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1. Introduction

A neural code on m neurons is a subset of 2l where [n] = {1,...,n}; determining
which neural codes are convex remains a central open problem in this area. The broadest
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family of codes known to be convex consists of maz-intersection-complete codes, those
codes closed under taking intersections of maximal elements [2,4]. Recently, Curto et
al. [4] asked for an algebraic signature for max-intersection-complete codes.

Here we answer the question of Curto et al. Our main result, Theorem 1.1 below,
gives a characterization for when a code is max-intersection-complete in terms of the
canonical form of its neural ideal (Definitions 2.3 and 2.4) and the Stanley—Reisner ideal
I(A(C)) of its simplicial complex A(C') (Definitions 2.7 and 2.8).

Theorem 1.1. A code C' on n neurons is max-intersection-complete if and only if for
every non-monomial ¢ in the canonical form of the neural ideal of C, there exists i € [n]
such that

(i) every associated prime of I(A(C)) that contains x; also contains ¢, and

(i)) (1-x;) | .

We remark that Theorem 1.1 can be turned into an algorithm to verify whether a
code is max-intersection-complete. This algorithm’s runtime is sub-exponential in the
input size, where the input consists of the maximal codewords of a code C' as well as its
canonical form CF(J¢). On the other hand, the known algorithms for computing CF(J¢)
are exponential. More details on the computational aspects of Theorem 1.1 can be found
in Section 6, which also includes an infinite family of codes for which Theorem 1.1 is
more efficient at verifying max-intersection-completeness than brute-force checking of
intersections of maximal codewords (see Proposition 6.2).

To prove Theorem 1.1, which translates a property of a code to a property of its neural
ideal, we introduce a new combinatorial object, the factor compler of a code. This is a
simplicial complex that, like the neural ideal but unlike A(C), captures all the combina-
torial information in a code C'. We are therefore able to elucidate the relationships among
codes, their factor complexes, and their related ideals (neural ideals and Stanley—Reisner
ideals) — and then use these results to characterize being max-intersection-complete in
terms of the factor complex. Finally, this combinatorial criterion directly translates into
an algebraic criterion, Theorem 1.1 above.

Along the way, we give a new characterization of intersection-complete codes — those
codes that are closed under taking intersections of codewords. Our characterization is
combinatorial, via the factor complex, in contrast to a prior algebraic characterization
through the neural ideal [4]. Indeed, we expect in the future that the factor complex may
help us understand more properties of neural codes.

Our work fits into the literature on neural codes as follows. Like previous works,
we are motivated by the question of convexity in neural codes [3,6,14-16,19,21], with a
specific interest in using neural ideals to study convexity [5,7,8,10,11,17]. Also, our factor
complexes are motivated by the closely related polar complezes introduced recently by
Guntiirkiin et al. [9] (see also [1,11]).
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Outline

This article is organized as follows. Section 2 contains background material, and Sec-
tion 3 gives our main results. In Section 4, we prove relationships among codes, their
factor complexes, and their neural or Stanley-Reisner ideals, and Section 5 relates factor
complexes and polar complexes.
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2. Background

Throughout this article, C' is a neural code on n neurons, that is, a subset of 2[™,
where [n] = {1,2,...,n}. Elements of C are called codewords, and may be represented
as subsets of [n] or as n-tuples of zeros and ones, where a 1 in position 4 indicates that
i belongs to the codeword.

Given ¢ c d c [n], the Boolean interval between ¢ and d is

[e,d] = {we2l™ |ccwcd).
The complement of a code C' on n neurons is the code
¢ =20\ c. (1)

Convention. In this article, we assume that @ ¢ C' ¢ 2["], so that the neural ideals (defined
below) of C' and C’ have primary decompositions.

Definition 2.1. Let C' be a code. The intervals of C' are the Boolean intervals contained
in C. The maximal intervals of C are the intervals of C' that are maximal with respect
to inclusion.

Example 2.2. For the code C = {@,2,3,12,13} = {000,010,001,110,101}, the maximal
intervals are [@,2], [@, 3], [2,12], and [3,13].
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2.1. Neural ideals and the canonical form

The main reference for this section is [5].

We denote by Fy the field with two elements, and let R = Fo[x1,...,2,] = Fo[z]. A
pseudomonomial is a polynomial [T;c, ;i [1;e,(1 - ;) € R, where 0,7 c [n] are disjoint.
A pseudomonomial ideal is an ideal generated by pseudomonomials. If ¢ € 20" the
pseudomonomial

do=[Te: J] (1-=;) (2)

i€c  je[n]\e
is called the indicator polynomial of c.

Definition 2.3. The neural ideal Jo of a code C is the (pseudomonomial) ideal generated
by the indicator polynomials of its non-codewords; in symbols,

Jo = (¢ | ceC").

Note that, using the convention that n-tuples of zeros and ones represent codewords,
the zero-set of Jo is C. In other words, the code C' and its neural ideal contain the same
information. Moreover, any ideal generated by pseudomonomials is the neural ideal of a
code [13, Theorem 2.1].

The neural ideal Jo has a unique irredundant decomposition

g
JC: ﬂpha (3)
h=1

where each P}, is a pseudomonomial ideal that is prime [5, Proposition 6.8]. In particular,
Jeo is a radical ideal. We remark that a pseudomonomial ideal P is prime if and only if
it is of the form

P=({z;|iec}u{(l-x;)|jer}) for o7 disjoint subsets of [n]. (4)
Definition 2.4. Let J c R be a pseudomonomial ideal. A pseudomonomial in J is minimal
if it is minimal with respect to divisibility among all pseudomonomials in J. The canonical
form of J is the set CF(J) of all minimal pseudomonomials of J.

The canonical form of a pseudomonomial ideal is a generating set for the ideal [5].
Example 2.5 (Example 2.2, continued). The complement of the code C = {@,2,3,12,13}

is C' = {1,23,123}. Thus, the neural ideal of C is Jo = (z1(1 - z2)(1 - x3), zax3(1 -
21), x122x3), and the canonical form is CF(J¢) = {1 (1 — 22)(1 —x3), x2x3}.
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2.2. Polarization and squarefree monomial ideals

Let S =Fa[z1,...,Tn,Y1,---,Yn] = Fo[x,y].
The idea of using y; to encode 1 — z; is well known (see, for instance, [12,20]). In the
context of neural ideals, the following construction was introduced in [9].

Definition 2.6. The polarization of a pseudomonomial ¢ = [T;c, 7 [Tje, (1 - ;) € R is

P(9) = H%Hyg es.

€0 JeT

If J ¢ R is a pseudomonomial ideal, the polarization of J is the ideal in S obtained by
polarizing the pseudomonomials in the canonical form of J, that is,

P(J):=(P(¢) | ¢ CF(J))cS.

Note that the polarization of a pseudomonomial ideal is a squarefree monomial ideal
in S, that is, an ideal generated by monomials that are not divisible by the squares of the
variables (so, P(J) is radical). We recall the relationship between squarefree monomial
ideals and simplicial complexes.

Definition 2.7. Let A be a simplicial complex on [n], and let k be a field. The Stanley-
Reisner ideal of A is

I(A):= (I_IacZ |o¢ AYcklzy,...,zn]
The ideal I(A) is radical, with prime decomposition

I(A) = N (wili¢o). (5)

oeFacets(A)

It follows that A can be recovered from I(A). In fact, (5) can be used to conclude that

any squarefree monomial ideal is the Stanley—Reisner ideal of some simplicial complex.

Definition 2.8. The simplicial complex of a code C is A(C), the smallest simplicial com-
plex containing C. Its Stanley—Reisner ideal is denoted by I(A(C)) c R = Fo[x].

It is a fact that I(A(C)) is generated by the monomials in CF(J¢) [5, Lemma 4.4].

Example 2.9 (Ezample 2.5, continued). For C = {@,2,3,12,13}, the simplicial complex
A(C) has two facets, 12 and 13. The corresponding Stanley—Reisner ideal is I(A(C)) =
(xox3), which is generated by the unique monomial in the canonical form CF(J¢g) =
{z1(1-22)(1 - 23), x223}.
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In this article, we work with squarefree monomial ideals in S = Fa[z,y] that arise
from polarization. In order to construct their corresponding simplicial complexes, we use
{1,...,n,1,...,7} as a vertex set, with the understanding that z; corresponds to 4, and
y; corresponds to 7. If B c [n], we denote B = {i |i € B}. In particular,

[n]={1,...,n} and [n]u[n]={1,...,n,1,...,7}.

We always use overline notation to denote subsets of [n]; this is justified, as any subset

of [n] is of the form B for some B c [n].

Remark 2.10. As noted above, the ideals that are associated to codes (the neural ideal
Jo, the ideal T(A(C)), and later the factor ideal FI(C)) are radical ideals, that is, they
can be expressed as intersections of prime ideals. We emphasize that the sets of associated
primes, minimal primes, and primary components of a radical ideal all coincide.

3. Main results

In this section we introduce a new combinatorial tool to study neural codes: the
factor complex (Definition 3.1), and state our four main results. Theorems 3.3 and 3.4
summarize the relationships among codes, their factor complexes, and their related ideals
(neural ideals and Stanley—Reisner ideals). These results are used to prove Theorems 3.6
and 3.7, which characterize intersection-complete codes and max-intersection-complete
codes in two ways: combinatorially and algebraically.

Definition 3.1. Let C' be a code on n neurons, and recall the primary decomposition of
the neural ideal Jo given in (3). The factor ideal of C is obtained by polarizing the
components of Jo, namely,

FI(C) = (1 P(Py).
h=1

The factor complez An(C') of C is the simplicial complex on [n]u[n] whose Stanley—
Reisner ideal is FI(C). A face of An(C) is defective if it contains neither i nor i for some
i € [n] (we think of  as a defect, or flaw); faces that are not defective are called effective.
We say that B c [n] is a prime-set of An(C) if [n]U B ¢ An(C), and B is furthermore
minimal if B is minimal with respect to inclusion among prime-sets. Lemma 4.5 gives
the reason why we chose this terminology.

Example 3.2 (Ezample 2.9, continued). For C' = {1,23,123}, the neural ideal decomposes
as follows:

Jor=((1-z1)(1-23), (1-21)(1-22), 22(1 -23), 3(1-22))

= (J?Q,.’Eg, 1 —1‘1) n <1 — T2, 1 _$3>'
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The factor ideal is therefore

FI(C,) = <x27x37y1> n (y27y3>7

and so the two facets of the factor complex A,(C") are 123 and 1231 (both are effective).
The minimal prime-sets of A,(C") are {2} and {3}.

Theorem 3.3 (Codes, factor complezes, and neural ideals). Let C be a code on n neurons,
and C' its complement code defined in (1). The following two maps are bijections:

{pseudomonomials in Jo:} <« {intervals in C} — {effective faces of An(C)}
Mice Ti [jepnaa(l —25) < [c,d] > duln]~ec

Moreover, every facet of Ar(C) is effective, and the following are equivalent:

(1) [c,d] is a mazimal interval in C,
(2) [Ticc i Hje[n]\d(l - xj) € CF(JC’)7 and
(8) du[n]~cis a facet of Aq(C).

Theorem 3.4 (Codes, factor complezes, and Stanley—Reisner ideals). Let C' be a code on
n neurons, with complement code C" and factor complex An(C). The following two maps
are bijections:

{minimal primes of I(A(C))} <« {mazimal codewords of C} — {

minimal prime-sets }

of An(C")
(i |te[n]~M) i M - [n]\M

The proofs of Theorems 3.3 and 3.4 are postponed until Sections 4.1 and 4.2, respec-
tively.

Example 3.5 (Ezample 3.2, continued). According to Theorem 3.3, the facets 123 and
1231 of An(C") correspond to the two maximal intervals of C’, [1,1] and [23,123],
respectively, and also to the two pseudomonomials in CF(J¢), namely, 21 (1-22)(1-23)
and xox3, respectively.

Similarly, Theorem 3.4 implies that the minimal prime-sets {2} and {3} of A,(C")
correspond to the minimal primes (z2) and (z3) of I(A(C)) = (z2x3) and also to the
maximal codewords 13 and 12 of C.

The following result translates the algebraic characterization of intersection-complete
codes from [4] into a new combinatorial criterion.

Theorem 3.6 (Intersection-complete codes). Let C be a code on n neurons with neural
ideal Jo, and let C' be the complement code of C with factor complexr A-(C"). The
following are equivalent:



8 A. Ruys de Perez et al. / Advances in Applied Mathematics 114 (2020) 101977

(1) C is intersection-complete,
(2) every pseudomonomial T] x; [1(1-x;) in CF(Jc) satisfies |T| <1, and

€0 JeT

(3) every facet F of An(C") satisfies |Fn[n]|>n-1.

Proof. The equivalence between (1) and (2) is [4, Theorem 1.9]. By Theorem 3.3,
[T z; [T1(1-z;) belongs to the canonical form of Je¢ if and only if F' = [n]~Tu[n]\ o is

€0 JeT
a facet of An(C"). Thus, the condition |7| < 1 is equivalent to |F'n[n]| >n—-1, and so (2)
is equivalent to (8). O

The following result is an expanded version of Theorem 1.1.

Theorem 3.7 (Maz-intersection-complete codes). Let C be a code on n neurons with neu-
ral ideal Jo, and let C' be the complement code of C with factor complex An(C"). The
following are equivalent:

(1) C is maz-intersection-complete,
(2) for every facet F' of An(C") that does not contain [n], there exists i € [n] such that
(i) every minimal prime-set of An(C") that contains i also contains some j such
that 5 ¢ F, and
(ii) i ¢ F,
(3) for every ¢ € CF(J¢) that is not a monomial, there exists i € [n] such that
(i) every minimal prime of I(A(C)) that contains x; also contains ¢, and

(i) (1-zi)|¢.

Proof. We begin by proving (2)«<(3). By Theorem 3.3, ¢ = [T;cc Zi [1je[n]wa(l — 75) €
CF(J¢) if and only if F = du[n]~cis a facet of Aq(C’). Furthermore, ¢ is a non-
monomial exactly when d 2 [n], if and only if F does not contain [n]. Thus, by inspection
of ¢ and F, (2)(ii) is equivalent to (8)(ii), and so we need only show (2)(i)<(5)(i).

By Theorem 3.4, the prime ideal P = (z; | j € B) is associated to I(A(C)) if and
only if B is a minimal prime-set of A,(C’). Thus, x; € P exactly when i € B. Next, it
is straightforward to check that P contains ¢ = [],c. x; Hje[n]\d(l - x;) if and only if
Bnc+ @. As ¢ corresponds to the facet F' = du [n] \ ¢ of Aq(C’), it follows that P
contains ¢ if and only if j ¢ F' for some j € B. This concludes the proof of (2)< (3).

We set up notation needed to prove (1)< (2). Let B1,..., B, be the minimal prime-
sets of An(C"). By Theorem 3.4, the maximal codewords of C are m; = [n]\By,...,m, =
[n]\ By.

We claim that (2) is equivalent to the following:

(2°) for every facet F of An(C") that does not contain [n],

(In]~ U By ¢F, (*)

veHp
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where
Hp:={ve[u] | B,cF}.

Indeed, condition (x) states that there exists i € [n] such that i ¢ F and i is not
in any minimal prime-set B, c {1,...,@} for which B, c F. This latter condition
exactly matches (2)(i). Hence, our claim holds, and we may complete this proof by
showing (1)< (2’).

(<=) We prove the contrapositive. Suppose that the intersection of maximal codewords

c= N m, (for some @ # V c [u]) is not in C, that is, c € C’. By Theorem 3.3, cu[n] ~
veV
is a face of An(C"). Note that

[n]Ne=[n]s Nmo= U [n]smy = U Bu. (6)

veV veV veV

Let F be a facet of An(C") containing ¢ U [n] N c. Tt follows from (6) that F' contains

the union of minimal prime-sets U B,, which implies that F' does not contain [n] (as,
veV

otherwise, each B, u[n] is contained in F' and hence is a face of A-(C"), contradicting the

fact that B, is a prime-set). Since F' 5> [n]~c¢= U B,, we have that V ¢ Hp. Therefore,
veV

[n]N U Byc[n]~ U B, =c¢, where the equality comes from (6). We conclude that F
veHp veV

is a facet of An(C") not containing [n] such that ([n] U B,)ccc(cu[n]~e)cF.

(=) Suppose C is max-intersection-complete. Let F' be a facet of An(C") that does
not contain [n]. Set ¢:=[n]~ U B,. Our goal is to show that ¢ ¢ F.

’UEHF
We accomplish this by proving two facts. First, that cu[n] \ ¢ is not a face of A, (C"),
and second, that [n]~c= U B,. The first fact implies that cu[n]~c ¢ F and the

veHp

second yields [n] \ ¢ c F. Our desired relation ¢ ¢ F will then follow.
For the first fact, recall that [n] \ B, = m,. Therefore,

c=[n]N U Bo= () [n]NBu= [ mo,
veHp veHp veHp
so ¢ is the intersection of maximal codewords. As C' is max-intersection-complete, ¢ € C,
and thus ¢ ¢ C’. Now Theorem 3.3 implies that cU [n] ~ ¢ ¢ An(C”).
For the second fact, [n]~c=[n]~([n]x U B,)= U B,= U B,. O

veHp veHp veHp

Example 3.8 (Ezample 3.5, continued). The code C = {@,2,3,12,13} is neither
intersection-complete nor max-intersection-complete (as 1 = 12n13 ¢ C'). We can read this
information from Theorems 3.6 and 3.7, as follows. For non-intersection-completeness,
this can be seen in two ways: first, the pseudomonomial z1(1 — 23)(1 - z3) is in the
canonical form of Jg, and, second, the intersection of the facet 123 with 123 has size 1,
rather than 2 or 3.
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For non-max-intersection-completeness, recall that the minimal prime-sets of An(C")
are {2} and {3} (equivalently, the minimal primes of I(A(C)) are (x3) and (x3)). Now,
123 is a facet of An(C") that does not contain 123, but for i € {1,2,3}, either part
(2)(i) of Theorem 3.7 is violated (when i = 2,3) or part (2)(ii) is violated (when i = 1).
Alternatively, CF(J¢) contains the non-monomial z1 (1 -23)(1-x3), but for i € {1,2,3},
either part (3)(i) of Theorem 3.7 is violated (when ¢ = 2,3) or part (3)(ii) is violated
(when ¢ =1). Thus, C is not max-intersection-complete.

4. Factor complexes, neural ideals, and codes
In this section, we prove Theorems 3.3 and 3.4.
4.1. Proof of Theorem 3.3

We wish to prove that the following maps are bijections:

{pseudomonomials in Je} < {intervals in C'} LA {effective faces of An(C)}
Hiec'ri Hje[n]\d(l_xj) <~ [Cr d] = du [TL] NC

The fact that « is a bijection is straightforward from [5, Lemma 5.7]. To show that g is
a bijection, we need to better understand the factor ideal and factor complex of C.

Lemma 4.1. Let C be a code with neural ideal Jo, and let ¢ be a pseudomonomial. Then

¢ € Jo if and only if P(¢) € FI(C).

Proof. Recall the decomposition Jo = Nj_, P, from (3). Hence, ¢ € Jo if and only if
¢ € Py for all h. Given the form (4) of each component Py, it is straightforward to check
that ¢ € Py, is equivalent to P(¢) € P(FP). Thus, as FI(C) = NP (Fy), the desired result
follows. O

Our next results show how to use the factor complex of a code to read off its codewords.

Lemma 4.2. Let C be a code on n neurons. Then c € 21" is a codeword of C if and only

if cu[n] N cis a face of AR(C).

Proof. By [5, Lemma 3.2, ¢ € C if and only if ¢ = [Tje. i [Tj¢.(1 — ;) ¢ Jo. This is
equivalent to P(¢.) ¢ FI(C) by Lemma 4.1. Since FI(C) is the Stanley—Reisner ideal of
Aq(C), we have that P(¢.) ¢ FI(C) exactly when cu [n]\ ¢ is a face of An(C'), which
concludes the proof. O

We now extend Lemma 4.2 to show how to extract the intervals of C' from its factor
complex.
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Lemma 4.3 (Interval-face corTespondence) Let C be a code on n neurons, and let c,d €
2l Then [¢,d] ¢ C if and only if du[n]~ ¢ is a face of An(C).

Proof. (<) Suppose du[n]~ ¢ is a face of An(C), and let w € [¢,d]. Then wu[n] ~ w c
du[n]~cis a face of An(C) and thus w € C by Lemma 4.2.

(=) We now assume that du[n] \ ¢ is not a face of An(C') and show that [c,d] is not
an interval of C. As FI(C) is the Stanley—Reisner ideal of An(C'), the decomposition (5)
implies that the ideal

({wi ligdunl~cyudy; [jedulnlNe) = ({wilie[n]Nd}u{y; | jec))

is not associated to FI(C'), and therefore the following ideal is not associated to Je:

({zilien]~dyu{(1-z;)|jec}) (7)

Thus, as CF(J¢) is a generating set for Jo, there exists a pseudomonomial ¢ =
[Tico zi [1je- (1 - ;) in CF(J¢) that is not in the ideal (7), and so o cd and 7 c [n] \c.
Note that the indicator pseudomonomial ¢, is in J¢, as it is divisible by ¢. We conclude
that cuce[c,d]~C, and so [¢,d] ¢ C. O

We can now better understand the facets of An(C).
Lemma 4.4. Let C be a code on n neurons. Every facet of An(C) is effective.

Proof. By (5), the facets of An(C) correspond to associated primes of FI(C'), which are
polarizations of associated primes of Jo. Since the latter primes cannot contain both
xg and 1 - xy, it follows that the former primes cannot contain both z, and y,, which
concludes the proof. O

Proof of Theorem 3.3. By [5, Lemma 5.7], the map « is a bijection, and the correspon-
dence between minimal pseudomonomials and maximal intervals follows from the fact
for any two intervals My and M, of C, we have My c My if and only if a(Ms) | a(My).
By Lemma 4.3, plus the fact that effective faces have the form du[n] \ ¢ for some ¢ c d,
the map £ is also a bijection. Lemma 4.4 states that all facets of A,(C') are effective, and
thus for each facet F' we have F' = S(M) for some interval M of C. The correspondence

between facets and maximal intervals then follows from the fact that for intervals My
and My of C, we have My c My if and only if 8(M;) c S(M3). O

4.2. Proof of Theorem 5.

We wish to show that the maps

5 minimal prime-sets

{minimal primes of I(A(C))} <-{ maximal codewords in C} { of An(C") }
(i | i€ [n]\ M) i M - [n]\M
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are bijections. The main step is to understand the relationship between the prime-sets
of An(C") and the associated primes of I(A(C)).

Lemma 4.5. Let C' be a code on n neurons with complement code C". A subset B c [n] is
a prime-set of An(C") if and only if (x; | i € B) contains I(A(C)). Consequently, B is a
minimal prime-set of Aq(C") if and only if (x; | i € B) is a minimal prime of I(A(C)).

Proof. By definition, B is a prime-set of A,(C’) if and only if [n] U B is not a face
of An(C"). Equivalently, every facet of An(C") of the form F = [n]u [n]\ ¢ satisfies
Bnc #+ @. By Theorem 3.3, F = [n]u[n]~cis a facet of An(C’) if and only if the
monomial [T;.. z; belongs to CF(J¢). Also, Bnc# @ if and only if [T, x; € (z; |i € B).
Now the result follows, because the monomials in CF(J¢) generate I(A(C)). O

Proof of Theorem 3.4. The map ~ is a bijection, by (5) and the following two facts: that
maximal codewords of C' are facets of A(C'), and I(A(C)) is its Stanley—Reisner ideal.
Given that ~ is a bijection, Lemma 4.5 shows that 6§ oy~! is a bijection, and so, § is a
bijection, completing the proof. O

5. The factor complex and the polar complex

In this section, we explore the relationship between the factor complex and the polar
complex introduced in [9]. For a code C, the polar complez, denoted by Ap(C), is the
simplicial complex whose Stanley—Reisner ideal is P(J¢), the polarization of the neural
ideal of C. The ideal P(J¢) is the polar ideal of C.

We first show in an example that polar and factor complexes associated to a code are,
in general, not the same.

Example 5.1 (Ezample 3.8, continued). For the code C' = {1,23,123}, we polarize the
neural ideal Jer = ((1 - z1)(1 - 23), (1 -21)(1 - 22), x2(1 - z3),23(1 — 22)) to obtain
the polar ideal

P(Jcr) = (y1ys, y1ye, T2y3, T3y2) = (@2, 23,y1) N (Y2, y3) N (T3, y1,¥y3) N (T2, 2, V3)-

It follows that the set of facets of the polar complex Ap(C’) is {123,1231,122,133}.
Thus, the polar complex has 2 more facets than the corresponding factor complex (recall
Example 3.2).

On the other hand, the polar ideal and the factor ideal (and their corresponding com-
plexes) share many features. A first observation is that P(J¢) c FI(C') by construction
and Lemma 4.1. Furthermore, Lemma 4.1 is valid when we replace FI(C) by P(J¢) [9,
Theorem 3.2], and consequently Lemma 4.2 holds for Ap(C). Lemma 4.3 also is valid
for Ap(C) [9, Corollary 5.2].
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As Example 5.1 illustrates, FI(C) strictly contains P(J¢) in general. A larger ideal
makes for a smaller simplicial complex. The following result explains the relationship
between An(C) and Ap(C).

Proposition 5.2. For every code C, the factor complex An(C) is the subcomplex of the
polar complex Ap(C) whose facets are the effective facets of Ap(C).

Proof. Lemma 4.4 states that all facets of An(C) are effective, and P(Jo) c FI(C)
implies that An(C) c Ap(C). So, it suffices to show that every effective facet of Ap(C)
is a face of An(C). By [9, Corollaries 5.2 and 5.3], the effective facets of Ap(C') are of
the form du [n] \ ¢ where [¢,d] is a maximal interval of C. Now apply Lemma 4.3. O

The key difference between the factor complex and the polar complex of a code is
that the latter can have defective facets. While these facets hold useful information
about quotient codes, as shown in [9], the structure of the smaller factor complex is
more convenient for our purposes here.

6. Computational considerations

The main result of this article, Theorem 1.1, gives a new method for checking whether
a code is max-intersection-complete (Algorithm 1 below). In this section we provide
an infinite family § of codes for which this method is more efficient at checking max-
intersection-completeness than the natural brute-force approaches.

In order to analyze the runtime of our proposed algorithm, we write it explicitly below.
Correctness follows directly from Theorem 1.1 and the correspondence between maximal
codewords of C' and minimal primes of I(A(C)) in Theorem 3.4.

Remark 6.1. We point out that Algorithm 1 requires CF(J¢) as part of its input, but
the brute-force methods below do not. For this reason, a complete runtime analysis of
Algorithm 1 requires knowing the complexity of computing canonical forms, which is not
currently well understood. The canonical form algorithm given in [18] is easily seen to
be exponential in the number of neurons. A faster procedure for finding CF(J¢o) would
be very desirable, and would have implications beyond this article.

We now define § to be the family of all neural codes C' satisfying the following prop-
erties:

(i) The number of maximal intervals of C’ is at most n, the number of neurons of C.
(ii) There exists a maximal interval [¢,d] of C' with d # [n] and |d \ ¢| = n/2.
(iii) There exists a maximal interval [a, [n]] of C’, where a contains n/2 neurons.
(iv) For every maximal interval of C' that has the form [b,[n]], if a # b then anb = @.
(v) C' contains at most log,(n) maximal intervals of the form [b, [n]].
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Algorithm 1: Checking max-intersection-completeness.

input:

(1) C, a neural code on n neurons

(2) Cmax, the list of the maximal codewords of C

(3) CF(Jc¢), the canonical form of the neural ideal of C

output: True if C' is max-intersection-complete and False otherwise
initialize Min(I(A(C)) = @;
for (FIRST LOOP) ¢ € Crax do
| Add ({z; | i€ [n] \ c}) to Min(I(A(C));
end
for (OUTER LooP) non-monomial ¢ € CF(Jc) do
for (MIDDLE LOOP) s such that (1—z)|¢ do
for (INNER Loopr) P e Min(I(A(C)) do
if ;¢ P and no x, € P divides ¢ then
| Go back to MIDDLE LooP (next iteration of loop, or — if none — end loop);
end
end
Go back to OUTER LooP (next iteration of loop, or — if none — end loop);
end
return False;
end algorithm

end
return True;
end algorithm

Note that § is infinite, since the number of neurons has not been fixed. We emphasize
that a code C' € § is given as the maximal intervals of C’. This information is equivalent
to knowing CF(J¢). Thus, for codes in §, the issue raised in Remark 6.1 is avoided.
Finally, it can be checked that § contains infinitely many max-intersection-complete
codes, and infinitely many codes which are not max-intersection-complete.

We compare Algorithm 1 to two brute-force methods for checking max-intersection-
completeness:

Brute Force 1: Take all possible intersections of maximal codewords of C', and check
whether all are contained in C.

Brute Force 2: For every o € C’, compute ¢, the intersection of all maximal codewords
of C that contain ¢. Then check whether ¢, = o.

Proposition 6.2. For every code C in §, Brute Force 1 and Brute Force 2 are exponential
in the number of neurons, while Algorithm 1 is sub-exponential in the number of neurons.

Proof. We begin by showing that the number of maximal codewords of any C € § is
at least n/2 and at most n'°#2("). Recall that these maximal codewords are in bijection
with the minimal primes of I(A(C)) (Theorem 3.4), and also that

I(A(C)) = ({x | [0,[n]] a maximal interval of C'}). (8)

(Recall that for o € [n], we use the notation x, to denote the monomial [];., x;.)



A. Ruys de Perez et al. / Advances in Applied Mathematics 114 (2020) 101977 15

The monomial generators of I(A(C)) in (8) satisfy the following:

() there is a generator z, of degree n/2 (from condition (iii)),
(%) if zp # x4 is a generator of I(A(C)), then ged(xq,zp) =1 (from condition (iv)),
and
(% % ) there are at most log,(n) generators (from condition (v)).

We calculate the upper bound by observing that every minimal prime P of I(A(C))
has a generating set Gp c {x1,...,2,}, with every monomial in (8) divisible by at least
one z; € Gp. It follows that the number of ways to choose some divisor z; from each
generator of I(A(C)) is an upper bound on the number of minimal primes. This upper
bound is the product of the degrees of the monomial generators of I(A(C')), which in
turn is bounded above by n’Vmen | where Nyon is the number of monomials in CF(J¢).
By (* # %) there are at most log,(n) such monomials, so the number of minimal primes
— and thus the number of maximal codewords of C' — is at most n'°82("),

For the lower bound, we first note that by (x) there is a monomial generator z, of
I(A(C)) that has degree n/2. If I(A(C)) = (%), then I(A(C)) has n/2 minimal primes.
If I(A(C)) strictly contains (%), then let P be a minimal prime of the following nonzero
ideal:

T = (xy|[b,[n]] is a maximal interval of C’ and b+ a) c I(A(C)).

For every z; that divides z,, we claim that P; = (z;) + P is a minimal prime of I(A(C)).
By construction, P; contains I(A(C)). If Q ¢ P; is another prime monomial ideal, either
x; ¢ @ or there exists x; € P\ Q. In the first case, condition (#x*) implies that z, ¢ Q.
In the second case, by (**) and the fact that P is a minimal prime of T, it follows that
T ¢ Q. In both cases Q does not contain I(A(C)), and consequently P; is a minimal
prime of I(A(C)). As a distinct minimal prime P; = (z;) + P arises from each of the
n/2 divisors z; of x,, the number of minimal primes — and also the number of maximal
codewords of C' — is at least n/2.

Having found the upper and lower bounds on the number of maximal codewords of a
code C € §, we now use these bounds to analyze the brute-force methods and Algorithm 1.

As there are at least n/2 maximal codewords, Brute Force 1 checks at least 2™/
intersections of maximal codewords, and so is exponential in the number of neurons.

Next, Brute Force 2 checks whether each codeword of C” is contained in each maximal
codeword of C. So, the runtime will be at least the number of codewords of C’ times
the number of maximal codewords of C'. There are at least n/2 maximal codewords and,
by condition (ii), at least 2"/2 elements of C’. Thus, the runtime is at least (n/2) * 2"V/2,
and so is exponential in n.

For Algorithm 1, First Loop iterates over the maximal codewords of C' (of which there
are at most 7'°¢2(") and the runtime of each iteration is at most n. So, the runtime of
First Loop is O(n'*1°82(")), The runtime for the subsequent part of the algorithm is the
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product of the number of iterations of the Outer Loop, the number of iterations of the
Middle Loop, and the runtime of the Inner Loop. Since the Outer Loop iterates over a
subset of CF(J¢), by Theorem 3.3 and condition (i) there are at most n such iterations.
Since the Middle Loop iterates over the neurons, there are at most n iterations of this
loop. Finally, the Inner Loop iterates over the number of minimal primes of I(A(C)),
of which there are at most n'°22(") Checking to see whether z, is in some minimal
prime P takes at most n steps (check each generator of P) and checking to see whether
any x, € P divides ¢ takes at most n? steps (compare each generator of P with each
divisor of ¢). Thus the runtime of Inner Loop is at most n**1°82(") We conclude that
the combined runtime of the Outer, Middle, and Inner Loops is O(n®*°82(")) which, it
is straightforward to check, is sub-exponential in n. 0O
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