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Many-body electric multipole operators in extended systems
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The quantum mechanical position operators, and their products, are not well-defined in systems obeying
periodic boundary conditions. Here we extend the work of Resta [Phys. Rev. Lett. 80, 1800 (1998)], who
developed a formalism to calculate the electronic polarization as an expectation value of a many-body operator,
to include higher multipole moments, e.g., quadrupole and octupole. We define nth-order multipole operators
whose expectation values can be used to calculate the nth multipole moment when all of the lower moments are
vanishing (modulo a quantum). We show that changes in our operators are tied to flows of n − 1st multipole
currents, and encode the adiabatic evolution of the system in the presence of an n − 1st gradient of the electric
field. Finally, we test our operators on a set of tight-binding models to show that they correctly determine the
phase diagrams of topological quadrupole and octupole models, capture an adiabatic quadrupole pump, and
distinguish a bulk quadrupole moment from other mechanisms that generate corner charges.
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I. INTRODUCTION

The modern theory of electric polarization in crystals has
had a wide-ranging impact over the past 25 years [1–6].
Aspects of the theory are not only useful for predictions of ob-
servable properties of real materials, but are tightly connected
to a variety of topological insulator phenomena. For example,
insulating crystals having a symmetry that would naively for-
bid the existence of a dipole moment, may instead have nonva-
nishing, but quantized, polarization if they are in a topological
insulator phase [7–10]. Furthermore, by tracking changes in
polarization in an adiabatic cycle, one can observe quantized
charge pumping characterized by a Chern number topolog-
ical invariant [11]. More recently, the theory of quantized
electronic polarization in topological insulators was extended
to account for higher electric multipole moments [12,13].
Therein it was shown that two- and three-dimensional, nonin-
teracting topological crystalline phases of matter can support
quantized electric quadrupole or octupole moments.

The electric polarization is calculated by the Berry phase
of the electronic energy bands over noncontractible cycles in
the Brillouin zone [1,2]. Similarly, Ref. [12] adapts this Berry
phase formalism to describe the hierarchy of electric multi-
pole moments. While the Berry phase calculations for higher
multipole moments can also be used on nontopological insula-
tors with moments outside the quantized regime, the formulas
are not directly applicable to many-body interacting systems.
For polarization, one can consider the Berry phase of a many-
body ground state parameterized by twisted periodic bound-
ary conditions [4,14], but it is not obvious how this approach
can be practically extended to the nested Berry phase (Wilson
loop) approach to calculating higher multipole moments.
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In this paper, we instead provide a formulation of the
quadrupole and octupole moments in terms of ground-state
expectation values of many-body operators, analogous to
Resta’s formulation of the charge polarization [15]. We define
many-body multipole operators and discuss the connection
between these operators and the flow of adiabatic multipole
currents. In addition, we test our operators for several explicit
model systems. We show that our formulas precisely capture
the phase diagrams of the quadrupole and octupole models
from Ref. [12]. Furthermore, we use our formula to track
the changes in quadrupole moments during the higher order
pumping process in Ref. [13] and we show that the results
match the expected phenomena exactly. As an important
comparison, we go on to test our formula on a model with
corner charges but no bulk quadrupole moment. We show that
our operator does not detect any difference between the phases
of this model with and without corner charges, as we expect
since there is no change in the bulk quadrupole moment,
despite the presence of corner charges.

II. MOTIVATION

Let us begin by recounting the calculation of the elec-
tric polarization using a many-body expectation value [15].
Consider a translationally invariant, crystalline insulator with
periodic boundary conditions. It is well known that the many-
body position operator X̂ = ∑

n x̂n, (n = 1, . . . Ne) cannot be
naively used in the calculation of the electric polarization
in extended (and/or periodic) systems. In such systems, the
operator is not well-defined because it can transform a state in
the Hilbert space to a state outside the Hilbert space, e.g., it
can take a normalizable state to a non-normalizable state, or
one obeying periodic boundary conditions to one that violates
the boundary conditions. Instead, the operator

Û j = exp

[
2π iX̂ j

L j

]
(1)
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can be employed in calculations of the polarization of a many-
body ground state |�0〉, i.e., P j = eL j

2πV Im ln〈�0|Û j |�0〉 ≡
eL j

2πV Im ln z(P)
j , where V is the volume of the system. This

formula for P j approximates a derivative with respect to the
many-body momentum by a finite difference [14], so it is
only strictly true in the thermodynamic limit Lj → ∞. For
a nondegenerate, insulating ground state one finds Û j |�0〉 =
eiγ j |�0〉 + O(1/Lj ) as the thermodynamic limit is approached
[15], i.e., |�0〉 becomes an eigenstate of Û j in the thermody-
namic limit [16] (we recount this result briefly below) with
a polarization given by P j = eγ j

2π

L j

V . The polarization has an
ambiguity from the choice of the branch of the log, often
referred to as the quantum of polarization, i.e., γ j ≡ γ j +
2πn.

Following this line of reasoning, we can consider higher
electric multipole moments such as the quadrupole q̂i j =∑

n x̂i
nx̂ j

n or octopole ôi jk = ∑
n x̂i

nx̂ j
nx̂k

n. These operators are
problematic in periodic systems for the same reasons as
the many-body position operator but we can also consider
exponentiated versions. Let ba be the set of reciprocal lattice
vectors satisfying ba · ab = δab for the primitive unit vectors
ab. Then we can consider the operators

ÛQ
ab = exp

[
2π ibi

aq̂i jbj
b

NaNb

]
, (2)

ÛO
abc = exp

[
2π iôi jkbi

abj
bbk

c

NaNbNc

]
, (3)

where Na is the number of unit cells in the ath lattice direction.
The bulk moments are then defined as

Qab = eLaLb

2πV Im ln〈�0|ÛQ
ab|�0〉, (4)

Oabc = eLaLbLc

2πV Im ln〈�0|ÛO
abc|�0〉, (5)

where we have left the crucial step of taking the thermody-
namic limit implicit in these formulas. For the majority of this
paper, we will direct our focus to the quadrupole operator and
the octupole case can be studied essentially mutatis mutandis.

III. MOMENTS AS INTEGRATED CURRENT

To confirm that our definition of the quadrupole moment
matches the expected physical observables, we will generalize
the arguments from Ref. [15]. Consider a generic many-body
Hamiltonian:

H =
Nelec∑
n=1

∑
i=x,y,z

(
p̂i

n

)2

2m
+ V (X̂). (6)

Let us focus on the unitary transformation Ûλ(α) =
exp (iαλ(X̂)), for an arbitrary real differentiable function
λ(X̂), that acts on each momentum operator as

Ûλ(α) p̂i
nÛ

†
λ (α) = p̂i

n − h̄α
∂λ(X̂)

∂ x̂i
n

. (7)

Now we define H (α) = Ûλ(α)HÛ †
λ (α), noting that the dif-

ference between H (0) and H (α) is the presence of an

electromagnetic vector potential acting on each electron, e.g.,

Ai(x̂n) = − h̄α
e

∂λ(X̂)
∂ x̂i

n
for the nth electron. Assuming that the

ground state of H (0), |	0〉, is always nondegenerate, then the
relation H (α)Uλ(α)|	0〉 = E0Uλ(α)|	0〉 holds.

Let us take the particular case where λ(X̂) = X̂ 1, which
will allow us to reproduce Resta’s argument. This gener-
ates the constant vector potential A1 = − h̄α

e , A2 = A3 = 0. To
have UX̂ 1 (α)|	0〉 satisfy periodic boundary conditions, we can
choose α = 2π/L1. When approaching the thermodynamic
limit, L1 is large and we can treat α as a small parameter.
Thus we can treat UX̂ 1 (2π/L1)|	0〉, which is an eigenstate
of H (2π/L1), as a perturbed version of the initial ground
state |	0〉, and hence we can expand UX̂ 1 (2π/L1)|	0〉 in
terms of the eigenstates of H (0). The perturbation term in the
Hamiltonian is H ′ = − 2π h̄

mLx

∑Nelec
n=1 p̂1

n, and the leading order
correction to the unperturbed ground state yields

UX̂ 1 (2π/L1)|	0〉

≈ eiγp1

⎛
⎝|	0〉 − 2π h̄

mL1

∑
j 	=0

|	 j〉 〈	 j |P̂1|	0〉
E0 − Ej

⎞
⎠ (8)

where |	 j〉 are the excited states of H (0) with energies Ej,

and P̂ i is the many-body momentum operator of all the
electrons. In addition to the usual form, we have allowed for
a phase factor γp1 which determines the one-component of
the electric polarization [15]. As we stated earlier, we now see
explicitly that in the thermodynamic limit, UX̂ 1 (2π/L1)|	0〉 =
eiγp1 |	0〉. To connect to the physical polarization, we can show
that the time derivative of this polarization definition matches
the physically expected result of an electric current. Indeed,
Ref. [15] shows from the perturbation theory calculation
above that in 1D,

dP1

dt
≈ ieh̄

mL1

∑
j 	=0

〈	̇0|	 j〉 〈	 j |P̂1|	0〉
E0 − Ej

+ c.c., (9)

which is the adiabatic electric charge current [11].
Now consider the quadrupole moment Q̂12. We will con-

sider a unitary transformation Ûλ(α) with λ(X̂) = ∑Nelec
n=1 x̂1

nx̂2
n

and α = 2π/L1L2. Using the same arguments as the case for
polarization, we can use perturbation theory to calculate

UQ̂12 (2π/L1L2)|	0〉

≈ eiγq12

⎛
⎝|	0〉 − 2π h̄

L1L2

∑
j 	=0

|	 j〉 〈	 j |Ĵ 12
D |	0〉

E0 − Ej

⎞
⎠, (10)

where Ĵ 12
D = 1

m

∑Nelec
n=1 ( p̂1

nx̂2
n + p̂2

nx̂1
n ) is the dipole-current op-

erator. Note that the velocity dx̂i
n/dt = (i/h̄)[H, x̂i

n] = pi
n/m

is like the time derivative of the dipole operator, while the
time derivative of the quadrupole operator is d (x̂1

nx̂2
n )/dt =

(i/h̄)[H, x̂1
nx̂2

n] = (1/m)( p̂1
nx̂2

n + p̂2
nx̂1

n ), hence our notion of
a dipole current operator. From this result, we can further
calculate

dQ12

dt
≈ ieh̄

L1L2

∑
j 	=0

〈	̇0|	 j〉 〈	 j |Ĵ 12
D |	0〉

E0 − Ej
+ c.c., (11)
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which relates the time derivative of our definition of the
quadrupole to a dipole current as we would physically expect.
We note that the above expression for Ĵ 12

D [and thus Eqs. (10)
and (11)] cannot be evaluated in a periodic system in its cur-
rent form because it contains position operators. Nonetheless,
the notion of a dipole current is useful for understanding
the origin of a bulk quadrupole moment as the result of a
process that rearranges charge moments, even in extended
systems. The problem with periodicity is reminiscent of the
polarization operator X̂, which cannot be evaluated directly in
a periodic system, but can be computed from the operator in
Eq. (1). Finding an alternate expression for Ĵ 12

D that is com-
patible with periodic boundary conditions is an interesting
direction for future work.

IV. ADIABATIC EVOLUTION

For an intuitive understanding, we can characterize the
action of our operators in the language of adiabatic evolu-
tion. The action of ÛX̂ 1 (2π/L1) on a state can be treated as
adiabatic evolution from a system with a vanishing vector
potential to one with A1 = −h/eL1. The process can be ac-
complished through a time-dependent vector potential of the
form A1 = − ht

eL1T , and which is 0 for t < 0, and −h/eL1

for t > T . The process inserts one magnetic flux quantum
into the periodic cycle in the x1 direction. From the Faraday
effect, this is equivalent to turning on a uniform electric field
in the x1 direction during the time interval t ∈ [0, T ]. We
are interested in the evolution of the nondegenerate ground
state of a gapped, neutral insulator, and so the presence of
the uniform electric field will only activate the additional
phase factor γp1 = −h̄−1

∫ T
0 d · E dt in the adiabatic limit,

where d is the total dipole moment of the material. Besides the
weak, time-varying vector potential, we assume the insulator
is otherwise static so d is time independent. Hence, we find
the phase [cf. Eq. (8)]

γp1 = h̄−1d1
∫ T

0
∂t A

1dt = d1 · [A1(T ) − A1(0)]

= −2πd1/eLx, (12)

which exactly produces the right value of P1 =
e

2π
Im ln〈�0|ÛX̂ 1 (2π/L1)|�0〉 in the thermodynamic limit.
The essential idea in the previous paragraph is that, to

detect a polarization in the material, we adiabatically turn
on a small electric field and track how the phase of the
ground state responds during this process. For the quadrupole,
instead of turning on a uniform electric field, we turn on
a uniform electric field gradient. The quadrupolar operator
UQ̂12 (2π/L1L2) can be interpreted as adiabatically evolving
our ground state from a vanishing vector potential at t = 0 to
the vector potential Ai = − hσ i j x j

eL1L2
at t = T . This process can

be carried out using a time-dependent vector potential,

Ai = − htσ i jx j

eL1L2T
i, j = 1, 2, (13)

where σ 12 = σ 21 = 1, σ 11 = σ 22 = 0, and T is large. This
vector potential represents a constant electric field gradient.
Thus, a natural way to interpret the proposed quadrupole
operator is as an evolution process where a small, uniform

electric field gradient is turned on for a finite amount of time.
During this time, the ground state will develop the phase factor
γq12 shown in Eq. (10), in the thermodynamic limit. Since
we are applying the electric field gradient in a neutral, un-
polarized insulator, and the Q12 quadrupole moment couples
to an electric field gradient 1

2 (∂1E2 + ∂2E1), its contribution

to the phase will be γq12 = − 1
2h̄

∫ T
0 (q12∂1E2 + q21∂2E1). We

assume that the quadrupole moment of our system is static so
we can simplify this expression to

γq12 = q12

2h̄

∫ T

0
(∂1∂t A

2 + ∂2∂t A
1)dt

= q12

2h̄
{∂1[A2(T ) − A2(0)] + ∂2[A1(T ) − A1(0)]}

= −2πq12

eL1L2
, (14)

which confirms our operator definition of the quadrupole
moment.

V. PRACTICAL EVALUATION

After having shown that ÛQ
ab can be used to determine

dipole currents in the bulk, and that it has a physical interpre-
tation via adiabatic evolution in an electric field gradient, we
now turn to the practical evaluation of the expectation value
of this operator. To determine if ÛQ

ab can have a well-defined,
nonvanishing expectation value z(Q)

ab in periodic systems, we
need to evaluate its transformation properties under transla-
tions. Let us recall the argument from Ref. [17] that shows
that z(P)

j is nonvanishing only when the expectation value of

Û j transforms in the trivial representation of the translation
group. Assuming translation invariance, the ground state |�0〉
is an eigenstate of the translation operator carrying many-
body momentum K. We find

〈�0|ÛP
a |�0〉 = 〈�0|T̂ −1

ac
T̂ac ÛP

a T̂ −1
ac

T̂ac |�0〉
= eiK·ac e−iK·ac exp(2π iδacn0c)〈�0|ÛP

a |�0〉, (15)

where we translated all the electrons in the cth primitive
direction using T̂ac , and assumed |�0〉 is an eigenstate of the
total number operator. We see that if n0a = Ne/Na is an integer
for Na unit cells in the ath direction, then the expectation value
does not have to vanish. We can relax n0a to be rational with a
suitable modification of Ûa [17].

Repeating for the quadrupole, we find

〈�0|ÛQ
ab|�0〉

= exp [2π in0abδacδbc]

×〈�0|ÛQ
ab exp

[
2π iX̂ j

(
bj

aδbc + δacbj
b

)
/NaNb

]|�0〉
= ei�〈�0|ÛQ

ab|�0〉 + O(1/L), (16)

where n0ab = Ne/NaNb, is assumed to be an integer, and
we have applied the results of Ref. [15] to evaluate
e2π iX̂ j (bj

aδbc+δacbj
b)/NaNb |�0〉 = ei�|�0〉 + O(1/L). Hence, in the

thermodynamic limit, we find the relation 〈�0|ÛQ
ab|�0〉 =

ei�〈�0|ÛQ
ab|�0〉, and z(Q)

ab must therefore vanish unless � =
2π p for some integer p. The phase factor � is different than
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the phase generated by translations of the polarization oper-
ator ÛP

a , which depends on the particle number n0a. Instead,
� depends on the polarization X̂ j . Specifying that the planar
filling factor n0ab is an integer (or rational fraction for suitably
generalized ÛQ

ab [17]) will not be enough in this case, and
one must also specify that the polarization vanishes (up to a
quantum).

However, even after satisfying this constraint, the expecta-
tion value of ÛQ

ab is not invariant under translations in general.
Constraining the polarization to vanish (which should ensure
� = 2π p) will not fix the issue in finite-sized systems due
to the nonvanishing fluctuations of the dipole moment. The
dipole fluctuations are a measure of the Wannier function
localization length or, alternatively, the nonvanishing cor-
relation length controlled by the insulating gap. When the
dipole fluctuations are nonvanishing, the state |�0〉 is not an
eigenstate of the X̂ j operator, so even with no average dipole,
evaluating the expectation value of the quadrupole operator
can be problematic. If we have single particle orbitals in
a zero-correlation length limit where Wannier functions are
point localized, then the dipole fluctuations vanish and the
many-body ground state will be an exact eigenstate of the
ÛP

a operators. For this situation, the expectation value of ÛQ
ab

is well-defined even in finite-size as long as the polariza-
tion vanishes, and the particle filling is integer. Indeed, for
many-body ground states that are an exact eigenstate of ÛP

a

the magnitude of the expectation value of ÛQ
ab will tend to

unity in the thermodynamic limit. To evaluate the expectation
value of the quadrupole operator more generally we must be
more careful [18]. The effect of dipole fluctuations on ÛQ

ab is
discussed further in Appendix C.

In this paper, we replace the quadrupole operator by an
approximation: We evaluate the expectation value of ÛQ

ab
on a finite supercell of size Lx × Ly, then extend the trun-
cated operator periodically outside the supercell. We then
evaluate the expectation value of this periodic operator. The
error introduced by this approximation depends on the size
of the supercell we use, but improves as the ratio of the
correlation/localization length and the characteristic length of
the supercell goes to zero. From our analytic evaluation of the
expectation value of ÛQ

ab for Gaussian charge configurations in
Appendix C, we expect that the magnitude of the expectation
value will approach a constant in a thermodynamic limit
where both Nx and Ny are taken to infinity together. This
constant will not generically be unity, and it will depend on
the size of the dipole fluctuations in the x and y directions
as well as the aspect ratio Nx/Ny. In this limit, the phase
factor that determines the quadrupole moment converges to
the correct value as well. Discussions of finite size error and
more details about the effects of dipole fluctuations are shown
in Appendices B and C. We will leave a systematic study of
this approximation and alternatives to future work.

VI. EXAMPLE CALCULATIONS

A. Multipole models with mirror or C4 symmetry

Now we provide some examples in which we calculate
the multipole moments using our operators in tight-binding
models. Our first example will be focused on the insulating

FIG. 1. Tight-binding model having four spinless orbitals per
cell with intercell tunneling λx,y, intracell tunneling γx,y, and onsite
potential δ that takes opposite signs on the filled and empty circles.
There is a flux φ between each unit cell and within each unit cell in
a gauge where the dotted lines have a relative phase factor of ei�.

phases of a particular tight-binding model [12,13] on a square
lattice with four degrees of freedom per unit cell, which, for
simplicity, we will treat as spinless orbitals (we also provide
calculations for a related octupole model [12], and in the
subsequent subsection we provide calculations for another
tight-binding model with a nonvanishing quadrupole moment,
but with C4T symmetry [19]). The unit cell basis and tunnel-
ing terms are illustrated in Fig. 1, and the Bloch Hamiltonian
for a system with periodic boundary conditions is given by

H (k,�)

=

⎛
⎜⎝

δ �x(kx ) �y(ky) 0
�x(−kx ) −δ 0 �y(ky)
�y(−ky) 0 −δ ei��x(kx )

0 �y(−ky) e−i��x(−kx ) δ

⎞
⎟⎠,

(17)

where �x(kx ) = γx + λxeikx , �y(ky) = γy + λyeiky , δ, γx/y,

λx/y are real parameters representing onsite energies, intracell
tunneling, and intercell tunneling, respectively, and � is the
flux in each (intra- and intercell) plaquette in our chosen
gauge.

This model can be tuned to a variety of insulator phases,
and we will consider several test cases. For case (i), we
explore this model in the quadrupolar phase protected by Mx

and My mirror symmetries where � = π, δ = 0, and we fix
λx = λy ≡ λ to plot a phase diagram as a function of γx/λ

and γy/λ in the interval [−2, 2]. We find that the calculation
of the quadrupole moment using our operator [see Fig. 2(a)],
matches the expected phase diagram from Ref. [12] where the
system has a quantized quadrupole moment with magnitude
Qxy = e/2 when γx/λ, γy/λ are both in the interval [−1, 1].

Let us make some technical remarks about this calculation.
Although difficult to see by eye, there is some deviation from
the expected phase diagram very close to the phase boundaries
where the correlation length is increasing without bound, but
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FIG. 2. (a) Phase diagram for model in Eq. (17) with Lx =
Ly = 40 as a function of (γx/λ, γy/λ, �). The green and purple
regions have a values of Qxy that differ by e/2, as calculated using
Eq. (2). Dependence on � is only shown along the diagonal lines
that maintain C4 symmetry. (b) The evolution of the quadrupole
moment [Eq. (2)] during a pumping process as compared with the
corner charge and edge polarization. All three match exactly, as
expected. (c) Phase diagram for Eq. (17) with � = 0 as a function
of (γy/λy, λx/λy ). Equation (2) does not distinguish two different
phases that have corner charge and a trivial insulator with no cor-
ner charge. This is as expected as in this regime the model has
a vanishing quadrupole moment even in the phases with corner
charge/modes [13]. (d) Phase diagram for an octupole model [12]
with Lx = Ly = Lz = 10 as a function of (γx/λ, γy/λ, γz/λ). The
green and purple regions have values of Oxyz that differ by e/2 as
determined by Eq. (3).

this deviation is just a finite-size effect as it decreases rapidly
with the size of the supercell. Additionally, while the phase of
the operator ÛQ

ab yields the quadrupole moment of the ground
state in the thermodynamic limit, it can only be extracted
if the magnitude of the expectation value is nonvanishing.
According to Eq. (10), one would expect its magnitude to
approach one in the thermodynamic limit; however, we find
that, for our choice of boundary conditions and our choice
for the approach to the thermodynamic limit, the magnitude
does not go to unity in the presence of dipole fluctuations.
In Appendix B, we show the scaling of the magnitude of the
operator as a function of system size for two points in the
phase diagram shown in Fig. 2(a). Furthermore, we discuss
the complications associated with dipole fluctuations in more
detail in Appendix C.

For case (ii), we consider a variation of the quadrupole
phase protected by C4 symmetry where we tune γx = γy ≡ γ ,
λx = λy ≡ λ and allow for � ∈ [0, π ]. At � = 0, the model
is gapless at half filling, but for any finite � in this interval
we expect to find a quantized quadrupole of Qxy = e/2 when
|λ| > |γ |. We show this calculation in the extended planes
along the diagonals of the phase diagram in Fig. 2(a), and find
that our operator correctly reproduces the phase diagram.

For case (iii), we consider the adiabatic dipole pumping
process introduced in Refs. [12,13], where the quadrupole
moment is continuously tuned from the topological phase

where Qxy = e/2 to the trivial phase, where Qxy = 0. We
can parametrize this pumping process by λx = λy = 1, δ →
− sin θ (t ) and γ = 1/2[1 − cos θ (t )]. We show the result in
Fig. 2(b), in which we plot the result of our operator compared
to calculations of the corner charge (for an open, square
geometry) and the edge polarization on a cylinder, and we find
they all match exactly as expected for a continuously varying
bulk quadrupole moment Qxy.

For case (iv), we tune the system to � = δ = 0. This
model has Mx and My mirror symmetries, so we expect the
quadrupole moment to be quantized, though that does not
mean it takes the nontrivial topological value. Indeed, this
model is not expected to have a bulk quadrupole moment
despite having insulating phases with fractional e/2 corner
charge, since this charge is associated with edge polarization
rather than a bulk quadrupole moment. Here we show a phase
diagram for fixed λy = 1, γx = 0, where we vary λx and γy.

We show that our formula, while yielding a quantized value
for Qxy, does not distinguish between the insulating phases
with and without fractional corner charge. This is a clear and
important indication that our invariant is only sensitive to
the bulk quadrupole moment, and is not just testing for the
possible existence of corner charge alone.

Finally, in Fig. 2(d), we show a calculation for the octupole
moment in the phase diagram of the mirror-symmetric oc-
tupole model of Ref. [12], where we have fixed the inter-cell
hopping λ and varied the intra-cell hoppings γx,y,z in the
interval [0,2]. We see that the phase diagram matches the
expected result with a topological octupole moment Oxyz =
e/2 when |γi/λ| < 1 for all i.

B. Quadrupole model with C4T Symmetry

In this subsection, we perform a calculation of the
quadrupole moment in a 2D version of the chiral hinge-
insulator model presented in Ref. [19]. This model has a quan-
tized quadrupole moment protected by the product of rotation
and time-reversal symmetry C4T . The Bloch Hamiltonian we
consider is

H (k) = sin kx�
1 + sin ky�

2 + (2 − m − cos kx − cos ky)�0

+�(cos kx − cos ky)�3, (18)

where �0 = τ z ⊗ I, �1 = τ x ⊗ σ x, �2 = τ x ⊗ σ y, �3 =
τ x ⊗ σ z. When � = 0, this model has both C4 and
time-reversal symmetry T, and is a model representing
a 2D time-reversal invariant topological insulator with
helical edge states when, e.g., 0 < m < 2. When � 	= 0,
the system breaks both C4 and T but preserves the product
C4T . The nonvanishing � acts to gap the helical edge states
and generate corner modes for an open square geometry
that respects global C4 symmetry. Thus we expect to find
an ill-defined quadrupole moment when � = 0, and a
nonvanishing topological quadrupole moment Qxy = e/2
when 0 < m < 2,� 	= 0. When m < 0,� 	= 0, we expect
to find a well-defined but vanishing quadrupole moment.
We show the calculated phase diagram as a function of m
and � in Fig. 3. We note that we look at a range of �

that is small enough not to destroy the bulk topology and
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FIG. 3. Phase diagram for the model in Eq. (18) with Lx = Ly =
40 as a function of (m,�). The green and purple regions have values
of Qxy that differ by e/2, according to Eq. (2). The data along the line
� = 0 is not shown because the values of Qxy are highly fluctuating,
and the quadrupole moment is not well-defined since the edges are
gapless.

we see that our operator correctly reproduces the phase
diagram.

VII. CONNECTION TO RECENT WORK

There have been several recent papers discussing the eval-
uation of the quadrupole operators on which we can comment
[20,21]. Kang et al. [20] simultaneously proposed the same
definitions for the quadrupole and octupole operators as we
do in Eqs. (2)–(5). Similar to our argument in Eq. (16), they
investigate the invariance of the operator Ûxy under transla-
tions, and conclude that the polarization must be zero for the
operator to be well-defined. We have both pointed out that
the ground state is not an eigenstate of polarization Û j , which
is what complicates the evaluation of Ûxy. They point out
a violation of translation invariance of O(1/Egap), inversely
proportional to the excitation gap,

〈Û ′
xy〉 = 〈Ûxy〉〈Ûy〉 + O

(
1

Egap

)
,

where Û ′
xy is the operator Ûxy translated in the x direction by

x → x + Lx. We describe this same error as being a result
of dipole fluctuations, which, for noninteracting systems,
measure the Wannier localization length. For single-particle
orbitals, the error disappears in the limit that the Wannier
functions are δ-function localized, equivalent to their limit of
Egap → ∞. We drew a connection between dipole fluctuations
and decreasing magnitude of 〈Ûxy〉, which is a signature of
the problem with translation invariance. In contrast to their
discussion, we point out that zero polarization is not sufficient
to have a well-defined quadrupole in finite-sized periodic
systems. As such, for systems with dipole fluctuations, eval-
uating this operator in PBCs necessarily uses an approximate
form; we described one approximation that we used in our
calculation, which is similar to that used in Ref. [20].

To confirm the definitions of the quadrupole operator Ûxy as
a reliable estimator of the response to electric field gradients,
they also give an argument similar to our adiabatic evolution
discussion, but in a more field-theoretical approach.

In response to these proposals, Ono et al. [21] comment
on some problems that arise when applying the quadrupole
operator Ûxy to certain tight-binding models that were not
considered in our work [21]. They find that their evaluation
of the quadrupole operator has more serious issues than those
discussed here, namely that the result seems to depend non-
trivially on the correlation length in an insulator phase when
the quadrupole moment should nominally be quantized. They
also comment that their results can depend on the parity of
the number of lattice sites, but as we show in Appendices A
and C this has a simple origin and similar effects can appear
even for the polarization, and even for classical point-charge
configurations.

In the models in which we evaluated the quadrupole mo-
ment we did not find this issue, so it might be useful to
comment on the distinctions between the models we con-
sidered and one of their models, though fully resolving the
discrepancy will require further research. One of their models
is a C4 invariant system with four occupied bands that form a
Wannier representable obstructed atomic limit. The electrons
in the model sit at maximal Wyckoff positions 1a, 1b, 2c, i.e.,
one at the center, one at the corner, and two in the middle of
the edges of the unit cell. One possibly important distinction
is that this model does not have gapped Wannier bands. While
the need for gapped Wannier bands was emphasized in Ref.
[13], it has not been proven that this is a generic requirement
to define the quadrupole moment (though a gapped, neutral
edge is required). A second distinction is that in the models
we consider, one can always relate the systems with a nonva-
nishing quadrupole to a trivial onsite limit continuously while
preserving a symmetry under which the dipole moment does
not change. Thus, in our models one can clearly calculate a
change in quadrupole moment when going from the trivial
atomic limit to a nonvanishing quadrupole configuration. In
their model, such an interpolation does not seem to exist, so it
is not clear how to compare the quadrupole moment in their
obstructed atomic limit to the trivial atomic limit. While again,
this may not be a requirement to define a quadrupole model,
it does seem like a natural consideration.

Reference [21] also makes a note regarding second-order
contributions to the perturbative expansion of the magnitude
|〈�0|Ûx|�0〉| and comments that Resta’s formula for polar-
ization is not guaranteed to work, i.e., the magnitude may
go to zero in higher dimensions. This is a well-known fact
for polarization. Indeed, to obtain a nonzero magnitude of
the expectation value of Ûx in higher dimensions, one must
take the correct thermodynamic limit, namely, where the
direction parallel to the polarization component of interest
goes to infinity first. We also find that, for periodic boundary
conditions, the quadrupole magnitude |〈Ûxy〉| goes to zero
in the thermodynamic limit if dipole fluctuations are finite,
seemingly no matter what thermodynamic limit one uses.
Despite this, we find that this issue does affect the consistency
of the phase in the tight-binding calculations we performed in
finite size systems. Based on the calculations in Appendix C,
we expect that if we truncate the system, as indicated by
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our approximation scheme, then the magnitude |〈Ûxy〉| can
approach a finite (though likely not unity) value if we take
the limit Lx = Ly → ∞, even in the presence of dipole fluc-
tuations.

In summary, Ono et al. raise some interesting questions
about the evaluation of the many-body quadrupole operator
and about what constraints are necessary to enforce to have
a well-defined quadrupole moment in a crystalline system.
The issues they have pointed out will be valuable in spec-
ifying careful definitions and treating boundary effects cor-
rectly for detecting higher order multipole moments in bulk
systems.

VIII. CONCLUSION

In conclusion, we have proposed definitions for many-body
operators whose expectation values determine the quadrupole
and octupole moments of insulators. We showed that the
change in quadrupole moment corresponds to dipole cur-
rents in the material. We proposed a method to evaluate the
quadrupole; however, the method is not entirely satisfactory
because it suffers from significant finite-size errors related
to the fluctuations of the dipole moment, even when the
total dipole moment is vanishing. However, we showed that
on several nontrivial tight-binding models, the operators do
indeed capture the bulk properties, and can be used to evalu-
ate topological indices. The operator can be evaluated using
many-body wave functions as well as using tight-binding
wave functions, so it can be used to generate new many-
body topological indices for systems with interactions and/or
disorder.

Note added. Recently, we became aware of an independent
overlapping work by Kang et al. [20]. We thank them for
discussions and for coordinating submission.
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APPENDIX A: CONSTRAINTS ON CHARGE
CONFIGURATIONS FOR THE QUADRUPOLE AND

OCTUPOLE OPERATORS

In this Appendix, we will evaluate the conditions under
which one will generically find a nonvanishing expectation
value of multipole operators if the electron orbitals are point-
charge localized. For example, in a limit where all dipole
fluctuations vanish, we expect that the expectation values
of the quadrupole operators are well-behaved in extended
systems. More precisely, to evaluate the quadrupole moment
we want to consider a many-body state that is an exact
eigenstate of the Ux and Uy operators. This is not necessarily
an unphysical situtation, as we know it will be approximately
true as we approach the thermodynamic limit. That is, if
we consider our insulating system to be large compared to
the characteristic size of individual Wannier functions of the
occupied bands, then we can treat the charge distribution as a
collection of point charges located at the Wannier centers that
are periodically repeated throughout the crystal lattice [2]. For
a many-body state represented by a product of single-particle
orbitals, vanishing dipole fluctuations imply that the orbitals
are δ-function localized, so we will consider the expectation
values of the multipole operators in such a state. Even in this
situation, there are constraints under which the expectation
values of the quadrupole or octupole operators are well-
defined in the thermodynamic limit, i.e, when they effectively
transform in the trivial representation of the translation group
for such point-charge product states. We will determine those
conditions now.

For simplicity, let us consider our electron configuration
to be a rectangular lattice of point charges and focus on the
quadrupole moment Qxy associated to the operator

ÛQ
xy = exp

(
2π i

∑
j x jy j

LxLy

)
. (A1)

Now let us transform this operator by a translation R =
h1axx̂ + h2ayŷ where h1, h2 are integers. We find that

TRÛQ
xyT −1

R = ÛQ
xy exp

⎡
⎣2π i

∑
j

h1h2/NxNy

⎤
⎦ exp

⎡
⎣2π ih1

∑
j

y j/NxLy

⎤
⎦ exp

⎡
⎣2π ih2

∑
j

x j/LxNy

⎤
⎦

= ÛQ
xy exp

[
2π i

∑
R

ν∑
α=1

h1h2/NxNy

]
exp

[
2π ih1

∑
R

ν∑
α=1

yR,α/NxLy

]
exp

[
2π ih2

∑
R

ν∑
α=1

xR,α/LxNy

]

= ÛQ
xy exp [2π iνh1h2] exp

[
2π ih1

∑
n2

ν∑
α=1

(ȳα + n2ay)/Ly

]
exp

[
2π ih2

∑
n1

ν∑
α=1

(x̄α + n1ax )/Lx

]

= ÛQ
xy exp [2π iνh1h2] exp

[
2π ih1

ay

ν∑
α=1

ȳα

]
exp

[
2π ih2

ax

ν∑
α=1

x̄α

]
exp[π ih1ν(Ny + 1)] exp[π ih2ν(Nx + 1)], (A2)

where the sum over α runs over all the electrons in a single unit cell and ν is the electron filling.
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Ultimately, we want this operator to be invariant under any lattice translation of all the electrons, and the strongest constraints
arise from taking h1, h2 to be the smallest nonzero integers, e.g., h1 = h2 = 1. For this choice, we find the constraint

exp [2π iν] exp

[
2π i

ay

ν∑
α=1

ȳα

]
exp

[
2π i

ax

ν∑
α=1

x̄α

]
exp[π iν(Ny + Ny + 2)] = 1. (A3)

To satisfy this constraint in a manner that is independent of the
eveness/oddness of Nx, Ny it is sufficient to choose ν = 2Z
and the x and y components of the dipole moment per unit
cell must be integer multiples of ax, ay, respectively. We can
relax the constraint of ν being integer valued if we modify
our starting operator Eq. (A1) according to a prescription
analogous to that presented in Ref. [17], but in that case
we will still require ν = 2Q. While we have derived these
constraints assuming the charge distribution is pointlike, we
expect this result to apply to more complicated distributions in
the thermodynamic limit where the system size is much larger
than the spatial extent of the Wannier functions that compose
our insulating ground state. The coordinates x̄α, ȳα will then
be associated to the centers of the Wannier functions in each
unit cell.

We can repeat this calculation for the octupole moment,
e.g, Oxyz, and translating by a vector R = axx̂ + ayŷ + azẑ.
We find the constraint that the dipole and quadrupole moments
per unit cell must be integer valued as well as the constraint

exp

[
2π iν(Nx + 1)(Ny + 1)(Nz + 1)

4

]
= 1. (A4)

For this constraint to be satisfied independently of the system
size, we thus need ν = 4Z for the octupole moment.

APPENDIX B: FINITE SIZE EFFECTS OF THE
QUADRUPOLE OPERATOR

The evaluation of the expectation value of the quadrupole
operator ÛQ

xy [Eq. (A1)] exhibits some challenges. We show
how this manifests in our calculation as a function of system
size. Figure 4 shows the γx-γy phase diagram of the quantized,
mirror-symmetric quadrupole model Eq. (17) from Ref. [13]
for Lx = Ly = 10, 20, 40. There is an error in a thin region
near the phase boundary, where only one of γx or γy is close
to (but less than) one. The expectation value predicts the
wrong topological phase in this region; however, this region
decreases rapidly with system size. In the thermodynamic

FIG. 4. Phase diagrams in γx-γy of Im ln〈�0|ÛQ
xy|�0〉 for Nx =

Ny = 10 (a), 20 (b), 40 (c). Teal lines at |γi| = 1 indicate the phase
boundary of the model. Our operator gives a quadrupole moment
of zero in the green regions and 0.5 in the purple regions. In larger
systems, our operator’s quadrupole phase more closely approaches
the theoretical phase boundary.

limit, the error disappears. This type of error is due to the large
correlation length that exceeds the system size for parameters
near the phase boundaries.

The expectation value of the operator ÛQ
xy has a phase and

a magnitude. While the phase gives the quadrupole moment,
the magnitude reflects its fluctuations. Figure 5 shows how the
magnitude depends on our finite simulation size for selected
points in the γx-γy phase diagram shown in Fig. 4. The
magnitudes are close to zero and decrease as the system
gets larger. This does not mean that the physical quantity
is not meaningful; in comparison, for a 3D system, Resta’s
polarization operator also decreases to zero magnitude if
Nx = Ny = Nz → ∞. Exploring efficient ways to evaluate the
expectation value for large systems is still an open challenge.
In Appendix C, we will show how this magnitude decrease
can be traced back to fluctuations in the dipole moments.

APPENDIX C: SCALING OF THE MAGNITUDE OF THE
QUADRUPOLE EXPECTATION VALUE

In this Appendix, we discuss the scaling properties of the
expectation values of the dipole and quadrupole operators
using a test configuration of continuum charge distributions
arranged on a crystalline lattice. We will consider the cases of
product states of δ-function point charges as well as Gaus-
sian charges, both product and determinant states. In these
systems, the dipole fluctuations cause the magnitude of the
quadrupole operator to go to a limiting value which is not
equal to one.

1. Polarization

For the calculation of the polarization, let us consider a
1D system with a filling of one electron per unit cell at a
position x0 with respect to the origin of each unit cell. The
electrons in our system are thus located at the positions x0 + n
in units of the lattice constant a which we set to a = 1, and
where n ∈ Z. Now we can calculate the polarization via the

FIG. 5. Log of the magnitude |〈�0|ÛQ
xy|�0〉| at different points in

the γx-γy phase diagram. The magnitude goes to zero with increasing
system size at all points in the phase diagram.
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expectation value of the operator Ûx = exp [ 2π iX̂
Lx

] in the many-
body ground state consisting of a tensor product of localized
δ-function charges. The polarization is given by

Px = eLx

2πV Im ln[〈Ûx〉], (C1)

where V is the volume of the system, i.e., Lx = Nx in 1D. After
integrating over the real-space coordinates of each electron to
generate the expectation value, we find the result

Px = ex0 + e
Nx + 1

2
, (C2)

which is only well-defined mod e, so the second term either
contributes 0 or e/2, depending on the parity of Nx.

Now let us take localized charges obeying a Gaussian
distribution:

ψx0 (x) = 1√
π1/2σx

exp

[
− (x − x0)2

2σ 2
x

]
. (C3)

We find that, for a single charge at x0,

〈Ûx〉 = exp

[
2π ix0

Nx

]
exp

[
−π2σ 2

x

N2
x

]
. (C4)

We see that this result includes a phase factor encoding the po-
sition x0 as well as an exponential factor with magnitude �1.

The phase factor is identical to what the δ-function charge dis-
tribution produces, and when all electrons across the lattice
are considered it will exactly reproduce Eq. (C2) for the value
of the polarization. On the other hand, if we have a number
of electrons Ne = Nx then the magnitude of the expectation
value will be e−π2σ 2

x /Nx which will tend to unity as Nx →
∞ as expected. Thus, this operator recovers unitarity in the
thermodynamic limit.

Let us now illustrate an important subtlety by reconsidering
the case of Gaussian charges in a 2D system. Suppose that we
have one electron per unit cell on a square lattice, and that
the electrons are centered at (x0, 0) + R, where R is the set
of 2D lattice vectors. For a single electron, which is Gaussian
distributed in x and y, we have

〈Ûx〉 = exp

[
2π ix0

Nx

]
exp

[
−π2σ 2

x

N2
x

]
, (C5)

which is the same as the 1D case above. The distinction
between dimensions appears when we use the fact that Ne =
NxNy. After including all of the electrons, we have

|〈Ûx〉| = exp

[
−π2σ 2

x

N2
x

]NxNy

= exp

[
−π2σ 2

x Ny

Nx

]
. (C6)

The important feature is that the magnitude of this operator
approaches unity in a specific thermodynamic limit where we
take Nx → ∞ before Ny, but it vanishes if we use the opposite
order, and approaches a constant <1 if we take the limit while
keeping a fixed aspect ratio Nx/Ny. Under the same conditions,
but in 3D, we would find a factor e−π2σ 2

x NyNz/Nx . Thus, gener-
ically, to keep the operator expectation value nonvanishing,
we must always take the thermodynamic limit in the direction
of the polarization component of interest before letting the
transverse directions approach infinity.

2. Quadrupole moment

Now let us consider the quadrupole moment for a 2D
system on a square lattice. We can begin with the periodic
arrangement of δ-function point charges and calculate the

expectation value of Ûxy = exp [ 2π iQ̂xy

LxLy
]. We must be careful

in this case to specify that the total dipole moment vanishes
(up to an integer). We will satisfy this constraint by taking the
system with two electrons per cell with coordinates (x0, y0)
and (−x0,−y0) with respect to the origin of the cell, and
we repeat these positions across the entire lattice. For this
configuration, and for a lattice indexed from 1 . . . Nx, 1 . . . Ny,

we find

Qxy = 2ex0y0 + e(Nx + 1)(Ny + 1)

2
, (C7)

which depends on the parity of Nx and Ny similarly to the
polarization.

Now let us move on to charges with a Gaussian distribution
described by

ψ(x0,y0 )(x) = 1√
πσxσy

exp

[
− (x − x0)2

2σ 2
x

− (y − y0)2

2σ 2
y

]
. (C8)

In this case, the expectation value generated by a sin-
gle electron with a Gaussian wave function centered at
(x0, y0) is

〈Ûxy〉 = 2√
4 + α2σ 2

x σ 2
y

exp

[
−α2σ 2

y x2
0+α2σ 2

x y2
0−4iαx0y0

4 + α2σ 2
x σ 2

y

]

≡ � exp

[
iαx0y0

1 + α2σ 2
x σ 2

y /4

]
, (C9)

where α = 2π/LxLy. We can see from this result that both the
magnitude and the phase of this expectation value depend on
the system size when σx and/or σy are nonvanishing. This is
not the case for the polarization, where the imaginary phase
is independent of the system size for a Gaussian distribution.
Here the difference arises because we allow for fluctuations
of the dipole moment, which is equivalent to having nonva-
nishing σi. The dipole moment is vanishing on average, but
has nonzero fluctuations that lead to this ambiguity in the
phase factor. The same would likely occur for the polariza-
tion if we let the charge in each unit cell fluctuate, but we
have implicitly assumed that it does not fluctuate. We can
calculate the quadrupole moment density from the imaginary
part of the log of this expression for the expectation value to
find

x0y0

(
1 − π2σ 2

x σ 2
y

L2
x L2

y

+ . . .

)
(C10)

for a single electron. We find that this value converges to
the correct result as Lx, Ly → ∞, i.e., when the system size
is much larger than the dipole fluctuation lengths. When all
the electrons in the lattice are taken into account, this will
reproduce the value calculated for the δ-function distribution.

Finally, let us consider the magnitude � of this expec-
tation value. We find a magnitude for a single electron
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to be

� = 2√
4 + α2σ 2

x σ 2
y

exp

[
−α2σ 2

y x2
0 + α2σ 2

x y2
0

4 + α2σ 2
x σ 2

y

]
. (C11)

We want to determine the value of this magnitude for a
collection of electrons on the lattice. The magnitude for the

full ground state is harder to calculate since it depends on the
positions of the electrons, but for a product state including
two electrons per unit cell, i.e., Ne = 2NxNy, and ignoring
contributions of the charge density that spreads from the
last cells back into the first cells due to periodic boundary
conditions, we find

�Ne ≈
⎛
⎝ 2√

4 + α2σ 2
x σ 2

y

⎞
⎠

2NxNy

exp

[
−2π2

σ 2
y

(
N2

x /3 + x2
0

) + σ 2
x

(
N2

y /3 + y2
0

)
NxNy + π2σ 2

x σ 2
y /(NxNy)

]

≈
⎛
⎝ 1√

1 + π2σ 2
x σ 2

y /N2
x N2

y

⎞
⎠

2NxNy

exp

[
−2π2

3

σ 2
y Nx/Ny + σ 2

x Ny/Nx

1 + π2σ 2
x σ 2

y /
(
N2

x N2
y

)
]
, (C12)

where in the first approximation we have dropped the terms
that shift Nx,y by 1 coming from a discrete sum over unit cells,
and in the second approximation we have dropped the terms
proportional to x0, y0 since they are coordinates within a unit
cell and are less than 1 in units of the lattice constant. We find
that as Nx, Ny → ∞ that the first factor tends to unity:⎛

⎝ 1√
1 + π2σ 2

x σ 2
y /N2

x N2
y

⎞
⎠

2NxNy

≈
(

1 − π2σ 2
x σ 2

y

2N2
x N2

y

)2NxNy

≈ exp
(−π2σ 2

x σ 2
y /NxNy

) → 1.

(C13)

If we make an analogy with the polarization, this factor has a
dependence on the quadrupole fluctuations σ 2

x σ 2
y /4 and tends

to unity as long as those fluctuations are finite.
Now let us consider the second factor:

exp

[
− (2/3)π2

(
σ 2

y Nx/Ny + σ 2
x Ny/Nx

)
1 + π2σ 2

x σ 2
y /

(
N2

x N2
y

)
]
. (C14)

This factor has interesting features: (i) the numerator has a
dependence on the dipole fluctuations in the x and y directions
and (ii) the denominator has a dependence on the quadrupole
fluctuations. If dipole fluctuations in either direction vanish,
then there is a consistent way to take the thermodynamic limit
such that this term tends to unity. If the dipole fluctuations
are nonvanishing in both directions, then the best that one can
do is to take Nx = Ny → ∞. In this case, the factor tends to
the finite value e−2π2(σ 2

y +σ 2
x )/3, which is nonvanishing, but not

unity. We also note that if one takes Nx or Ny to infinity first,
then this factor generically tends to zero. This result seems
to imply that even though Ûxy may not be strictly a well-
defined operator in periodic systems with dipole fluctuations,
its expectation value is still meaningful and can recover the
correct results for the quadrupole moment.

The above discussion considers a product state of Gaussian
orbitals; however, the tight-binding calculations presented
in the paper use a Slater determinant, so we also show a

comparison with a determinant of the Gaussian orbitals. An
analytic calculation of the determinant state is impractical,
so we compared the numerical results of the determinant and
product states.

We confirm that the determinant state yields similar results
to the product state except when the Gaussian spreads σx, σy

grow so large that determinant state exhibits a transition to
a conducting state (i.e., the magnitude of the polarization
operator goes to zero in the infinite limit), while the product
state remains insulating (Fig. 6). For smaller values of σx, σy,
the phases and magnitudes of the product state agree with the

FIG. 6. Comparison of determinant (solid lines) and product
states (dashed lines) of Gaussian orbitals as a function of system
size, keeping Nx = Ny (always even) and σx = σy. For all these
calculations, we fixed x0 = y0 = 0.2. Top left: Magnitude of the
polarization operator goes to zero for the determinant with larger
values of σx , but goes to one for the product state, regardless of σx .
Top right: Phase of the polarization operator is always zero. Bottom
left: Magnitude of the quadrupole operator plateaus in the infinite
limit to a value depending on σx for both determinant and product
states. For large enough σ , the magnitude from the determinant state
tends toward zero in the infinite limit. Bottom right: The phase of the
quadrupole operator is consistent for all calculations. For odd values
of Nx = Ny (not shown), the quadrupole phase is shifted by 0.5.
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determinant state. We confirm that the phase of the polariza-
tion operator expectation value in our states is always zero, so
the quadrupole is well-defined in principle. We also confirm
that the magnitude of the quadrupole operator remains fixed
when we vary σ = σx = σy and even values of Nx = Ny, and
is the same for the determinant and product states. When σ

increases, even when the magnitude of the polarization goes
to one, the limit of the quadrupole magnitude decreases (it
does not always approach one, even when finite). Beyond a
certain value of σ , the quadrupole magnitude goes to zero.
Based on our numerics, the insulating-conducting transition

of the determinant state seems to coincide with the transition
where the quadrupole magnitude goes to zero.

Our simple model of Gaussian orbitals can only go so
far in explaining the results from our tight-binding cal-
culations; however, we have shown that even with very
simple wave functions, the quadrupole magnitude is sup-
pressed by dipole fluctuations, and does not generally tend
to one in the thermodynamic limit. We expect that our re-
sults would closely match the tight-binding results if we
accounted for dipole fluctuations across the periodic boundary
conditions.
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