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1. Introduction

A neural code on n neurons is a subset of 2[n], where [n] = {1, . . . , n}; determining 
which neural codes are convex remains a central open problem in this area. The broadest 
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family of codes known to be convex consists of max-intersection-complete codes, those 
codes closed under taking intersections of maximal elements [2,4]. Recently, Curto et 
al. [4] asked for an algebraic signature for max-intersection-complete codes.

Here we answer the question of Curto et al. Our main result, Theorem 1.1 below, 
gives a characterization for when a code is max-intersection-complete in terms of the 
canonical form of its neural ideal (Definitions 2.3 and 2.4) and the Stanley–Reisner ideal 
I(Δ(C)) of its simplicial complex Δ(C) (Definitions 2.7 and 2.8).

Theorem 1.1. A code C on n neurons is max-intersection-complete if and only if for 
every non-monomial φ in the canonical form of the neural ideal of C, there exists i ∈ [n]
such that

(i) every associated prime of I(Δ(C)) that contains xi also contains φ, and
(ii) (1 − xi) ∣ φ.

We remark that Theorem 1.1 can be turned into an algorithm to verify whether a 
code is max-intersection-complete. This algorithm’s runtime is sub-exponential in the 
input size, where the input consists of the maximal codewords of a code C as well as its 
canonical form CF(JC). On the other hand, the known algorithms for computing CF(JC)
are exponential. More details on the computational aspects of Theorem 1.1 can be found 
in Section 6, which also includes an infinite family of codes for which Theorem 1.1 is 
more efficient at verifying max-intersection-completeness than brute-force checking of 
intersections of maximal codewords (see Proposition 6.2).

To prove Theorem 1.1, which translates a property of a code to a property of its neural 
ideal, we introduce a new combinatorial object, the factor complex of a code. This is a 
simplicial complex that, like the neural ideal but unlike Δ(C), captures all the combina-
torial information in a code C. We are therefore able to elucidate the relationships among 
codes, their factor complexes, and their related ideals (neural ideals and Stanley–Reisner 
ideals) – and then use these results to characterize being max-intersection-complete in 
terms of the factor complex. Finally, this combinatorial criterion directly translates into 
an algebraic criterion, Theorem 1.1 above.

Along the way, we give a new characterization of intersection-complete codes – those 
codes that are closed under taking intersections of codewords. Our characterization is 
combinatorial, via the factor complex, in contrast to a prior algebraic characterization 
through the neural ideal [4]. Indeed, we expect in the future that the factor complex may 
help us understand more properties of neural codes.

Our work fits into the literature on neural codes as follows. Like previous works, 
we are motivated by the question of convexity in neural codes [3,6,14–16,19,21], with a 
specific interest in using neural ideals to study convexity [5,7,8,10,11,17]. Also, our factor 
complexes are motivated by the closely related polar complexes introduced recently by 
Güntürkün et al. [9] (see also [1,11]).
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Outline

This article is organized as follows. Section 2 contains background material, and Sec-
tion 3 gives our main results. In Section 4, we prove relationships among codes, their 
factor complexes, and their neural or Stanley-Reisner ideals, and Section 5 relates factor 
complexes and polar complexes.
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2. Background

Throughout this article, C is a neural code on n neurons, that is, a subset of 2[n], 
where [n] = {1, 2, . . . , n}. Elements of C are called codewords, and may be represented 
as subsets of [n] or as n-tuples of zeros and ones, where a 1 in position i indicates that 
i belongs to the codeword.

Given c ⊂ d ⊂ [n], the Boolean interval between c and d is

[c, d] ∶= {w ∈ 2[n] ∣ c ⊂ w ⊂ d}.

The complement of a code C on n neurons is the code

C ′ ∶= 2[n] ∖C. (1)

Convention. In this article, we assume that ∅ ⊊ C ⊊ 2[n], so that the neural ideals (defined 
below) of C and C ′ have primary decompositions.

Definition 2.1. Let C be a code. The intervals of C are the Boolean intervals contained 
in C. The maximal intervals of C are the intervals of C that are maximal with respect 
to inclusion.

Example 2.2. For the code C = {∅, 2, 3, 12, 13} = {000, 010, 001, 110, 101}, the maximal 
intervals are [∅, 2], [∅, 3], [2, 12], and [3, 13].
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2.1. Neural ideals and the canonical form

The main reference for this section is [5].
We denote by F2 the field with two elements, and let R = F2[x1, . . . , xn] = F2[x]. A 

pseudomonomial is a polynomial ∏i∈σ xi∏j∈τ(1 − xj) ∈ R, where σ, τ ⊂ [n] are disjoint. 
A pseudomonomial ideal is an ideal generated by pseudomonomials. If c ∈ 2[n], the 
pseudomonomial

φc ∶= ∏
i∈c

xi ∏
j∈[n]∖c

(1 − xj) (2)

is called the indicator polynomial of c.

Definition 2.3. The neural ideal JC of a code C is the (pseudomonomial) ideal generated 
by the indicator polynomials of its non-codewords; in symbols,

JC ∶= ⟨φc ∣ c ∈ C ′⟩.

Note that, using the convention that n-tuples of zeros and ones represent codewords, 
the zero-set of JC is C. In other words, the code C and its neural ideal contain the same 
information. Moreover, any ideal generated by pseudomonomials is the neural ideal of a 
code [13, Theorem 2.1].

The neural ideal JC has a unique irredundant decomposition

JC =
g

⋂
h=1

Ph, (3)

where each Ph is a pseudomonomial ideal that is prime [5, Proposition 6.8]. In particular, 
JC is a radical ideal. We remark that a pseudomonomial ideal P is prime if and only if 
it is of the form

P = ⟨{xi ∣ i ∈ σ} ∪ {(1 − xj) ∣ j ∈ τ}⟩ for σ, τ disjoint subsets of [n]. (4)

Definition 2.4. Let J ⊂ R be a pseudomonomial ideal. A pseudomonomial in J is minimal
if it is minimal with respect to divisibility among all pseudomonomials in J . The canonical 
form of J is the set CF(J) of all minimal pseudomonomials of J .

The canonical form of a pseudomonomial ideal is a generating set for the ideal [5].

Example 2.5 (Example 2.2, continued). The complement of the code C = {∅, 2, 3, 12, 13}
is C ′ = {1, 23, 123}. Thus, the neural ideal of C is JC = ⟨x1(1 − x2)(1 − x3), x2x3(1 −
x1), x1x2x3⟩, and the canonical form is CF(JC) = {x1(1 − x2)(1 − x3), x2x3}.
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2.2. Polarization and squarefree monomial ideals

Let S = F2[x1, . . . , xn, y1, . . . , yn] = F2[x, y].
The idea of using yi to encode 1 − xi is well known (see, for instance, [12,20]). In the 

context of neural ideals, the following construction was introduced in [9].

Definition 2.6. The polarization of a pseudomonomial φ = ∏i∈σ xi∏j∈τ(1 − xj) ∈ R is

P(φ) ∶= ∏
i∈σ

xi∏
j∈τ

yj ∈ S.

If J ⊂ R is a pseudomonomial ideal, the polarization of J is the ideal in S obtained by 
polarizing the pseudomonomials in the canonical form of J , that is,

P(J) ∶= ⟨P(φ) ∣ φ ∈ CF(J)⟩ ⊂ S.

Note that the polarization of a pseudomonomial ideal is a squarefree monomial ideal 
in S, that is, an ideal generated by monomials that are not divisible by the squares of the 
variables (so, P(J) is radical). We recall the relationship between squarefree monomial 
ideals and simplicial complexes.

Definition 2.7. Let Δ be a simplicial complex on [n], and let k be a field. The Stanley–
Reisner ideal of Δ is

I(Δ) ∶= ⟨∏
i∈σ

xi ∣ σ ∉Δ⟩ ⊂ k[x1, . . . , xn].

The ideal I(Δ) is radical, with prime decomposition

I(Δ) = ⋂
σ∈Facets(Δ)

⟨xi ∣ i ∉ σ⟩. (5)

It follows that Δ can be recovered from I(Δ). In fact, (5) can be used to conclude that 
any squarefree monomial ideal is the Stanley–Reisner ideal of some simplicial complex.

Definition 2.8. The simplicial complex of a code C is Δ(C), the smallest simplicial com-
plex containing C. Its Stanley–Reisner ideal is denoted by I(Δ(C)) ⊂ R = F2[x].

It is a fact that I(Δ(C)) is generated by the monomials in CF(JC) [5, Lemma 4.4].

Example 2.9 (Example 2.5, continued). For C = {∅, 2, 3, 12, 13}, the simplicial complex 
Δ(C) has two facets, 12 and 13. The corresponding Stanley–Reisner ideal is I(Δ(C)) =
⟨x2x3⟩, which is generated by the unique monomial in the canonical form CF(JC) =
{x1(1 − x2)(1 − x3), x2x3}.
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In this article, we work with squarefree monomial ideals in S = F2[x, y] that arise 
from polarization. In order to construct their corresponding simplicial complexes, we use 
{1, . . . , n, 1, . . . , n} as a vertex set, with the understanding that xi corresponds to i, and 
yi corresponds to i. If B ⊂ [n], we denote B = {i ∣ i ∈ B}. In particular,

[n] = {1, . . . , n} and [n] ∪ [n] = {1, . . . , n,1, . . . , n}.

We always use overline notation to denote subsets of [n]; this is justified, as any subset 
of [n] is of the form B for some B ⊂ [n].

Remark 2.10. As noted above, the ideals that are associated to codes (the neural ideal 
JC , the ideal I(Δ(C)), and later the factor ideal FI(C)) are radical ideals, that is, they 
can be expressed as intersections of prime ideals. We emphasize that the sets of associated 
primes, minimal primes, and primary components of a radical ideal all coincide.

3. Main results

In this section we introduce a new combinatorial tool to study neural codes: the 
factor complex (Definition 3.1), and state our four main results. Theorems 3.3 and 3.4
summarize the relationships among codes, their factor complexes, and their related ideals 
(neural ideals and Stanley–Reisner ideals). These results are used to prove Theorems 3.6
and 3.7, which characterize intersection-complete codes and max-intersection-complete 
codes in two ways: combinatorially and algebraically.

Definition 3.1. Let C be a code on n neurons, and recall the primary decomposition of 
the neural ideal JC given in (3). The factor ideal of C is obtained by polarizing the 
components of JC , namely,

FI(C) ∶=
g

⋂
h=1
P(Ph).

The factor complex Δ∩(C) of C is the simplicial complex on [n] ∪ [n] whose Stanley–
Reisner ideal is FI(C). A face of Δ∩(C) is defective if it contains neither i nor i for some 
i ∈ [n] (we think of i as a defect, or flaw); faces that are not defective are called effective. 
We say that B ⊂ [n] is a prime-set of Δ∩(C) if [n] ∪B ∉ Δ∩(C), and B is furthermore 
minimal if B is minimal with respect to inclusion among prime-sets. Lemma 4.5 gives 
the reason why we chose this terminology.

Example 3.2 (Example 2.9, continued). For C ′ = {1, 23, 123}, the neural ideal decomposes 
as follows:

JC′ = ⟨(1 − x1)(1 − x3), (1 − x1)(1 − x2), x2(1 − x3), x3(1 − x2)⟩
= ⟨x2, x3, 1 − x1⟩ ∩ ⟨1 − x2, 1 − x3⟩.
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The factor ideal is therefore

FI(C ′) = ⟨x2, x3, y1⟩ ∩ ⟨y2, y3⟩,

and so the two facets of the factor complex Δ∩(C ′) are 12̄3̄ and 1231̄ (both are effective). 
The minimal prime-sets of Δ∩(C ′) are {2̄} and {3̄}.

Theorem 3.3 (Codes, factor complexes, and neural ideals). Let C be a code on n neurons, 
and C ′ its complement code defined in (1). The following two maps are bijections:

{pseudomonomials in JC′} ← {intervals in C} → {effective faces of Δ∩(C)}
∏i∈c xi∏j∈[n]∖d(1 − xj) ↤ [c, d] ↦ d ∪ [n] ∖ c

Moreover, every facet of Δ∩(C) is effective, and the following are equivalent:

(1) [c, d] is a maximal interval in C,
(2) ∏i∈c xi∏j∈[n]∖d(1 − xj) ∈ CF(JC′), and
(3) d ∪ [n] ∖ c is a facet of Δ∩(C).

Theorem 3.4 (Codes, factor complexes, and Stanley–Reisner ideals). Let C be a code on 
n neurons, with complement code C ′ and factor complex Δ∩(C). The following two maps 
are bijections:

{minimal primes of I(Δ(C))} ← {maximal codewords of C} → {
minimal prime-sets

of Δ∩(C′)
}

⟨xi ∣ i ∈ [n] ∖M⟩ ↤ M ↦ [n] ∖M

The proofs of Theorems 3.3 and 3.4 are postponed until Sections 4.1 and 4.2, respec-
tively.

Example 3.5 (Example 3.2, continued). According to Theorem 3.3, the facets 12̄3̄ and 
1231̄ of Δ∩(C ′) correspond to the two maximal intervals of C′, [1, 1] and [23, 123], 
respectively, and also to the two pseudomonomials in CF(JC), namely, x1(1 −x2)(1 −x3)
and x2x3, respectively.

Similarly, Theorem 3.4 implies that the minimal prime-sets {2̄} and {3̄} of Δ∩(C ′)
correspond to the minimal primes ⟨x2⟩ and ⟨x3⟩ of I(Δ(C)) = ⟨x2x3⟩ and also to the 
maximal codewords 13 and 12 of C.

The following result translates the algebraic characterization of intersection-complete 
codes from [4] into a new combinatorial criterion.

Theorem 3.6 (Intersection-complete codes). Let C be a code on n neurons with neural 
ideal JC , and let C ′ be the complement code of C with factor complex Δ∩(C ′). The 
following are equivalent:
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(1) C is intersection-complete,
(2) every pseudomonomial ∏

i∈σ
xi ∏

j∈τ
(1 − xj) in CF(JC) satisfies ∣τ ∣ ≤ 1, and

(3) every facet F of Δ∩(C ′) satisfies ∣F ∩ [n]∣ ≥ n − 1.

Proof. The equivalence between (1) and (2) is [4, Theorem 1.9]. By Theorem 3.3, 
∏
i∈σ

xi ∏
j∈τ
(1 −xj) belongs to the canonical form of JC if and only if F = [n] ∖ τ ∪ [n] ∖ σ is 

a facet of Δ∩(C ′). Thus, the condition ∣τ ∣ ≤ 1 is equivalent to ∣F ∩ [n]∣ ≥ n −1, and so (2)
is equivalent to (3). ◻

The following result is an expanded version of Theorem 1.1.

Theorem 3.7 (Max-intersection-complete codes). Let C be a code on n neurons with neu-
ral ideal JC , and let C ′ be the complement code of C with factor complex Δ∩(C ′). The 
following are equivalent:

(1) C is max-intersection-complete,
(2) for every facet F of Δ∩(C ′) that does not contain [n], there exists i ∈ [n] such that

(i) every minimal prime-set of Δ∩(C ′) that contains i also contains some j such 
that j ∉ F , and

(ii) i ∉ F ,
(3) for every φ ∈ CF(JC) that is not a monomial, there exists i ∈ [n] such that

(i) every minimal prime of I(Δ(C)) that contains xi also contains φ, and
(ii) (1 − xi) ∣ φ.

Proof. We begin by proving (2)⇔(3). By Theorem 3.3, φ = ∏i∈c xi∏j∈[n]∖d(1 − xj) ∈
CF(JC) if and only if F = d ∪ [n] ∖ c is a facet of Δ∩(C ′). Furthermore, φ is a non-
monomial exactly when d ⊉ [n], if and only if F does not contain [n]. Thus, by inspection 
of φ and F , (2)(ii) is equivalent to (3)(ii), and so we need only show (2)(i)⇔(3)(i).

By Theorem 3.4, the prime ideal P = ⟨xj ∣ j ∈ B⟩ is associated to I(Δ(C)) if and 
only if B is a minimal prime-set of Δ∩(C ′). Thus, xi ∈ P exactly when i ∈ B. Next, it 
is straightforward to check that P contains φ = ∏i∈c xi∏j∈[n]∖d(1 − xj) if and only if 
B ∩ c ≠ ∅. As φ corresponds to the facet F = d ∪ [n] ∖ c of Δ∩(C ′), it follows that P
contains φ if and only if j ∉ F for some j ∈ B. This concludes the proof of (2)⇔(3).

We set up notation needed to prove (1)⇔(2). Let B1, . . . , Bu be the minimal prime-
sets of Δ∩(C ′). By Theorem 3.4, the maximal codewords of C are m1 = [n] ∖B1, . . . , mu =
[n] ∖Bu.

We claim that (2) is equivalent to the following:

(2’) for every facet F of Δ∩(C ′) that does not contain [n],

([n] ∖ ⋃
v∈HF

Bv) /⊂ F, (⋆)
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where

HF ∶= {v ∈ [u] ∣ Bv ⊂ F}.

Indeed, condition (⋆) states that there exists i ∈ [n] such that i ∉ F and i is not
in any minimal prime-set Bv ⊂ {1, . . . , n} for which Bv ⊂ F . This latter condition 
exactly matches (2)(i). Hence, our claim holds, and we may complete this proof by 
showing (1)⇔(2’).
(⇐)We prove the contrapositive. Suppose that the intersection of maximal codewords 

c = ⋂
v∈V

mv (for some ∅ ≠ V ⊂ [u]) is not in C, that is, c ∈ C′. By Theorem 3.3, c ∪ [n] ∖ c
is a face of Δ∩(C ′). Note that

[n] ∖ c = [n] ∖ ⋂
v∈V

mv = ⋃
v∈V

[n] ∖mv = ⋃
v∈V

Bv. (6)

Let F be a facet of Δ∩(C ′) containing c ∪ [n] ∖ c. It follows from (6) that F contains 
the union of minimal prime-sets ⋃

v∈V
Bv, which implies that F does not contain [n] (as, 

otherwise, each Bv∪[n] is contained in F and hence is a face of Δ∩(C ′), contradicting the 
fact that Bv is a prime-set). Since F ⊃ [n] ∖ c = ⋃

v∈V
Bv, we have that V ⊂HF . Therefore, 

[n] ∖ ⋃
v∈HF

Bv ⊂ [n] ∖ ⋃
v∈V

Bv = c, where the equality comes from (6). We conclude that F

is a facet of Δ∩(C ′) not containing [n] such that ([n] ∖ ⋃
v∈HF

Bv) ⊂ c ⊂ (c ∪ [n] ∖ c) ⊂ F .

(⇒) Suppose C is max-intersection-complete. Let F be a facet of Δ∩(C ′) that does 
not contain [n]. Set c ∶= [n] ∖ ⋃

v∈HF

Bv. Our goal is to show that c /⊂ F .

We accomplish this by proving two facts. First, that c ∪[n] ∖ c is not a face of Δ∩(C ′), 
and second, that [n] ∖ c = ⋃

v∈HF

Bv. The first fact implies that c ∪ [n] ∖ c /⊂ F and the 

second yields [n] ∖ c ⊂ F . Our desired relation c /⊂ F will then follow.
For the first fact, recall that [n] ∖Bv =mv. Therefore,

c = [n] ∖ ⋃
v∈HF

Bv = ⋂
v∈HF

[n] ∖Bv = ⋂
v∈HF

mv,

so c is the intersection of maximal codewords. As C is max-intersection-complete, c ∈ C, 
and thus c ∉ C ′. Now Theorem 3.3 implies that c ∪ [n] ∖ c ∉Δ∩(C ′).

For the second fact, [n] ∖ c = [n] ∖ ([n] ∖ ⋃
v∈HF

Bv) = ⋃
v∈HF

Bv = ⋃
v∈HF

Bv. ◻

Example 3.8 (Example 3.5, continued). The code C = {∅, 2, 3, 12, 13} is neither 
intersection-complete nor max-intersection-complete (as 1 = 12 ∩13 ∉ C). We can read this 
information from Theorems 3.6 and 3.7, as follows. For non-intersection-completeness, 
this can be seen in two ways: first, the pseudomonomial x1(1 − x2)(1 − x3) is in the 
canonical form of JC , and, second, the intersection of the facet 12̄3̄ with 123 has size 1, 
rather than 2 or 3.
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For non-max-intersection-completeness, recall that the minimal prime-sets of Δ∩(C ′)
are {2̄} and {3̄} (equivalently, the minimal primes of I(Δ(C)) are ⟨x2⟩ and ⟨x3⟩). Now, 
12̄3̄ is a facet of Δ∩(C ′) that does not contain 123, but for i ∈ {1, 2, 3}, either part 
(2)(i) of Theorem 3.7 is violated (when i = 2, 3) or part (2)(ii) is violated (when i = 1). 
Alternatively, CF(JC) contains the non-monomial x1(1 −x2)(1 −x3), but for i ∈ {1, 2, 3}, 
either part (3)(i) of Theorem 3.7 is violated (when i = 2, 3) or part (3)(ii) is violated 
(when i = 1). Thus, C is not max-intersection-complete.

4. Factor complexes, neural ideals, and codes

In this section, we prove Theorems 3.3 and 3.4.

4.1. Proof of Theorem 3.3

We wish to prove that the following maps are bijections:

{pseudomonomials in JC′}
α←# {intervals in C} β#→ {effective faces of Δ∩(C)}

∏i∈c xi∏j∈[n]∖d(1 − xj) ↤ [c, d] ↦ d ∪ [n] ∖ c

The fact that α is a bijection is straightforward from [5, Lemma 5.7]. To show that β is 
a bijection, we need to better understand the factor ideal and factor complex of C.

Lemma 4.1. Let C be a code with neural ideal JC, and let φ be a pseudomonomial. Then 
φ ∈ JC if and only if P(φ) ∈ FI(C).

Proof. Recall the decomposition JC = ⋂g
h=1 Ph from (3). Hence, φ ∈ JC if and only if 

φ ∈ Ph for all h. Given the form (4) of each component Ph, it is straightforward to check 
that φ ∈ Ph is equivalent to P(φ) ∈ P(Ph). Thus, as FI(C) = ⋂P(Ph), the desired result 
follows. ◻

Our next results show how to use the factor complex of a code to read off its codewords.

Lemma 4.2. Let C be a code on n neurons. Then c ∈ 2[n] is a codeword of C if and only 
if c ∪ [n] ∖ c is a face of Δ∩(C).

Proof. By [5, Lemma 3.2], c ∈ C if and only if φc = ∏i∈c xi∏j∉c(1 − xj) ∉ JC . This is 
equivalent to P(φc) ∉ FI(C) by Lemma 4.1. Since FI(C) is the Stanley–Reisner ideal of 
Δ∩(C), we have that P(φc) ∉ FI(C) exactly when c ∪ [n] ∖ c is a face of Δ∩(C), which 
concludes the proof. ◻

We now extend Lemma 4.2 to show how to extract the intervals of C from its factor 
complex.
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Lemma 4.3 (Interval-face correspondence). Let C be a code on n neurons, and let c, d ∈
2[n]. Then [c, d] ⊂ C if and only if d ∪ [n] ∖ c is a face of Δ∩(C).

Proof. (⇐) Suppose d ∪ [n] ∖ c is a face of Δ∩(C), and let w ∈ [c, d]. Then w ∪ [n] ∖w ⊂
d ∪ [n] ∖ c is a face of Δ∩(C) and thus w ∈ C by Lemma 4.2.
(⇒) We now assume that d ∪[n] ∖ c is not a face of Δ∩(C) and show that [c, d] is not 

an interval of C. As FI(C) is the Stanley–Reisner ideal of Δ∩(C), the decomposition (5)
implies that the ideal

⟨{xi ∣ i ∉ d ∪ [n] ∖ c} ∪ {yj ∣ j̄ ∉ d ∪ [n] ∖ c}⟩ = ⟨{xi ∣ i ∈ [n] ∖ d} ∪ {yj ∣ j ∈ c}⟩

is not associated to FI(C), and therefore the following ideal is not associated to JC :

⟨{xi ∣ i ∈ [n] ∖ d} ∪ {(1 − xj) ∣ j ∈ c}⟩. (7)

Thus, as CF(JC) is a generating set for JC , there exists a pseudomonomial φ =
∏i∈σ xi∏j∈τ(1 − xj) in CF(JC) that is not in the ideal (7), and so σ ⊂ d and τ ⊂ [n] ∖ c. 
Note that the indicator pseudomonomial φc∪σ is in JC , as it is divisible by φ. We conclude 
that σ ∪ c ∈ [c, d] ∖C, and so [c, d] /⊂ C. ◻

We can now better understand the facets of Δ∩(C).

Lemma 4.4. Let C be a code on n neurons. Every facet of Δ∩(C) is effective.

Proof. By (5), the facets of Δ∩(C) correspond to associated primes of FI(C), which are 
polarizations of associated primes of JC . Since the latter primes cannot contain both 
xü and 1 − xü, it follows that the former primes cannot contain both xü and yü, which 
concludes the proof. ◻

Proof of Theorem 3.3. By [5, Lemma 5.7], the map α is a bijection, and the correspon-
dence between minimal pseudomonomials and maximal intervals follows from the fact 
for any two intervals M1 and M2 of C, we have M1 ⊂M2 if and only if α(M2) ∣ α(M1). 
By Lemma 4.3, plus the fact that effective faces have the form d ∪[n] ∖ c for some c ⊂ d, 
the map β is also a bijection. Lemma 4.4 states that all facets of Δ∩(C) are effective, and 
thus for each facet F we have F = β(M) for some interval M of C. The correspondence 
between facets and maximal intervals then follows from the fact that for intervals M1
and M2 of C, we have M1 ⊂M2 if and only if β(M1) ⊂ β(M2). ◻

4.2. Proof of Theorem 3.4

We wish to show that the maps

{minimal primes of I(Δ(C))} γ←{ maximal codewords in C} δ→ {minimal prime-sets
of Δ∩(C′) }

⟨xi ∣ i ∈ [n] ∖M⟩ ↤ M ↦ [n] ∖M
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are bijections. The main step is to understand the relationship between the prime-sets 
of Δ∩(C ′) and the associated primes of I(Δ(C)).

Lemma 4.5. Let C be a code on n neurons with complement code C′. A subset B ⊂ [n] is 
a prime-set of Δ∩(C ′) if and only if ⟨xi ∣ i ∈ B⟩ contains I(Δ(C)). Consequently, B is a 
minimal prime-set of Δ∩(C ′) if and only if ⟨xi ∣ i ∈ B⟩ is a minimal prime of I(Δ(C)).

Proof. By definition, B is a prime-set of Δ∩(C ′) if and only if [n] ∪ B is not a face 
of Δ∩(C ′). Equivalently, every facet of Δ∩(C ′) of the form F = [n] ∪ [n] ∖ c satisfies 
B ∩ c ≠ ∅. By Theorem 3.3, F = [n] ∪ [n] ∖ c is a facet of Δ∩(C ′) if and only if the 
monomial ∏i∈c xi belongs to CF(JC). Also, B ∩ c ≠ ∅ if and only if ∏j∈c xj ∈ ⟨xi ∣ i ∈ B⟩. 
Now the result follows, because the monomials in CF(JC) generate I(Δ(C)). ◻

Proof of Theorem 3.4. The map γ is a bijection, by (5) and the following two facts: that 
maximal codewords of C are facets of Δ(C), and I(Δ(C)) is its Stanley–Reisner ideal. 
Given that γ is a bijection, Lemma 4.5 shows that δ ○ γ−1 is a bijection, and so, δ is a 
bijection, completing the proof. ◻

5. The factor complex and the polar complex

In this section, we explore the relationship between the factor complex and the polar 
complex introduced in [9]. For a code C, the polar complex, denoted by ΔP(C), is the 
simplicial complex whose Stanley–Reisner ideal is P(JC), the polarization of the neural 
ideal of C. The ideal P(JC) is the polar ideal of C.

We first show in an example that polar and factor complexes associated to a code are, 
in general, not the same.

Example 5.1 (Example 3.8, continued). For the code C ′ = {1, 23, 123}, we polarize the 
neural ideal JC′ = ⟨(1 − x1)(1 − x3), (1 − x1)(1 − x2), x2(1 − x3), x3(1 − x2)⟩ to obtain 
the polar ideal

P(JC′) = ⟨y1y3, y1y2, x2y3, x3y2⟩ = ⟨x2, x3, y1⟩ ∩ ⟨y2, y3⟩ ∩ ⟨x3, y1, y3⟩ ∩ ⟨x2, y2, y3⟩.

It follows that the set of facets of the polar complex ΔP(C ′) is {12̄3̄, 1231̄, 122̄, 133̄}. 
Thus, the polar complex has 2 more facets than the corresponding factor complex (recall 
Example 3.2).

On the other hand, the polar ideal and the factor ideal (and their corresponding com-
plexes) share many features. A first observation is that P(JC) ⊂ FI(C) by construction 
and Lemma 4.1. Furthermore, Lemma 4.1 is valid when we replace FI(C) by P(JC) [9, 
Theorem 3.2], and consequently Lemma 4.2 holds for ΔP(C). Lemma 4.3 also is valid 
for ΔP(C) [9, Corollary 5.2].
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As Example 5.1 illustrates, FI(C) strictly contains P(JC) in general. A larger ideal 
makes for a smaller simplicial complex. The following result explains the relationship 
between Δ∩(C) and ΔP(C).

Proposition 5.2. For every code C, the factor complex Δ∩(C) is the subcomplex of the 
polar complex ΔP(C) whose facets are the effective facets of ΔP(C).

Proof. Lemma 4.4 states that all facets of Δ∩(C) are effective, and P(JC) ⊂ FI(C)
implies that Δ∩(C) ⊂ΔP(C). So, it suffices to show that every effective facet of ΔP(C)
is a face of Δ∩(C). By [9, Corollaries 5.2 and 5.3], the effective facets of ΔP(C) are of 
the form d ∪ [n] ∖ c where [c, d] is a maximal interval of C. Now apply Lemma 4.3. ◻

The key difference between the factor complex and the polar complex of a code is 
that the latter can have defective facets. While these facets hold useful information 
about quotient codes, as shown in [9], the structure of the smaller factor complex is 
more convenient for our purposes here.

6. Computational considerations

The main result of this article, Theorem 1.1, gives a new method for checking whether 
a code is max-intersection-complete (Algorithm 1 below). In this section we provide 
an infinite family F of codes for which this method is more efficient at checking max-
intersection-completeness than the natural brute-force approaches.

In order to analyze the runtime of our proposed algorithm, we write it explicitly below. 
Correctness follows directly from Theorem 1.1 and the correspondence between maximal 
codewords of C and minimal primes of I(Δ(C)) in Theorem 3.4.

Remark 6.1. We point out that Algorithm 1 requires CF(JC) as part of its input, but 
the brute-force methods below do not. For this reason, a complete runtime analysis of 
Algorithm 1 requires knowing the complexity of computing canonical forms, which is not 
currently well understood. The canonical form algorithm given in [18] is easily seen to 
be exponential in the number of neurons. A faster procedure for finding CF(JC) would 
be very desirable, and would have implications beyond this article.

We now define F to be the family of all neural codes C satisfying the following prop-
erties:

(i) The number of maximal intervals of C′ is at most n, the number of neurons of C.
(ii) There exists a maximal interval [c, d] of C′ with d ≠ [n] and ∣d ∖ c∣ = n/2.
(iii) There exists a maximal interval [a, [n]] of C′, where a contains n/2 neurons.
(iv) For every maximal interval of C′ that has the form [b, [n]], if a ≠ b then a ∩ b = ∅.
(v) C ′ contains at most log2(n) maximal intervals of the form [b, [n]].
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Algorithm 1: Checking max-intersection-completeness.
input:
(1) C, a neural code on n neurons
(2) Cmax, the list of the maximal codewords of C
(3) CF(JC), the canonical form of the neural ideal of C

output : True if C is max-intersection-complete and False otherwise
initialize Min(I(Δ(C)) = ∅;
for (First Loop) c ∈ Cmax do

Add ⟨{xi ∣ i ∈ [n] ∖ c}⟩ to Min(I(Δ(C));
end
for (Outer Loop) non-monomial φ ∈ CF (JC) do

for (Middle Loop) s such that (1 − xs)∣φ do
for (Inner Loop) P ∈ Min(I(Δ(C)) do

if xs ∈ P and no xr ∈ P divides φ then
Go back to Middle Loop (next iteration of loop, or – if none – end loop);

end
end
Go back to Outer Loop (next iteration of loop, or – if none – end loop);

end
return False;
end algorithm

end
return True;
end algorithm

Note that F is infinite, since the number of neurons has not been fixed. We emphasize 
that a code C ∈ F is given as the maximal intervals of C′. This information is equivalent 
to knowing CF(JC). Thus, for codes in F, the issue raised in Remark 6.1 is avoided. 
Finally, it can be checked that F contains infinitely many max-intersection-complete 
codes, and infinitely many codes which are not max-intersection-complete.

We compare Algorithm 1 to two brute-force methods for checking max-intersection-
completeness:

Brute Force 1: Take all possible intersections of maximal codewords of C, and check 
whether all are contained in C.

Brute Force 2: For every σ ∈ C ′, compute cσ, the intersection of all maximal codewords 
of C that contain σ. Then check whether cσ = σ.

Proposition 6.2. For every code C in F, Brute Force 1 and Brute Force 2 are exponential 
in the number of neurons, while Algorithm 1 is sub-exponential in the number of neurons.

Proof. We begin by showing that the number of maximal codewords of any C ∈ F is 
at least n/2 and at most nlog2(n). Recall that these maximal codewords are in bijection 
with the minimal primes of I(Δ(C)) (Theorem 3.4), and also that

I(Δ(C)) = ⟨{xσ ∣ [σ, [n]] a maximal interval of C ′}⟩. (8)

(Recall that for σ ⊆ [n], we use the notation xσ to denote the monomial ∏i∈σ xi.)



A. Ruys de Perez et al. / Advances in Applied Mathematics 114 (2020) 101977 15

The monomial generators of I(Δ(C)) in (8) satisfy the following:

(∗) there is a generator xa of degree n/2 (from condition (iii)),
(∗∗) if xb ≠ xa is a generator of I(Δ(C)), then gcd(xa, xb) = 1 (from condition (iv)), 

and
(∗ ∗ ∗) there are at most log2(n) generators (from condition (v)).

We calculate the upper bound by observing that every minimal prime P of I(Δ(C))
has a generating set GP ⊂ {x1, . . . , xn}, with every monomial in (8) divisible by at least 
one xi ∈ GP . It follows that the number of ways to choose some divisor xi from each 
generator of I(Δ(C)) is an upper bound on the number of minimal primes. This upper 
bound is the product of the degrees of the monomial generators of I(Δ(C)), which in 
turn is bounded above by nNmon , where Nmon is the number of monomials in CF (JC). 
By (∗ ∗ ∗) there are at most log2(n) such monomials, so the number of minimal primes 
– and thus the number of maximal codewords of C – is at most nlog2(n).

For the lower bound, we first note that by (∗) there is a monomial generator xa of 
I(Δ(C)) that has degree n/2. If I(Δ(C)) = ⟨xa⟩, then I(Δ(C)) has n/2 minimal primes. 
If I(Δ(C)) strictly contains ⟨xa⟩, then let P̃ be a minimal prime of the following nonzero 
ideal:

Ĩ ∶= ⟨xb ∣ [b, [n]] is a maximal interval of C ′ and b ≠ a⟩ ⊂ I(Δ(C)).

For every xi that divides xa, we claim that Pi = ⟨xi⟩ + P̃ is a minimal prime of I(Δ(C)). 
By construction, Pi contains I(Δ(C)). If Q ⊊ Pi is another prime monomial ideal, either 
xi ∉ Q or there exists xj ∈ P̃ ∖Q. In the first case, condition (∗∗) implies that xa ∉ Q. 
In the second case, by (∗∗) and the fact that P̃ is a minimal prime of Ĩ, it follows that 
Ĩ /⊂ Q. In both cases Q does not contain I(Δ(C)), and consequently Pi is a minimal 
prime of I(Δ(C)). As a distinct minimal prime Pi = ⟨xi⟩ + P̃ arises from each of the 
n/2 divisors xi of xa, the number of minimal primes – and also the number of maximal 
codewords of C – is at least n/2.

Having found the upper and lower bounds on the number of maximal codewords of a 
code C ∈ F, we now use these bounds to analyze the brute-force methods and Algorithm 1.

As there are at least n/2 maximal codewords, Brute Force 1 checks at least 2n/2

intersections of maximal codewords, and so is exponential in the number of neurons.
Next, Brute Force 2 checks whether each codeword of C′ is contained in each maximal 

codeword of C. So, the runtime will be at least the number of codewords of C′ times 
the number of maximal codewords of C. There are at least n/2 maximal codewords and, 
by condition (ii), at least 2n/2 elements of C ′. Thus, the runtime is at least (n/2) ∗ 2n/2, 
and so is exponential in n.

For Algorithm 1, First Loop iterates over the maximal codewords of C (of which there 
are at most nlog2(n)), and the runtime of each iteration is at most n. So, the runtime of 
First Loop is O(n1+log2(n)). The runtime for the subsequent part of the algorithm is the 
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product of the number of iterations of the Outer Loop, the number of iterations of the 
Middle Loop, and the runtime of the Inner Loop. Since the Outer Loop iterates over a 
subset of CF(JC), by Theorem 3.3 and condition (i) there are at most n such iterations. 
Since the Middle Loop iterates over the neurons, there are at most n iterations of this 
loop. Finally, the Inner Loop iterates over the number of minimal primes of I(Δ(C)), 
of which there are at most nlog2(n). Checking to see whether xs is in some minimal 
prime P takes at most n steps (check each generator of P ) and checking to see whether 
any xr ∈ P divides φ takes at most n2 steps (compare each generator of P with each 
divisor of φ). Thus the runtime of Inner Loop is at most n3+log2(n). We conclude that 
the combined runtime of the Outer, Middle, and Inner Loops is O(n5+log2(n)), which, it 
is straightforward to check, is sub-exponential in n. ◻
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