let B denote the
(n — 1) x (n — 1) matrix where

B = Z av . Q1)

{length-i walks W in ffromj to 0}

Then det B, which is a polynomial in Qlaj; | i — j is an edge of T|, is nonzero.

Proof By construction, the determinant of 283 is as follows:

n—1
det®B = > sign(o) [] > av | . (22)

0ESH-1 i=1 \{length-o (i) walks W in T fromi to 0}

Reordering vertices of T reorders the columns of B, which only multiplies det B
by 1 or —1. So, we now reorder the vertices 1, ...,n — 1 of T, so that they are in an
order obtained from a breadth-first search (in the underlying undirected graph of T)
from vertex 0. In other words, vertices at distance 1 from O come first, then those at
distance 2, and so on. Hence, letting d(i) denote the distance of vertex i from 0, it
follows by construction that d(i) <.

Fori =1,....,n—=11et P(G) = (0 — j1 = - = Ja@i)-1 —>~O) denote the
unique path in 7 from i to 0. Let W (i) denote the length-i walk in T obtained by
prepending i — d(i) self-loops at i to the path P(i). The corresponding monomial
a @ is as follows:

W@ _ (_,. N—d@ . ... . . . .
a = (—aj;i) Ajidjjr - Ajaiy-ija)-i—190, jaiy—i +

It follows that the following monomial is in the expansion of det B:

M = a"D VD W=l

Specifically, this monomial is part of the summand in (22) where o is the identity

permutation.

Hence, to show that det B is nonzero, it suffices to show the following:
Claim: There is no other set of walks {Q(1), ..., Q(n — 1)}, such that there exists a
Remutation T € S,_1suchthat (fori =1,...,n — 1) Qi) is a length-7 (i) walk in

T from i to 0, and for which M = +a21q2®@ 420—1

We prove this claim by induction on 7, the number of vertices in 7. In the base
case, when n = 2, there is a unique walk (namely, 1 — 0) of length 1 from vertex 1
to 0.

For the inductive step, assume that for directed O-trees on (n — 1) vertices that are
“breadth-first-search ordered” (as explained above), the claim is true. Let T', as above,
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be a O-tree on vertices {0, 1, ..., n — 1}, and also let T and M be as above. Assume
that M = £a2MWa2®@ | 420=D 45 in the claim. We must show that W (i) = Q(i)
foralli=1,...,n—1.

Consider the vertex n — 1, and denote the unique path in 7 from n — 1 to 0 by
n— 1 — j1 = j2:- = jam-1—1 = 0. By the choice of ordering, n — 1 is a leaf of

T.S0,a; -1 d1V1des aV =D and ¢ 2@®=D put none of the other a¥ ©’s or a€@’s. In

fact, a;l f("l D divides ¢ =D , by construction of W(n — 1) and so a;’ ,'ﬁn] D also

divides ¢ 2D (here we use the fact that M = £a2(1q2®@ 40— 1)). However,

W (n—1) is the only walk W in Tthat(l)ends at0, (2) has length at mostn — 1, and (3)
n—d(n—1)

involves enough self-loops at n — 1 in order for a; -1

monomial V. Thus, On—-—1)=Wmn-—1).

Hence, aWWagW@ gWn=2 — 4,00,V  420=2) andthe correspond-
ing walks W (i) and Q(i) arise from the tree T’ obtained from T by deleting the leaf
n — 1. Notice that the vertices of T’ are “breadth-first search ordered”. So, by the
inductive hypothesis, W(1) = Q(1), ..., W(n — 2) = Q(n — 2). Hence, the claim
holds, and this completes the proof. O

to divide the corresponding

Proof of Proposition A.1 Let n denote the number of compartments. We may assume
n > 2, as otherwise there is nothing to prove. By relabeling the compartments, if
necessary, we may assume that i = »n and the remaining compartments are labeled by
1,2,...,n—1.

Our proof and notation follow the proof of (Meshkat et al. 2015, Lemma 3). We
write x’ = Ax + u, where A is the n x n compartmental matrix, with entries given
by:

—aoe — Y jysrep ke if €= jand ¢ € Leak

YR Y kt—keE ke if ¢ = jand £ ¢ Leak
b= ag; if j — £ is an edge of &
0 otherwise.

Let A denote the matrix obtained from A by removing row-n and column-n. Let a
(respectively, b) be the row (respectively, column) vector obtained by removing the n-th
entry from row-n (respectively, column-n) of A. Finally, let X := (x1, x2, ..., xn_l)T
and 7 := (uy, uz, ..., up—1)7, where u; := 0if j ¢ In.

Let B denote the followmg (n —1) x (n — 1) matrix: the first row is a, the second
row is aA, the third row is aA2, ..., and the last row is aA" 2. Consider the following
claim:

Claim A: For generic values of the ai,’s, the matrix B is invertible.

To prove this claim, we must show that det B, which is a polynomial in the ag,’s,
is nonzero. Relabel the vertex n in & by 0, and call this graph &’. Let T denote a
subgraph of @&’ that is a directed O-tree (such a subgraph exists by the hypothesis of
being output-reachable). Let T be the graph arising from 7 as defined in Lemma A.2,
and let B be the matrix (21).

We claim that B = B, ¢=0]¢—> j is not an edge of T}- To see this, note that

A |{aj[=0|gﬁ jis notan edge of 7} 18 the adjacency matrix for the graph To obtained by
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deleting vertex 0 from T Hence, the (i, i) entry in (A) l{a {aj¢=01¢— j is not an edge of T}

is a sum of monomials a", where the sum is over walks W in Ty of length k from i tois.
The vector a encodes the directed edges £ — 0, and so itis straightforward to check that
the a(Ak) |{a/g=0|€—>j is not an edge of T}7S, i.e., the rows of B |{a_,yg=0\£—>j is not an edge of T'}»
form the matrix B as in (21).

Hence, using Lemma A.2, we obtain:

det B|{a_,~g=0|l—>j is not an edge of T} = detB # 0.

Hence, det B # 0, and so Claim A holds.
As explained in the proof of (Meshkat et al. 2015, Lemma 3), solutions to the model
M satisfy BX = ¢, where c is the vector of length n — 1 that decomposes as follows:

/
Xy — ApnXn — Un

x,(,z) — Aux), — u), — (abx, + ak)
c = :

xr(;k) — Agpx ’(lk 1) uglkfl) _ Zk 2 (aAk 2— /bx(J) + adk-2- ju(j))

x,/1 — Apnxp
x,(,z) — Ayx,, — abx,

.Xr(lk) — Appx r(lk D Z/ OaAk 2= fbx(J)

Un
u, + au
_ : IO
w4 Zk 2 aAk—2—iz()
where u, := 0 if n ¢ In. Each coordinate of ¢ is a Q(ay;)-linear combination of

the variable x,, and the input variables u,, (for p € In) and their derivatives x(Q) and

(q) . Therefore, as B is invertible (for generic values of the ay;’s), then we obtain the
desued equations g;:

}‘ = B_lc =: (g]5g29"'5gn71)T7

once we verify the following claim:

Claim B: In each gy, the coefficient of at least one of the x(q)’s is nonzero.

@ Springer



E. Gross et al.

To show this claim, assume for contradiction that, in some g, the coefficient of
every x,(,q) is zero. Then, by the above decomposition, we obtain (B~ '¢™)), = 0 (the
zero polynomial). In other words, letting d denote row-/ of B~!, we have (d, c®) = 0.

We will show that d is the zero vector. Among the coordinates c;.x) (for j =

(x)

n—1°
x,&n_l). So, in order for (d, ¢} = 0, we must have that d,—; = 0 (here we use the
fact that the coordinates of d are in Q(ay;)). Next, letd and ¢ be the vectors obtained
by removing the last coordinate from, respectively, d and ™). We have (d, E'(x)) =0,
and so we can apply the same argument as above to obtain that d,,_, = 0. Continuing,
we obtain that every coordinate of d is zero. We have reached a contradiction, and so
Claim B holds. This completes the proof. O

1,....,n—1)of ™), only the last coordinate, namely, ¢ contains as a summand

Corollary A.3 Every output connectable linear compartmental model is algebraically
observable.

Proof Consider a linear compartmental model M = (&, I'n, Out, Leak) that is out-
put connectable. Let £ be any compartment. If £ € Out, then the state variable x; is
itself an output variable, and so is already written in terms of output variables.

So, assume that £ ¢ Out. As the model is output connectable, there exists i € Out
such that there is a path from £ to i. Let & denote the output-reachable subgraph to
Yi-

It is straightforward to check that the restriction of M to &’ (Definition 3.9) satisfies
the hypotheses of Proposition A.1 with respect to i. Also, the ODEs of M are obtained
from those of the restriction by appending the ODEs for state variables x (t) with j
not in the vertex set of & (see the proof of (Gross et al. 2019, Lemma 3.7)). Thus, the
equation x; = g obtained from Proposition A.1 expresses x¢ as a function of x;, the
inputs, their derivatives, and the parameters. Thus, by Diop and Wang (1993), M is
algebraically observable. O
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