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ABSTRACT

Three-dimensional (3D) deformation of two-dimensional materials offers a route toward band structure engineering. In the case of graphene,
a spatially nonuniform deformation and strain are known to generate an effective magnetic field, i.e., a pseudomagnetic field, although exper-
imental realization of this effect in electronic devices has been challenging. Here, we engineer the 3D deformation profile of graphene to
create a strain superlattice and study the resultant magnetotransport behavior both experimentally and via quantum transport simulations.
We observe a weakening of superlattice features as we increase the magnetic field, which we find to be consistent with competing interactions
between the external magnetic field and the strain-induced pseudomagnetic field. Our results demonstrate that strain superlattices are
promising platforms to modulate the band structure and engineer the electronic transport behavior in graphene.
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Graphene, a two-dimensional (2D) hexagonal lattice of carbon
atoms, allows versatile engineering of electronic phases at the atomically
thin device scaling limit. While intrinsic graphene exhibits massless
Dirac fermion states,1,2 in the presence of mechanical deformation, gra-
phene’s band structure can change significantly.3–14 Theoretically, a two-
dimensional strain field uijðx; yÞ in graphene gives rise to a gauge field

A ¼ b
a

uxx � uyy
�2uxy

� �
, where a and b are constants related to the lattice

length and hopping parameter, respectively.3,4 This gauge field produces

a pseudomagnetic field Bps ¼ @Ay

@x � @Ax
@y , which modulates graphene’s

band structure in the same way as an external magnetic field, except that
Bps has opposite signs at the two valleys K and K 0.4 Since Bps is deter-
mined by the spatial gradients of the strain tensor uijðx; yÞ, a nonzero
Bps requires a spatially nonuniform strain. Carefully designed spatial
profiles of Bps are predicted to exhibit various mesoscopic effects ranging
from zero-field quantum Hall states to topological insulating phases.4–8

However, in realistic experimental systems demonstrated so far, such as
graphene nanobubbles, ridges, and drumheads, there is limited control
of the spatial distribution of Bps.9–11 Oftentimes the strain and Bps are
strongly localized, resulting in a localized wave function.6,11 While the

presence of Bps has been observed via local probe measurements,9–11 due
to the random nanoscale fluctuations, the effect of Bps on electronic
transport in a mesoscopic system has been elusive.

To understand the impact of nonuniform strain on device-level
behavior, we fabricated a system where strain varies periodically across
the whole graphene channel. The periodic strain variation generates
additional Dirac points, i.e., superlattice Dirac points (SDPs), in the
band structure of graphene, which can be observed by electronic trans-
port measurements.15 This strain superlattice was achieved by deposit-
ing graphene on an array of SiO2 nanospheres (NSs), where graphene
experiences a periodic strain variation with a magnitude up to �2%.16

We previously confirmed superlattice transport under no external mag-
netic field.15 Here, we study the magnetotransport behavior of this sys-
tem to probe the possible effects of a pseudomagnetic field.

The device schematic is shown in Fig. 1(a), where the NS diame-
ter is �20nm, the SiO2 film (300nm thick)/Si substrate serves as the
gate dielectric and back gate, and Au serves as the top contact for gra-
phene. The NSs form a nearly periodic hexagonal close-packed pat-
tern, as shown in the scanning electron microscopy image [Fig. 1(b)].
The device geometry and Dirac point positions are summarized in
Table I. For the given NS size, the SDPs are expected to occur at
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n¼64n0 (61� 1012 cm�2),17–21 where n0 ¼ 2:5� 1011 cm�2 cor-
responds to 1 electron per superlattice unit cell. This factor of four
comes from the fourfold degeneracy in the valley and spin degrees of
freedom in graphene. At the SDPs, the density of states is nearly zero,
and the conductance is expected to drop below the normal value. The
predicted conductance dips at the SDPs, with a strain-dependent mag-
nitude, has been previously observed in these strain superlattice
devices.15

It has also been shown that different graphene-on-NS devices
exhibit different strain magnitudes.15 This device-to-device variation is
likely induced by the device fabrication processes which can lead to a
partial strain release. For the current study, we use two superlattice
devices having different strains, together with a control device—flat,
unstrained graphene on a SiO2/Si substrate (with the same 2-terminal
Au contacts). The two graphene-on-NS devices are marked “low-
strain” and “high-strain” (Table I), corresponding to devices having
smaller and larger superlattice conductance dips (at zero external mag-
netic field), respectively.15 The magnetotransport data of these three
devices are shown in Figs. 2(a)–2(c). For each device, we measure the
conductance (G) as a function of the gate voltage (VG) and magnetic
field (B), convert the gate voltage to carrier density (n), and plot dG/dn
as a function of n and B.15 These 2D plots are typically referred to as

the Landau fan diagrams. In these plots [Figs. 2(a)–2(c)], the blue
regions, with dG/dn� 0, correspond to either conductance plateaus or
conductance dips. All the measurements are performed at 2K.

For the control device [Fig. 2(a)], we observe the standard half-
integer quantum Hall effect of graphene,1,2 with plateaus occurring at
filling factors � ¼ n/0=B ¼ 62;66;610;… (labeled by black
arrows), where /0 is the flux quantum. The Landau fans of each pla-
teau can be linearly traced to the main Dirac point (DP). In the low-
strain superlattice device [Fig. 2(b)], plateaus show up at the same fill-
ing factors as those of the control device when B> 4 T (black lines and
arrows). However, at lower fields, new conductance dip features emerge
from superlattice Dirac points (SDPs) at n ¼ 64n0 (61� 1012 cm�2)
(red lines and arrows). At n ¼ �4n0, the Landau fans follow superlat-
tice filling factors �s ¼ �2; while at n¼ 4n0, there is a fan feature with
�s ¼ 2. The assignment of the exact filling factor numbers may not be
fully accurate at this low-field range, due to the broad width of the con-
ductance dip features (originating from the disorder in the NS packing
structure), but the trend in evolution of the Landau fans with the mag-
netic field is clear. For the high strain device [Fig. 2(c)], besides the pla-
teaus with filling factors � ¼ 62 originating from the main DP (black
lines and arrows), there are fan structures with �s ¼ 62 emerging
from the SDP at n ¼ �4n0 (red lines and arrows). These conductance
dip/plateau features extend to the maximum measured field B¼ 9 T at
both sides of the SDP, in contrast to the weak strain device where the
superlattice fans disappear around 4T.

The weakening of superlattice features under a finite magnetic
field has not been experimentally observed before in graphene
superlattice systems. In fact, the previously studied graphene/boron
nitride superlattice systems show pronounced superlattice features
under a magnetic field as high as 45 T,21 corresponding to a
Landau gap of about 240meV. This is much higher than the super-
lattice modulation amplitude, estimated to be only 10–50meV for
graphene/boron nitride.19,20 The reason why the electrostatic
superlattice effect is observed at a high external magnetic field is
because the periodic on-site electrostatic potential modulation is
independent of the external field.

Unlike the graphene/boron nitride system, we estimated that the
magnitude of electrostatic potential and charge doping in our superlatti-
ces is too small (less than random doping fluctuations) to induce any
observable superlattice effects.15 We thus expect that the susceptibility of
superlattice modulation to the magnetic field in our system is related to
strain-induced effects, which need to be treated in the framework of the
pseudomagnetic field. The pseudomagnetic field arises due to the modu-
lation in the hopping constants between neighboring sites in the tight-
binding picture. Due to this modulation, the charge carrier acquires a
modified phase as it travels from one site to the other, similar to the
Peierls substitution under an external magnetic field. As a result, the
effective local magnetic field is given as Beff ðrÞ ¼ Bþ BpsðrÞ, where B is
the applied external field and BpsðrÞ is the inhomogeneous pseudo-
magnetic field induced by the strain. Under zero or a low magnetic
field, the band structure is modified by the periodically placed local-
ized disorders. When such periodicity is strong enough to induce a
superlattice miniband, we will observe the secondary Dirac points.
In the presence of a large external magnetic field, the system should
be analyzed in the framework of the quantum Hall effect in the pres-
ence of disorders, which broaden or add fine structures in incom-
pressible regions. Therefore, the secondary Dirac point may not be

FIG. 1. (a) Schematics of the graphene strain superlattice device, which consists of
2-terminal Au contacts, graphene, SiO2 nanospheres (�20 nm diameter), SiO2

dielectric (300 nm thick), and nþþ Si as the back gate. (b) Scanning electron
microscopy (SEM) image of the SiO2 nanosphere assembly.

TABLE I. Channel length (L) and width (W) of all the devices.

Device
Experimental,

controlb
Experimental,
low-strainc

Experimental,
high-strainc Simulation

L (lm) 1.65 1.8 2.2 0.248
W (lm) 1.8 1.5 1.6 0.212
Dirac
point (V)a

9.6 23.0 13.7 0

aThe Dirac point is defined as the gate voltage at which the conductance is minimum.
bThe control device consists of unstrained graphene on the flat SiO2 substrate.
cThe strain magnitudes in the graphene-on-NS devices are qualitatively compared using
the magnitudes of the superlattice conductance dips (at zero external magnetic field).

Applied Physics Letters ARTICLE scitation.org/journal/apl

Appl. Phys. Lett. 115, 143508 (2019); doi: 10.1063/1.5125462 115, 143508-2

Published under license by AIP Publishing



observed once the magnetic field is strong enough to drive the sys-
tem into the quantum Hall regime. The crossover between the
superlattice effect and quantum Hall effect may occur near the point
where the external field is close to the average magnitude of the
pseudomagnetic field.

To quantitatively analyze the possible role of strain in the magne-
totransport features, we perform quantum transport simulations using
a tight-binding model. We write the Hamiltonian of graphene as:15

H ¼
X
n

X
a¼1;2;3

½ta rnð Þeiua;n c†A rnð ÞcB rn þ dað Þ þ h:c:�

þ
X
n

V rnð Þ½c†A rnð ÞcA rnð Þ þ c†B rn þ d1ð ÞcB rn þ d1ð Þ�; (1)

where cA rnð Þ and cB rnð Þ are the electron annihilation operators at site
rn ¼ ðxn; ynÞ of the sublattice A and B, respectively, at the nth unit
cell. V rnð Þ is the on-site potential at position rn. a ¼ 1; 2; 3 corre-
sponds to the nearest neighbor, hopping from the A to B sublattice
in three different directions. These nearest neighbor vectors can be
written as

d1=a ¼ 0; 1ð Þ; d2=a ¼ � ffiffiffi
3

p
=2;�1=2

� �
;

d3=a ¼ ffiffiffi
3

p
=2;�1=2

� �
;

(2)

where a is the lattice constant of graphene. ta rnð Þ is the hopping con-
stant at position rn in the direction da. In the presence of an external
magnetic field (B), the Peierl’s substitution introduces the phase term
in the Hamiltonian:22

ua;n ¼
e
h

ðrnþda

rn

A � dl: (3)

Here, we use the vector potential A ¼ �Byx̂ . In the case of graphene,
the phase factors become

u1;n ¼ 0; u2;n ¼ �u3;n ¼
2p
3
BA0

U0

yn
a
þ 1
4

� �
; (4)

where A0 ¼ 3
ffiffiffi
3

p
a2=2 is the area of the unit cell and U0 ¼ h=e is the

flux quantum.
In the presence of strain and lattice distortion, the hopping

parameter (t) changes to

FIG. 2. Experimental (a)–(c) and simulated (d)–(f) magnetotransport results. The experimental results are shown as 2D plots of dG/dn as a function of carrier density (n) and mag-
netic field (B) for a control device of flat, unstrained graphene (a), a low strain superlattice device (b), and a high strain superlattice device (c). At n< 0, the sign of dG/dn is
reversed so that larger values represent higher absolute slopes in the G vs n curve. The solid and dashed lines/arrows mark the Landau fans emerging from the main DPs and
SDPs (n � 64n0;68n0, where n0 ¼ 2:5� 10�11 cm�2), respectively. The scale of dG/dn is normalized by the same factor in the three plots (a)–(c), where zero corresponds
to conductance plateaus with no slope change. The measured carrier density range is limited by the mechanical stability of the devices under large gate voltages, likely due to the
presence of suspended parts of graphene between adjacent NSs. (d)–(f) are the simulated 2D plots of dG/dn for a control system with no strain (d), a low-strain system (e), and a
high strain system (f). Similar to the experimental results, the conductance dip/plateau features originating from the main DPs and SDPs are marked by lines/arrows.
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t þ dt ¼ t exp �b a0=a� 1
� �� �

; (5)

where a0 and a are the bond length of the strained and unstrained gra-
phene, respectively, and b ¼ 3:37.23

We use the experimentally imaged NS profile [Fig. 1(b)] to con-
struct the superlattice deformation pattern of graphene, and then for-
mulate the Hamiltonian using Eq. (1). We simulate the conductance
using the nonequilibrium Green’s function (NEGF) method.24 The
simulated magnetotransport results are shown in Figs. 2(d)–2(f). The
simulated control device, an intrinsic, unstrained graphene, shows
the standard half-integer quantum Hall effect that is commonly
observed in graphene1,2 [Fig. 2(d)], which is very similar to the corre-
sponding experimental data shown in Fig. 2(a). In the presence of spa-
tial strain variations in graphene, with a magnitude of �1.9% and
�6.8%, the simulated results are shown in Figs. 2(e) and 2(f). In both
systems, superlattice conductance dips at n¼ 64n0 develop at B¼ 0 T.
In the low strain system [Fig. 2(e)], this dip feature extends up to �2T
(with filling factors �s ¼ �2 or 2). In the high strain system [Fig. 2(f)],
this feature goes up to �4T (�s ¼ �2 or 2); at higher fields, Landau
fans follow the same pattern as normal, uniform graphene. This
behavior is qualitatively consistent with the experimentally observed
features in Figs. 2(b) and 2(c), and confirms that superlattice effects can
survive up to higher magnetic fields when the system is more strongly
strained. Note that the simulated results are not completely identical to
the experimental data in terms of the range of magnetic field where
superlattice Landau fan features exist. One possible reason is that
the experimental deformation profile of graphene deviates from the
simplified Gaussian height profile used in the simulations.15 It is likely
that the strain in graphene shows large spikes on top of the nanospheres,
which result in a stronger pseudomagnetic field effect than the simulated
system with smooth Gaussian variations.

Since the superlattice magnetotransport is sensitive to strain mod-
ulation, both experimentally and in the simulations, we expect the pseu-
domagnetic field to play a role in magnetotransport. An external
magnetic field (B) leads to spatially uniform Landau quantization and a
global energy gap, while the strain modulation results in a spatially vary-
ing pseudomagnetic field (Bps) and local energy gap.4 As shown in
Fig. 3, if the pseudomagnetic field dominates (Bps � B), superlattice
effects will prevail; if the external magnetic field is much higher than the
pseudomagnetic field (Bps 	 B), however, the system will have a nearly
spatially uniform Landau gap and exhibit the standard quantum Hall
effect of normal graphene. When the external magnetic field is of similar

magnitude to the pseudomagnetic field (Bps � B), we expect the elec-
trons to be partially localized at local spots with the maximum Bps, and
partially localized at the edge (induced by the external field). As the
external field becomes larger, there can be a transition for the electrons
to be fully edge-localized, which induces a change in the transport fea-
ture (from superlattice transport to the quantumHall effect).

In the above analysis, we assumed that the real and pseudomag-
netic fields can be directly added, for each valley state of graphene.
This can be derived from the tight-binding model of graphene, as
shown in the supplementary material.

In summary, we have studied the magnetotransport behaviors of
a strain superlattice of graphene. We observed a transition from super-
lattice transport to the quantum Hall effect as the external magnetic
field increases, likely due to the competition between the real and
pseudomagnetic field. Precise engineering of strain and pseudomag-
netic field patterns in graphene can enable a variety of low-dissipation
electronics and valleytronics device applications.4–8

See the supplementary material for the magnetotransport curves
and derivation of the additivity of real and pseudomagnetic fields.
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