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Robust fractional charge localized at disclination defects has recently been found as a topological response in
Cs-symmetric 2D topological crystalline insulators (TCIs). In this article, we thoroughly investigate the fractional
charge on disclinations in C,-symmetric TCIs, with or without time-reversal symmetry, and including spinless
and spin—% cases. We compute the fractional disclination charges from the Wannier representations in real space
and use band representation theory to construct topological indices of the fractional disclination charge for all
2D TClIs that admit a (generalized) Wannier representation. We find the disclination charge is fractionalized in
units of ¢ for C,-symmetric TCIs, and for spin-% TCls, with additional time-reversal symmetry, the disclination
charge is fractionalized in units of 27“ We furthermore prove that with electron-electron interactions that preserve
the C, symmetry and many-body bulk gap, though we can deform a TCI into another which is topologically
distinct in the free fermion case, the fractional disclination charge determined by our topological indices will not
change in this process. Moreover, we use an algebraic technique to generalize the indices for TCIs with nonzero
Chern numbers, where a Wannier representation is not applicable. With the inclusion of the Chern number,
our generalized fractional disclination indices apply for all C,-symmetric TCIs. Finally, we briefly discuss the

connection between the Chern number dependence of our generalized indices and the Wen-Zee term.

DOLI: 10.1103/PhysRevB.101.115115

I. INTRODUCTION

Topological insulators (TIs) are insulators having a gapped
bulk but metallic boundaries [1-4]. Strong TIs with local
symmetries (time-reversal symmetry, particle-hole symmetry,
and/or chiral symmetry) host gapless states at the boundaries
of codimension 1, e.g., edges in 2D and surfaces in 3D. The
TI phases have quantized topological invariants defined in
the bulk and are robust to perturbations, including disorder,
that preserve the symmetry and the bulk energy gap [2].
In the past decade, studies of TIs have been extended to
insulators with additional crystalline symmetries, such as
mirror or inversion symmetries [5—12]. Conventionally, TIs
with gapless boundary states that are protected by crystalline
symmetries are referred to as topological crystalline insulators
(TCIs). Recently, a new class of TCIs has been discovered;
they are gapped at boundaries with codimension 1, but have
robust, symmetry-protected features at boundaries with higher
codimension, e.g., corners in 2D [13,14] and hinges or corners
in 3D [14-17]. Such insulators are known as higher-order
topological insulators (HOTISs).

In 2D TCIs with gapped edges, crystalline symmetries
alone cannot pin the corner states to the middle of a band
gap, so they are not a generic topological feature [18,19].
In order to have protected midgap states, additional particle-
hole or chiral symmetries are necessary [18,19]. As such,
a generic topological character of TCIs without protected,
midgap boundary modes is the quantization of fractional
charge at boundaries [13,18,20-26] or odd-parity integer
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charge at boundaries in spin—% systems with time-reversal
symmetry [27,28]. In the bulk, nontrivial topology due to
crystalline symmetries can typically be diagnosed by the
symmetry representations of the occupied bands at the high-
symmetry points (HSPs) in the momentum-space Brillouin
zone (BZ) [5,21,29-33]. These representations correspond
to (generalized) configurations of Wannier orbitals (defined
in Sec. IIT A) in real space through band representation the-
ory [29-33]. It has been found that in TCIs with rotation sym-
metries, a topologically nontrivial (generalized) configuration
of Wannier orbitals may lead to quantized fractional charges
that are exponentially localized at the corners [13,18,22-25].

In this article we explore the existence of robust frac-
tional charge on disclination defects in crystals with rotation
symmetries [34]. These defects have been shown to give
rise to topological bound states in topological crystalline
superconductors protected by rotation symmetries [35,36],
so it is natural to also try to identify any manifestations of
fractional charge in TCIs. To motivate the idea, consider,
for example, a C4-symmetric TCI on an open square lattice
having a fractional corner charge, where the fractional charges
from all four corners add up to an integer. One can form
a disclination through a cutting and gluing procedure. First,
remove one quadrant of the lattice, and then glue the cut edges
together. This will generate a disclination at the center of the
lattice. From this construction there are now only three corners
in the lattice so the sum of charges at the remaining corners is
fractional. This implies that there will be a fractional charge at
the core of the disclination since the total charge in the lattice
must take an integer value.

Motivated by this intuition, we expect that disclinations can
generally bind quantized fractional charges. Indeed, recent
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studies have proposed models of Cs-symmetric TCIs that ex-
hibit fractional charge localized on disclination cores [18,37].
Additionally, in a Cg-symmetric Chern insulator (which does
not have a Wannier orbital description), numerical calcu-
lations reveal the existence of quantized fractional charges
localized at the disclination cores [37,38]. Despite these recent
findings, a general topological index for the existence of
quantized fractional disclination charges in C,-symmetric 2D
TClSs is still missing.

In this article, we initially consider 2D C,-symmetric TCIs
that have (generalized) Wannier representations and derive
the origin of charge fractionalization at disclination cores
through a real-space Wannier orbital picture (Sec. III A). From
this information, and using the theory of band representa-
tions [29-33], we build the indices of fractional disclination
charge for all TCIs with zero Chern number (Sec. III B).
These indices apply to all 2D TCIs that admit a (generalized)
Wannier orbital description, with or without time-reversal
symmetry, but they are not capable of capturing the fractional
disclination charge in insulators with nonzero Chern number.
Then we allow for symmetry-preserving electron-electron
interactions and find that the fractional charge determined by
the noninteracting TCI indices remains robust as long as the
interacting phases are adiabatically connected to noninteract-
ing TCIs (Sec. I1I D). Finally, in Sec. IV, we extend the indices
constructed in Sec. III B using an algebraic technique [35,36]
to build the generalized indices for all 2D C,,-symmetric TClIs,
including those with Chern numbers, and both spinless and
spin-% cases.

In general, we find that the charge is fractionalized at
disclination cores in units of £ for the C,-symmetric spinless
TClIs, which is in agreement with recent findings for the
quantization of fractional corner charge in C,-symmetric HO-
TIs [18], and in units of % for the C,-symmetric spin-% TCIs
with additional time-reversal symmetry (TRS). Although a
complete one-to-one correspondence between (generalized)
configurations of Wannier orbitals in real space and symmetry
representations at HSPs in the k space is absent, we show
that the combination of symmetry representations themselves
in the BZ and the Chern number can uniquely determine the
fractional disclination charges.

II. DISCLINATIONS IN 2D INSULATORS

A two-dimensional C,-symmetric lattice can be divided
into n sectors, that each subtend an angle of 27” from the
rotation center, and which are related to the others by C,
rotations. Inserting or removing such sectors into/from the
lattice creates a 0D defect of the discrete C, rotation sym-
metry, called a disclination. In Fig. 1, we show examples of
disclinations constructed from a C4-symmetric square lattice.
Figure 1(a) shows the perfect lattice with C, rotation and
lattice translation symmetry. The shadowed area indicates the
four sectors that are related by C; rotations. Figures 1(b)
and 1(d) correspond to removing a 90° sector of the lattice,
while Fig. 1(c) corresponds to inserting two 90° sectors into
the lattice. A disclination is characterized by the holonomy of
a closed path around its core, i.e., the amount of translation
and rotation accumulated by a vector after being parallel
transported along the loop. We denote the holonomy by the

(d)

FIG. 1. (a) A two-dimensional C,-symmetric square lattice.
Shadowed areas represent four sectors that are related by the Cy
rotation symmetry. (b)—(d) Cs;-symmetric lattice with disclination
of (b) Q=—Z,[a]¥ =0, (c) Q=wm,[a]® = (1,0), and (d) Q2 =
-5, [a]® = 1. The red open circles indicate the starting points of
the loop. See Appendix A for plots of all types of disclinations for
each C, symmetry.

operator 7,7#(S2), where # is the discrete rotation operator and
Q is called the Frank angle, while  is the discrete translation
operator and a is a lattice vector: a = ae; + a,e; [36]. For
C,- and Cy-symmetric lattices, we choose the unit lattice
basis vectors to be e; = (1,0) and e, = (0, 1), and for Cs-
and Ce-symmetric lattices we choose the lattice vectors to be
e; =(1,0)and e, = (%, ‘/Tﬁ), as shown in Fig. 2. For example,
in Fig. 1(b), if we start from the open red circles and follow
the direction of the arrow, after one loop, the holonomy is
(3 )te, (5 e, F(5 I, = t_2¢,7(—75). In the presence of a
C, symmetry, the compatible Frank angles are multiples of
the minimum Frank angle 27”

In general, while the Frank angle in the holonomy does
not depend on the choice of the closed loop (as long as
the orientation of the loop enclosing the defect is fixed), the

(@) 1€z (b) €2
dl b b -
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a ¢ a ¢ ¢
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FIG. 2. The unit cell, lattice vectors, and maximal Wyckoff
positions for (a) C;-, (b) C4-symmetric TCIs with a; = &, a, = J;
(¢) Cs- and (d) Cg-symmetric TCIs with a; = £, a, = 1% + ?y. In
each unit cell, points of the same color belong to the same Wyckoff
position and the number of points with the same color indicates the
multiplicity.
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translation part a does depend on the starting point of the
closed path. Upon a translation of the starting point by 7, the
holonomy becomes

taP(Q) = fefaP (e = Tayi—r)1el (), (1

where we used the multiplication rule 7,7, = fg o7, of the
space group generated by discrete C, rotations and transla-
tions of the lattice vectors, e; and e,, and R, is a rotation
operator by an angle 2}—;’ acting on a vector in the two-
dimensional plane. Since the topological properties/charges
of a disclination should not depend on what loops we choose,
the topologically distinct disclinations for a fixed Frank angle
lie in equivalence classes [a] of the holonomy group. The
classification of disclination types then relies on identifying
different conjugacy classes of the translation part a, which is
captured by the quotient #/{[R(2) — 1]¢} (this formula only
applies for 2 # 0, 27) [36]. Note that this is a special case
of the general statement that gauge fluxes are classified by
conjugacy classes of the gauge group.

Let us construct these translation equivalence classes. For
a given Frank angle, the number of conjugacy classes [a]®
of the translation piece is finite, and is in one-to-one cor-
respondence with the different types of C, lattice rotation
centers. For disclinations with Frank angle Q = +Z, [a]¥
(we use the superscript * to denote the corresponding Frank
angle 2%) takes values in Z,, i.., [a]¥ =0 or [a]¥ =1,
by which we represent the sum of the two components of a
being even or odd, respectively. In Figs. 1(b) and 1(d), we
show the examples of two different types of disclinations with
Frank angle 2 = —7 in a Cy-symmetric lattice. In Fig. 1(b),
choosing the closest loop to the disclination core (red loop
with arrows), the holonomy is 7_s, #(—7 ), leading to [a]® =
0, while in Fig. 1(d) the holonomy for the red loop with arrows
is 7_3¢, #(—%), leading to [a]®) = 1. Moving on, for a discli-
nation of Frank angle Q = 7, [a]® takes values in Z, @ Z,
corresponding to the two components of the translation, a;, a,
being odd or even. When [a]® = (0, 0), the disclination core
lies on a lattice site, when [a]® = (0, 1) or [a]® = (1, 0),
the core is at the middle of the link between two lattice sites,
and when [a]® = (1, 1), the core is located at the center of a
plaquette. For a disclination of Frank angle 2 = i%”, [a]®
is Z3 valued, corresponding to the modulo 3 difference of two
components of the translation holonomy, (a; —a;) mod 3,
being 0, 1, or —1. When Frank angle 2 = 2?”, the translation
holonomy is zero; i.e., there is only one type of disclination.
We label the only conjugacy class for this case as [a]©® = 0.
The configurations of all types of disclinations for each C,
symmetry are shown in Appendix A.

Since we will use it later, we also note that when a
lattice has two disclinations (€21, a;) and (£2;, a;), the total
holonomy of a closed path enclosing both disclination cores
is (21 + €22, a; + 7(21)ay) [35,36].

III. FRACTIONAL DISCLINATION CHARGE IN TCIs
WITH (GENERALIZED) WANNIER REPRESENTATIONS

A. Fractional disclination charge from Wannier orbital picture

If we can construct symmetric, spatially localized Wannier
functions from the occupied Bloch states of a TCI, then we

call the TCI an atomic insulator. In real space, an atomic
insulator can be viewed as a set of Wannier orbitals centered
at high-symmetry points, or symmetry-related points, called
Wyckoff positions in each unit cell. In order to illustrate the
Wyckoff positions in real space in more detail, let us denote G
as the entire (symmorphic) space symmetry group generated
by C, rotation and lattice translations, and denote G, C G as
the site symmetry group of a Wyckoff position «. If we cannot
find a finite group H C G that satisfies G, C H C G, then
we call the site symmetry group G, a maximal subgroup of
G and Wyckoff position « a maximal Wyckoff position [31].
In Fig. 2, we show the maximal Wyckoff positions (labeled
by a letter) for each C, symmetry. In a C,-symmetric TCI,
a maximal Wyckoff position « is only invariant under the site
symmetry group Cy,, , m, < n, and there are - points belong-
ing to the same Wyckoff position per unit cell that are related
by C, rotations. We denote M, = "’1—1 as the multiplicity for
the Wyckoff position «. Minimal Wannier orbitals centered at
a Wyckoff position o form irreducible representations (irreps)
of the site symmetry group C,,,. We label such an irrep by its
(total) angular momentum [, which is defined via the phase
ei% gained upon a C,,, rotation, where [ =0, 1, ..., my — 1
for the spinless case and [ = % Soeees My — % for the spin-
% case. In order to have a C,-symmetric configuration of
Wannier orbitals in each unit cell, we need M, Wannier
orbitals with the same angular momentum / located at each
point belonging to the same Wyckoff position, say «.

One can induce a representation «; of the space group
generated by C, rotations and lattice translations from these
M, Wannier orbitals [29,31]. Due to the lattice translation
symmetry, it is convenient to understand the induced rep-
resentation ¢; in one unit cell in real space. Indeed, the
induced representation «; just represents an atomic insulator
having Wannier orbitals with angular momentum / located at
Wyckoff position « in each unit cell throughout the entire
lattice. We denote this Wannier representation of an atomic
insulator as Y, nha;, where nl, > 0 is the number of o,
representations, [ runs over all irreps of C,,,, and o« runs over
all Wyckoff positions.

For example, in the C4-symmetric case, ¢y means that there
is one pair of Wannier orbitals with angular momentum / = 0
located at the two equivalent Wyckoff positions labeled by ¢
[shown in Fig. 2(b)] in each unit cell, and 2¢y + a; means
that there are two pairs of Wannier orbitals with angular
momentum / = 0 located at two equivalent Wyckoff positions
labeled by c, plus a Wannier orbital with angular momentum
[ = 1 located at the Wyckoff position labeled by a in each unit
cell. In this sense, the set {nfx} ({n}l =1, n? = 2, others = 0}
for the above example) can be regarded as the configuration of
Wannier orbitals in one unit cell, and it specifies a crystalline
atomic insulator. When the center of Wannier orbitals in one
unit cell deviates from the center of the unit cell (position a
in Fig. 2), the atomic insulator is said to be in an obstructed
atomic limit.

Since one Wannier orbital carries the charge of one elec-
tron, the spatial charge distribution in an atomic insulator
is determined by the Wannier orbital configuration {n)} as
well. We can generalize this idea to include fragile TClIs, in
which an obstruction exists for constructing a set of symmetric
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Wannier functions (we will call this obstruction a “Wannier
obstruction” in the following for brevity) [39,40]. However,
unlike a Chern insulator, which also has such a Wannier
obstruction, when adding atomic insulator bands to a fragile
TCI, the Wannier obstruction can be resolved [32,41], and the
new combined TCI admits a Wannier orbital configuration.
Consider the combination of the bands of a fragile TCI and the
bands of an atomic insulator {qu}, which admits a symmetric
configuration of Wannier orbitals designated by {nfx}. The
charge distribution in this fragile TCI corresponds to a charge
distribution where the Wannier orbital configuration {qé} is
taken away from the Wannier orbital configuration {nfx}. We
can therefore define a generalized configuration of Wannier
orbitals, {n! = (n!, — ¢',)} with n!/ possibly being negative, to
describe the charge distribution in this fragile TCI.

In order to derive the localized charges at disclinations in
TCIs which admit a generalized Wannier orbital description,
let us first establish the direct relation between the configu-
ration of Wannier orbitals and the bulk polarization. We can
illustrate this connection through the one-dimensional Su-
Schrieffer-Heeger (SSH) model [20]. Under inversion sym-
metry, the bulk polarization is quantized to be either 0 or
5 (we set the electronic charge to e = 1 for simplicity from
now on), corresponding to one Wannier orbital centered either
at the center or at the boundary in each unit cell. Gener-
alizing this correspondence to two-dimensional lattices, the
2D coordinate inversion is equivalent to a C, rotation, and
similar quantization conditions must hold for the components
of the polarization vector. With C, symmetry we can con-
sider the atomic insulator configurations. One Wannier orbital
centered at Wyckoff position ¢ (d) in Fig. 2 per unit cell
corresponds to bulk polarization P = %el P = %ez), and one
Wannier orbital located at Wyckoff position b in Fig. 2 per
unit cell corresponds to bulk polarization P = %(el + ey).
Other, nonmaximal Wyckoff positions do not contribute to
the polarization. Following this argument, we can repeat it
for each C, symmetry and write down the bulk polarization
in terms of the number of Wannier orbitals centered at each
Wyckoff position:

po =1 +nce1 + +nde2 mod 1,

2 2

+n,
P = 2 . ™ (e1 + €2) mod 1, )
PO — w(e1 +e))mod I,

where the superscript (n) labels the C, symmetry and n, =
Zz nfx for « = a, b, ¢, .... We note that Cs symmetry forces
the bulk polarization P© to vanish, i.e., P©® = 0. This is
because C, symmetry requires the polarization to be 0 or 1,

and C; symmetry requires the polarization to be 0, % and %
Thus, in TCIs with C¢ symmetry which contains both C, and
C; symmetry, the only possible polarization is 0.

The work in Ref. [18] shows that insulators with triv-
ial polarization may have quantized fractional charges that
are exponentially localized at the corners of a finite two-
dimensional lattice (or more generally in sectors subtending
an angle of 2w /n for nonideal geometries). Both the quanta
and the localization of the fractional charge can be understood
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FIG. 3. The configuration of Wannier orbitals of a C¢-symmetric
lattice with a disclination of € = —%. Hexagons represent Wagner-
Seitz primitive cells; black dots represent the triangular lattice sites;
and solid lines between each black dot represent intercell hopping
terms. Orange open circles represent Wannier orbitals located at
Wyckoff position b in Fig. 2(d). (a) The ideal case where all Wannier
orbitals located at Wyckoff position b. (b) The general case where
Wannier orbitals near the disclination core (dashed circles) shift
slightly, and the charge distribution is distorted from the ideal case.
However, the disclination still has a localized fractional charge. In
order to clearly show the shifts of Wannier centers, we only show
the nearest-neighboring and next-nearest-neighboring unit cells of
the disclination center.

through the configuration of Wannier orbitals. We expect
that the generalized Wannier orbital description captures the
fractional charges at topological defects like disclinations
in the same spirit. Provided that both the possible Wyck-
off positions and disclination types are finite, we can do a
case-by-case study to systematically investigate the charge
fractionalization at each type of disclination and for each C,
symmetry.

Let us take disclinations in Cg-symmetric lattices as an
example to illustrate how we extract the fractional disclination
charge from a configuration of Wannier orbitals. In order to
be consistent with the definition of Wyckoff positions, we
only remove or insert integer numbers of unit cells when
constructing disclinations; i.e., the lattice with disclinations
preserves the same choice of unit cells as the perfect lattice.
In Fig. 3(a), we show a TCI with disclination in the zero-
correlation-length limit, where all Wannier orbitals are pinned
at the Wyckoff position b. Each Wannier orbital contributes
a charge of % to its three nearest unit cells [as indicated by
arrows in Fig. 3(a)]. Then, we can clearly see that the unit cell
at the core has fractional charge of % and all the other unit
cells have integer charge. Therefore, a fractional disclination
charge of % mod 1 is localized at the disclination core.

In general, the disclination locally breaks the rotation
and translation symmetry and the Wannier orbitals near the
disclination deviate from the Wyckoff positions. We show an
example in Fig. 3(b), where the Wannier orbitals closest to
the core [dashed circles in Fig. 3(b)] shift slightly. The shift of
the Wannier orbitals causes changes in the charge distribution,
and thus changes the charge in the unit cells at the core and
the 5 unit cells closest to the core [shadowed area in Fig. 3(b)].
The unit cell at the core now has fractional charge % + €, and
the 5 unit cells closest to the core now have fractional charge
2 — £. Other unit cells deep in the bulk and far away from the
disclination center have integer charge. We can see that the
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TABLE 1. Fractional charge at the core of different disclinations
in C;- and C4-symmetric TCIs with zero Chern number.

G, Q= Q= Q=m Q=
[a]® = (0,0) [a]® =(1,0) [a]® =(0,1) [a]® =(1,1)

(2) _ mptnetng _ne _ng My
dis 2 2 2 2
C, Q==7 Q==7 Q=nm Q=m
[a]¥ =0 [P =1 [a]®=(1,1) [a]® =(1,0)
[a]® = (0,0) [a]® = (0, 1)
o E F3 -% -5

fractional charge is still localized at the core and the deviation
of Wannier orbitals only changes its decay length.

In order to calculate the quantized fractional disclination
charge, we need to enlarge the summation area; we can sum
up the charge over the unit cell at the core and the 5 unit cells
closest to the core. By doing that, the change of charge in the
unit cell at the core cancels the change of total charge over the
closet 5 unit cells around the core. The fractional disclination
charge is still quantized to be %, which is the same as in the
ideal case. In general, for TCIs with larger correlation length,
Wannier orbitals farther away from the core may shift, which
means the fractional disclination charge penetrates more into
the bulk. However, we can always enlarge the summation
area deeper into the bulk to calculate the quantized fractional
charge.

It was previously shown that there are in-gap bound
states appearing in lattices with disclinations [35-37]. We
emphasize that whether to fill these bound states or not does
not change the fractional disclination charge, as long as all
hopping terms are short ranged. In the thermodynamic limit,
edges are typically far away from the disclination core (farther
than the hopping range) and thus the in-gap states localized at
the edges and the in-gap states localized at the disclination
centers cannot be hybridized. Therefore, an in-gap state is
either localized at the disclination core or localized at the
edges. When filling an edge in-gap state, its contribution to the
electronic charge at the disclination center can be neglected.
When filling an in-gap state localized at the disclination cen-
ter, it only contributes an integer electronic charge. Thus, the
fractional disclination charge will not change in both cases.

Following a similar counting method, we identify the frac-
tional disclination charges for all possible configurations of
Wannier orbitals at all types of disclinations. The results are
summarized in Tables I and II. As mentioned above, based on
this data we can connect the fractional disclination charges
to the generalized Wannier configuration. The disclination
charge can generically be divided into two parts. One part
is associated with the rotation part of the holonomy, corre-
sponding to how many 2,—1” sectors are taken off or inserted.
The other part is associated with the translation piece of the
holonomy, and corresponds to the fractional charge at disloca-
tions generated by nonzero bulk polarization [42—46]. In order
to simplify the notation, we denote T™ = a;d, — a,d, as the
vector perpendicular to the translation part of the holonomy,
where d; - €; = §;; is the basis of the dual space. According

TABLE II. Fractional charge at the core of different disclinations
in C3- and Cg-symmetric TCIs with zero Chern number. In Cs-
symmetric TCIs, all types of disclinations for a given Frank angle
have the same fractional charge.

[a]® = £1 [a]® = F1 [a]® =0
G 4 Ty e

to the addition rule of disclination holonomies (€2, a;) +
(27, a7) = (2] + 27, a; + 7(21)ay), the results in Tables |
and II can be summarized in the following index equations:

Q
i = E(nb T+ n)+ TP . PO mod 1,
Q
o4 = 2_(nb +21)+ T . P mod 1,
v/
Q
Qi = E(”h +1)+ T . P® mod 1,

© _ 2
09 = > (2m, +3n.) mod 1. 3)
2

Although for a fixed Q the vector T™ may change for
different choices of loops, the term T . P gives the same
fractional values for equivalent disclination types. Since all
n,’s in Eq. (3) are integer, we find, in general, the disclination
charge is fractionalized in units of % for C,-symmetric TCIs.
Additionally, for spin—% TClIs, at each Wyckoff position, the
Wannier orbitals form a set of Kramers pairs in the presence
of TRS. In that case, the number of orbitals at each point
of a Wyckoff position « must be even, leading to fractional
disclination charge quantized in units of %

B. Topological indices for fractional disclination charge
in terms of rotation invariants

While it is straightforward to extract the fractional discli-
nation charge pictorially from the configuration of Wannier
orbitals {nfl}, it is not straightforward to obtain the configura-
tion of Wannier orbitals for a given Bloch Hamiltonian (k).
In this section, we utilize band representation theory [29-33]
to link the configuration of Wannier orbitals {nfy} in real
space to the rotation invariants in k space. A benefit of
rotation invariants is that they can be readily extracted from
first-principles calculations for real materials, or tight-binding
models. Then we derive the indices for fractional disclination
charge in terms of the rotation invariants for both spin—% and
spinless atomic insulators and fragile TClIs.

In the presence of the C, rotation symmetry, the Bloch
Hamiltonian A(k) satisfies f'nh(k)f’jl = h(R,k), where 7, is the
n-fold rotation operator and R,, is an n-fold rotation acting on
crystal momentum k. At the HSP I that satisfies R, 1" =
™ modulo a reciprocal lattice vector, the Hamiltonian com-
mutes with the rotation operator, [#,, h(I1™)] = 0. Therefore,
given the eigenstates of the Hamiltonian at I, o (I1™)),
we can calculate the eigenvalues of rotation operator 7, at IT"
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by diagonalizing the matrix (u/(I1")|#,|u”(I1™)), where
! and m run over the occupied bands. For spinless TClIs,
# =1 and we denote I"I(”) —ew,p= 1,2,...,n as the
eigenvalues of 7, at l'[(”) For spin-3 TCIs, # = —1 and
fr=t®e , where #L is an n-fold rotation on the orbltal
degrees of freedom and e” % rotates the spin by . We

denote the eigenvalues of 7, at II®, in this case, as H(p”) =

l (7

2i(p— %)
e i ,p=1,2,...,n. We define the rotation invariants as
(n) (n) (n)
[T7] = #1107 — #T", 4)

where #1'[;”) is the number of the occupied bands with the

eigenvalue I for both spinless TCIs and spin-3 TCls.
Following the method in Refs. [29-33], one can induce a
band representation of the space group, which is generated
by C, rotation and lattice translation, from a configuration
of Wannier orbitals at Wyckoff positions {nfx}, and then read
off the eigenvalues of the rotation operators at HSPs in BZ.
This method allows us to connect a configuration of Wannier
orbitals in real space to the symmetry representations at HSPs
in k space. We defer the detailed derivation of such a process
for all configurations of Wannier orbitals in C;-, C3-, C4-, and
Cs-symmetric TCIs to Appendix B. Let us denote l;{;") as the

number of the pth eigenvalue of 7, at the HSPs I1" for the
band representation «; induced from the Wannier represen-
tation of Wannier orbitals with angular momentum / at the
Wyckoff position «. Consider a TCI with the Wannier orbital
configuration {nfx} (né can be negative for fragile TCIs); the
#T10" can be calculated by summing over the contributions
from band representations induced from all «;’s. Therefore,
for given Bloch bands with certain #H},”) at each HSP, one
can get a series of equations,

Dy =411, 5)

a,l

involving the configuration of Wannier orbitals {n!}. Addi-
tionally, for an insulator with a gapped energy spectrum, the
number of occupied bands v is constant across the BZ, which
imposes a constraint on the total number of Wannier orbitals,

ZMo,ng =v= Z#ngﬂ. (6)
a,l p

Recall that M, is the multiplicity of a given Wyckoff
position «.

Combining Eq. (5) and Eq. (6), one can get a set of lin-
early independent equations, from which we find the integers,
{ne =Y, nfx}, in terms of the rotation invariants.

Let us take Cg-symmetric spinless TCIs as an example.
Given the number of occupied bands v, at the HSP ™,
we only have n — 1 independent #l'[(”)’s due to Eq. (6). We
choose the set of independent numbers for each HSP in the BZ
as (#Fg 3.4.50 #Kl(Sz), #M (2)) Meanwhile, Eq. (6) also leads to
constraints on the rotation invariants defined in Eq. (4):

> [m]=o. )
P

For the Cg-s (ymmetrlc case, there are 5 nonzero rotation in-
variants ([K, )] K(3)] [K(3>] [M(z)] [M(z)]) and only three

of them are independent due to Eq. (7). We choose to
use ([K{V], [K3V], [M{*']). With 8 independent #I1("’s, and
the number of occupied bands v, we can get 8 equations
from Eq. (5), and one equation from Eq. (6) for {nfy}, all
of which are linearly independent. With n, =), nl,, we
can get 9 linearly independent equations for 11 unknowns
Mgy npy e, 00, nk n2, nd nd 0, n), n%) Since we have more
unknowns than equations, we cannot get unique solutions.
However, according to Eq. (3), the fractional charge in a
disclination only depends on n;, and n.. Thus, we can write
down n;, and n, in terms of the 3 independent rotation invari-
ants and 2 unknowns (we choose n? and n} here),

n, = [K2(3)] + 3né, ne = %[M{z)] + 2n3. ®)
This is a crucial result. Note that for obstructed atomic insula-
tors or fragile TCIs, the r/,’s must be integers, either positive
or negative. Thus, the undetermined parts of n; and n, are a
multiple of 3 and a multiple of 2, respectively, which will not
affect the fractional charge according to Eq. (3). Substituting
Eq. (8) into Eq. (3), we can get an index for the fractional
disclination charge solely in terms of rotation invariants,

0 = ﬂ(z[K@]vL%[Mf”]) mod 1. (9)

For the spin—l case, we only need to replace the integer

superscnpt [1=0,1, — 1 in n!, by half integer [ =
2, 2, e My — l and then we recover exactly the same equa-
tion set, and thus the same index; i.e., Eq. (9) is applicable for
both the spinless case and spin-% case.

For C,-, C3-, and C4-symmetric insulators, we can do
the same thing and solve for all n,’s needed to calculate
the fractional charge in Eq. (3). We find that for each C,
symmetry, the unknown parts in the solutions of the n,’s never
contribute to the fractional charges. Finally, we can write
down the fractional disclination charge indices in terms of
rotation invariants as

Q /1 1 1
0 = oo (5161 + 515+ 5 1)
+T<2>.P<2> mod 1,

ng = E([Kz(s)] + [Kém]) +T® . P® mod 1,

2
Q 3 1
0 = o (P + 3 0] - 5 1)
+TW . PY mod 1. (10)

Following Eq. (2), the bulk polarization can be written down
as

PO = L([xP]es + [r?']es).
PO = (K] - [K7] + 2[K7] = 2[KP]) (o1 + e2),
PY = LX)+ [MP] — [MP]) (e1 +es). (11)

Detailed derivations of Eq. (10) and Eq. (11) are shown in
Appendix B. These indices capture the fractional portions of
charges that are exponentially localized at the disclination.
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They are robust against perturbations that preserve the C,
symmetry and bulk energy gap.

As discussed above, the indices in Eq. (9) and Eq. (10)
apply for both the spinless and spin—% C,-symmetric TCIs, as
long as the TCIs admit a (generalized) Wannier description.
Therefore, the invariants in Eq. (10) are subject to the con-
straints imposed by a vanishing Chern number, since TCIs
with nonzero Chern number do not admit a (generalized)
Wannier representation [47]. For the disclinations with the
minimal Frank angle Q = 2}—1” the coefficient in front of the

parenthesis in Eq. (10) is % = rl; Since the term coupled to

% is an integer in Eq. (10), the minimal fractional disclination

charge in C3-symmetric TCIs is % However, it is not obvious
from the indices themselves whether this is the same for C;-,
Cy-, and Cg-symmetric TCIs. Using the results in Ref. [21],
we find that the Chern numbers in C;-, Cs4-, and Cg-symmetric
TClIs satisty

ch® — [X(Z)] + [Y(Z)] + [M(Z)] mod 2,
ch® = [MP] +2[MP] +3[MP] +2[x] mod 4,
oh® = 3P + 4[] +2[K] mods.  (12)

Imposing the vanishing Chern number constraints on the
rotation invariants, we find the term coupled to % must also
be an integer for C,, C4, and Cg TCIs. Therefore from the
indices, we find that the disclination charge is fractionalized
in units of 1 in C,-symmetric TCIs.

Now let us discuss the influence of TRS on this quantiza-
tion. TRS requires that the eigenvalues of rotation operators
at time-reversal-invariant HSPs must come as complex conju-
gate pairs if they are complex. For spinless TCIs with 72 =
1 (T is the time-reversal operator), TRS leads to [M§4)] =
[MP] for Cy symmetry, [K,] = K], [K3P] = [K;7] for
C; symmetry, and [K2(3)] = [K§(3)] for C¢ symmetry. These
constraints do not further influence the fractionalization of
disclination charge from the case without TRS.

For the spln-— case TCIs have T2 = —1, and TRS imposes
more constraints on rotation invariants. First, for rotation
invariants at all twofold HSPs IT™, [1'1(12)] = [H(zz)], since the
conservation of the number of occupied bands over each HSP
requires that [H(lz)] + [H;z)] = 0; hence all twofold rotation
invariants are trivial [1'[52)] =0,i =1, 2. This directly leads
to integer disclination charge in C,-symmetric spin-% TClIs
with TRS. Similarly, for Qfl?s), the term proportional to %
is 2[[(2(3)], meaning that the minimal fractional disclination
charge for Cg-symmetric spin—% TCIs with 7% = %
Second, for Cs-symmetric spin-% TCIs, TRS requires that
M*P] = [MP], MP] = [M{P]. Combining the constraints
from conservation of the number of occupied bands [M 54)] +
MSP]+ M)+ M1 = 0, we find [MP] = —[M{V]. So
the term proportional to % in Eq. (10) must be an even num-
ber. This means that the minimal fractional disclination charge
in Cy spin-% TCIs with additional TRS is % In summary, with
additional TRS, the disclination charge is fractionalized in
units of % in C,-symmetric spin-% TClIs [34].

Apart from the doubling of the fractional quantization of
disclination charge, TRS in spin-% TClIs implies that integer

L2
—IISE—

(a) (d)

: . ® *
(®) © aRent
bound states unoccupied . & ® ;} 9 ®
- EXXTOTICIERP 3
H ® BT g g
occupy one bound state . o @ ® , ® .
~$ ¢ gi|olo]s] - "¢ e

- ‘ ® a Kramers pair containing two

Wannier orbitals with opposite spin

FIG. 4. (a) Lattice configuration of an infinite SSH chain with
a domain wall in the middle. The red dashed line indicates the
domain wall. (b) The schematic energy spectrum of the SSH model
with the domain wall. (c) Wannier orbital configurations of two
different fillings, both midgap modes empty (top), or only one filled
(bottom). (d) A time-reversal-invariant Wannier configuration in a
C4-symmetric lattice with a disclination of @ = —Z, [a]® = 0. The
shaded unit cell indicates the disclination core. There is an odd
charge but zero spin at the disclination core.

disclination charge can still be a robust, symmetry-protected
topological feature. This is because any changes due to time-
reversal symmetric perturbations come as Kramers pairs,
which carry charge 2. Therefore, one can only remove or
insert an even number of electrons to the disclination while
preserving TRS. In order to change the charge from even
to odd, either a topological phase transition must happen
or TRS must be broken. Thus, we find that the amount
of topologically robust charge can be well defined modulo
2 in this case instead of modulo 1. When the disclination
carries an odd-integer charge, TRS implies a form of 2D
spin-charge separation [48,49] that is a generalization of the
spin-charge separation at the domain wall of the spinful SSH
model [20].

Let us first illustrate how to use a Wannier orbital picture to
understand the spin-charge separation at the domain wall of a
spinful SSH model. Figure 4(a) shows the lattice configuration
of an infinite 1D SSH chain. There are two sites in one unit
cell and each of them can contain two electrons, one with
spin up and one with spin down. The single (double) bounds
represent hoppings with weaker (stronger) amplitudes. The
left part of the lattice is in the topological phase and the right
part of the lattice is in the trivial phase, creating a domain
wall (dashed line) in the middle. When imposing TRS with

= —1, which acts locally in real space, two Wannier
orbitals are grouped together to form a Kramers pair, which
carries 2 electric charges and zero spin. Without loss of gen-
erality, we assume one Wannier orbital has S, = —l—%, and its
Kramers partner has S, = —% (represented by arrows pointing
up and down).

In the left part (topological phase), the Kramers pairs are
localized in between unit cells. For each Kramers pair, the
Wannier orbital with S, = +% contributes % charge to each
of the two adjacent unit cells, as does the Wannier orbital with
S, = —%. As such, they contribute a charge of 1, and zero spin
to each of the two adjacent unit cells. In the right part (trivial
phase), the Kramers pairs are localized at the center of the
unit cells, and they contribute a charge of 2 and zero spin to
the unit cells in which they reside.

115115-7



LI, ZHU, BENALCAZAR, AND HUGHES

PHYSICAL REVIEW B 101, 115115 (2020)

Figure 4(b) shows a schematic energy spectrum of such a
configuration, where two midgap states (red dots) are induced
at the domain wall. These two midgap states are degenerate,
and the degeneracy is protected by TRS. If both midgap states
are filled then the corresponding Wannier orbital configura-
tion is shown in Fig. 4(c). Following the counting method
discussed above, each unit cell away from the domain wall has
a charge of 2 and zero spin. However, a unit cell at the domain
wall (to the left to be precise) carries a charge of 3 and zero
spin. Note that if the two midgap states are empty, the charge
at the domain wall changes by 2, i.e., it still remains odd, and
the spin remains zero, i.e., it remains time-reversal invariant.
However, if we slightly break TRS, the two midgap states are
split and become spin polarized in some direction (we will
call it the z direction without loss of generality). Suppose we
fill the low-energy state with S, = —%; then the domain wall
carries a charge of 2 and a net spin S, = —%. Thus, in the SSH
model, we find the spin and charge degrees of freedom can be
separated. From the Wannier orbital picture, it is clear to see
that although the domain wall has odd charge, all the Wannier
orbitals can be grouped in Kramers pairs and thus are invariant
under time reversal. On the other hand, when the domain wall
has zero net charge, an unpaired spin appears. Time reversal
flips the spin, and thus the Wannier configuration breaks TRS.

By analogy we show an example of an ideal, time-reversal-
invariant configuration of Wannier orbitals that carries odd-
integer charge, but no spin at a disclination. As shown in
Fig. 4(d), the Wannier orbitals with S, = —i—% in the three
Kramers pairs around the disclination core contribute a total
charge of 3/2, and the three Wannier orbitals with S, = —%
contribute a total charge of 3/2 to the disclination core. In
total, we have a charge of 3 and zero spin at the core, which
is a manifestation of spin-charge separation. The odd-integer
disclination charge is robust upon the addition of Wannier
orbitals of Kramers pairs to the disclination core since such
addition only changes the disclination charge by 2. If we want
to change the odd charge to even charge, we can add a single
electron to the core. However, a single electron introduces an
unpaired spin to the disclination core, and indicates broken
TRS.

Despite the clear distinction between even- and odd-integer
charges, the disclination indices, written solely in terms of
rotation invariants, cannot distinguish the evenness or oddness
of the disclination charge. The reason is that when solving for
n, from rotation eigenvalues at HSPs with the constraints of
TRS, the undetermined part is not generally an even number.
Let us elaborate this in Cg-symmetric case: the undetermined

1
part n; of n. in Eq. (8) can be an odd integer [50], resulting
in the contribution of an odd disclination charge according

1

to Eq. (3). Thus the undetermined parts n2 cannot be dropped
when substituting Eq. (8) into Eq. (3) if the disclination charge
is defined modulo 2. This implies that the rotation invariants
at HSPs alone cannot distinguish the TCIs with topologically
nontrivial odd disclination charges from the TCIs with trivial
even disclination charges. Therefore the symmetry represen-
tation at HSPs cannot fully classify the spin-% TClIs with TRS,
which is consistent with a recent work of Ref. [32].

It is clear from Eq. (9) and Eq. (10) that the fractional
charges in all types of disclinations for two-dimensional C,-

(c) 1.2 345678
[
1.45

14

abieyo

radius r from A

0.4

FIG. 5. (a) Lattice configuration of the model in Eq. (13) on
a periodic lattice with three disclinations. The gray squares and
black dots represent the unit cells and the sublattice sites, respec-
tively. Solid (dashed) lines represent the nearest-neighboring in-
tercell (intracell) hopping terms. Periodic boundaries are identified
by solid lines with the same color. There are three disclinations
in this lattice, which are centered at A, B, and C, respectively. A
has @ = —Z [a] = 0; Bhas Q = —%, [a]¥ = 1; and C has Q =
7, [a]® = (1,0). (b) The integral of charge density over a radius
r away from A. The curve is an exponential fit for the data points.
The decay length is proportional to the correlation length, and thus
proportional to the inverse of the energy gap. (c) Charge density
distribution for the lattice in (a) with 31 unit cells in each side.

symmetric TCIs that are either obstructed atomic insulators
or fragile topological insulators are completely determined
by the rotation invariants. Let us discuss an important conse-
quence of this result. Although the rotation invariants are suf-
ficient to determine the charge response at the disclinations,
given all rotation invariants, this is not enough information to
determine whether the TCI is a fragile TCI or an obstructed
atomic insulator. For example, when there is C, symmetry,
a fragile TCI represented as by + co + dp + a; — ap, and an
obstructed atomic insulator represented as by + ¢y + dp, both
of which have 3 occupied bands, have the same rotation
invariants ([X\*], [Y,*'], [M*]) = (=2, =2, —2). Then, at a
disclination with Frank angle Q = 7 and [a]® = (0, 0), both
the obstructed atomic insulator and fragile TCI have fractional
charge % Therefore, one cannot generically use fractional
disclination charge as an indicator to distinguish fragile TCIs
from obstructed atomic insulators as discussed in Ref. [37].
For some models it may be appropriate, but we offered a
counterexample above.

C. Numerical simulation of fractional disclination charge

In this section, to numerically verify our indices, we study
the charge distribution for a spinless Cs-symmetric tight-
binding model on a lattice with multiple disclinations. We
verify that the indices we derived in Sec. III B correctly cap-
ture the fractional charge localized at the disclination cores.
Figure 5(a) shows the lattice configuration of the model with
disclinations. It has four sites (black dots) per unit cell (the
gray square) and nearest-neighbor intracell (dashed lines) and
intercell (solid lines) hopping terms. In a defect-free lattice
with translation symmetry, and with the basis of sublattice
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TABLE III. The band representation of model in Eq. (13) with
eigenvalues of the C, rotation at I and M point and the C, rotation at
X point.

C, HSPs r X
H®(k) i, —i 1,1 —1,1
sites labeled in Fig. 5(a), the Bloch Hamiltonian is
0 0 to + ek 0
0 0 0 to + e
@) (1) — A 0
HZ®R) =1 4 it 0 0 o |
0 to+e 0 0
(13)

where £ is the amplitude of the intracell hopping terms, and
we have set the amplitude of the intercell hopping to 1. The
C, rotation operator is

(14)

Iy =

[N o]
SO = OO
—_ o O O
S oo~

which satisfies 7§ = 1.

If |#9| # 1 the bulk bands are gapped at half filling and we
choose to fill the lowest two bands. When 7y < 1, the model
is in the topological phase. We summarize the eigenvalues of
rotation operators at HSPs for the lowest two bands in Ta-
ble II1. The resulting rotation invariants are [X;] = 1, [M 1(4)] =
I, [M§4) ] =1, indicating a nontrivial bulk polarization P =
%(el + e;). Comparing the band representation with the band
representations induced by different ¢;’s, we find the lowest
two bands have the Wannier configuration {ncl = 1}, corre-
sponding to one Wannier orbital at each of the two points of
the Wyckoff position ¢ [see Fig. 2(a)] per unit cell.

We can construct the lattice with multiple disclinations by
connecting three rectangular patches [area circled by gray
dashed line in Fig. 5(a)] together with the intercell hopping
terms. The unit cells at the boundary of each patch having
hopping terms with the same color are connected. With this
choice of boundary condition, the center of the lattice [A in

Fig. 5(a)] forms a disclination with @ = —Z, [a]¥) = 0 [see
Fig. 1(b)]. The translation part of the holonomy is a = —2e,
corresponding to a normal vector T = —2e,. As a result,

the term related to the bulk polarization in Eq. (10), T® .
P®, is an integer and does not contribute to the fractional
disclination charge. Therefore, only the rotation part of the
holonomy contributes to the fractional disclination charge
at A. Substituting the rotation invariants into Eq. (10), the
fractional disclination charge is % mod 1. The middle points
C at each of the three edges in Fig. 5(a) form a disclination
with Q = 7, [a]® = (1, 0) [see Fig. 1(c)], and the corner B
forms a disclination with @ = —Z, [a]®) = 1 [see Fig. 1(d)].
In both cases, the translation part of the holonomy contributes
to the fractional disclination charges. However, substituting
the rotation invariants into Eq. (10), at disclination B, the
fractional charges from the rotation part of the holonomy com-
pensate the fractional charges from the translation holonomy,
resulting an integer charge at B, while at C, the rotation part

of the holonomy does not induce fractional charges, leading
to a fractional disclination charge of %

In Fig. 5(c), we show the numerical simulation of the
charge density after subtracting the background charge of
two electrons per unit cell in the bulk. The net electronic
charge is exponentially localized at the disclination cores A
and C. In Fig. 5(b), we show the integrated charge density
over an area enclosed by a circle with a radius r away from
the disclination core A. It converges to the quantized value

% mod 1 exponentially. At C, the integrated charge density

also exponentially converges to the quantized value % mod 1.
Finally, at disclination B the integrated net charge densities are
zero. In all cases, the numerical results are consistent with the
results calculated from the indices Eq. (10).

Finally, let us point out a subtlety in calculating the discli-
nation charge using the indices. The correspondence between
the Wannier orbitals in real space and symmetry representa-
tions at HSPs in k space requires the same choice of unit
cells. This means that we do not cut inside unit cells when
taking off or inserting sectors into the lattice to construct the
disclinations. For example, in the recent work of Ref. [37],
Liu et al. considered the fractional disclination charge in a
Cs-symmetric fragile TI. When constructing a disclination of
Q= —%, one needs to choose the nearest 6 sites on the same
hexagon to form a Cs-symmetric unit cell. Under that enlarged
choice of unit cell, we calculated the fractional disclination
charge through the rotation invariants of the Hamiltonian
with enlarged unit cells. The results are consistent with the
numerical simulations in Ref. [37]. This clearly shows that
the physics that the indices capture is also applicable to fragile
TClIs. Therefore, we have numerically verified that our indices
are reliable for fractional disclination charge in both fragile
TCIs and atomic insulators, no matter whether it is induced by
the translation part or rotation part of the holonomy. We will
go on to discuss extensions of our indices to include Chern
numbers in Sec. IV, but first we will conclude this section
with a discussion of the stability of the fractional charges in
the presence of symmetry-preserving interactions.

D. Robustness of the fractional charge in
the presence of interactions

In this subsection, we will determine the robustness of the
fractional disclination charges to the presence of symmetry-
preserving electron-electron interactions. We will focus on
the stability of fractional charges in interacting phases that
are adiabatically connected to the noninteracting TCIs, and
leave the properties of new phases that are only induced in
the presence of interactions to future work. For our arguments
we require that the allowed interaction terms in a Hamiltonian
should preserve the lattice translation symmetry, C, rotation
symmetry, and U (1) charge conservation symmetry. What
is more, we require the interactions to be local. Due to the
lattice translation symmetry, we can reduce the entire lattice
to one unit cell and study the charge [corresponding to the
U (1) symmetry] and angular momentum (corresponding to
C, symmetry) per unit cell.

Let us consider a C,-symmetric TCI which can be rep-
resented as Zaylnéa,. The charge per unit cell is Q =

Za,zMa”(lx’ where M, is the multiplicity of Wyckoff po-
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sition «, and the angular momentum per unit cell is L =
(3w IMgnl) mod n, where [ is the angular momentum of
the Wannier orbitals localized at Wyckoff position « (defined
in Sec. III A). For example, in a Cs-symmetric TCI having
Wannier representation ¢y which is induced from the trivial
irrep of the site symmetry group C;, at the Wyckoff position c,
there are two s orbitals at two equivalent Wyckoff positions ¢
(see Fig. 2) in each unit cell, and thus the total charge Q = 2
and total angular momentum L = M, x 0 = 0. Similarly, in
a TCI having Wannier representation ¢; which is induced
from the nontrivial irrep of the site symmetry group C, at the
Wyckoff position ¢, there are two p orbitals at two equivalent
Wyckoff positions ¢ (see Fig. 2), so the total charge is Q = 2
and the total angular momentum is L = M, x 1 = 2. Both the
charge Q and the angular momentum L per unit cell should
be conserved when we turn on interactions as we specified
the interactions preserve C, and U (1) symmetry. Through a
process where we turn on interactions, perform a deformation,
and then turn interaction off, we can deform a noninteracting
TCI into another noninteracting TCI with different topology,
i.e., different rotation invariants, without closing the gap,
which might cause a change in charge fractionalization at a
disclination. In order to study whether the fractional charge at
disclinations is robust when interactions are present, we first
discuss the possible deformations in interacting systems [51].
The conservation of charge and angular momentum imposes
constraints on the allowed deformations that connect two
insulators described by {n! } and {(n!,)'}, respectively: Q' = Q
and L' = L. With these two restrictions we have the following
rules for allowed deformation:

(1) At one specific Wyckoff position «, a set of orbitals
described by {nfx} is equivalent to another set of orbitals
described by {(n!, )} if 0’ = Q and L' = L; i.e., they are con-
nected by an adiabatic and continuous symmetry-preserving
deformation. For example, in C4-symmetric case, two filled
ai’s are equivalent to two filled a3’s.

(2) For a specific Wyckoff position «, let the orbital con-
figuration be described by {nfx}. Every complete set of all pos-
sible representations / of C, located at o can be continuously
deformed into a set of orbitals centered at another Wyck-
off position B through a continuously deformable general
Wyckoff position. The new configuration nfq will also contain
(at least one) complete set of representations. For example,
a Cy-symmetric TCI ag + a; + a» + a3 can be continuously
deformed to a C4-symmetric TCI ¢y + ¢, both of which have
charge Q = 4 and angular momentum L = 2 mod 4.

Note that the first rule is only true when there are
interactions because if there is no interaction, the band gap,
or equivalently, the gap between the many-body ground state
and excited states, must close during the deformation. Let us
again take the Cy-symmetric case as an example. When there
is no interaction, if we want to deform two a;’s into two as’s,
the band gap must close and reopen because the occupied
bands with eigenvalue i must touch the conduction bands
with eigenvalue —i to exchange the eigenvalue of the rotation
operator. This means the gap between the many-body ground
state and excited states must close and reopen. When there
are interactions, however, we can have symmetry-preserving
interaction terms like cia’lc;a.zclaqlcmz, where ¢y, ; destroys
an electron represented by ¢; and j is the index for the internal

degrees of freedom. This kind of interaction term can keep
the gap between the many-body ground state and excited
states open during the deformation. What is more, under the
first kind of deformation, since the interactions are local,
the change of the configuration of Wannier orbitals happens
locally; i.e., the Wannier orbitals localized at a certain
Wyckoff position are continuously deformed into Wannier
orbitals localized at the same Wyckoff position though with
different angular momentums. Thus, the localized Wannier
states, or their interacting analogs, always exist. As a result,
if we integrate the charge density around the disclination
core during the deformation where there are interactions, we
can still get exponentially converged results, and thus the
fractional disclination charge is still well defined.

From these allowed deformations we can see that the
fractional charge is stable against interactions in the sense
that all adiabatic deformations that are not allowed in the
noninteracting cases but are allowed in the cases with sym-
metric interactions will not change the fractional disclination
charge. The first kind of deformation cannot change n, =
> n!, for any a, so the fractional charge will not change
after the deformation according to Eq. (3). The second kind
of deformation always changes M,n, by multiples of n for a
C,-symmetric TCI. Thus, according to Eq. (3), the fractional
charge will not change after the second deformation either.
If we further impose TRS with 72 = —1, the n, = ), 1/,
still remains the same after the first kind of deformation and
at each Wceykoff position o, we must have Wannier orbitals
of all angular momentums [ = % %, e My — % and their
Kramers partners to form a complete set of representations
of C,, which is required for the second deformation. The
change of Myn, is therefore always multiples of 2n for a
C,-symmetric TCI after the second kind of deformation. Thus,
according to (3), we can conclude that after the two allowed
deformations, the fractional charge still remains the same, and
furthermore, the oddness or evenness of the integer charge
also does not change when imposing TRS with 72 = —1 (note
that as discussed in Sec. III B, the topological charge should
be defined modulo 2 when there is TRS with 72 = —1). In
conclusion, the fractional disclination charge is robust in the
presence of interactions. When there is TRS with T2 = —1,
the oddness or evenness of the integer charge is also robust in
the presence of interactions.

IV. FRACTIONAL DISCLINATION CHARGE FOR TCIs
WITH CHERN NUMBER

So far we have investigated the fractional disclination
charges for two-dimensional C,-symmetric TCIs that admit
a (generalized) Wannier representation. In this section, we
will use an algebraic method to generalize the indices for
fractional disclination charge to TCIs with a nonzero Chern
number. In this case one cannot construct spatially localized
Wannier functions from the Bloch states of the occupied
bands, and therefore a (generalized) Wannier picture is not ap-
plicable [39,40]. However, it is known that the Chern number
can survive in the presence of interactions [52] so we expect
the contributions due to the Chern number to remain when
interactions are turned on (at least when interactions preserve
rotation symmetries).
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Each class of 2D C,-symmetric TCIs can be characterized
by a set of topological invariants, x ™ = {[II™], ch}, where
[TI™] is an irreducible set of rotation invariants, and ch is
the (first) Chern number. Consider two Hamiltonians H; and
H, with the same symmetries, but belon§ing to different
classes with the topological invariants y,", X2("), and frac-
tional disclination charges Q;, Q,. If we stack them together,
the combined TCI can be described by a new Hamiltonian
H = H, ® H, with topological invariants x ™ = )(1(") + Xz("),
where the Chern numbers add integers, and the rotation in-
variants add up according to their cyclic group structure. One
can turn on symmetry-preserving coupling terms between H;
and H,, and x " remains the same as long as the bulk gap is
not closed.

When stacking the two Hamiltonians together, the frac-
tional disclination charge in the combined insulator is Q =
01+ Q», and it is stable to the addition of symmetry-
preserving coupling terms that do not close the band gap.
Due to the same additive algebraic structure of the fractional
disclination charge Q and the topological invariants x ™, the
index of fractional disclination charge Q(x™) is a linear
function of {{I1"], ch} for a given disclination type. There-
fore, one can use the algebraic method in Refs. [35,36] to
derive the index Q(x ™) from a set of primitive Hamiltonian
generator models with linearly independent invariants for each
C, symmetry. The disclination charge indices Q| that we
derived in Sec. III B using the real-space Wannier picture and
band representation theory correspond to an index Q(x ™)
derived from generators with ch = 0. In order to generalize
our indices to TCIs with nonzero Chern number, for a given
C, symmetry and disclination type, we can set the disclination
charge as

O o = QM) + Bch mod 1, (15)

where we use Q((i,ils),ch to represent the generalized index of
fractional disclination charge including Chern number con-
tributions to distinguish it from the index Qg{s) in Sec. III B.
The parameter B generically depends on the disclination type
(ng, a), and the problem of generalizing the fractional charge
indices boils down to determining £.

To find 8 we can proceed as follows. Consider a lattice
having two disclinations (€2}, a;) and (2, a,), each of which
binds a fractional charge Qgis.ch(€2;, a;),7 = 1, 2. The total
charge localized at the region covering the two disclinations
is

O = Quis,cn (82, ;, ch) + Quis,cn (S22, a2, ch)
= Quis,ch (21 + 2, a1 + 7(2)ay, ch). (16)

Therefore, in order to be compatible with the addition rule of
disclinations, 8 must be proportional to %,

Q
2

To solve for y in each Qc(:l?s), h» We numerically calculated the
fractional charge localized at disclinations for a C,,-symmetric
insulator with ¢h = 1. We summarize the results in the Ta-
ble IV. The details of the Hamiltonian of each Chern insulator,
and corresponding charge density distribution are shown in
Appendix C.

04 4 = Q%) + v =—ch. (17)

TABLE IV. Fractional charge modulo 1 at disclination for C,-
symmetric insulator with ch = 1.

Disclination type Topological invariants Qis.ch
Q=n,[a]?=(1,00 KXP1=[1=0,[M>]=1 !
Q=-Z,[a]¥=0 X2 =M1 =0, MP1=1 0
Q=-Z [a®=0 [K'1=[K"=-1 :
Q=-%.[=0 [K']=[M"]=-1 i

Having established the numerical results in Table IV, we
can solve for y and write the generalized indices:

Q /1 1 1 1
B = o (G + 3]+ 5[]+ Jen)

+T® . P® mod 1,

Q 1
3) 3) /(3)
Qjis.ch = o ([Kz ]+ [&57]+ 56h>
+T® . P® mod 1,

Q 3 1 1
O = 5 (K] S1M0] - 5010 + 5t )

+T®.P® mod 1,

Q 3
Ol o = §<2[K2(3>] + E[M?)] + 2ch> mod 1. (18)

To confirm these formulas we also numerically calculated the
fractional charge at different types of disclinations for each
C,-symmetric insulator with different Chern numbers. All the
numerical results are consistent with our indices for fractional
disclination charge in Eq. (18) (see Appendix C for more
details).

What we find here is that disclinations, which are sources
of geometric curvature, act as an effective flux. In the presence
of a Chern number, and/or nontrivial rotation invariants, this
flux traps charge. A similar effect is known in the quantum
Hall effect literature where the U (1) electromagnetic field
can couple, in the presence of continuous rotation symmetry,
to the geometric spin-connection field with the Wen-Zee
term [53-57]

ch
Lwz = —o AN dA. (19)
2
We can compare our results to the charge response of a

quantum Hall insulator with a Chern number ¢k from which
we find

wz Cch ch Q

L= — 0,y — Oyy) = — -dl = —ch. (20
Quid 2 /S( @y = Byeox) 2 féw € (20)

For the Cg-symmetric case, according to Eq.(12), we can

substitute 2ch = ch + S[Méz)] + 4[K2(3)] + 2[K33)] + 6N into
Eq. (18) and find

Q 3
Qt(i?s),ch = g(Q[Kf)] - E[Mfz)] + ch) mod 1.  (21)

Note that the reason we include the 6N (where N is an
undetermined integer) is because the relationship between
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the Chern number and rotation invariants in Eq. (12) is only
correct modulo 6. It is clear that the 6N term will not affect
the fractional charge in Eq. (21) modulo 1. We can conclude
from this result that the coefficient in front of ch in Eq. (21)
is consistent with that in the Wen-Zee term in Eq. (20).
However, if we try to repeat the process for the C-, Cs-,
and Cs-symmetric cases we find results that do not agree. Let
us take the C,-symmetric case as an example. If we want to
generate a term %ch in Qgs)’ch in Eq.(18) that will match
the Wen-Zee result, we can use Eq. (12) to rewrite %ch as
Leh = ch — L(XP1+ Y21 — [M{P]) — N’ and substitute it
into the C, index in Eq. (18), where N’ is an undetermined
integer. Unlike the Cs-symmetric case, we cannot drop N’ here
because when Q2 = 7, we will have a term %N’ in Qfﬁg that
contributes to the fractional charge. For this reason, we cannot
make the coefficients of the ch consistent with the Wen-Zee
result unless we introduce an undetermined term into the

indices Qgi’:‘ch. Instead, we generically have coefficients of

ch that are half of that in Eq. (20), i.e., 2= in the G-, Cs-,
and Cs-symmetric cases. It is unclear what final conclusions
to draw about the connection between our invariants for dis-
crete rotation symmetries and the Wen-Zee term that applies
for continuous rotation symmetry. This is an exciting open
problem for future work.

V. DISCUSSION AND CONCLUSIONS

In conclusion, we have derived general indices for frac-
tional disclination charge in two-dimensional C,-symmetric
TCIs. For TCIs that admit a (generalized) Wannier repre-
sentation, including atomic limit insulators and fragile TCIs,
the method we use clearly illustrates the origin of charge
fractionalization and the robustness of fractional disclination
charge in the presence of interactions. For TCIs with nonzero
Chern number, on the other hand, the lack of a pictorial repre-
sentation makes the fractionalization of charge at disclinations
far from evident. However, in this case, we can build the
topological indices [Eq. (18)] using an algebraic method. It
is well known that an external flux piercing the plane in a
Chern insulator leads to a charge response proportional to the
product of Chern number and the flux. From our indices in
Eq. (18), we can see that the Chern number couples to the
Frank angle €2, suggesting that the disclinations can induce
an effective flux, which is responsible for the appearance of
fractional charges.

However, the exact correspondence between the effective
flux and defects is an open question. Knowing the answer of
this question will help identify fractional charges localized
at defects with fewer symmetry requirements. For example,
retaining translation symmetry in the bulk far from the de-
fects may not be necessary for charge fractionalization at
disclinations in Chern insulators, as it seemingly is for atomic
limit insulators and fragile TCIs [38]. That is, the fractional
charges at defects in a Chern insulator might be more robust
against disorder. A related open question is the origin of the
rotationally invariant terms in Eq. (18) in systems that do not
admit (generalized) Wannier representation. These facts imply
that there is richer physics besides the Wen-Zee response
underlying charge fractionalization in Chern insulators with

discrete rotation symmetries, and it deserves further investi-
gation.
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APPENDIX A: GRAPHS OF DIFFERENT
TYPES OF DISCLINATIONS

In this Appendix, we list lattices with disclinations of dif-
ferent holonomy (€2, [a]"™). The Frank angles of disclinations
in C,-symmetric lattices are multiples of 27” For C,- and
C4-symmetric TCIs, we use square lattices. Disclinations with
Frank angle €2 = +7 are shown in Fig. 6 and disclinations
with Frank angle 2 = 7 are shown in Fig. 7. For Cs- and Ce-
symmetric TCIs, we use a triangular lattice. Disclinations with
Frank angle 2 = £7% are shown in Fig. 8 and disclinations

with Frank angle Q2 = :I:ZT” are shown in Fig. 9.

APPENDIX B: RELATION BETWEEN THE NUMBER
OF WANNIER ORBITALS AND ROTATION INDICES

1. Band representations

The theory of band representations was originally intro-
duced in Refs. [58,59], and later generalized in Refs. [29-33].
Here, we list some important conclusions from Ref. [31]
which are useful to our discussion. Generally, the crystalline
symmetry of the entire lattice can be described by a space

(a) (b)

FIG. 6. Disclinations in Cs-symmetric lattices. (a) and (c) have
Frank angle 2 = —90°; (b) and (d) have Frank angle € = +490°.
(a) and (b) have [a]® = 0; (c) and (d) have [a]® = 1.
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FIG. 7. Disclinations in C,-symmetric lattices. 2 = 180° discli-
nations with different translation holonomy: (a) [a]® = (0, 0),
(b) [a]® = (0, 1), (c) [a]® = (1, 0), and (d) [a]® = (1, 1).

group G. There are high-symmetry points ¢ in real space
that are invariant under a subgroup of G, which is called
the site symmetry group G4 for the point q. Given a high-
symmetry point q; in real space, we find g, € G satisfying
gu ¢ Gq, to map q; to other points in the unit cell of qy,
guqi =4q, for u =2,3,..., M,. These M, points belong to
the same Wyckoff position o with the multiplicity M,. We
can induce a representation of the space group G from an
irreducible representation of the site symmetry group G4, € G
at the point q; in the Wyckoff position «. We denote the
irreducible representation of G4, by p and denote the induced
representation of G from p by pg. For all & € G, we have

hgu = {Eltvu}gvgv (Bl)

where g € G, and t is a translation by a lattice vector, t,, =
hq,, — q,. Then, the induced representation at each k, pé (h),
is given by

PEM) juip = e "B p (e HE] -ty dhg,),  (B2)

where i, j=1,2,...,nq, and nq is the dimension of the

irreducible representation p of the site symmetry group G.
For C,-symmetric TCIs, h = {C,|(0,0)}, we can use

Eq. (B2) to calculate the rotation eigenvalues of an induced

FIG. 8. Disclinations in Cg-symmetric lattices. (a) has Frank
angle Q2 = —60°; (b) has Frank angle 2 = +60°.

FIG. 9. Disclinations in Cs-symmetric lattices. (a), (b), and
(c) have Frank angle Q2 = —120°; (d), (e), and (f) have Frank angle
Q = +120°. (a) and (d) have [a]® = 0; (b) and (e) have [a]® = +1;
(c) and (f) have [a]® = —1.

band representation p}é({C,,|(0, 0)}) from the irreducible rep-
resentation of the site symmetry group of a maximal Wyckoff
position at all HSPs in k space (see Fig. 2 for all maximal
Wyckoft positions). Figure 10 shows the BZ and HSPs for
C,, C3, Cy, and Cg TCIs. In the following, we will use Eq. (B2)
to derive the relation between the number of Wannier orbitals
at a maximal Wyckoff position and rotation invariants at HSPs
in k space for each C,, symmetry.

2. Twofold symmetry

As shown in Fig. 2, the four maximal Wyckoff positions
of the C,-symmetric lattice are labeled by a, b, ¢, and d. We
choose e; = (1,0) and e, = (0, 1) to be the lattice vectors.
The multiplicities of these four Wyckoff positions are all
1. Thus, we can ignore the indices p and v in Eq. (B2).
In order to induce the band representation of G, which is
generated by the C, rotation and lattice translations, from the
irreducible representation p of G, = {{E|(0, 0)}, {C>](0, 0)}},
we substitute 7 = {C;](0, 0)} into Eq. (B2) and find

PEUC21(0, 0)}) = p({C21(0, 0)}). (B3)

Since the C, group is Abelian, the indices i and j
are also unnecessary; i.e., p(g) for Vge G, is just a
number. For the Wyckoff positions b, ¢, and d, with
site symmetry groups G, = {E|(0,0)}, {C:](1, 1)}},
G. = {E1(0,0)}, {G[(1,0)}}, and  Guz = {{E](0,0)},

(a) (b)

2

N

<o
o X0

M
X;
b

1

C, symm. C, symm.

C, symm.

C, symm.

FIG. 10. The Brillouin zone, reciprocal lattice vectors by, b,, and
HSPs for (a) C;-, (b) C4-symmetric TCIs with by = £, b, = 3; (¢) Cs-
and (d) Cs-symmetric TCIs with by = 27 (X — %y), b, = %5).
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TABLE V. Representations of the C, rotation at HSPs I', M, X,
and Y for band representations which are induced from the irre-
ducible representations labeled by / of the site symmetry groups for
the maximal Wyckoff positions a, b, ¢, d in C,-symmetric lattices.
I =0, 1 for spinless TCIs and / = , 32 for spin-3 TClSs.

Wyckoff positions r M X Y
a eilrr eiln ei[rr eilrr

b[ eiln eiln ei(1+l)n ei(l+l)7'r
c eilﬂ ei(1+l)7t ei(l+1)7l eil?‘r

d[ eilrr ei(H—l)Tr ei[rr ei(H—l)rt

{C>»1(0, 1)}}, respectively, the induced representations are
PE(C21(0,0)}) = e ®R LD (G| (1, 0)}),
Pe({C21(0,0)}) = e ® 0D p({G(0, 1)),
Pe({C21(0,0))) = e ®OLDp(G (1, D). (B4)

From these band representations, we can read off the
eigenvalues for the 2-fold rotation operator [{C>|(0, 0)}] at all
HSPs. The results are listed in Table V, where the angular mo-
mentum / labels different irreducible representations of a site
symmetry group. From Table V, we count the number of the
pth (p = 1, 2) eigenvalue of {C,]0, 0} at the HSPs II® from
the irreducible representation / of the site symmetry group of
a maximal Wyckoff position « (o = a, b, ¢, d). We denote this
number as /T, For example, we have 0f,” = 1 and 0%,” = 0
because each ag contributes only one +1 at the I'. Note that in
the C,-symmetric TCIs, the site symmetry groups of Wyckoff
positions a, b, ¢, d are all isomorphic to the point group C,
which only has two (one-dimensional) irreducible represen-
tations. Thus, the angular momentum / only has two values:
I =0, 1 for spinless TCIs and / = % % for the spin-% TClIs.
For a TCI with the configuration of Wannier orbitals {nfx},
at each HSP, we have )", nfxl}}am = #l'[;,z), where p =1, 2.
However, 4 out of these 8 equations are linearly independent
because of the constraint )_, , Mynl, = v =Y #I1", where
M, is the multiplicity of the Wyckoff position « and v is
the number of occupied states. With the constraint itself,
we have 5 linearly independent equations with 8 unknowns
(ng, ng, ng, ng, n}l, n},, ng, n}l). Since the charge depends on the
total number of Wannier orbitals at a Wyckoff position, we
replace n) with n, = Y, nl, for « = a, b, ¢, d. For spinless
TCIs these equations are

Ng+np+n.+ng=v,
n2 —I—ng —i—ng ~|—n2 = #Fiz),
ng—i—nb —ng—l—nc —ng ~|—n2 =#X1(2),
ng-l—nb —ng +n(c)+nd —ng =#Yl(2),
ng +n2 + n. — n(c) +ng — n2 = #Mfz). (BS)

For spin-% TClIs, we simply replace the integer superscript

1 =0,1,... by the half-integer superscript / = %, %, ... In
the following sections for other C,, symmetries, we only list
the equations for spinless TCIs and the equations for spin-%

TClIs can be written in the same way as here. Since we have

more unknowns than equations, there is no unique solution.
Leaving ng, n?, and "?1 to be unsolved, we get

)+ (1) = ]+ ),
= () = [5) + []+-4),
R+ )+ [v7] + ).

n, =

(B6)

ng =

where, for obstructed atomic insulators or fragile TCIs, ng, ng,
and ng can be arbitrary (possibly negative) integers. Thus,
the undetermined parts of ny, n., and n,; are all multiples
of 2, which do not affect the fractional portions of the bulk
polarization and disclination charge according to Eq. (3) and
Eq. (2). Substituting Eq. (B6) into Eq. (2) and Eq. (3), for the
bulk polarization we have

P® = L{(n, 4+ nc)e; + (ny + nq)ex] mod 1

= 1([x?]er + [¥,*]e2) mod 1, (B7)
as also found in Refs. [18,21]. For the disclination charge we
have

Q
AQP = [Z—(Vlb +ne 4 ng) + T - PQ)} mod 1
T

= o (30 5067+ 5171

+T? . PP mod 1, (B8)
where T® = a;d; — apd,, such that d; - e; = §; ; for i, j =
1,2 and a = a,e; + aye; is the translation holonomy.

3. Threefold symmetry

For Cs;-symmetric lattices, we choose the basis vectors to
be e, = (1,0) and e, = (%, ‘/7§). There are three maximal
Wyckoff positions, which are labeled by a, b, and ¢ as shown
in Fig. 2 in the main text. They all have multiplicity 1. There-
fore, we can ignore the indices © and v in Eq. (B2). The site
symmetry group at each Wyckoff position is isomorphic to the
Cj3 point group which has three (one-dimensional) irreducible
representations. Therefore, we can also ignore the indices i, j.
From Eq. (B2), we find

PE(C31(0,0)}) = p({C5](0, 0)}),
PE({C51(0,0)}) = e B CLO b ((G5((1, 0))),

. s . .
Pg({C3I(O, 0 = el(R}k)‘(z'{)p({Cﬂ <§’ _§>}>’

(B9)

for band representations induced from the irreducible rep-
resentations of G,, G;, and G, respectively. We then use
Eq. (BY) to read off the eigenvalues that labels the repre-
sentations of {C3](0,0)} at all HSPs. The results are listed
in Table VI. Just as in the case of C,-symmetric TCIs, we
have 7 linearly independent equations (2 from each HSP and
1 from the constraint of the number of occupied states) for 9

0,0 0 .1 1 1 : ne
unknowns (1, ny, ne, Ny, Ny, N, N, 1y, n.). Reading the lpa
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TABLE VI. Representations of the C; rotation at HSPs I', K, and
K’ for band representations which are induced from the irreducible
representations of the site symmetry group labeled by [ for the
maximal Wyckoff positions a, b, ¢ in Cs-symmetric lattices. We have
[ =0, 1, 2 for the spinless TCIs and / = % % % for the spin—% TClIs.

Wyckoff positions r K K’
27l 2l 2l
a e e e
2l 20+ 2(—1)r
b, e s e 3 e 3
2lm 2(1-DHm 2+
e e e 3 e 3

from Table VI, these equations are
Ng +np +ne =v,
ng + ng + ng = #F?),
nclt + n,l) + ni = #F?),
ng +ni +np — ng — né = #Kl(3),
n; +n. — ng - ni +n2 = #K2(3),

”2 +n, — ng — ni + n,i = #K]/(3),

nl 4+ 10+, —n) —n) =#K,V. (B10)
Leaving n}) and ni unsolved, we have
np = [K7] + [K57] = [K1D] + 3ny,
ne = [K\7] + [K7] = [K] + 3n.. (B11)

Given that nll, and n! are integers, the undetermined parts in n;,
and n, do not affect the fractional portions of the disclination
charge. By substituting Eq. (B11) into Eq. (2) and Eq. (3) in
the main text, we have

Q
AQ(3) [Z(m’ +n.) + T . P(3)i| mod 1

Qo6

= (K] + [K7) + 1O PV mod 1, (B12)
where
P® = 1(n, — n.)er + (mp — n)ezl mod 1
=1 ([&"] - [K7]
+2[k"] = 2[K{V])(e; +e)mod I (BI3)

is the polarization in Cs-symmetric TCISs.

4. Fourfold symmetry

For C4-symmetric lattices, we choose the basis vectors to
be e; = (1,0) and e, = (0, 1). As shown in Fig. 2, there
are two maximal Wyckoff positions, a and b, both with
multiplicity 1, and one maximal Wyckoff position ¢ with
multiplicity 2. Thus, we cannot ignore the indices n and v
in Eq. (B2) when studying the band representations induced
from the irreducible representations of G.. Since I'*) and M®
are invariant under C; rotation and X® is invariant under C,
rotation, we need to consider the induced band representations
for both C, and Cy4 rotation operators, p('E’({C2|(0, 0)}) and

TABLE VII. Representations of C, (C,) rotation at HSPs T and
M (X and Y) for band representations which are induced from the
irreducible representations labeled by / of site symmetry groups for
the maximal Wyckoff positions a, b, and ¢ in C4-symmetric lattices.
The “1 or i” means for the spinless case it is 1 and for the spin—%

case itis i. We have [ =0, 1, ..., m, — 1 for the spinless case and
I =13, ....my — 3 for the spin-} case. Here, we have m, = 4 for

o =a,band m. = 2.

Wyckoff positions r M X Y
a e% e% ellT[ el]ﬂ
il inl . .
b[ e% _ei’[ ez([+])rr ez(H—I)ﬂ
] T pFUHD [ opg lori
il in . .
ez ez _lor—i —lor—i

pé({C4|(0, 0)}). For representations induced from the irre-
ducible representations of G, and G, [both isomorphic to the
C, point group which has four (one-dimensional) irreducible
representations], we have

PE(C41(0,0)}) = p({C4](0, 0)}),
PE(C21(0,0)}) = p({C1](0, 0)}),
PEUC41(0,0)}) = e B LD p((Cy (1, 0)}),
Pe(C21(0,0)}) = e ®R LD p(Gy|(1, D)),

For representations induced from the irreducible representa-
tions of G, = {{E|(0, 0)}, {G2(1, 0)}}, we have

PE(Cal(0, 0)})a 1 = p({E](0, 0)}),
PEUCA(0,0)})1 p = e RO LD (G| (1, 0))),
PEUC(0, 00}y = e LD Gy |1, 0D,
PEUCI(0,0)})y 5 = e R O=D oGy |1, 0}).

(B14)

(B15)

The subscripts in [p&]; ; are due to the nontrivial multiplicity
of Wyckoff position c¢. From Eq. (B14) and Eq. (B15), we
can read off the eigenvalues that labels the representations of
{C41(0,0)} at T and M, and {C>|(0, 0)} at X and Y. The results
are listed in Table VII. Then, with /I and /Tl counted from
Table VII and the number of occupied bands v, we can have
8 linearly independent equations for {nfl}. By substituting
g =), n’a where o = a, b, c into the 8 linearly independent
equations, we find

ng +ny +2n. = v,
ng + ng + n? = #F§4),
n; + n,l) + (nc - ng) = #F§4),
ng +np +nl = #05,
g i+ (ne = nf) = #M7",
n}l—l—nb—ng—n},—ni—i-no. =#M(4)
nz—i-ng+(nC —n ) —#M(4)
nb +n. = #X(Z)

n +n +nb—nb (B16)
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Choosing n? and n? to be unsolved, we have
3 (L] [M57] = 3[MP] + 8n),
3 (M7 + [M37] + 4nf).

ny =

ne =

(B17)

As before, given that ni and n? are integers, the undetermined
parts in n, and n, do not affect the fractional portions of the
disclination charge. By substituting Eq. (B17) into Eq. (2), and
Eq. (3) in the main text, we finally have

Q

AQY = | —(p+2n) + T® . PP | mod 1
f 27

Q

3
— (2) -
- 27 ([Xl ] + 2

+T® . P® mod 1,

1
[M5"] - 5["”5‘”])
(B18)
where
PY = L{(ny + 2n.)es + (np + 2n.)e2] mod 1
= 1([XP] + [MP] - [MP])(e1 +e)mod 1 (B19)

is the polarization in C4-symmetric TClIs.

5. Sixfold symmetry
For Ce-symmetric lattices, we choose e; = (1,0), e; =

(;, 5 ) to be the basis vectors of the lattice. As shown in
Fig. 2 in the main text, we have three maximal Wyckoff
positions, a with multiplicity 1, b with multiplicity 2, and
¢ with multiplicity 3. We need to find the induced band
representation pé of {C(0,0)}, {C3(0,0)}, and {C5(0, 0)}
from the irreducible representations p of the site symmetry
group G, @ = a, b, c. The induced band representation from
the irreducible representation p of G, (Cs point group) is
simply p}‘;(h) = p(h) for Vh € g. Using Eq. (B2), the induced
representations from the irreducible representations of G, =

{EN(0, 00}, {C5](1, 0}, {C3I(L, )} are
P&EC6l (0,00} = pUE|(0, 0)}),

PEUCSI(0, 0)})1 5 = e ML ({51, ),
PEUC31(0,0)}); | = e LD p (G (1, 0)}),
PEUC1(0, 0))) = & RIVEE=Dp((G](1, O))),

PEUG(0, 0}y, = e I ®RCE=5D (311, 0)}),

s 1
PEUCI0,0))), 5 = ¢ RT3 ({C3 | (2 {> })

(B20)

Similarly, the induced band representations from the irre-
ducible representations of G, = {{E£](0, 0)}, {C>|(1, 0)}} are

e R 5 (1G] (1, 0))),
PEUCS1(0, 0)}) 5 = e KR L0 (G (1, 0))),
PE(C1(0, 0}y = € Dp((CI(1, 0)),
PEUC51(0, 00 = pUEI(1, 0))),

PEUCH(0. 0} 1 =

—i(Rek)-(L,—

TABLE VIII. Eigenvalues for Cg rotation operator at I points, C;
rotation operator at K points, and C; rotation operator at M points for
bands which form the irreducible representations labeled by / of site
symmetry groups in Ce-symmetric lattices. The “1 or i” means that
for the spinless case it is 1 and for the spin—% case it is i. We have
1=0,1,...,my, — 1 for the spinless case and / = %, %,...,ma — %
for the spin—% case. Here, we have m, = 6, m;, = 3, and m, = 2.

Wyckoff positions r K M
a s P e
ilw —i2x(l—1) .
b; e e~ 3 lori
itz —i2n (D) .
—e’3 e 3 —1or—i
] e's lori et
oY EF ol

p&(C31(0, 0013, = p({EI(L, 0)}),
P& (G310, 001, 5 = p({E|(1, 0)}),
p&{C21(0, 00}, = e "B L0 H (G| (1, 0))),

e ({C21(0,0)})5 =

T iRRG=) 5 (16| (1, 0)}),

itRk)(L
PEUC1(0,0)})35 = e " FRG D) p((Gy|(1,0))).  (B21)
(b)
l 0.10
‘ ‘ 0.05
10 I
™ 10
0 5
% s 10-1p -5 5?
(©) v (d)
0.2
[ ‘ 0.1
P II 0.0
-10 0 : " 10
x 10 -10 [3;

FIG. 11. (a) Lattice configuration of the model in Eq. (C1). Peri-
odic boundary conditions are imposed by connecting the boundaries
of the same color and line pattern with hopping terms as in the bulk.
There are three disclinations in this lattice, which are centered around
A, B, and C. Disclination A has n$) = —1,[a]® = 0; B has nly =
—1,[a]® = l;and Chas nl = 1, [a]® = (1, 0). (b) Charge density
for Eq. (C1) on the lattice in (a) with 396 unit cells and m = 1.
(c) Lattice configuration of the Haldane model in Eq. (C2). Periodic
boundary conditions are imposed by connecting the boundaries of
the same color by hopping terms as in the bulk. There are two
disclinations in this lattice, which are centered around A and B.
Disclination A has n$) = —1, [a]® = 0 and B has n$’ = 1, [a]® =
0. (d) Charge density distribution for Eq. (C2) on the lattice in
(c) with 724 unit cells, t = 1, and A = 0.2.
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TABLE IX. Fractional charge trapped at the core of different
disclinations in C;- and C4-symmetric Chern insulators.

TABLE X. Fractional charge trapped at the core of different
disclinations in C3- and Cg-symmetric Chern insulators.

G Q=m,ch=1 Q=m,ch=-1 Gs Q=-Z Q== Q=-Z Q=%Z
[a]® = (1,0) [a]® = (1,0) ch=1 ch=1 ch=—1 ch=—1
@ 1 0 [a]® =0 [al¥ =1 [a]® =0 [a]® =1
dis
x x x " & 1 L L 1
Cy Q=-12 Q=-7 Q=-7 =-7 dis 2 2 2
ch=1 ch=1 ch=—1 ch=-1 G Q=-% Q=-2
[a]¥ =0 [a]¥ =1 [a]® =0 [a]® =1 ch=1 ch=—1
(4 6
i 0 : 0 0 i 1 i

From Eq. (B20) and Eq. (B21), we can read off the eigen-
values that label the representations of {Cg|(0,0)} at T,
{C5](0,0)} at K, and {C,|(0, 0)} at M. The results are listed
in Table VIII. With l;,}j‘”, lplfy(z), and lpnam counted from Ta-
ble VIII, we have 9 linearly independent equations (5 at
the T point, 2 at the K point, 1 at the M point, and 1
from the constraints of the number of occupied states v)
for 11 unknowns (n, ! =0,...,5,n,,1=0,...,2,n.,1 =
0, 1). By replacing n«=! withn, =Y ,nl, 1 =0,...,M, —
1, for « = a, b, ¢, we have
ng + 2np 4+ 3n. = v,

ng + n(b) + ng = #F§6),

ntll + n}, + (n. — n?) = #1";6),

n2 + (ny —nY) —np) +nd = #F;é),

n +nd 4+ (n, —n) = #1.9,

ni + nll7 + n?, = #F§6),

n 4+ (ny—n) —np)+n) +n. = #Kl(3),

ny+ny +ny + (np —np) —np) +ne = #K2(3),

n 4+ n2 4t 4+ 0+ 20, —n0) =#MP . (B22)

Here we choose n? and n}, to be unsolved. Then ny, and n, can
be written as

np = [K2(3)] + 3n;,

ne = 1 [MP] + 210 (B23)
As before, given that n}J and n? are integers, the undetermined
parts in n;, and n. do not affect the fractional portions of the
disclination charge. By substituting Eq. (B23) into Eq. (3) in
the main text, we have

AQY = E(2[1{5”] + %[M}”]) mod 1.

e (B24)

APPENDIX C: NUMERICAL RESULTS OF FRACTIONAL
DISCLINATION CHARGE FOR CHERN INSULATORS

For C,-symmetric TCIs with nonzero Chern numbers, the
(generalized) Wannier representation does not apply. In this

section, we numerically simulate C,-symmetric Chern insu-
lators with disclinations and calculate the bound fractional
disclination charge. We use a two-band C4-symmetric Chern-
insulator model (naturally, this model is also C; symmetric)
with Hamiltonian

1 + .
Hc(h) =1 Z[mc;ycx,y + ey oy ® (i0y + 0y)

X,y

+ ¢l 410y ® (ioy +0.) + Heel] (C1)

and the two-band Cg-symmetric Haldane model [60] (natu-
rally, this model is also C;3 symmetric),

HY =—tY cle;+a1 ) ibicfe;, (C2)
(i,J) ()

where (i, j) and ((i, j)) refer to the nearest neighbors and

the next-nearest neighbors, respectively. The parameters 6; ;

are +1 (—1) if the hopping from j to i is anticlockwise

(clockwise). When0 <m <2 (-2 <m < O),Hc(fl') has Chern

number +1 (—1), and when A > 0 (A < 0), HC(}?) has Chern

number +1 (—1). For Hc(z) we use a periodic lattice with three
disclinations centered at A, B, and C as shown in Fig. 11(a).
The boundaries of the same color are connected by hopping
terms.

The disclination centered at A has Q = —Z%, [a]¥ = 0;

the disclination centered at B has Q@ = —%,[a]¥ = I; and

the disclination centered at C has = 7, [a]® = (1, 0). For
H C(}?), we use the periodic lattice with two disclinations A and
B as shown in Fig. 11(c). The boundaries of the same color
are connected by hopping terms. The disclination centered
at A has Q = —ZT”, [a]® = 0 and the disclination centered

at B has Q = 2?” [a]® = 0. Figures 11(b) and 11(d) show
the fractional portions of charge density distributions when
ch = 1 in lattices shown in Figs. 11(a) and 11(c), respectively.
We observe fractional charge exponentially localized at the
disclination cores. By integrating the charge density over a
finite area around the disclination core, we verify that the
fractional disclination charge is quantized. We summarize all
the numerical results of the quantized fractional disclination
charge in Tables IX and X.
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