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We study the entanglement spectrum (ES) of two-dimensional Cn-symmetric second-order topological
insulators (TIs). We show that some characteristic higher-order topological observables, e.g., the filling anomaly
and its associated fractional corner charge, can be determined from the ES of atomic and fragile TIs. By
constructing the relationship between the configuration of Wannier orbitals and the number of protected in-gap
states in the ES for different symmetric cuts in real space, we express the fractional corner charge in terms
of the number of protected in-gap states of the ES. We show that our formula is robust in the presence of
electron-electron interactions as long as the interactions preserve Cn rotation symmetry and charge-conservation
symmetry. Moreover, we discuss the possible signatures of higher-order topology in the many-body ES. Our
methods allow the identification of some classes of higher-order topology without requiring the usage of nested
Wilson loops or nested entanglement spectra.
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I. INTRODUCTION

The entanglement spectrum (ES) is a useful diagnostic for
topological phases [1]. For noninteracting Hamiltonians the
single-particle entanglement spectrum can be calculated from
the eigenvalues ({ξ }) of the single-particle correlation function

Ci j (A) = 〈c†i c j〉, (1)

where A is a subsystem of the whole system and i, j ∈ A
[1–8]. In previous work, it has been shown that the ES
can identify Chern insulators and time-reversal symmetric
TIs through the manifestation of spectral flow, analogous to
the energy spectra of their edge states [5,6]. Furthermore,
topological crystalline insulators (TCIs) that have Cn rota-
tion or inversion symmetries can exhibit symmetry protected
in-gap states in the single-particle ES, even though they
may not exhibit midgap boundary modes in their energy
spectrum [7,8].

Recent developments call for a reexamination of the entan-
glement spectra of TCIs. First, the initiation of the topological
quantum chemistry classification paradigm has increased our
understanding of the real-space structure of topological insu-
lators and (obstructed) atomic limit insulators [9]. Second, the
study of TIs has been extended to higher-order topological
insulators (HOTIs) that have symmetry-protected features at
boundaries with codimension greater than 1, e.g., fractional
corner charges in two dimensions [10–16], and protected
hinge modes in three dimensions [16–21]. Conventionally,
if a HOTI has gapped boundaries with codimension less
than n, and symmetry-protected features on the boundaries
with codimension n, then we call it an nth-order TI. Finally,
Ref. [11] introduced a property called the filling anomaly, that
generically captures the charge fractionalization properties at
the boundaries and corners of Cn-symmetric TCIs.

Just as for strong TIs, one may expect that these features
of TCIs can also be diagnosed by the single-particle ES.
In fact, Refs. [20,22] showed that certain HOTI properties,
which can be evaluated using nested Wilson loops [10,19],
can also be diagnosed via entanglement (e.g., using a nested
ES) or the topology (e.g., entanglement polarization) of the
many-body ground state of the entanglement Hamiltonian He

[23]. Inspired by these results, one may ask if all higher-order
features of HOTIs can be diagnosed by the nested ES instead
of the single-particle ES. In this paper we answer this question
by directly showing a relationship between the single-particle
ES and the corner-induced filling anomaly that characterizes
the higher-order fractional corner charges in two-dimensional
Cn-symmetric second-order TIs. To accomplish this task we
first relate the possible symmetric configurations of electronic
Wannier orbitals (defined in Sec. II A) with the number of
protected in-gap states in the ES (the results of Ref. [8]
play the key role in this relationship), and then use these
relationships to relate the corner-induced filling anomaly, and
thus the fractional corner charge, to the number of protected
in-gap states in the ES.

The rest of our paper is organized as follows. In Sec. II A,
we give a brief review about the Wannier orbital picture, and
in Sec. II B, by reinterpreting the results of Ref. [8] in the
Wannier orbital picture we relate the number of protected
in-gap states in the ES to the configuration of Wannier or-
bitals. Next, in Sec. III A, we build the relationship between
the corner-induced filling anomaly and the configuration of
Wannier orbitals, and then express the filling anomaly in
terms of the number of protected in-gap states in the ES. In
Sec. III B, we discuss the robustness of the corner-induced
filling anomaly and the formulas derived in Sec. III A in the
presence of symmetric interactions. In this process, we relate
the number of protected in-gap states to the quasidegeneracy
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FIG. 1. Maximal Wyckoff positions in unit cells of (a) C2-,
(b) C4-, (c) C3-, and (d) C6-symmetric two-dimensional Bravais
lattices. Dots with the same color indicate that they are equivalent
Wyckoff positions. We label different Wyckoff positions by letters a,
b, c, and d .

of the many-body entanglement ground state. This provides
us a way to monitor the change of the number of protected
in-gap states in an adiabatic deformation when symmetric
interactions are present. Finally, in Sec. IV, we study a zero
correlation length limit, in which the entire ES for symmetric
cuts can be clearly explained by the configuration of Wannier
orbitals. From the intuitive pictures and numerical results in
this section, we can gain a better intuition about the relation-
ships among the configuration of Wannier orbitals, the ES, and
the filling anomaly.

II. ENTANGLEMENT SPECTRUM FROM THE WANNIER
ORBITAL PICTURE

A. Wannier orbital picture

In order to discuss the relationship between the ES and
the configuration of Wannier orbitals, it is important to in-
troduce the Wannier orbital picture and notations we use at
this point. If a set of bands can be represented in terms of
exponentially localized Wannier functions that preserve all
the symmetries, we call them Wannier representable [9,24–
27]. In this terminology, atomic insulators are defined to be
TCIs with Wannier representable valence band(s). As such,
from the valence band(s) of an atomic insulator, we can con-
struct symmetric Wannier functions exponentially localized
at high-symmetry points in each unit cell in real space. A
high-symmetry point is defined to be a point q, which is
invariant under a subgroup Gq of the symmetry group G of
the Bravais lattice. We call the subgroup Gq the stabilizer
group, and the high-symmetry point q the Wyckoff position.
Two Wyckoff positions q1 and q2 are said to be equivalent if
their stabilizer groups are conjugate, i.e., there exists a g ∈ G
such that Gq2 = gGq1 g−1. If a Wyckoff position q has Mq
equivalent Wyckoff positions (including itself), then we say
it has multiplicity Mq. If we cannot find a finite subgroup
H ⊂ G which satisfies Gq ⊂ H ⊂ G, then we refer to Gq
as a maximal stabilizer group, and correspondingly we refer
to q as a maximal Wyckoff position [9,24]. Since a set of
symmetric Wannier orbitals localized at nonmaximal Wyckoff
positions can be continuously deformed to maximal Wyck-
off positions while preserving the symmetry, we only study
symmetric Wannier orbitals localized at maximal Wyckoff
positions. Figure 1 shows the maximal Wyckoff positions in
unit cells of two-dimensional Cn-symmetric Bravais lattices
for n = 2, 3, 4, 6.

In two-dimensional Cn-symmetric lattices, the stabilizer
group of a maximal Wyckoff position q is always isomorphic

to a Cmq rotation group with mq � n. Thus, we can define the
angular momentum of Wannier orbitals localized at a maximal
Wyckoff position q via the phase ei(2π l+πF )/mq gained upon a
Cmq rotation, where l = 0, 1 . . . mq − 1, and F = 0, 1 corre-
sponds to spinless and spin-1/2 cases, respectively. Because
of translational symmetry, we only need to use the number
of Wannier orbitals localized at different Wyckoff positions,
having different angular momentum in each unit cell, {nl

q}, to
describe an atomic insulator [28]. We will refer to {nl

q} as the
configuration of Wannier orbitals, and define nq = ∑

l nl
q as

the total number of Wannier orbitals localized at each Wyckoff
position q. Note that nl

q of the Wyckoff position q with
multiplicity Mq means the number of Wannier orbitals with
angular momentum l localized at one of the Mq equivalent
Wyckoff positions. For atomic insulators, it should be clear
that we expect nl

q � 0. However, in the recently discovered
fragile topological insulators, nl

q can be generalized to take
negative values, essentially implying that fragile topological
insulators can be deformed into an atomic insulator by adding
a set of Wannier representable bands to its valence bands
[26,29,30].

B. Relationship between the ES and the configuration of
Wannier orbitals

After reviewing the Wannier orbital picture we are ready
to relate the properties of the ES to the configuration of
Wannier orbitals. To this end, we use the main conclusions in
Ref. [8] as follows. In a Cn-symmetric lattice with N unit cells,
we denote a symmetric entanglement cut using Am2

1/m1
, where

m1 and m2 are integer divisors of n, if it satisfies the three
properties: (a) the number of unit cells in A is N/m1; (b) A is a
subset of the lattice with Cm2 symmetry; (c) the whole lattice
can be generated by acting Cm1m2 on A. Reference [8] proves
that for a cut Am2

1/m1
in Cn-symmetric TCIs the single-particle

correlation operator is block diagonalized into m2 blocks:

C(A) = 1

m1

m2−1⊕
r=0

m1−1∑
l=0

Dr
l , (2)

where (Dr
l )2 = Dr

l is a projector that projects any state
into the subspace in which states pick up the phase
ei(2πr+πF )/m2 under Cm2 , and the phase ei(2π (r+lm2 )+πF )/m1m2

under Cm1m2 . Utilizing Eq. (2), it has been proved that there
are

∑
r maxl,l ′ |dim(Dr

l ) − dim(Dr
l ′ )| protected in-gap states in

the range of [1/m1, 1 − 1/m1] in the ES for the cut Am2
1/m1

[8].
For a brief review of the proof, see Appendix A. If we define
zi as the number of occupied states with angular momentum
i = 0, 1, . . . n − 1, then (z0, z1, ..., zn−1) forms a Zn index.
Reference [8] shows that dim(Dr

l ) can be expressed in terms
of the Zn index, and thus the number of protected in-gap states
in the ES can be written in terms of the Zn index.

As examples, let us consider the cuts A1
1/4 and A2

1/2 in a C4-
symmetric square lattice (illustrated in Fig. 2). According to
Table I in Ref. [8] (partially shown in Table I in Appendix A),
we know that there would be maxi, j=0,1,2,3|zi − z j | protected
in-gap states in the range [1/4, 3/4] in the ES for the cut
A1

1/4, and there would be |z0 − z2| + |z1 − z3| protected in-gap
states with eigenvalue 1/2 in the ES of the cut A2

1/2.
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(a) (b)

FIG. 2. (a) The cut A1
1/4 and (b) A2

1/2 in a C4-symmetric square
lattice with rotation center localized at Wyckoff position b.

Importantly, the Zn index can be derived from the config-
uration of Wannier orbitals in atomic insulators. To illustrate
this, first consider the case with a C4 rotation center located at
Wyckoff position b in a 2L × 2L (L → ∞) square lattice (as
shown in Fig. 2). In this case, all Wannier orbitals localized
at Wyckoff positions a, b (other than the rotation center),
and c always appear in quadruplets which form a regular
representation of the C4 point group, i.e., the Zn index coming
from each quadruplet is zi = 1 for all i = 0, 1, 2, 3. Only
Wannier orbitals localized at the rotation center (Wyckoff
position b) contribute to any differences in the zi, and thus
contribute to the number of protected in-gap states in the ES.
For example, in the ES for the cut A1

1/4 shown in Fig. 2(a),
we have

no. [1/4, 3/4](4)
p,4,1 = maxi, j=0,1,2,3|zi − z j |

= maxl,l ′=0,1,2,3

∣∣nl
b − nl ′

b

∣∣, (3)

where no. [1/4, 3/4](4)
p,4,1 is the number of protected in-gap

states in the ES for the cut A1
1/4. The superscript on the bracket

denotes fourfold rotation symmetry, and the subscript means
that we are counting only protected in-gap states in the ES for
the cut A1

1/4. Also, in the ES for the cut A2
1/2 shown in Fig. 2(b),

we have

no.
1

2

(4)

p,2,2
= |z0 − z2| + |z1 − z3| = ∣∣n0

b − n2
b

∣∣+ ∣∣n1
b − n3

b

∣∣, (4)

where no. 1
2

(4)

p,2,2 is the number of protected in-gap states with

eigenvalue 1/2 in the ES for the cut A2
1/2.

In addition, according to Eq. (2), the reduced correlation
operator for the cut A1

1/4 (m1 = 4, m2 = 1) is

C(A) = 1
4 (D0 + D1 + D2 + D3), (5)

where Dl is a projector of the subspace in which states pick
up a phase ei(2π l+πF )/4 under C4 rotation. Note that when
m2 = 1 the superscript r in Eq. (2) can only be zero, and
thus has been suppressed in the above equation. Since each
Dl satisfies D2

l = Dl , its eigenvalues are either 0 or 1. If one
of them has dimension greater than all of the others, then there
are protected in-gap states with eigenvalue 1/4, of which the
number is

no.
1

4

(4)

p,4,1
= dim(Dfirst ) − dim(Dsecond) = zfirst − zsecond

= nfirst
b − nsecond

b , (6)

where the superscripts “first” and “second” mean the highest
and the second highest values of of dim(Di ) (or zi and nl

b) with
i, l = 0, 1, 2, 3.

Next, let us discuss the case with the rotation center
localized at Wyckoff position c. In this case, we have only
C2 rotation symmetry, and all Wannier orbitals localized at
Wyckoff positions a, b, or c (other than the rotation center)
always come in pairs. Each of these pairs has a Z2 index
z0 = 1, z1 = 1. Again, according to Table I in Ref. [8], there
are |z0 − z1| protected 1/2 states in the ES for the cut A1

1/2.
Thus, we have

no.
1

2

(2)

p,2,1
= |z0 − z1| = ∣∣n0

c − n1
c

∣∣, (7)

where no. 1
2

(2)

p,2,1 is the number of protected in-gap states with

eigenvalues 1/2 in the ES for the cut A2
1/2 when there is

twofold rotation symmetry. For C2-, C3-, and C6-symmetric
atomic insulators, we can have similar relationships between
the number of protected in-gap states in the ES and the config-
uration of Wannier orbitals nl

q by choosing different symmet-
ric cuts and rotation centers localized at the various maximal
Wyckoff positions. Details are discussed in Appendix B.

As an example, in Fig. 3, we numerically calculate the
ES for the cut A1

1/2 in a 10 × 10 open square lattice for the

h(4)
2b model (n0

b = n2
b = 0, n1

b = n3
b = 1, and others = 0 at half

filling) introduced in Ref. [11]:

h(4)
2b (k) = ei(kx−ky )ĉ†3,kĉ1,k + ei(ky+kx )ĉ†2,kĉ4,k

+ λ1

4∑
a=1

ĉ†[a+1],kĉ[a],k + λ2(ĉ†3,kĉ1,k + ĉ†2,kĉ4,k )

+ H.c., (8)

where ca,k is the Fourier transformation of ca,R, which is the
annihilation operator of a spinless electron on sublattice a
in the unit cell located at R on a square lattice, and [a] ≡
a mod 4. According to Appendix B, we should find |n0

b +
n2

b − n1
b − n3

b| = 2 in-gap states with eigenvalue 1/2, which
is consistent with our numerical result.

The relationships derived above are also applicable for
fragile TIs that have negative nl

q’s in their configurations of
Wannier orbitals. Let us take the C2-symmetric tight-binding
model in Ref. [29] [shown in Eq. (11) below] as an example
to illustrate the idea. We first define

H (1)
k = t (1 + eikx )ĉ†2,kĉ1,k + t (1 + eiky−ikx )ĉ†

3,k̂
ĉ2,k

+ t (1 + e−iky )ĉ†1,kĉ3,k + H.c., (9)

where ca,k is the Fourier transformation of ca,R, which is the
annihilation operator of a spinless electron on sublattice a in
the unit cell located at R on a square lattice. If we diagonalize
H (1)

k , we can write

H (1)
k =

∑
s=0,±1

εs,kγ̂
†
s,kγ̂s,k, (10)

where s = 0,±1 labels the three energy bands of H (1)
k .

We plot the εs,k for t = i/4 in Fig. 4(a). According to
Ref. [29], the pair of s = ±1 bands together form a set
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FIG. 3. (a) Energy spectrum of h(4)
2b for λ1 = λ2 = 0.15. The lowest two bands are Wannier representable, and have the Wannier orbital

configuration n0
b = n2

b = 0, n1
b = n3

b = 1, and others = 0. (b) The ES of h(4)
2b with λ1 = λ2 = 0.15 for the cut A1

1/2 in a 10 × 10 open square
lattice. The x axis represents the sequence number of eigenstates of the reduced correlation operator, and the y axis represents the corresponding
eigenvalues. There are only two in-gap states with eigenvalue 1/2 emphasized by two red circles. Thus, they must be the predicted two protected
in-gap states with eigenvalue 1/2.

of fragile bands, for which the configuration of Wannier
orbitals is {n0

a = n0
c = 1, n0

b = −1, others = 0}. By adding
H (2)

k = −∑3
a=1 ĉ†a,kĉa,k + 2γ̂

†
0,kγ̂0,k to H (1)

k , we can force the
s = ±1 bands to lie below the s = 0 band, and thus we can
construct a fragile TI described by

Hfragile(k) = H (1)
k + H (2)

k , (11)

where we fill the lower two bands.
Let us now consider the ES of this fragile TI for the

cut A1
1/2 in a 2L × 2L square lattice with open boundary

conditions along both directions. According to Appendix B,
the number of protected in-gap states with eigenvalue 1/2
should be |n0

b − n1
b|. Since the fragile TI described by Eq. (11)

has n0
b = −1 and n1

b = 0, we expect to have one one-half state
in the ES. This is confirmed by our numerical calculations in a
10 × 10 open square lattice as shown in Fig. 4(b). Hence, the
properties of the protected modes in the ES can be determined
from the Wannier configurations for rotationally symmetric
atomic and fragile insulators.

III. FILLING ANOMALY AND THE ENTANGLEMENT
SPECTRUM

A. Corner-induced filling anomaly in terms of the number of
protected in-gap states in the ES

Knowing the relationship between the configuration of
Wannier orbitals and the ES, we are now ready to discuss
the filling anomaly. The filling anomaly (see Ref. [11]) is
a property of some Cn invariant TCIs that directly deter-
mines the amount of fractional edge and/or corner charge
in open sample geometries. One can define the filling
anomaly η as

η = Nocc,p − Nocc,o mod n, (12)

where Nocc,p and Nocc,o are the numbers of occupied states
of the TCIs under periodic and open boundary conditions,
respectively, under certain conditions. To illustrate the defi-
nition, we take the inversion symmetric (i.e., C2-symmetric)
nontrivial Su-Schrieffer-Heeger (SSH) chain [31] with N unit
cells for example. If we have periodic boundary conditions [as
shown in Fig. 5(a)], then we can have a gapped, symmetric,
neutral insulator if we fill Nocc,p = N Wannier orbitals; for
the obstructed phase these orbitals are located in between two

0 40 60 150

0

0.25

0.5

0.75

1
ξ

s = +1

s = 0

s = −1

FIG. 4. (a) Energy spectrum of H (1)
k for t = i/4. (b) The ES of the fragile TI described by Eq. (11) with t = i/4 for the cut A1

1/2 in a 10 × 10
open square lattice. The x axis represents the sequence number of eigenstates of the reduced correlation operator, and the y axis represents the
corresponding eigenvalues. There is only one in-gap state with eigenvalue 1/2 emphasized by one red circle. Thus, it must be the predicted
protected in-gap state with eigenvalue 1/2.
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or

unit cell

electron

(a) periodic

(b) open

FIG. 5. In an inversion symmetric nontrivial SSH chain with N
unit cells, if we have (a) periodic boundary condition, N Wannier
orbitals are occupied, i.e., Nocc,p = N , and the unit cells with dotted
outline are identified; (b) open boundary condition, N − 1 or N + 1
Wannier orbitals are occupied, i.e., Nocc,o = N − 1 or N + 1, and the
dimmer circles represent edge states.

unit cells. However, if we have open boundary conditions [as
shown in Fig. 5(b)], we must fill Nocc,o = N − 1 or N + 1
Wannier orbitals to preserve the inversion/C2 symmetry and
the energy gap. This violates neutrality and leads to a filling
anomaly of η = 1. If we take η/n (for Cn-symmetric systems)
we find the amount of fractional charge induced at edges or
corners. For this case the filling anomaly is related to the
ends of the chain and thus we have a fractional charge of e/2
mod e on the ends.

More generally in two dimensions, both edges and corners
of atomic and fragile insulators can be associated to the filling
anomaly depending on the underlying Wannier configuration.
However, as discussed in Ref. [11], when the bulk polarization
is zero, the filling anomaly defined in Eq. (12) has contri-
butions from only the corners, which we will call a corner-
induced filling anomaly. A corner-induced filling anomaly of
η in a Cn-symmetric insulator implies a fractional charge of
η/n in each 2π/n sector of an open Cn-symmetric lattice. In
simple geometries this fractional charge is localized on the
corners of the sample [11]. Since we are primarily interested
in these higher-order corner features, let us now constrain the
polarization to vanish. The requirement that the bulk polar-
ization vanishes places constraints on the allowed Wannier
configurations: one must have nb and nc simultaneously odd
or even in the C4-symmetric case, nb mod 2 = nc mod 2 =
nd mod 2 in the C2-symmetric case, and nb mod 3 = nc mod 3
in the C3-symmetric case. We note that C6 symmetry forces
the bulk polarization to vanish in general so any symmetric
Wannier configuration is allowed. This is because C2 symme-
try requires the polarization to be 0 or 1

2 , and C3 symmetry
requires the polarization to be 0, 1

3 , and 2
3 . Thus, in the

C6-symmetric case which contains both C2 and C3 symmetry,
the only possible polarization is zero, and there are no further
constraints on the configuration of Wannier orbitals.

Now we can evaluate the corner-induced filling anoma-
lies in terms of the Wannier configurations. For the C4-
symmetric case, when nb = 2, nc = 0, the corner-induced
filling anomaly is η(4) = 2, when nb = nc = 1, the corner-
induced filling anomaly is η(4) = 3, and when nb = 0, nc = 2,
the corner-induced filling anomaly is η(4) = 0. All possible
C4-symmetric second-order HOTIs (atomic insulators and
fragile TIs with zero bulk polarization) can be decomposed
into these three basic cases. Thus, we can write the corner-

induced filling anomaly as

η(4) = −nb mod 4. (13)

Through the same method, we can write the corner-induced
filling anomalies of the C2-, C3-, and C6-symmetric second-
order HOTIs as

η(2) = −nb mod 2,

η(3) = −nb mod 3, (14)

η(6) = (2nb + 3nc) mod 6.

Now we want to connect the corner-induced filling
anomaly to the ES. According to Eq. (13), to derive the
corner-induced filling anomaly from the ES, we need to relate
nb mod 4 with the ES. As discussed in Sec. II B, if we
put the rotation center at Wyckoff position b and have cuts
A1

1/4 and A2
1/2 in a 2L × 2L (L → ∞) square lattice, we can

relate {nl
b} with the number of protected in-gap states in the

ES. For simplicity, let us sort n0
b, n1

b, n2
b, n3

b and write them
as nfirst

b , nsecond
b , nthird

b , nfourth
b such that nfirst

b � nsecond
b � nthird

b �
nfourth

b . Then, we have nb = ∑
l nl

b = nfirst
b + nsecond

b + nthird
b +

nfourth
b . Using Eqs. (3), (4), and (6), we have

no. [1/4, 3/4](4)
p,4,1 = nfirst

b − nfourth
b

no.
1

4

(4)

p,4,1
= nfirst

b − nsecond
b

no.
1

2

(4)

p,2,2
= nfirst

b − nsecond
b + nthird

b − nfourth
b or

= nfirst
b − nthird

b + nsecond
b − nfourth

b , (15)

from which we can derive

nsecond
b − nthird

b =
∣∣∣∣no.

1

2

(4)

p,2,2
− no. [1/4, 3/4](4)

p,4,1

∣∣∣∣. (16)

This finally allows us to write down the number of orbitals
located at Wyckoff position b as:

nb = nfirst
b + nsecond

b + nthird
b + nfourth

b

= 4nfirst
b − 2

(
nfirst

b − nsecond
b

) − (
nsecond

b − nthird
b

)
− (

nfirst
b − nfourth

b

)

= 4nfirst
b − 2 no.

1

4

(4)

p,4,1
− no. [1/4, 3/4](4)

p,4,1

−
∣∣∣∣no.

1

2

(4)

p,2,2
− no. [1/4, 3/4](4)

p,4,1

∣∣∣∣. (17)

Note that in the last step of the above equation we used
Eqs. (15) and (16). From Eqs. (13) and (17), we can write
the corner-induced filling anomaly in terms of the number of
the protected in-gap states as

η(4) = 2 no.
1

4

(4)

p,4,1
+ no. [1/4, 3/4](4)

p,4,1

+
∣∣∣∣no.

1

2

(4)

p,2,2
− no. [1/4, 3/4](4)

p,4,1

∣∣∣∣ mod 4. (18)

Next, using the relationships between the ES and the con-
figuration of Wannier orbitals in C2-, C3-, and C6-symmetric
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second-order HOTIs (shown in Appendix D), we derive the
corner-induced filling anomalies through the same method:

η(2) = no.
1

2

(2)

p,2,1
mod 2,

η(3) = no.
1

3

(3)

p,3,1
+ no. [1/3, 2/3](3)

p,3,1 mod 3,

η(6) = −2

(
no.

1

3

(6)

p,3,1
+ no. [1/3, 2/3](6)

p,3,1

)

+ 3 no.
1

2

(6)

p,2,1
mod 6. (19)

The details of the derivations are shown in Appendix D. In
conclusion, utilizing the relationships in Sec. II B, we express
the corner-induced filling anomaly, which captures the quan-
tized fractional corner charges in Cn-symmetric insulators,
in terms of the number of protected in-gap states in the ES
for several different symmetric cuts. This is one of the main
results of this paper.

B. The role of interactions

As discussed in Refs. [28,29], if a set of Wannier orbitals
at the same location forms a reducible representation that is
the direct sum of all possible one-dimensional irreps of the
Cn group, no matter if there are interactions or not, we can
always adiabatically move them from one maximal Wyckoff
position to another through the (continuously deformable)
general Wyckoff positions without breaking the Cn rotation
symmetry. Since this kind of deformation changes all nl

q by
±1 at the same time, it cannot affect the difference between
nl

q with the same q, and thus cannot affect the number of
protected in-gap states in the ES according to the discussion
in Sec. II.

However, when interactions which preserve Cn rota-
tion symmetry and U (1) charge conservation symmetry are
present, we can adiabatically deform a set of Wannier or-
bitals in one unit cell with configuration {nl

α} into another
set of Wannier orbitals with configuration {(nl

α )′}, as long as
the charge Q ≡ ∑

α,l Mαnl
α and the angular momentum L ≡

(
∑

α,l lMαnl
α ) mod n are invariant. This kind of deformation

can change the number of protected in-gap states in the ES.
To illustrate the idea, let us study a specific example having

C4 symmetry. We start from a (noninteracting) TCI with the
configuration of Wannier orbitals {n1

b = n3
b = 1, others = 0},

and continuously deform it into another (noninteracting) TCI
with the configuration of Wannier orbitals {n2

b = 2, others =
0}, which can be done in the presence of interactions during
the deformation. According to Sec. II B, the initial TCI has
no. 1

4
(4)

p,4,1 = 0 and no. [1/4, 3/4](4)
p,4,1 = 1 for the cut A1

1/4,

and has no. 1
2

(4)

p,2,2
= 0 for the cut A2

1/2. After deforming

{n1
b = n3

b = 1, others = 0} into {n2
b = 0, others = 0} adiabat-

ically, the final TCI has no. 1
4

(4)

p,4,1 = no. [1/4, 3/4](4)
p,4,1 = 2

for the cut A1
1/4, and no. 1

2
(4)

p,2,2
= 2 for the cut A2

1/2, which
are different from the initial values. We show more detailed
calculations in Sec. IV C.

For this specific case, the change of the number of in-gap
states in the single-particle ES for the cut A1

1/4 and A2
1/2 can

be reflected in the change of the degeneracy of the many-
body entanglement ground state in a certain sector (specified
by the number of particles NA in region A of our entan-
glement bipartition). This can be seen from the relationship
between the many-body ES ({ζ }NA ) and the single-particle
ES ({ξ j}) [6]:

{ζ }NA =
⎧⎨
⎩

∏
i∈ occ

ξi

∏
j∈ unocc

(
1 − ξ j

)∣∣∣∣
∑

i

ni = NA

⎫⎬
⎭, (20)

where {ζ }NA is the set of many-body entanglement eigenvalues
of the NA-particle sector of the many-body reduced density
matrix ρA, and ni is the number of occupied states with
eigenvalue ξi in the single-particle ES. Equation (20) just
represents filling the single-particle ES with NA particles to
calculate the many-body ES. Filling the NA most entangled
states in the single-particle ES will generate the many-body
ES ground state. This illustrates that degeneracy in the single-
particle ES can lead to degeneracy in the many-body ES at
particular fillings NA.

For some entanglement cuts the protected modes exist
within a range of single-particle ES values, and are not fixed to
lie at a single value. In these cases the change of the number
of in-gap single-particle ES states in an interval for the cut
Am2

1/m1
corresponds to the change of the protected quasidegen-

eracy of the many-body entanglement ground state(s) in the
NA = N (ξ > 1 − 1/m1) + 1 sector, where N (ξ > 1 − 1/m1)
is the number of states with eigenvalues ξ > 1 − 1/m1 in
the single-particle ES for the cut Am2

1/m1
. In order to illustrate

this idea, let us consider an ideal case where there are only
protected in-gap states in the range of [1/m1, 1 − 1/m1], i.e.,
any accidental states in this interval have been removed. Ac-
cording to Eq. (20), by filling all N (ξ > 1 − 1/m1) states with
eigenvalues greater than 1 − 1/m1, and one of the protected
in-gap states in the range of [1/m1, 1 − 1/m1], we can have
a subspace of size no. [1/m1, 1 − 1/m1]p,m1,m2

that are pro-
tected quasidegenerate eigenstates of ρA in the NA = N (ξ >

1 − 1/m1) + 1 sector. The state with the greatest eigenvalue
is the absolute entanglement ground state of this sector, and
the others are quasidegenerate. Since the possible greatest and
smallest eigenvalues are given by filling the protected in-gap
states with eigenvalues 1 − 1/m1 and 1/m1, respectively, then
the greatest eigenvalue is at most (m1 − 1)2 times larger than
the smallest eigenvalue. Thus, the protected quasidegenerate
states are in the range of [max/(m1 − 1)2, max], where max
is the greatest eigenvalue of the reduced density matrix ρA in
the NA = N (ξ > 1 − 1/m1) + 1 sector. If there are accidental
in-gap states in the range of [1/m1, 1 − 1/m1], they only
contribute to the accidental quasidegeneracy, which can be
removed without breaking the symmetry or closing the bulk
gap. Note that when m1 = 2 the quasidegeneracy becomes the
exact degeneracy at 1/2 discussed in Refs. [7,8].

Even though the number of protected in-gap states changes
after the deformation in the presence of interactions, the
corner-induced filling anomaly given by Eq. (18) is invari-
ant under this deformation. To see this we note that the
allowed symmetric adiabatic deformation in the presence of
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FIG. 6. Entanglement spectrum of h(4)
2b in Eq. (8) with λ1 = λ2 = 0.15 in a 10 × 10 square lattice with open boundary conditions along

both directions for cut (a) A1
1/4, which exhibits 18 in-gap states in the range of [1/4, 3/4] and no in-gap state at 1/4; and for cut (b) A2

1/2, for
which there are no in-gap states at 1/2. The x axis represents the sequence number of eigenstates of the reduced correlation operator, and the
y axis represents the corresponding eigenvalues.

interactions can only change nl
q’s but keeps nq invariant [28],

and the corner-induced filling anomaly only depends on nb

and nc as shown in Eqs. (13) and (14). In conclusion, the
number of protected in-gap states in the ES is not robust when
interactions are present, and its nonrobustness leads to the
nonrobustness of the quasidegeneracy of the many-body ES
ground-state subspace during continuous deformations when
symmetric interactions are present. However, the corner-
induced filling anomaly and the formulas for it in Eqs. (18),
(19), (28), and (29) are robust as long as the bulk gap and
symmetry are preserved.

IV. ZERO CORRELATION LENGTH LIMIT

Up to now, we have established the generic relationships
between the configuration of Wannier orbitals and the number
of protected in-gap states in the ES. However, with these
relationships, we cannot simply obtain the correct filling
anomaly of a generic Hamiltonian describing a TCI by di-
rectly calculating its ES for symmetric cuts because of the
possible presence of accidental or unprotected modes. Here
is an illustrative example: in Fig. 6, we numerically calculate
the ES for cuts A1

1/4 and A2
1/2 in a 10 × 10 open square lattice

for the h(4)
2b model shown in Eq. (8) (n0

b = n2
b = 0, n1

b = n3
b =

1, and others = 0). For the parameters λ1 = λ2 = 0.15, and
the A1

1/4 cut, we find 18 in-gap states with eigenvalues in
the interval [1/4, 3/4], and no in-gap states with eigenvalue
1
4 [as shown in Fig. 6(a)]. Also, there are no in-gap states
with eigenvalue 1/2 in the A2

1/2 cut [as shown in Fig. 6(b)].
Substituting these results into Eq. (18), we find η = 0, not 2 as
we expected from Eq. (13). This discrepancy is because not all
in-gap states of this model are protected. In general, there can
be accidental in-gap states that interfere with the identification
of the protected in-gap states. Indeed, in principle we need to
sample all possible continuous, symmetry-preserving defor-
mations of a Hamiltonian to identify which in-gap states in
its ES are protected. This will not generically be numerically
efficient, although it may be possible in some cases.

To counter this issue we can instead try to adiabatically
tune the model to the zero correlation length limit (ZCL),

where the correlation length is zero. While this limit does not
remove all of the accidental in-gap states, it will allow us to re-
fine our formulas so that we need not separate protected from
unprotected in-gap ES states. Indeed the physical origin of
all the in-gap states can be understood clearly and intuitively
using the Wannier orbital picture thanks to the simplicity of
the wave functions of Wannier orbitals in the ZCL. For this
reason, in the ZCL we can express the filling anomaly in
terms of the total number of in-gap states (both protected or
accidental ones), which can be checked by straightforward
numerical calculations. Thus, in this section we will focus our
discussion on the ZCL which will help us gain more intuition
about the relationships among the configuration of Wannier
orbitals, the ES, and the filling anomaly.

A. Physical origin of the in-gap states in the ES

In order to understand the physical origin of the in-gap
states, we need to first discuss the details of the wave functions
of Wannier orbitals in the ZCL. Again, taking C4-symmetric
atomic insulators as an example, let us start from Wannier
orbitals localized at Wyckoff position b. Without loss of
generality, we can consider four internal degrees of freedom
in one unit cell that are (cyclically) related by fourfold rotation
symmetry [labeled by α, β, γ , and δ in Fig. 7(a)]. From
these degrees of freedom we can generate representations of
Wannier orbitals localized at Wyckoff position b that span
each possible angular momentum (i.e., each C4 irrep). A
simple construction generates

|Wb,0〉 = 1
2 (|x, y, δ〉 + |x + 1, y, α〉
+ |x + 1, y + 1, β〉 + |x, y + 1, γ 〉),

|Wb,1〉 = 1
2 (−i|x, y, δ〉 − |x + 1, y, α〉
+ i|x + 1, y + 1, β〉 + |x, y + 1, γ 〉),

|Wb,2〉 = 1
2 (−|x, y, δ〉 + |x + 1, y, α〉

− |x + 1, y + 1, β〉 + |x, y + 1, γ 〉),

|Wb,3〉 = 1
2 (i|x, y, δ〉 − |x + 1, y, α〉
− i|x + 1, y + 1, β〉 + |x, y + 1, γ 〉), (21)
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FIG. 7. (a) Schematic illustration of the corner cut in the periodic lattice. The red solid (green dotted) lines on edges indicate the hopping
between top and bottom (right and left) edges. Wannier orbitals localized at b and c are represented by red dots and blue dots, respectively. The
solid parts of the dots indicate the parts of Wannier orbitals which are included in the subset A. The ES is shown for the cut A1

1/4 shown in panel

(a) in a 10 × 10 square lattice with periodic boundary conditions for (b) h(4)
1b , (c) h(4)

2b , and (d) h(4)
2c models in the ZCL. The x axis represents the

sequence number of eigenstates of the reduced correlation operator, and the y axis represents the corresponding eigenvalues.

where the subscript b, l denotes Wannier orbitals with angular
momentum l at Wyckoff position b. Thus, these four degrees
of freedom can be used to generate one Wannier orbital at b
with each angular momentum. If we want to have two Wannier
orbitals at b with the same angular momentum, we can use
another set of four internal degrees of freedom α′, β ′, γ ′, and
δ′ to generate another complete set of Wannier orbitals with
angular momentum l = 0, 1, 2, 3 (|W ′

b,l〉). In this way, we can
construct collections of wave functions representing any con-
figuration of Wannier orbitals at b (i.e., any {nl

b}) that we want.
Next, let us consider the ES for the A1

1/4 cut. If we have one
Wannier orbital at b filled, i.e., nb = ∑

l nl
b = 1, the reduced

correlation operator is

CA = PA

∑
R

|Wb,l (R)〉〈Wb,l (R)|PA, (22)

where PA is the projector on region A [shaded region in
Fig. 7(a)], and R labels the unit cell. As shown in Fig. 7(a), the

Wannier orbital at the corner of the cut has only one-quarter
of its density in region A. More specifically, it contributes a
term 1

4 | L
2 , L

2 + 1, γ 〉〈 L
2 , L

2 + 1, γ | to the correlation operator,
where L is the number of unit cells along one direction of the
square lattice. Hence, this term leads to an in-gap state with
eigenvalue 1/4 in the ES. By similar arguments, a Wannier
orbital at b that is localized on the edges of the cut contributes
an in-gap state with eigenvalue 1/2 in the ES. In Fig. 7(b),
we numerically calculate the ES for the cut A1

1/4 in a 10 × 10

periodic square lattice for the h(4)
1b model (nl

b = δl,2 for l =
0, 1, 2, 3) [11]:

h(4)
1b (k) = eiky (ĉ†1,kĉ2,k + ĉ†4,kĉ3,k )

+ eikx (ĉ†3,kĉ2,k + ĉ†4,kĉ1,k ) + H.c., (23)

where ca,k is the Fourier transformation of ca,R, which is the
annihilation operator of a spinless electron on sublattice a in
the unit cell located at R on a square lattice. The size of the
cut region is 5 × 5 and we find four states with eigenvalue 1/4
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from the four corners, and 16 states with eigenvalue 1/2 from
the four edges (four states on each edge of the cut), which is
consistent with our predictions.

Now let us consider nb = 2. In this case, at the corners of
the cut, we could either have one in-gap state with eigenvalue
1/2, or two in-gap states with eigenvalue 1/4 depending
on whether these two Wannier orbitals are generated by an
overlapping set of internal degrees of freedom (four internal
degrees of freedom related by C4 rotation) or not. If they
are generated by the same set of internal degrees of freedom
(e.g., the functions |Wb,1〉 and |Wb,2〉 listed above), then we
call them a doublet, and they contribute a term 1

2 | L
2 , L

2 +
1, γ 〉〈 L

2 , L
2 + 1, γ | to the correlation operator, which leads to

one in-gap state with eigenvalue 1/2. If they are generated
by orthogonal degrees of freedom (e.g., the functions |Wb,1〉
and |W ′

b,1〉 listed above), we call them two singlets, and they
contribute the terms 1

4 | L
2 , L

2 + 1, γ 〉〈 L
2 , L

2 + 1, γ | + 1
4 | L

2 , L
2 +

1, γ ′〉〈 L
2 , L

2 + 1, γ ′| to the correlation operator. This leads to
two in-gap states with eigenvalue 1/4.

We can similarly define triplets and quadruplets if we
have more Wannier orbitals. Generally, an atomic insulator
with nonzero nb can be represented as a combination of
singlets, doublets, triplets, and quadruplets, which contribute
corner states with ES eigenvalues 1/4, 1/2, 3/4, and 1,
respectively. By similar arguments, singlets contribute edge
states with eigenvalue 1/2. Doublets contribute a pair of
edge states either both with eigenvalue 1/2 (for example,
n0

b = n2
b = 1 and n1

b = n3
b = 0), or a pair with the eigenvalues

(2 ± √
2)/4 (for example, n0

b = n1
b = 1 and n2

b = n3
b = 0).

This is because for n0
b = n2

b = 1 and n1
b = n3

b = 0 we can
get a term 1

2 (|x, y, δ〉〈x, y, δ| + |x, y + 1, γ 〉〈x, y + 1, γ |)
in the reduced correlation operator, which leads to a
pair of in-gap states both with eigenvalue 1/2; and
for n0

b = n1
b = 1 and n2

b = n3
b = 0, we can get a term

1
4 [2|x, y, δ〉〈x, y, δ| + 2|x, y + 1, γ 〉〈x, y + 1, γ | + (1 − i)
|x, y, δ〉〈x, y + 1, γ | + (1 + i)|x, y + 1, γ 〉〈x, y, δ|], which
leads to a pair of in-gap states with eigenvalue (2 ± √

2)/4.
Triplets contribute a pair of edge states with eigenvalues 1/2
and 1, respectively, and quadruplets contribute a pair of edge
states each with eigenvalue 1. In Fig. 7(c), we numerically
calculate the ES for the cut A1

1/4 in a 10 × 10 periodic square

lattice for the h(4)
2b model (n0

b = n2
b = 0 and n1

b = n3
b = 1)

in Eq. (8) with λ1 = λ2 = 0. There are four states with
eigenvalue 1/2, one from each of the four corners, and 32
states with eigenvalue 1/2 with eight coming from each of
the four edges, which is consistent with our predictions.

Next, let us consider Wannier orbitals localized at c. Note
that in our construction the contributions to in-gap states
in the ES from Wannier orbitals localized at b and c are
independent. Since each Wannier orbital localized at c is only
C2 symmetric, its angular momentum should be either 0 or 1.
Following the same method in the previous paragraphs, we
conclude that singlets of Wannier orbitals localized at c on
the edges of the cut contribute in-gap states with eigenvalue
1/2 in the ES, while doublets do not contribute in-gap states.
More importantly, Wannier orbitals localized at c do not
contribute corner states in the cut A1

1/4, because the Wyckoff
position c can never be the corner of the cut A1

1/4. As shown in

Fig. 7(d), we numerically calculate the ES for the cut A1
1/4 in a

10 × 10 periodic square lattice for the h(4)
2c model (n1

c = 1 and
n0

c = 0) [11]:

h(4)
2c (k) = eikx ĉ†3,kĉ1,k + eiky ĉ†4,kĉ2,k + H.c., (24)

where ca,k is the Fourier transformation of ca,R, which
is the annihilation operator of a spinless electron on
sublattice a in the unit cell located at R on a square lattice.
There are 20 states with eigenvalues 1/2 with five coming
from each of the four edges, which is consistent with our
predictions.

Finally, since Wannier orbitals localized at Wyckoff posi-
tion a (the unit-cell center) can never be divided by the cut as
long as the cut does not break the unit cell, there are no in-gap
states from Wannier orbitals localized at this position. Note
that these simple relationships between the (total) number of
in-gap states in the ES and configuration of Wannier orbitals
are only applicable to atomic insulators, because fragile TIs
have no zero correlation length limit. In conclusion, given
an arbitrary Hamiltonian describing an atomic insulator in
the zero correlation length limit, the total number of in-
gap states in the ES for different symmetric cuts, including
both protected and accidental ones, can be determined from
the configuration of Wannier orbitals. For C2-, C3-, and C6-
symmetric atomic insulators, we derive similar conclusions in
the zero correlation length limit through the same method, for
which details are shown in Appendix D.

B. Filling anomaly and the ES in the
zero correlation length limit

Using our direct relationship between the Wannier config-
urations and the in-gap ES modes, we can derive simplified
formulas for the filling anomaly that apply (at least) in the
zero-correlation length limit. For example, in C4-symmetric
cases, we can represent the corner-induced filling anomaly
in terms of the number of in-gap states (both protected and
accidental) in the ES for the cut A1

1/4 in a square lattice
with periodic boundary conditions. From the discussion in
Sec. II B, we know that the corner states in the ES tell us the
information about nb:

nb mod 4 = 1

4

(
no.

1

4

(4)

+ 2 no.
1

2

(4)

corner
+ 3 no.

3

4

(4))
mod 4,

(25)

where no. j
4

(4)
, j = 1, 2, 3 is the total number of in-gap corner

states with eigenvalue j/4 in the ES for the A1
1/4 cut in the

C4-symmetric case, and the subscript “corner” of no. 1
2

(4)
is

to emphasize that we are referring to the corner states with
eigenvalue 1/2, since the states with eigenvalue 1/2 come
from both the edges and the corners of the cut. Note that the
overall factor of 1/4 is because in the periodic square lattice
the A1

1/4 cut has four corners.
To derive the corner-induced filling anomaly, we need to

calculate the parity of 1
4 (no. 1

2 )
(4)

corner, i.e., we do not need its
full value. It is not obvious that this quantity is simple to
isolate since it requires us to separately consider the edge
and corner contributions that generate the 1/2 eigenvalues;
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however, we will now show that the parity of 1
4 (no. 1

2 )
(4)

corner
can be recast in terms of all the 1/2 eigenvalues, no matter
their origin. First we note that the quantity 1

4 no. 1
4

(4)
tells us

the number of singlets of Wannier orbitals at b, and 1
4 no. 3

4
(4)

tells us the number of triplets of Wannier orbitals at b. Also,
we denote the number of in-gap states from edges and corners
with eigenvalue 1/2 as no. 1

2
(4)

. Since the cut A1
1/4 has four

edges and four corners in the periodic square lattice, no. 1
2

(4)

must be a multiple of 4. According to Sec. II, no. 1
2

(4)
has

contributions from singlets, doublets, and triplets of Wannier
orbitals at b, and singlets of Wannier orbitals at c. Thus,

1

4
no.

1

2

(4)

= 1

4
(Lcut − 1)

(
no.

1

4

(4)

+ no.
3

4

(4))
+ Lcutnc,s

+ 2(Lcut − 1)n′
b,d + 1

4

(
no.

1

2

(4))
corner

, (26)

where Lcut is the length of edges of the cut A1
1/4, nc,s is the

number of singlet orbitals at Wyckoff position c, and n′
b,d

is the number of doublet orbitals at Wyckoff position b that
contribute a pair of in-gap edge states with eigenvalue 1/2.
From this equation, and the requirement of vanishing bulk
polarization, it can be shown that the parity of 1

4 no. 1
2

(4)

corner
is

equal to the parity of 1
4 (no. 1

2
(4) − no. 1

4
(4) − no. 3

4
(4)

) (details
are shown in Appendix C). Thus,

nb mod 4 = 1

4

(
−no.

1

4

(4)

+ 2 no.
1

2

(4)

+ no.
3

4

(4))
mod 4

= −1

4

(
no.

1

4

(4)

+ 2 no.
1

2

(4)

+ 3 no.
3

4

(4))
mod 4.

(27)

Note that in the second step of the above equation we used the
fact that no. j

4 , j = 1, 2, 3 are always multiples of 4 because
of the fourfold rotation symmetry. Utilizing Eq. (27), we
finally arrive at the corner-induced filling anomaly:

η(4) = 1

4

(
no.

1

4

(4)

+ 2 no.
1

2

(4)

+ 3 no.
3

4

(4))
mod 4. (28)

An important feature of this final result is that it does not
depend on the separate evaluation of edge and corner modes
at 1/2, and instead requires only the total number of modes at
the relevant quantized eigenvalues.

By the same method, we can write the corner-induced
filling anomaly for Cn-symmetric insulators in terms of the
number of in-gap states with different quantized eigenvalues
in the ES of the A1

1/n cut with n = 2, 3, 6:

η(2) = 1

4

(
no.

1

2

(2))
mod 2,

η(3) = 1

3

(
no.

1

3

(3)

− no.
2

3

(3))
mod 3,

η(6) = 1

6

(
2 no.

1

3

(6)

−2 no.
2

3

(6)

+ 3 no.
1

2

(6))
mod 6. (29)

The details of the derivation of Eq. (29) are shown in
Appendix D. In the zero correlation length limit, the in-gap
states can take only quantized values in the ES for the cut
A1

1/n in Cn-symmetric atomic insulators. Thus, we can simply
read off these numbers from the ES, and then easily find the
corner-induced filling anomaly using Eq. (28) or Eq. (29).

C. Interactions and the zero correlation length limit

In this subsection, we numerically study the evolution of
the ES for the cut A1

1/4 in the ZCL during the adiabatic
deformation discussed in Sec. III B to gain a better intuition.
According to Sec. IV A, we should have no. 1

2
(4) = 12 and

no. 1
4

(4) = 0 before the deformation, and no. 1
2

(4) = no. 1
4

(4) =
8 after the deformation. In Fig. 8, we numerically calculate
the full many-body entanglement spectrum {ζ } of the reduced
density matrix ρA1

1/4
in a 4 × 4 periodic square lattice for the

interacting Hamiltonian

H (k, t ) = (1 − t )h(4)
2b (k) ⊕ 2h(4)

2b (k) + th(4)
1b (k) ⊕ h(4)

1b (k)

+ sin[(1 − t )π ][χ†
b,1(k)χ†

b,3(k)χb,2(k)χ ′
b,2(k)

+ H.c.], (30)

where h(4)
2b (k) and h(4)

1b (k) are shown in Eqs. (8) and
(23), respectively. The operators χ

†
b,1(k) and χ

†
b,3(k)

are the creation operators of corresponding eigenstates
of the lowest two bands of h(4)

2b ⊕ 2h(4)
2b , and χb,2(k)

and χ ′
b,2(k) are the creation operators of correspond-

ing eigenstates of the lowest two bands of h(4)
1b (k) ⊕

h(4)
1b (k). It is clear from Eq. (30) that U (1) charge con-

servation is preserved. Additionally, since C4χ
†
b,l (k)C−1

4 =
eilπ/2χ

†
b,l (R4k), the quartic interaction term (the last term)

in Eq. (30) satisfies C4χ
†
b,1(k)χ†

b,3(k)χb,2(k)χ ′
b,2(k)C−1

4 =
χ
†
b,1(R4k)χ†

b,3(R4k)χb,2(R4k)χ ′
b,2(R4k), which means the

Hamiltonian in Eq. (30) is C4 symmetric at every t during the
deformation.

For the deformation we start at t = 0 where there are
eight bands for H (t = 0) = h(4)

2b ⊕ 2h(4)
2b . We fill the lowest

two of these bands which generates the Wannier configuration
{n1

b = n3
b = 1, others = 0}. As t goes from 0 to 1, we contin-

uously deform H (t = 0) = h(4)
2b (k) ⊕ 2h(4)

2b (k) to H (t = 1) =
h(4)

1b (k) ⊕ h(4)
1b (k). For the final system at t = 1 the lowest

two bands are again filled as the configuration of Wannier
orbitals is {n2

b = 2, others = 0}. Thus, as t goes from 0 to 1,
we continuously deform {n1

b = n3
b = 1, others = 0} into {n2

b =
2, others = 0} without closing the gap between the many-
body ground state and the first excited state, and without
breaking the symmetry. During this process the degeneracy of
the many-body entanglement ground state (which is marked
with red lines in Fig. 8) changes from 4096 to 256. This is
expected from our calculations in the ZCL as it reflects the
change of the number of in-gap states in the single-particle ES.
In this specific example, by directly substituting the configura-
tions of Wannier orbitals before and after the deformation into
Eq. (28), we can see that the corner-induced filling anomaly
remains invariant even though the number of in-gap states of
the ES changes.
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FIG. 8. The upper five pictures are the spectra (all the eigenvalues for all values of NA) of the reduced density matrix ρA1
1/4

, {ζ }, in a

4 × 4 periodic square lattice for models described by Eq. (30), and the lower five pictures correspond to the spectra of the single-particle
correlation functions. The x axis represents the sequence number of eigenstates of the reduced correlation operator, and the y axis represents
the corresponding eigenvalues. At t = 0 and 1, we have higher-order TCIs h(4)

2b ⊕ 2h(4)
2b and h(4)

1b ⊕ h(4)
1b , respectively, both at 1/4 filling. The

degeneracy of the entanglement ground state (marked with red lines) changes from 4096 to 256 when we turn on the interactions and tune t
from 0 to 1.

V. CONCLUSION AND DISCUSSION

In our study of two-dimensional Cn-symmetric second-
order HOTIs, we have shown that the ordinary single-particle
ES (as opposed to the nested ES) can be used to characterize
the higher-order features including the corner-induced filling
anomaly. More specifically, we expressed the corner-induced
filling anomaly in terms of the number of (protected) in-
gap states of the ES for various Cn-symmetric cuts. While
there may be some features that are better diagnosed us-
ing the nested ES, the higher-order features characterized
by the corner-induced filling anomaly, e.g., the observable
fractional corner charge, can be determined from the ES
of atomic and fragile insulators. Furthermore, we went on
to characterize the properties of insulators with interactions,
and also carefully studied the zero correlation length limit.
We found that even though the number of protected single-
particle entanglement modes, and the corresponding many-
body entanglement ground-state degeneracy, are not invariant
under symmetric adiabatic deformations in the presence of
interactions, the corner-induced filling anomaly is invariant,
and can be determined from the ES.

It is natural to ask if there are HOTI properties that are
beyond the (first-order) ES and may require nested versions of
the ES. For this to play an important role it is likely that one
would need to move beyond the simple cyclic Cn symmetry
groups and include reflection symmetries. We leave a more
detailed study to future work.
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APPENDIX A: REVIEW ON KEY
CONCLUSIONS IN REF. [8]

To understand why the protected in-gap states in the ES
of the cut Am2

m1
are in the range of [1/m1, 1 − 1/m1], we need

the following lemma. Given two Hermitian matrices A and B,
with eigenvalues ai’s and bi’s, consider their sum M = A + B,
for each ai, there must be an eigenvalue of M which satisfies
ai + min{bi} � m� � ai + max{bi}. With this, let us discuss
the eigenvalues of each block of the correlation operator
shown in Eq. (2), i.e., the eigenvalues of 1

m1

∑m1−1
l=0 Dr

l . If

we set A = Dr
0 + Dr

1 and B = ∑m1−1
l=2 Dr

l , there will be at
least |dim(Dr

0) − dim(Dr
1)| eigenstates of A with eigenvalue

1. Since min{bi} = 0 and max{bi} = m1 − 2, there are at least
|dim(Dr

0) − dim(Dr
1)| eigenstates of 1

m1

∑m1−1
l=0 Dr

l with eigen-
values in the range of [(0 + 1)/m1, (m1 − 2 + 1)/m1], which
is just [1/m1, 1 − 1/m1]. Since we can set A to be the sum of
any two Dr

l ’s, there are at least maxl,l ′ |dim(Dr
l ) − dim(Dr

l ′ )|
protected in-gap states in the range of [1/m1, 1 − 1/m1].
Appendix C of Ref. [8] relates dim(Dr

l ) to the Zn index, but
the proof is technical and will not be reviewed here.

TABLE I. Number of protected in-gap states in the entanglement
spectrum for some symmetric cuts Am2

1/m1
in Cn-symmetric insulators

used in the main text in terms of the Zn index. The table is partially
adapted from Ref. [8].

n m1 m2 Number of protected in-gap states

2 2 1 |z0 − z1|
3 3 1 maxi, j=0,1,2 |zi − z j |
4 2 2 |z0 − z2| + |z1 − z3|
4 4 1 maxi, j=0,1,2,3 |zi − z j |
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APPENDIX B: CORNER-INDUCED FILLING ANOMALY
IN GENERAL CASES

1. C2-symmetric TCIs

In C2-symmetric TCIs, let us consider the ES for the A1
1/2

cut in an infinite rectangular lattice with the C2 rotation center
localized at Wyckoff position b. According to Ref. [8], the
number of protected in-gap states with eigenvalue 1/2 in the
ES is

no.
1

2

(2)

p,2,1
= |z0 − z1| = ∣∣n0

b − n1
b

∣∣. (B1)

Since nb = n0
b + n1

b has the same parity as |n0
b − n1

b|, we have

nb mod 2 = no. 1
2

(2)

p,2,1
mod 2. Thus, the corner-induced filling

anomaly in Eq. (14) can be written as

η(2) = −nb mod 2 = nb mod 2 = no.
1

2

(2)

p,2,1
mod 2. (B2)

2. C3-symmetric TCIs

In C3-symmetric TCIs, let us consider the A1
1/3 cut. As

discussed in Ref. [8], we can have maxi,j=1,2,3|zi − zj| pro-
tected in-gap states in the range of [1/3, 2/3]. If we denote
maxi,j=1,2,3zi as zfirst; mini,j=1,2,3zi as zthird; and the second
biggest of z1, z2, and z3 as zsecond, then it is easy to see
maxi,j=1,2,3|zi − zj| = zfirst − zthird. Furthermore, we can de-
termine the number of protected states with eigenvalue 1/3
from the reduced correlation function for the cut A1

1/3:

C(A) = 1
3 (D0 + D1 + D2) (B3)

where each D2
i = Di is a projector of the subspace in which

states pick up a phase ei(2π l+πF )/3 under C3 rotation. Since
we have m2 = 1 for the cut A1

1/3, the superscript p in Eq. (2)
can only be zero, and thus has been suppressed in the above
equation. If one of the projectors has dimension greater than
all the others, there will be protected in-gap states with
eigenvalue 1/3, of which the number is

no.
1

3

(3)

p,3,1
= dim(Dfirst )− dim(Dsecond) = zfirst− zsecond. (B4)

If we choose the C3 rotation center to be at Wyckoff
position b, then we have

no.
1

3

(3)

p,3,1
= zfirst − zsecond = nfirst

b − nsecond
b ,

no. [1/3, 2/3](3)
p,3,1 = zfirst − z3nd = nfirst

b − nthird
b ,

(B5)

where nfirst
b , nsecond

b , and nthird
b are the maximum, middle, and

minimum of {n0
b, n1

b, n2
b}, respectively. Then, we have

nb = nfirst
b + nsecond

b + nthird
b

= 3nfirst − (
nfirst

b − nsecond
b

) − (
nfirst

b − nthird
b

)

= 3nfirst − no.
1

3

(3)

p,3,1
− no. [1/3, 2/3](3)

p,3,1. (B6)

From Eqs. (B6) and (14), we derive the corner-induced filling
anomaly as

η(3) = −nb mod 3

=
(

no.
1

3

(3)

p,3,1
+ no. [1/3, 2/3](3)

p,3,1

)
mod 3. (B7)

3. C6-symmetric TCIs

In C6-symmetric TCIs, since the corner-induced filling
anomaly depends on nb and nc, in order to write the corner-
induced filling anomaly in terms of the number of protected
in-gap states, we need to study the ES for the cut A1

1/3 in an
infinite lattice with C3 rotation center localized at Wyckoff
position b, and the ES for the cut A1

1/2 in the same lattice with
C2 rotation center localized at Wyckoff position c. Since we
have already discussed the ES for these two cuts in the C2-
and C3-symmetric cases, we can substitute Eqs. (B7) and (B2)
into Eq. (14) and write the corner-induced filling anomaly as

η(6) = −2

(
no.

1

3

(6)

p,3,1
+ no. [1/3, 2/3](6)

p,3,1

)

+ 3 no.
1

2

(6)

p,2,1
mod 6. (B8)

APPENDIX C: THE PARITY OF 1
4 (no. 1

2 )corner IN THE CUT
A1

1/4 FOR THE C4-SYMMETRIC CASE

First, we point out that the term containing n′
b,d in Eq. (26)

does not affect the parity of 1
4 no. 1

2 . What is more, nb,s + nb,t

and nc,s are either both even or both odd. This is because nb =
nb,s + 2nb,d + 3nb,t + 4nb,q, and nc = nc,s + 2nc,d are either
both even or both odd due to the zero bulk polarization
requirement. Since nb,s + nb,t = 1

4 (no. 1
4 + no. 3

4 ), we can see
that when 1

4 (no. 1
4 + no. 3

4 ) is even the parity of 1
4 (no. 1

2 )corner
is the same as the parity of 1

4 no. 1
2 , and when 1

4 (no. 1
4 +

no. 3
4 ) is odd the parity of 1

4 (no. 1
2 )corner is opposite to the

parity of 1
4 no. 1

2 . Then, we can conclude that the parity
of 1

4 (no. 1
2 )corner is always equal to the parity of 1

4 (no. 1
2 −

no. 1
4 − no. 3

4 ).

APPENDIX D: CORNER-INDUCED FILLING ANOMALY
IN THE ZERO LENGTH LIMIT

1. C2-symmetric TCIs

In C2-symmetric lattices, we study the cut shown in
Fig. 9(a). In C2-symmetric TCIs, we can have only singlets
and doublets of Wannier orbitals. On the edges of the cut, the
singlets of Wannier orbitals localized at b, c, and d contribute
in-gap states with eigenvalue 1

2 to the ES, while the doublets
do not contribute in-gap states. At the corner crossing of
this cut, only the singlets of Wannier orbitals localized at
b contribute in-gap states with eigenvalue 1

2 . As such, the
number of in-gap states with eigenvalue 1

2 in the entanglement
spectrum is

no.
1

2
= (2Ly + 2Lx − 4)nb,s + 2Lync,s + 2Lxnd,s (D1)
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FIG. 9. (a) Schematic illustration of the corner-crossing cut in a periodic lattice. The red solid (green dotted) lines on edges indicate the
hopping between top and bottom (right and left) edges. Wannier orbitals at b, c, and d are represented by red, blue, and green dots, respectively.
The ES of the cross corner cut shown in panel (a) is shown in a 6 × 10 lattice with periodic boundary conditions for (b) h(2)

1d , (c) h(4)
1b , and (d) h(4)

2c

in Ref. [11].

where Lx and Ly are the number of lattice points on the
horizontal and vertical edges, respectively.

Expressing Eq. (D1) in a more useful way, we see

1

4

(
no.

1

2

(2))
= Lx

2
(nb,s + nd,s) + Ly

2
(nb,s + nc,s) − nb,s.

(D2)

We can see that the left-hand side of Eq. (D2) must have the
same parity as nb = nb,s + 2nb,d , because the first two terms
on the left-hand side are even if we choose the corner crossing
to be located at Wyckoff position b and require the lattice to
be C2 symmetric. Thus, we can determine the corner-induced
filling anomaly by looking at the number of in-gap states with
eigenvalue 1

2 in the corner-crossing cut:

η(2) = nb mod 2 = 1

4

(
no.

1

2

(2))
mod 2. (D3)

These results are numerically confirmed through the ES
shown in Fig. 9. In Fig. 9(b), there are 12 eigenstates with
eigenvalue 1

2 . By substituting no. 1
2 = 12 into Eq. (D3), we

can determine the corner-induced filling anomaly is η(2) = 1,
which matches the corner-induced filling anomaly of h(2)

1d .
In Fig. 9(c) there are 28 in-gap states with eigenvalue 1

2 ,
and in Fig. 9(d) there are 32 in-gap states with eigenvalue
1
2 , which leads to a corner-induced filling anomaly of 1 and
0, respectively. This matches the the corner-induced filling
anomaly of h(4)

1b and h(4)
2c .

2. C3-symmetric TCIs

For C3-symmetric lattices, we study the cut shown in
Fig. 10(a). Here, only singlets and doublets of b and c
contribute in-gap states with eigenvalues 1/3 and 2/3 to the
ES. Following the method discussed previously, we can have
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(a) (b)

0 1 83 12

0

0.33

0.66

1

FIG. 10. (a) Schematic illustration of the cut we use in C6-symmetric TCIs in a periodic lattice. The red solid (green dotted, blue dashed)
lines on edges indicate the hopping between edges. Wannier orbitals at b and c are represented by red and blue dots, respectively. The ES of
the cut shown in panel (a) is shown for (b) h(3)

2b (h(3)
2c has the same ES) in Ref. [11].

two equations for this cut:

no.
1

3

(3)

= 2(Lcut − 1)(nb,d + nc,d )

+ (2Lcut + 1)(nb,s + nc,s),

no.
2

3

(3)

= 2(Lcut − 1)(nb,s + nc,s)

+ (2Lcut + 1)(nb,d + nc,d ). (D4)

Substituting Eq. (D4) into Eq. (14), we find that the corner-
induced filling anomaly can be expressed from the entangle-
ment spectrum as

η(3) = 1

3

(
no.

1

3

(3)

− no.
2

3

(3))
mod 3. (D5)

The numerical results are shown in Fig. 10 for the two
models in Ref. [11]. Note that both of these models have
the same ES. There are two in-gap states with eigenvalue
1
3 and five in-gap states with eigenvalue 2

3 , which yields a
corner-induced filling anomaly of η(3) = 1, as we expect.

3. C6-symmetric TCIs

For C6-symmetric TCIs, we study the cut shown in
Fig. 11(a). Along this cut, singlets and doublets of Wannier
orbitals localized at Wyckoff position b contribute in-gap
states with eigenvalues 1/3 and 2/3, and singlets of Wannier
orbitals localized at Wyckoff position c contribute in-gap
states with eigenvalue 1

2 . We then have three equations:

no.
1

3

(6)

= 3(Lcut − 1)nb,d + 3(Lcut + 1)nb,s,

no.
2

3

(6)

= 3(Lcut − 1)nb,s + 3(Lcut + 1)nb,d , (D6)

no.
1

2

(6)

= 6Lcutnc,s,

where Lcut represents the number of lattice points along one
edge of the cut.

Representing Eq. (14) in another way, we find

η(6) = (2nb,s − 2nb,d + 3nc,s) mod 6. (D7)

0 9 27 36

0

0.5

1

(a) (c)(b)

0 4 10 22 36

0

0.33

0.66

1

FIG. 11. (a) Schematic illustration of the cut we use in C6-symmetric TCIs in the periodic lattice. The red solid (green dotted) lines on
edges indicate the hopping between top and bottom (right and left) edges. Wannier orbitals at b and c are represented by red and blue dots,
respectively. The ES of the cut shown in panel (a) is shown for (b) h(6)

3c and (c) h(6)
4b in Ref. [11].
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Substituting Eq. (D6) into Eq. (D7), we find that as long as
Lcut is odd we can write the corner-induced filling anomaly as

η(6) = 1

6

(
2 no.

1

3
− 2 no.

2

3
+ 3 no.

1

2

)
mod 6. (D8)

We confirm this result numerically for two TCIs shown in
Fig. 11. In Fig. 11(b) there are 18 in-gap states with eigenvalue

1
2 . By substituting this into Eq. (D8), we find η(6) = 3, which
matches the filling anomaly of h(6)

3c . In Fig. 11(c) there are
six in-gap states with eigenvalue 1

3 , and 12 in-gap states with
eigenvalue 2

3 . Again, by substituting this into Eq. (D8),
we get η(6) = 4, which matches the filling anomaly
of h(6)

4b .
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