
Relational Symbolic Execution
Gian Pietro Farina

University at Buffalo, SUNY

gianpiet@buffalo.edu

Stephen Chong

Harvard University

chong@seas.harvard.edu

Marco Gaboardi

University at Buffalo, SUNY

gaboardi@buffalo.edu

ABSTRACT

Symbolic execution is a classical program analysis technique used

to show that programs satisfy or violate given specifications. In

this work we generalize symbolic execution to support program

analysis for relational specifications in the form of relational prop-

erties - these are properties about two runs of two programs on

related inputs, or about two executions of a single program on

related inputs. Relational properties are useful to formalize notions

in security and privacy, and to reason about program optimizations.

We design a relational symbolic execution engine, named RelSym
which supports interactive refutation, as well as proving of rela-

tional properties for programs written in a language with arrays

and for-like loops.

1 INTRODUCTION

Relational properties capture the relations between the behavior of

two programs when run on two inputs, and as a special case the

behavior of one program on two different inputs. Several safety and

security properties can be described as relational properties: non-

interference [Goguen and Meseguer 1982, 1984], compiler optimiza-

tions [Benton 2004], sensitivity and continuity analysis [Chaudhuri

et al. 2010, 2012; Reed and Pierce 2010], and relative cost [Çiçek

et al. 2017] are just some examples.

In order to prove a relational property, one must ensure that

all the pairs of related executions satisfy it, instead of just single

executions. Similarly, for finding violations to relational properties,

we need to find pairs of related executions that violate the property.
A natural way to approach the verification and the testing of re-

lational properties is through their reduction to standard (unary)

properties through ideas like self-composition [Barthe et al. 2004;

Butler and Schulte 2011; Terauchi and Aiken 2005] and product

programs [Barthe et al. 2011; Eilers et al. 2018]. This approach

permits to use standard program verification and bug-finding tech-

niques [Hritcu et al. 2013; Milushev et al. 2012], and to reduce the

problem to designing convenient and efficient self-compositions

and product programs.

Another way to approach the verification and testing of rela-

tional properties is through relational extensions of standard, non-

relational, techniques for these tasks. Several works have explored

this approach for techniques such as type systems [Barthe et al.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PPDP ’19, October 7–9, 2019, Porto, Portugal
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-7249-7/19/10. . . $15.00

https://doi.org/10.1145/3354166.3354175

2014b, 2015; Nanevski et al. 2013; Pottier and Simonet 2003], pro-

gram logics [Barthe et al. 2012; Benton 2004; Sousa and Dillig 2016],

program analysis [Kwon et al. 2017], and abstract interpretation [As-

saf et al. 2017; Feret 2001; Giacobazzi and Mastroeni 2004]. In this

approach, one often aims at giving the user the choice on how to
explore the use of the relational assumptions, (i.e., relational precon-
ditions, relational intermediate assumptions, and relational invari-

ants) and a way to relate two programs in order to prove relational

properties. Relational assumptions have a different flavor than non-

relational ones, since they permit to consider only a subset of the

product-relation between inputs, and so only a subset of the pairs

of execution of a program. These are often the key ingredients

for reasoning in a natural way about relational properties. In this

paper, we follow this approach and we propose relational symbolic
execution (RelSym): a foundational technique combining the idea

of relational analysis of programs and symbolic execution.

RelSym is a relational symbolic execution engine for a language

with arrays and for-loops. The target applications we have in mind

are data analysis and statistics, so we focused on a core calculus

which constitute the basis of languages like R [R Core Team 2013].

In fact, the design of RelSym was at an early stage informed by

the work in [Morandat et al. 2012], on the subset of that language:

Core R. For-loops and arrays provide interesting challenges to both

the design of the operational semantics and to the representation

of the different execution paths in constraints.

RelSym combines both proving and interactive refutation of re-

lational properties, with the option of providing loop invariants to

effectively prove or refute properties of programs containing loops.

RelSym is built on a hierarchy of four languages (two relational and

two unary — two concrete and two symbolic) whose operational

semantics are built on each other in a well-founded manner. In

particular, the two relational languages are based on their unary

versions and the two symbolic languages are, as it usually happens

in symbolic execution, the symbolic versions (i.e., extended with

symbolic values) of the concrete ones. The symbolic operational

semantics collect constraints about the execution of a program, or

about pairs of executions of programs, that can be used to prove

or refute relational properties. This gives the user the ability to ex-

periment with different ways of proving and interactively refuting

relational properties, e.g., both using a single symbolic relational

execution or using a pair of unary symbolic executions.

We implemented RelSym as a prototype, and we used it for

experimenting with different examples of interactive refutation and

verification for several relational properties coming from different

domains. The range of properties and examples we considered show

the flexibility and the feasibility of our approach.

We also compare RelSym with other non-relational methods

such as self-composition and product programs (which can also be

defined using our tool) in their basic form with no optimization. We

find that our approach, thanks to the use of relational assumptions,

1

https://doi.org/10.1145/3354166.3354175

PPDP ’19, October 7–9, 2019, Porto, Portugal Gian Pietro Farina, Stephen Chong, and Marco Gaboardi

improves in efficiency with respect to self-composition. Product

programs give verification conditions that are often comparable

to the one obtained using relational methods, and they can use

standard symbolic execution tools, but a challenge in using this

technique is the additional cost, in term of design, in building the

product—even if recent developments considerably eased this task,

e.g., [Eilers et al. 2018]. In relational symbolic execution, we do not

need any pre-processing and we can directly analyze a program

in a relational way. This shows a trade-off between the different

techniques which can be exploited accordingly to the concrete tar-

get application. At the current stage, RelSym users need to provide

invariants for loops with symbolic guards. We envision for the fu-

ture to combine our approach with invariant synthesis techniques,

especially relational ones, e.g., [Chen et al. 2017, 2011; Qin et al.

2013; Sigurbjarnarson et al. 2018].

Summarizing, the main contributions of our work are:

• The design of a relational symbolic execution technique, Rel-
Sym, for a language containing for-loops and arrays. This

technique is based on relational and unary symbolic opera-

tional semantics that permits to explore the different execu-

tion paths of programs, maintaining constraints about pairs

of executions that can be used to prove or refute relational

properties.

• The extension of relational symbolic execution to support

relational and unary invariants to completely explore a loop

with symbolic guards.

• We have implemented RelSym in a prototype. The imple-

mentation uses an SMT solver to discharge the generated

constraints. We show the effectiveness of our approach by

analyzing several examples for different relational proper-

ties.

Outline. The paper is structured in the following way: in Sec-

tion 2 we introduce the different design choices behind RelSym in

an informal way. Using four running examples Section 3 shows at

an high level how RelSym works and how relational assumptions

help in cutting the search space for proofs and refutation witnesses.

In Section 4, 5, and 6 we provide the main technical material de-

scribing the four languages behind RelSym and the meta theoretical

results that connect them. Section 7 provides some details about the

RelSym implementation. In Section 8 we provide an experimental

comparison of the relational symbolic approach with other stan-

dard techniques for the verification and bug finding of relational

properties such as self-composition and product programs. Finally,

in Section 9 we discuss related works and in Section 10 we conclude

by providing a summary of this work.

2 RELATIONAL SYMBOLIC EXECUTION:

INFORMALLY

In this section, we will give an high-level introduction to the main

characteristics of RelSym.

Relational semantics. RelSym is based on a relational operational

semantics, which describes the execution of two, potentially dif-

ferent, programs in two, potentially different, memories. In this

semantics a memory e.g.,M can map a variable e.g., x , either to
a single value, for instanceM(x) = 4, or to a pair of values, for

instanceM(x) = (3, 4). In the first case, we know that in the two

executions x will take the same value 4. In the second case, x will

take two different values in the two executions that is 3 and 4. In as-

sertions, when we refer to one of the two executions of the program

we use indexed objects. For instance by writing x1 we mean the

variable x interpreted in the first (left) execution. When we instead

have a precondition that implies that the variable has the same

value in both run we will just avoid indexes and write, for example,

just x . The relational character of memories is extended also to the

operational semantics of commands and expressions thanks to a

pairing construct ⟨· | ·⟩. In the spirit of [Pottier and Simonet 2003],

with ⟨c1 | c2⟩ we denote a pair of commands that might differ in

two runs. These are needed, for instance, when the guard e , of a
conditional if e then c1 else c2, evaluates to different values in the
two executions, and so the two executions need to take different

branches. For instance, when evaluating if e then c1 else c2, if e
evaluates to ⟨1 | 0⟩, the first execution needs to evaluate c1, while
the second one needs to evaluate c2. This situation is resolved by

using the command pair ⟨c1 | c2⟩. To relationally execute a paired

command ⟨c1 | c2⟩ we execute both c1 and c2 in a unary fashion on

two different memories independently and when they both termi-

nate we merge the two final unary memories in one final relational

memory.

Symbolic semantics. To enable symbolic execution, the RelSym
engine also supports symbolic values X ,Y . . . As in standard sym-

bolic execution, a symbolic value X represents a set of possible

concrete values. However, in relational symbolic execution, sym-

bolic values can appear also in pairs ⟨X |Y ⟩. During the compu-

tation, symbolic values are refined through constraints coming

from pre and postconditions, invariants, and conditionals . At each

step, the constraints describe all the possible concrete values that

symbolic values, and pairs of symbolic values, can assume. As

a simple example, consider symbolic execution of the program

if x = 0 then c1 else c2 starting with a memory M where

M(x) = X . Note that the symbolic value X represents an arbi-

trary concrete value, but the value is the same for both executions.

Symbolic execution of the program would follow both the first

branch (collecting the constraint X = 0) and the second branch

(collecting the constraint X , 0). The two constraints restrict the

set of concrete values that X can represent in the two branches,

respectively. Consider instead executing the same program but

with an initial memory whereM(x) = ⟨X1 |X2⟩. Here, the two

executions map the variable x to different symbolic values, mean-

ing that the value of variable x may differ in the two executions.

Symbolic execution of the conditional would generate four possible

configurations, based on all possible combinations of the left and

right executions taking the true and false branches. Using relational

assumptions, we can cut the space of the branches to explore and

still get an analysis relational in nature that allows us to exploit

the naturality of this approach instead of reducing it to a unary

approach.

Relational ghost variables. We will make use of (relational) ghost

variables [Hofmann and Pavlova 2008] to annotate programs or

to give specifications for them. Ghost variables are variables that

don’t correspond to real program entities but appear only in the

specification of a program. For instance when we will reason about

2

Relational Symbolic Execution PPDP ’19, October 7–9, 2019, Porto, Portugal

relational cost we will use a relational variable γ which counts

the cost of the two runs. Other ghost variables can be used to rea-

son about other properties for instance covert channels or trace

equivalence. The operational semantics of the languages does not

cover ghost variables by itself, but it can easily be extended by

adding conditions to the rule describing how they evolve during

the computation. For instance when reasoning about cost we can

select a (potentially proper) subset of rules of the semantics which

cover the cost model we have in mind, and extend them with con-

ditions describing how γ evolves. For simplicity in Section 3 we

will measure the cost of a program by the number of assignments

it performs.

Proving relational specifications. Throughout the whole paper
we will use (relational) Hoare triples to denote specifications of

programs. That is, we will say that a program satisfies (or doesn’t)

the triple {Φ}c{Ψ}. Symbolic execution can be used to prove valid

specifications. In general, if starting from a symbolic initial state

that satisfies a precondition Φ we execute (relationally and) sym-

bolically a program c and we only reach final states where the

path constraints imply the postcondition Ψ we know that the triple

{Φ}c{Ψ} is valid.

Interactive refutation and counterexample generation. The dual
way of reasoning is what symbolic execution is mostly used for.

Symbolic execution searches for final states whose associated path

constraints don’t imply the postcondition desired, if they are found

it means that there is at least one state where the desired postcon-

dition might not hold. Symbolic execution has been proved useful

to generate concrete test cases that demonstrate violation of speci-

fications. This is usually done by using constraint solvers to find

substitutions for symbolic values that satisfy at the same time the

negation of the postcondition on the final states (the violation of

the specification) and some path condition (i.e., constraints over

symbolic values based on the control flow of the symbolic execu-

tion) guaranteeing the reachability of the violation. RelSym can be

used in the same way to find violations of relational properties.

Loops. Traditionally, symbolic execution has been used more

for bug finding and testing [Khurshid et al. 2003; King 1976] than

for proving. One of the reasons for this is that conditionals and

loops may create state explosion, and long (possibly infinite) traces

of configurations. To improve this situation we extend relational

symbolic execution with loop invariants [Hentschel et al. 2014] so

that the symbolic execution of a loop can be performed by jumping
over the loop in one step and by adding an invariant to the path

condition. We design two rules for unary and relational invariants

which allow one to reason in one step about loops both for proving

and for finding counterexamples. We will see in Section 3 that using

an invariant allows us to reason about arrays with symbolic length,

proving in this way this program satisfies a relational property (Lip-

schitz continuity) for arrays of arbitrary length. When searching

for counterexamples, the situation is a bit more delicate. Indeed,

just providing an inductive invariant may lead to unrealizable coun-
terexamples: satisfiable substitutions that are not produced by any

concrete execution. This can happen when the invariants do not

determine precisely enough the state that can be reached after the

loop. To avoid this situation in subsection 6.3 we formalize a no-

tion of strength of an invariant. RelSym uses this notion to check

whether the invariant provided is strong enough ensuring that if a

counterexample is found, then indeed it corresponds to a concrete

execution (or a pair of concrete executions) violating the (possibly

relational) specification of the program. Using loop with invariants

mitigates in part the state explosion problem but it does not solve

it entirely. A lot of research has focused and still focuses on taming

the state explosion in traditional symbolic execution. These tech-

niques can also be used for relational symbolic execution in order

to tame this complexity. Since RelSym is intended as a foundational

work we won’t concern ourselves here with integrating the frame-

work with standard techniques for reducing space explosion, or

loop invariant synthesization, as our goal is to present a different

approach to the verification and interactive refutation of relational

properties.

Comparison with self-composition and product programs. We al-

ready discussed how self-composition and product programs are

standard approaches which reduce relational properties to unary

properties, and which allow one to use standard program verifi-

cation and bug-finding techniques. At the design level, we do not

propose our approach in contrast with these techniques but as an

alternative. Indeed, one can use RelSym also as a standard sym-

bolic execution engine and use these techniques as a pre-processing

phase transforming the program in its self-composition or product

program. However, we believe that at the technical level, relational

symbolic execution offers, in several situations, some keys advan-

tages that permit to maximize the relational reasoning. Indeed in

the next section we will see that we don’t need to reason about the

functional correctness of the programs, to prove or disprove (even

though to effectively find counterexamples strong invariants involv-

ing a functional description might be needed) relational properties.

This property is very useful in relational reasoning since it does

allow one to reduce the complexity of the constraints that one need

to consider. Self-composition cannot directly support this for exam-

ple for arrays with symbolic length, while product programs can

support it but it requires more complex invariants than in the case

of relational symbolic execution. To understand better this kind

of trade-offs we perform an experimental evaluation comparing

RelSym with self-composition and product programs in Section 8.

3 EXAMPLES

In this sectionwe present a few examples for proving and disproving

relational properties of programs.Wewill hidemany details in order

to not distract the reader from the main point of the section which

is to provide a general understanding of the way RelSym works.

For example, in the following we use assertions and constraints

interchangeably but later on (i.e., Section 4 and 5) the will be treated

differently.

Proving anti-monotonicity of the inverse of cumulative distribution
function (c.d.f) - concrete bounds. As a first motivating example

we consider the program in Figure 1. The program takes in input

a real number q ∈ [0, 1] and an array d of size k ≥ 1 such that

∀i .1 ≤ i ≤ k .d[i] = P[X ≤ i], where X is some unspecified random

variable. That is,d represents the c.d.f of a random variableX whose

3

PPDP ’19, October 7–9, 2019, Porto, Portugal Gian Pietro Farina, Stephen Chong, and Marco Gaboardi

1) cum←0;

2) x←0;

3) for(i in 1 : len(cd f)) do
4) if(cum ≥ q) then
5) if(x ≤ 0) then
6) x←i
7) else
8) cum←cum + cd f [i]

Figure 1: Let CDF the set of c.d.fs. The program implements F−1q :

CDF → R. F−1q is monotonically decreasing where the order ⪯cdf
on CDF, encoded in finite arrays, is defined as: d1 ⪯cdf d2 ⇐⇒

∀x .d1[x] ≤ d2[x] and we consider the standard order on R.

realizations lie in the set {1, . . . ,k}. The program then proceeds to

compute the smallest x such that P[X ≤ x] ≥ q. If we consider d
as its input and x as its output then the program implements the

function F−1q , i.e., the inverse c.d.f function. It is natural to consider

the point wise order on c.d.fs described in Figure 1. The function F−1q
then, obeys the following relational property: ∀d1,d2,q.d1 ⪯cdf
d2 =⇒ F−1q (d1) ≥ F−1q (d2). This property should hence be true for
the program considered. Let’s see how to see this using RelSym.

RelSym will start executing the program in a relational memory

with two arrays d1 and d2 with the same length, say 5 for instance.

Every value in the arrays will be symbolic. These arrays will be

related by the following relational assumption (the precondition)

Φ ≡ ∀i .1 ≤ i ≤ 5. =⇒ d1[i] ≤ d2[i]. What we want to show is

that in every final state x1 ≥ x2. At the i-th iteration (when xh = 0,

for h ∈ {1, 2}) the constraint set will have the following constraints
cumh = dh [1] + · · · + dh [i − 1]1. RelSym has now four possible

paths to explore given by the outer if-then-else, and for three

of these there are four others given by the inner one, for a total

of 13. Instead of following a brute force approach and continuing

exploring all the paths we can see that one of the paths is already

unsatisfiable. This because Φ implies cum2 ≥ cum1 and hence the

path characterized by the constraint cum1 ≥ q ∧ cum2 < q is not

satisfiable, and hence not reachable, so it can safely be pruned

at every i-th iteration. This pruning was possible thanks to the

relational assumption Φ. Similarly, at every i-th iteration, from the

symbolic state characterized by cum1 ≥ q ∧ cum2 ≥ q we can

disregard the path with constraints x1 > 0 and x2 ≤ 0. Relational

reasoning allowed us to reduce the number of paths to follow at

every iteration form 13 to 8. It is easy to see how, following the

remaining paths, RelSym only reaches final states where x1 ≥ x2
and hence proves the specification.

Proving k-Lipschitz continuity of sorting - symbolic bounds. In the

second running example - code in Figure 2 - we will again prove a re-

lational property of a program acting on arrays. The difference with

the previous example is that we will do it for array of symbolic (ar-

bitrary) size n. To achieve that we will use a very natural relational

invariant. In general given a sorting algorithm, run on two arrays

a1,a2 of integerswith the same lengthn and related by the following
relational precondition Φ ≡ ∀t .1 ≤ t ≤ n =⇒ |a1[t] − a2[t]| ≤ k ,
we expect the sorted arrays to still satisfy the same condition. We

1
Actually it will contain the translation of this assertion in a constraint, but this is a

technical detail.

1) for(i in 1 : len(a) − 1) do
2) for(j in i + 1 : len(a)) do
3) if(a[i] > a[j]) then
4) z←a[i]
5) a[i]←a[j]
6) a[j]←z

Figure 2: k-Lipschitz continuity of a sorting algorithm.

can see this property as k-Lipschitz continuity of a sorting algo-

rithm with respect to ℓ−infinity norm in both the input and output

space. In the program under scrutiny at every iteration of the inner

loop we select the smallest element a[j] in the sub array [i + 1 . . .n]
and we swap it, if necessary, with a[i]. In order to make sense of

this example it’s important to understand that the three lines 4),

5), and 6) which implement the swapping are actually continuous.

Indeed, when RelSym is executing the branching instruction, there

are four possible ways the two executions can proceed, that is: both

take the same branch, or they get different branches. When the two

executions take the same branch then obviously Φ still holds. The

following Observation 1 guarantees that this is the case also when

the two executions follow different branches.

Observation 1. ∀x ,y, z,w,k .
|x −y | ≤ k, |z −w | ≤ k,x > z,y ≤ w =⇒ |z −y | ≤ k, |x −w | ≤ k .

For instance, instantiating x = a1[i],y = a2[i], z = a1[i + 1],w =
a2[i + 1], ensures that Φ still holds when the left execution takes

the true branch and the right execution takes the false branch. So,

omitting synchronization of the loop variables, by using the in-

variant: I ≡ ∀t .1 ≤ t < i =⇒ |a1[t] − a2[t]| ≤ k for both the

loops we can jump outside of the external loop to a unique state

where I [len(a) + 1/i] holds. This state implies trivially the post-

condition. The important fact to notice here is the very natural

invariant that relational reasoning allows us to specify. In a unary

execution instead we would have to come up with non trivial invari-

ants allowing us to prove the functional correctness of the program.

We will need to prove not only that the program produces a sorted

sequence but also that the output is a a

Refuting cost equivalence - concrete bounds. In the next example

we will use RelSym to refute a property about a pair of programs

c1, c2. Let’s consider the programs in Figure 3. As we mentioned,

RelSym rules can be extended to use ghost variables that can be

updated at every step of execution of the abstract machine. We can

in this way reason about relational cost [Çiçek et al. 2017], by using

the relational ghost variable γ which gets incremented at every

assignment. Let’s see this in an example where the two programs

take both in input an array of non negative symbolic integers of

size 5 for instance. The two programs would sum in the variable

t all their elements up to some value and save in the variable o
the first index in the array that made t ≥ k true. Obviously the

first program has a higher cost in terms of assignments performed.

We want to refute that the two programs have the same cost, that

is our postcondition to falsify is γ1 = γ2, while our precondition
would be ∀i .1 ≤ i ≤ 5 =⇒ a1[i] = a2[i]. At every iteration of

the body, for i ranging from 1 to 5, RelSym would perform, using

a specific rule, one step on the left execution updating t and no

4

Relational Symbolic Execution PPDP ’19, October 7–9, 2019, Porto, Portugal

steps in the right execution. So γ1 would be incremented but γ2
would not. Now the two runs are both about to execute a branching

instruction. If on the left execution the guard is true we perform

the assignment, and the same assignment is performed on the right.

Hence the difference in cost is preserved. If the guard on the left is

false we loop, performing another assignment, while on the second

run we don’t. RelSym would explore these paths finding an initial

state, that is a set of concrete values for the array for which the

execution of the two programs would lead to a final relational state

where γ1 > γ2. We stress here how RelSym can, with specific rules,

relationally analyze programs with different syntactical structures

by looking for synchronization points, i.e., branching instructions,

to maximise relational reasoning.

1) t←0;o←0

2) for(i in 1 : len(a)) do
3) t←a[i] + t
4) if (t ≥ k ∧ o ≤ 0) then
5) o←i
6)

Version 1

t←0;o←0

for(i in 1 : len(a)) do
if (t ≥ k) then

if (o ≤ 0) then
o←i

else t←a[i] + t

Version 2

Figure 3: The two versions of the program are not cost equivalent.

Refuting non-interference - symbolic bounds with weak invariant.
The next running example involves non-interference[Goguen and

Meseguer 1982]. Non-interference was introduced as a strong con-

fidentiality guarantee preventing information to flow from secret

values to public observable values. Non-interference can be for-

mally stated as a relational property of two executions of a single

program with different inputs: a program c is non-interferent if

given two input memoriesM1 andM2 that agree on public data

and possibly differ on confidential data, the execution of c onM1

andM2 results in memoriesM ′
1
andM ′

2
, respectively, that agree

on public data. That is, secret variables don’t interfere with observ-

able public variables. Let’s consider the program c in Figure (4). The

program takes in input a secret vector of integers s and password

vector of integers p of the same length. It then scans the arrays and

checks whether they are point wise equal. If not it saves in o the in-
dex of the first difference. If we assume s to be an high level variable

and p,o, t low level variables, this program is obviously interferent.

Starting from two memories where len(s) = len(p) ∧ p1 = p2
2
we

can very well reach a final state where o1 = o2 ∧ t1 = t2 does not
hold. We can check this (i.e., refute non-interference) for arbitrary

length arrays of size n. In particular by using the relational invari-

ant Iw ≡ (t1 = t2 ∧ o1 = o2) ⇔ s1 = s2. Using RelSym with that

1) t←0;o←0

2) for(i in 1 : len(s)) do
3) if(s[i] , p[i] ∧ o ≤ 0) then
4) o←1; t←i

Figure 4: Interferent program

invariant will allow to disprove the postcondition γ1 = γ2, but the

2
Equality on arrays is point wise equality, and can be easily encoded in a first order

logic formula with one universal quantifier.

initial memories that RelSym would find might not correspond to

real counterexamples this because the relational invariant was not

strong enough.

Counterexample generation for non-interference - symbolic bounds
with strong invariant. In the above program we can get exact coun-

terexamples by choosing the stronger relational invariant Is ≡
Iw ∧ t1 = minh s1[h] , p1[h] ∧ t2 = minh s2[h] , p2[h] ∧ o1 ∈
{0, 1} ∧ o2 ∈ {0, 1}

3
. As we can see we need to specify the func-

tional (unary) behavior of the two programs in the relational in-

variant in order to strengthen it. RelSym would then disprove

the specification by providing a relational initial memoryM for

which the precondition holds and a final relational memoryM ′

related by the operational semantics of the program. For instance:

M(p) = ([0], [0]),M(s) = ([0], [1]),M ′(o) = (0, 1),M ′(t) = (0, 1).

4 CONCRETE LANGUAGES: FOR, RFOR
As already mentioned RelSym is composed by four languages. That

is, we extend the semantics of the simplest language FOR in two

different directions: relationally (RFOR), and symbolically (SFOR).
And then we extend them both to obtain RSFOR. In this section

we describe the simplest language which is an imperative language

(FOR) that contains for-loops and computes over integers and arrays

of integers, and then extend it to a relational language (RFOR). We

refer to these two languages as concrete to distinguish them from

the symbolic languages that we will build on top of them in Section

5.

4.1 FOR
Programs in FOR have the following grammar, where v ∈ Z are

values:

e ::= e ⊕ e | a[e] | len(a) | x | v

c ::= skip | c; c | x←e | a[e]←e | if e then c else c |

for (x in e:e) do c

A variable x ∈ Var denotes an integer while an array name a ∈
Arrvar denotes a function which maps the set of natural numbers

{1, ..., l} to the set Z, with l denoting the length of the array. The

set of such functions is denoted by Array. The symbol ⊕ denotes

an arithmetic operation in {+,−, . . . }. Expressions are standardly

evaluated using a big step judgment ⟨M, e⟩ ⇓F v whose defining

rules we omit. Programs c are evaluated through a, mainly standard,

small step judgment (M, c) F
−→ (M ′, c ′), where memoriesM,M ′ ∈

Mem are partial functions with type (Var → Z) ∪ (Arrvar →
Array). We only show one rule for for-loop construct evaluation in

Figure 5. Note that for-loops, and thus FOR programs, are always

terminating.

4.2 Assertions, triples, validity

We state and validate program specifications using Hoare triples

{Φ}c{Ψ}, where c is a command in FOR and Φ and Ψ (respectively,

the pre- and post-condition of the triple) are assertions. Asser-

tions are first-order logical formulas with primitive predicates that

3
Again, this invariant is expressible in the language, but it can be expressed easily in

the language of our assertions.

5

PPDP ’19, October 7–9, 2019, Porto, Portugal Gian Pietro Farina, Stephen Chong, and Marco Gaboardi

for-unroll

⟨M, e1⟩ ⇓F v1 ⟨M, e2⟩ ⇓F v2 v1 ≤ v2

(M, for (x in e1:e2) do c)
F
−→©­«M,x←v1; c; if v2 −v1 then for (x in v1 + 1:v2) do c

else skip

ª®¬
Figure 5: A rule for loops in FOR

compare arithmetic expressions aexp. The latter are built from ex-

pressions in FOR extended with integer-valued logical variables

(i ∈ Lvar) and array expressions α . Array expressions include array
names a, and array update expressions α[aexp1 7→ aexp2], which
denotes the array α with the value at index aexp1 updated to aexp2.
Array expressions allow us to express and reason about updates on

arrays using the the extensional theory of arrays [McCarthy 1961].

The truth of a unary assertion Φ is evaluated against a memory

M ∈ Mem and a logical interpretation I ∈ Intlog ≡ ZLvar. We

writeM ⊨I Φ to denote that Φ holds in memoryM with inter-

pretation I. The following definition, although standard, is given

because it will later be extended to a relational setting.

Definition 1. Let Φ and Ψ be unary assertions and c be a FOR
command. We say that the triple {Φ}c{Ψ} is valid, and we write ⊨
{Φ}c{Ψ}, if and only if ∀M1,M2 ∈ Mem,I ∈ Intlog, ifM1 ⊨I Φ

and (M1, c)
F
−→∗(M2, skip) thenM2 ⊨I Ψ.

4.3 RFOR
To enable relational reasoning we first build a relational language
RFOR on top of FOR. Intuitively, execution of a single RFOR pro-

gram represents the execution of two FOR programs. Inspired by

the approach of Pottier and Simonet [2003], we extend the gram-

mar of FOR with a pair constructor ⟨· | ·⟩ which can be used at

the level of values ⟨v1 |v2⟩, expressions ⟨e1 | e2⟩, or commands

⟨c1 | c2⟩. Notice that ci , ei ,vi for i ∈ {1, 2} are commands, expres-

sions, and values in FOR, hence nested pairing is not allowed.

This syntactic invariant is preserved by the rules handling the

branching instruction. Pair constructs are used to indicate where

commands, values, or expressions might be different in the two

unary executions represented by a single RFOR execution. To de-

fine the semantics for RFOR, we first extend memories to allow

program variables to map to pairs of integers, and array variables

to map to pairs of arrays. That is, the type of memories for RFOR
is (Var→ Z ∪ Z2) ∪ (Arrvar→ Array ∪Array2). The semantics

of RFOR is defined as a big step judgment ⟨M, e⟩ ⇓RF v for expres-

sions and a small step judgment (M, c) RF
−→ (M ′, c ′) for commands,

whereM,M ′ are relational memories, c, c ′ are commands in RFOR,
v ranges over Z∪Z2, and e is a relational expression. Figure 6 shows
a selection of the inference rules for these judgments. The rules

use auxiliary functions ⌊·⌋1 and ⌊·⌋2, which project, respectively,

the first (left) and second (right) elements of a pair construct (i.e.,

⌊⟨c1 | c2⟩⌋i = ci , ⌊⟨e1 | e2⟩⌋i = ei with ⌊v⌋i = v when v ∈ Z), and
are homomorphic for other constructs. For a relational memoryM,

we write ⌊M⌋i for the (unary) memory that projects the co-domain

appropriately: ∀n ∈ dom(M). ⌊M⌋i (n) = ⌊M(n)⌋i . Rule r-lift is

the only evaluation rule for RFOR expressions. It evaluates the left

and right projections of the memory and expression, and combines

the results into either a single value, if both projections produce

the same result, or a pair value otherwise. Rule r-if-false-false

shows what happens if the left and right executions both agree on

taking the false branch: the command if e then ctt else cff steps

to command cff . However, if the left and right execution disagree

on which branch to take, we need to introduce a command pair con-

struct to indicate that the command being executed differs in the left

and right executions. One instance of this is rule r-if-false-true.

We ensure well-formedness of the paired commands by projecting

ctt and cff before pairing them up. Rule r-pair-step evaluates a

pair command by picking one projection, non nondeterministically,

and evaluating it one step, using the semantics of FOR. The helper
functionmerge(·, ·) merges two FOR memoriesM1 andM2 into

a RFOR memory, using as few pair values as possible:

merge(M1,M2) = λm.

{
M1(m) ifM1(m) =M2(m)
(M1(m),M2(m)) otherwise

Another rule, not shown in the figure, reduces (M, ⟨skip | skip⟩)
to (M, skip). The rules regarding array assignments now have

to take into account that arrays might differ in the two runs. In

particular, given the command a[el]←eh the two expressions el
and eh might evaluate differently in the left and right projections.

In the case whereM(a) is a unary array but the index expression

evaluates to a pair value then the updated array will be a pair of

arrays, as shown in r-arr-ass-split.

4.4 Relational assertions, relational triples, and

relational validity

We again use Hoare triples to provide specifications of RFOR pro-

grams. However, assertions for RFOR must be able to express prop-

erties of both executions of a program, and the relationship between

them. To achieve this, we extend expressions in the language to

include indexed program variables and array variables, that is we

equip an array name a or a program variable x with an index

i ∈ {1, 2} so that, for example a1 denotes the array a in the left

execution, or x2 denotes the variable x in the right execution. We

refer to the extended language as relational assertions. We extend

relational operators (=, ≤, <, . . .) and binary operators (+,−, . . .)

to work with two pairs of values in the obvious way, and adapt

the definition of the truth of a relational assertion (M ⊨I Φ) ap-
propriately. Note that logical variables continue to range only over

integers (and not over pairs of integers). Nonetheless, the logic al-

lows us to express relational and unary properties easily. Validity of

relational Hoare triples for RFOR is similar to Definition 1, except

for the use of relational assertions, relational memories, and the

semantic judgment of RFOR instead of FOR. In the same spirit of

the consistency theorem in [Banerjee et al. 2016], the following

lemma provides a semantical justification for RFOR with respect to

FOR.

Lemma 4.1. Let Φ and Ψ be relational assertions and c be a FOR
command. If ⊨ {Φ}c{Ψ} then for all unarymemoriesM1,M2,M

′
1
,M ′

2

and for allI ∈ Intlog such thatmerge(M1,M2) ⊨I Φ, (M1, c)
F
−→
∗

(M ′
1
, skip) and (M2, c)

F
−→
∗
(M ′

2
, skip) thenmerge(M ′

1
,M ′

2
) ⊨I

Ψ.

Notice that concrete relational semantics is incomplete with

respect to the unary semantics with respect to traces in the sense

6

Relational Symbolic Execution PPDP ’19, October 7–9, 2019, Porto, Portugal

r-if-false-false

⟨M, e⟩ ⇓RF ⟨v1 |v2⟩
v1 ≤ 0 v2 ≤ 0

(M, if e then ctt else cff)
RF
−→ (M, cff)

r-if-false-true

⟨M, e⟩ ⇓RF ⟨v1 |v2⟩ v1 ≤ 0 v2 > 0

(M, if e then ctt else cff)
RF
−→ (M, ⟨⌊cff ⌋1 | ⌊ctt⌋2⟩)

r-arr-ass-split

⟨M, el ⟩ ⇓RF vl ⟨M, eh⟩ ⇓RF vh M(a) = f
⌊vl ⌋1, ⌊vl ⌋2 ∈ dom(f) ⌊vl ⌋1 , ⌊vl ⌋2

f1 = f [⌊vl ⌋1 7→ ⌊vh⌋1] f2 = f [⌊vl ⌋2 7→ ⌊vh⌋2]

(M,a[el]←eh)
RF
−→ (M[a 7→ ⟨f1 | f2⟩], skip)

r-pair-step

{i, j} = {1, 2}

(⌊M⌋i , ci)
F
−→ (M ′i , c

′
i)

c ′j = c j M ′j = ⌊M⌋j
M ′ = merge(M ′

1
,M ′

2
)

(M, ⟨c1 | c2⟩)
RF
−→ (M ′, ⟨c ′

1
| c ′
2
⟩)

r-lift

⟨⌊M⌋1, ⌊e⌋1⟩ ⇓F v1
⟨⌊M⌋2, ⌊e⌋2⟩ ⇓F v2

v =

{
v1 if v1 = v2

(v1,v2) otherwise

⟨M, e⟩ ⇓RF v

Figure 6: Semantics of RFOR (selected rules).

that the iterations of a loop go in lockstep until at least one side

terminates (after which the other side may continue). In fact, in

order to keep the design of the language simple we only allow pair

commands to be introduced by a branching instruction. In general

this causes RFOR to not be complete with respect to FOR. So it is

not possible to use invariants that hold between different iterations

by using rule such as the dissonant loop rule in [Beringer 2011].

Indeed in RelSym the following two programs cannot not be proved

equivalent, for arbitrary positive n: for (i in 1:2 ∗ n) do x←x + 1
and for (i in 1:n) do x←x + 1; for (i in 1:n) do x←x + 1.

5 SYMBOLIC LANGUAGES: SFOR, RSFOR
Symbolic execution [King 1976] extends a language with symbolic
values that represent unknown or undetermined concrete values.

Symbolic execution uses symbolic values in logical formulas that

track the conditions under which a particular execution path is

taken. By exploring different execution paths and finding satisfying

assignments to these logical formulas (i.e., finding concrete values

to substitute for symbolic values such that the formulas will be satis-

fied), symbolic execution of a program can be used to find concrete

test cases that demonstrate an assertion violation in a program.

Conversely, if all execution paths of a program are explored and no

violation is found, then symbolic execution shows that a program

is guaranteed to meet its specification. In this section, we extend

the FOR and RFOR languages with symbolic execution, giving us,

respectively, the languages SFOR and RSFOR. In particular, RSFOR
allows us to reason symbolically about two executions of a FOR
program, and thus enables us to look for violations of relational

assertions of FOR programs. However, we need to define SFOR in

order to fully specify the semantics of RSFOR, indeed, similarly to

how the semantics of RFOR relies on the semantics of FOR, the
semantics of RSFOR relies on the semantics of SFOR.

The main insight of symbolic execution is to represent sets of

concrete values (in this case integers) and sets of concrete runs of a

program with symbolic values drawn from a set Symval. Symbolic

values can be refined during the computation using constraints

expressed as formulas in some formal theory. For instance, when

the guard X of an if construct is symbolic, we might choose to

symbolically execute the true branch and refine the set of possible

concrete values that X denotes by adding the constraint X > 0 to

the path condition. The connection between symbolic languages

and concrete languages is given by ground substitutions σ ∈ Σ ≡

Symval→ Z ∪ Array. We say that a constraint ϕ is satisfiable if

there exists a σ ∈ Σ that makes it true. That is, if substituting all

the symbolic values X appearing in ϕ with σ (X) gives us a true

statement. If that’s the case we write σ |= ϕ. When we are only

interested in expressing the satisfiability of ϕ with no interest in

specifying the actual substitutions wewill write SAT(ϕ). Given a set
of constraints S, abusing notation, we denote by S the constraint∧
s ∈S

s . Satisfiable path conditions denote actual concrete executions.

That is, all those concrete executions which assign to the symbolic

values concrete values that make the path condition true. If a path

condition is unsatisfiable then it does not represent any concrete

execution. A set of constraints is valid if it is true under every

possible substitution. We denote the validity of a constraint ϕ by

|= ϕ. Building on the previous section we can now define the two

symbolic languages SFOR and RSFOR.

5.1 SFOR
We extend the syntax of FOR expressions by adding to its values

elements X ∈ Symval, denoting symbolic values. Now memories

in SFOR map program variables to either integers or symbolic val-

ues. We also represent symbolic arrays in memory as pairs (X ,v),
where v is a (concrete or symbolic) integer value representing

the length of the array, and X is a symbolic value representing

the array contents, as in the standard theory of arrays [McCarthy

1961]. The content of the arrays can be refined in a set of con-

straints described below. Thus, memories in SFOR have the type

(Var → Vs) ∪ (Arrvar → Array
s
), where Vs ≡ Z ∪ Symval

and Array
s
≡ Symval × Vs. Configurations in SFOR are triples

(M, c,S) where M is a memory, c is a SFOR command, and S

is a set of constraints. Constraints are first-order logical formulas

with primitive predicates that compare expressions (e) over con-
crete (n ∈ Z), symbolic values (X ∈ Symval) and logical variables

(i ∈ Lvar). Constraint expression select(e1, e2) represents the (inte-
ger) result of reading the array denoted by e1 at the index denoted
by e2, while store(e1, e2, e3) represents the (array) result of updating
the array denoted by e1 at index e2 with value e3. A set of constraints

S is used to record restrictions on symbolic values that must hold

in order for program execution to reach a specific configuration.

Note that although both assertions and constraints are logical for-

mulas that include comparisons of expressions, they differ because

assertions may contain program variables and array names but may

7

PPDP ’19, October 7–9, 2019, Porto, Portugal Gian Pietro Farina, Stephen Chong, and Marco Gaboardi

not contain symbolic values; constraints on the other hand may

contain symbolic values (including select(·, ·) and store(·, ·, ·) ex-

pressions) andmay not contain program variables or array variables.

Given a memoryM, we can translate assertions to constraints, us-

ing M to replace program variables and array names with the

(symbolic or concrete) valuesM maps them to. We write J·KM for

this translation function defined inductively on the shape of the

expression. Symbolic values can now appear in expressions, so a

for loop executed by unrolling might not terminate. For this reason

we extend the category of commands to also contain commands of

this form: for (x in e1:e2) doI c . Where I is an assertion intended

to be a loop invariant. The two kinds (with and without invariant)

of for-loops are treated as distinct syntactic forms.

The semantics of SFOR is defined through a big-step judgment,

⟨M, e,S⟩ ⇓SF ⟨v,S
′⟩, for expressions, and a small-step judgment

(M, c,S) SF
−→ (M ′, c ′,S′) for commands. Figure 7 shows some

selected rules defining the judgments. Notice that evaluating an ex-

pression might generate new symbolic values, and this is why also

⇓SF returns an updated set of constraintsS
′
. In rules for conditionals,

like the rule s-if-true, we record in the constraint set the infor-

mation about the control flow path. Rules handling the conditionals

make the small-step operational semantics non-deterministic, since

we have to consider both the case when the guard reduces to a value

greater than 0 and when it reduces to a value less or equal than 0. In

rules for arrays, we record in the constraint set the description of ar-

rays. For example, the rule s-arr-read records the selection in the

constraint using a fresh symbol Y which has never occurred in the

computation before that point. Rule s-arr-write evaluates the in-

dex of the array to update and the right hand side of the assignment

after updating the memory it records the array update in the set

of constraints. As already mentioned we allow the user to specify

invariant for loops and use the rule s-for-inv. This rule allows to

skip in one step the whole unrolling of the for-loop provided that

the user has specified an actual inductive invariant. Specifically,

the semantic judgment ⊨ {I ∧ e1 ≤ x ∧ x ≤ e2}cb {I [x + 1/x]}
imposes that I holds before and after every iteration of the body

of the loop provided that the counter variable x is between the

bounds. Checking that e1, e2 ∈ aexp makes sure that the premise

of the triple is actually an assertion and does not contain symbolic

values, as it could be the case since e1, e2 are expressions in SFOR.
The additional check, |= S′′ =⇒ JI [e1/x] ∧ e1 ≤ e2KM , imposes

that the constraints collected before executing the loop are strong

enough to imply the invariant right before the start of the loop. The

configuration to which the for-loop with invariant steps to has a

set of constraint Sf which records the fact that the for-loop has

terminated and so includes the constraint JI [e2 + 1/x]KMf . The

final memoryMf maps to fresh symbolic values all the variables,

or array names which might have been updated in the body cb
(Upd(·) performs a syntactic check on cb , soundly approximating

the set of variables updated by cb). Notice that we don’t update the
length of the arrays, because we consider only arrays of fixed (static

or concrete) length. At the exit of the loop the counter variable has

to map to the value to which the second guard of the for-loop was

reduced to.

s-arr-read

⟨M, e,S⟩ ⇓SF ⟨vs ,S
′⟩ M(a) = (X ,v ′s) Y fresh

⟨M,a[e],S⟩ ⇓SF ⟨Y ,S
′ ∪ {Y = select(X ,vs),vs > 0,vs ≤ v

′
s }⟩

s-arr-write

⟨M, e1,S⟩ ⇓se ⟨v1,S
′⟩ ⟨M, e2,S

′⟩ ⇓se ⟨v2,S
′′⟩

M(a) = (X ,vl) Y fresh M ′ =M[a 7→ (Y , l)]
S′′′ ≡ S′′ ∪ {Y = store(X ,v1,v2),v1 > 0,v1 ≤ l}

(M,a[e1]←e2,S)
SF
−→ (M ′, skip,S′′′)

s-if-true

⟨M, e,S⟩ ⇓SF ⟨vs ,S
′⟩

(M, if e then ctt else cff ,S)
SF
−→ ⟨ctt ,S

′ ∪ {vs > 0}⟩

s-for-inv

⟨M, e1,S⟩ ⇓SF ⟨v1,S
′⟩ ⟨M, e2,S

′⟩ ⇓SF ⟨v2,S
′′⟩

e1, e2 ∈ aexp ⊨ {I ∧ e1 ≤ x ∧ x ≤ e2}cb {I [x + 1/x]}

Mf = λn.


v2, if n = x
X , if n ∈ Upd(cb),n ∈ Var,X fresh

(X , l), if n ∈ Upd(cb),M(n) = (Z , l),X fresh

M(n) otherwise

|= S′′ =⇒ JI [e1/x] ∧ e1 ≤ e2KM
Sf = S

′′ ∪ {JI [e2 + 1/x]KMf }

(M, for (x in e1:e2) doI cb ,S)
SF
−→ (Mf , skip,Sf)

Figure 7: Semantics of SFOR (selected rules).

5.2 RSFOR
Similarly to what we did in the previous section, we now extend the

language RFOR to RSFOR using symbolic values X . The symbolic

extension of the relational language follows the same steps as the

unary with the difference that now symbolic values can also appear

in pairs of expressions ⟨e1 | e2⟩ and pairs of commands ⟨c1 | c2⟩ and
pairs of values in a memory (v1,v2). As in the case of the previous

languages we give the semantics to RSFOR by means of a big step

semantics for symbolic relational expressions proving judgments

of the shape ⟨M, e,S⟩ ⇓RSF ⟨v,S
′⟩, and a small step semantics for

symbolic relational commands proving judgments of the shape

(M, c,S) RSF
−−→ (M ′, c ′,S′). We provide a selection of the rules

to prove those judgments in Figure 8. Projection functions need

now to be smartly extended to relational assertions, this would be

particularly useful for example when a for-loop with invariant I
appears in one of the branches of an if construct with a guard

which evaluates to a relational value ⟨v1 |v2⟩, since both cases

v > 0,v ≤ 0 have to be considered. For this reason we extend

projection functions for basic relational assertions in the following

way (where {p,q} = {a,b}, and where the function Idx(·) returns
the set (potentially empty) of indices i ∈ {1, 2} appearing in a

relational expression):

⌊ea ⊗ eb ⌋i = ⌊ea⌋i ⊗ ⌊eb ⌋i if Idx(eq) ⊆ Idx(ep) = {i} or
Idx(eq) = Idx(ep) = ∅

⌊ea ⊗ eb ⌋i = true otherwise

⌊xi ⌋i = x
⌊x⌋i = x

For other forms of assertions projection functions behave homomor-

phically. So for i ∈ {1, 2}we can nowdefine ⌊for (x in e1:e2) doI cb ⌋i ≡

8

Relational Symbolic Execution PPDP ’19, October 7–9, 2019, Porto, Portugal

for (x in ⌊e1⌋i :⌊e2⌋i) do ⌊I ⌋i ⌊cb ⌋i . Also,merge-s(·, ·) plays a simi-

lar role in the relational symbolic semantics towhatmerge(·, ·) does

in the concrete one. The rule r-s-lift relies on SFOR. It evaluates a
relational symbolic expression and returns a single symbolic value if

the two unary symbolic execution reduce to the same integer value,

otherwise it splits. Rule r-s-arr-ass-split takes care of an array

assignment when the array is symbolic unary but the right hand

side of the assignment is different, and hence the array needs to be

split. Rule r-s-if-false-true is similar to the analogous rule for

the concrete semantics we presented in Figure 6, the main difference

is that now the path conditions are recorded in the constraint set.

Rule r-s-if-right takes care of a pair command with a branching

instruction on the right and a different command on the left. This

rule, and a similar one for the left execution, helps synchronization

of the two runs. In rule r-s-pair-step takes care of the general

case, where c1 ≡ c2 means structural equality, for instance c1 and
c2 are both assignments. Similarly to the analogous concrete rule,

one side of the two is chosen non-nondeterministically, and one

step on that side is performed using the unary symbolic semantics.

Finally, the rule r-s-for-inv allows the user to specify a relational

invariant for a for-loop which might diverge because one of the

guards evaluates to a value containing a symbolic value. The rule

r-s-for-inv behaves similarly to s-for-inv but in a relational

setting.

5.3 Unary and relational collecting semantics

Building on the
SF
−→ and

RF
−→ semantics, we define now two collecting

semantics which consider only reachable configurations, namely

those whose set of constraints is satisfiable. Overloading the symbol

⇒ we will denote by it both the unary and relational collecting

semantics. Both semantics are defined through only one rule pre-

sented in Figure 9. In rule set-step we remove from the set of

configurations taken in consideration the current configuration and

we add to it all the configurations reachable in one step that are

satisfiable.

set-step

Ft = {(M
′, c ′,S′) | (M, c,S)

†
−→ (M ′, c ′,S′) ∧ SAT(S′)}

(M, c,S) ∈ F F ′ =

(
F \ {(M, c,S)}

)
∪Ft

F ⇒ F ′

Figure 9: Unary and relational collecting semantics rule schema.

† ∈ {SF, RSF}

6 META THEORY

In this section we will make more precise the connection between

concrete and symbolic languages. In order to do this, we need to rea-

son about ground substitutions turning object containing symbolic

values into concrete objects. Given a command c or an expression

e in SFOR (or in RSFOR) and a ground substitution σ ∈ Σ we write

σ (c) (and σ (e)) for the application of σ to c (and e). We can also

apply a substitution to a unary symbolic memory:

Definition 2. Given a ground substitution σ ∈ Σ we define its
application to a unary symbolic memory as

r-s-lift

⟨⌊M⌋1, ⌊e⌋1,S⟩ ⇓SF ⟨v1,S
′⟩ ⟨⌊M⌋2, ⌊e⌋2,S

′⟩ ⇓SF ⟨v2,S
′′⟩

⟨v,S′′′⟩ =

{
⟨v1,S

′′⟩ if (v1,v2) ∈ Z
2 ∧v1 = v2

⟨(v1,v2),S
′′⟩ otherwise

⟨M, e,S⟩ ⇓RSF ⟨v,S
′′′⟩

r-s-arr-ass-split

M(a) = (X , l) ∈ Symval × Vs Z fresh W fresh

⟨M, ei ,S⟩ ⇓RSF ⟨vi ,S
′⟩ ⟨M, eh ,S

′⟩ ⇓RSF ⟨vh ,S
′′⟩

S′′′ = S′ ∪ {⌊vh⌋1 , ⌊vh⌋2,Z = store(X , ⌊vi ⌋1, ⌊vh⌋1)}
S′′′′ = S′′′ ∪ {W = store(X , ⌊vi ⌋2, ⌊vh⌋2), 0 < ⌊vi ⌋1 ≤ l , 0 < ⌊vi ⌋2 ≤ l}

(M,a[ei]←eh ,S)
RSF
−−→ (M[a 7→ ((Z , l), (W , l))], skip,S′′′′)

r-s-if-false-true

⟨M, e,S⟩ ⇓RSF ⟨v,S
′⟩

S′′ = S′ ∪ {⌊v⌋1 ≤ 0, ⌊v⌋2 > 0}

(M, if e then ctt else cff ,S)
RSF
−−→ (M, ⟨⌊cff ⌋1 | ⌊ctt⌋2⟩,S

′′)

r-s-pair-step

(⌊M⌋i , ci ,S)
SF
−→ (M ′i , c

′
i ,S
′′)(

if · then · else · , c j = c
′
j or c1 ≡ c2

)
{1, 2} = {i, j} M ′j = ⌊M⌋j M ′ = merge-s(M ′

1
,M ′

2
)

(M, ⟨c1 | c2⟩,S)
RSF
−−→ (M ′, ⟨c ′

1
| c ′
2
⟩,S′′)

r-s-if-right

c1 ≡ if · then · else · c2 < {if · then · else ·, skip}

(⌊M⌋2, c2,S)
SF
−→ (M ′

2
, c ′
2
,S′′) M ′ = merge-s(⌊M⌋1,M

′
2
)

(M, ⟨c1 | c2⟩,S)
RSF
−−→ (M ′, ⟨c1 | c

′
2
⟩,S′′)

r-s-for-inv

⟨M, ea ,S⟩ ⇓RSF ⟨va ,S
′⟩ ⟨M, eb ,S

′⟩ ⇓RSF ⟨vb ,S
′′⟩

⊨ {I ∧ ea ≤ x ∧ x ≤ eb }c{I [x1 + 1/x1][x2 + 1/x2]}
|= S′′ ⇒ JI [⌊ea⌋1/x1][⌊ea⌋2/x2] ∧ ea ≤ eb KM
Sf = S

′′ ∪ {JI [⌊vb ⌋1 + 1/x1][⌊vb ⌋2 + 1/x2]KMf }

Mf = λn.



vb , if n = x

(X ,Y), if n ∈ Updr(c),M(n) ∈ Vs ∪ Vs

2

X fresh,Y fresh

((X , l), (Y , l)), if n ∈ Updr(c),M(n) ∈ Array
s

π2(M(n)) = l

((X , l), (Y , l)), if n ∈ Updr(c),M(n) ∈ Array
s

2

π2(π2(M(n))) = l
M(n), otherwise

(M, for (x in ea :eb) doI c,S)
RSF
−−→ (Mf , skip,Sf)

Figure 8: Semantics of RSFOR (simplified selected rules).

σ (M) = λm.


σ (M(m)) ifM(m) ∈ Symval

σ (π1(M(m))) ifM(m) ∈ Symval × Vs

M(m) otherwise
wherem ranges over Var ∪ Arrvar.

We have a similar definition for relational symbolic memories

which we omit here. From now on, we consider only substitutions

σ which respect the type of the program variables and array names

appearing in a symbolic expression or command. That is, given an

9

PPDP ’19, October 7–9, 2019, Porto, Portugal Gian Pietro Farina, Stephen Chong, and Marco Gaboardi

expressing e (or command c) we consider substitutions σ for which

σ (e) (σ (c)) is an expression (command) in FOR (RFOR) whenever e
(c) is an expression (command) in SFOR (RSFOR). We also want to

consider only substitutions mapping symbolic values to objects of

their type. This is characterized by the following definition.

Definition 3. We say that a ground substitution σ ∈ Σ validates
a configuration (M, c,S) and we write σ |= (M, c,S) iff σ |= S,
∀a ∈ Arrvar.M(a) = (X ,v) ⇒ σ (X) ∈ {1, . . . ,σ (v)} → Z, ∀x ∈
Var.M(x) = X ⇒ σ (X) ∈ Z, and σ respects the type of array names
and program variables in c .

We also consider the natural partial order, ⪯ over Σ given by the

relation {(σ1,σ2) ∈ Σ
2 | ∀X ∈ dom(σ1).σ1(X) = σ2(X)} .

6.1 Coverage

We now want to formalize the idea that a run of the set semantics

can capture (cover) many concrete runs. To do this we formalize

what a final configuration (F) of the⇒ semantics (Figure 9) is.

Definition 4. A unary (or relational) configuration s is final, and
we write Final(s), when s = (M, skip,S). A set of configurations
F is final, denoted Final(F), if and only if forall s ∈ F .Final(s).

The following lemma states that any concrete execution can

be covered by a symbolic path. This symbolic path will have a

satisfiable set of constraints which will make it possible to map back

symbolic final configurations to the concrete final configuration of

the concrete path.

Lemma 6.1. IfF ⇒∗ F ′, (M1, c1,S1) ∈ F , andσ1 |= (M1, c1,S1)

then∃kc1 ,∃(M2, c2,S2) ∈ F ′,∃σ2 ∈ Σ such that (σ1(M1), c1)
F
−→

kc
1

(σ2(M2), c2) (or (σ1(M1), c1)
RF
−→

kc
1 (σ2(M2), c2)),σ2 ⊨ (M2, c2,S2),

and σ1 ⪯ σ2.

6.2 Proving and soundness

In symbolic execution we want to execute symbolically a program

in order to reason about multiple concrete executions. In order to do

this we need to specify an initial memory from which the symbolic

execution can start. Without loss of generality we choose as initial

memory the most abstract. This leads to the following definition:

Definition 5. Let Φ be a unary assertion, and c a command in
FOR. Define the following symbolic memory:

MemΦ,c ≡ λn ∈ VarOf(Φ)∪VarOf(c).

{
X , if n ∈ Var

(X ,L), if n ∈ Arrvar

where all the variables X ,L are meant to be distinct and fresh, and
the function VarOf(·) returns the set of program variables and array
names appearing in the argument.

The previous definition can be easily extended to relational mem-

ories, assertions, and commands. As we already discussed, we are

interested in using RelSym for proving valid specifications of pro-

grams. If we want to prove that a triple {Φ}c{Ψ} is valid, we can
execute symbolically c starting from an initial symbolic configu-

ration which satisfies the precondition Φ. If we reach only final

configurations whose set of constraints imply the postcondition Ψ,
then the triple is valid. Formally:

Definition 6. Let c be a command in FOR (or RFOR) and Φ and
Ψ unary (or relational) assertions. We say that c symbolically proves
Ψ from Φ, and we write c : Φ =⇒ Ψ iff there exists F such that

• {(MemΦ,c , c, {JΦKMemΦ,c })} ⇒
∗
set

F
• Final(F)
• ∀(M, skip,S) ∈ F . |= S =⇒ JΨKM

It now makes sense to formulate the following soundness theo-

rem:

Theorem 6.2 (Soundness of verification). Let Φ and Ψ be
unary (or relational) assertions and let c be a command in FOR (or
RFOR). Then, if c : Φ =⇒ Ψ then ⊨ {Φ}c{Ψ}.

Proof. By structural induction on c , using Lemma 6.1. □

6.3 Finding counterexamples: strength of

invariants and soundness

We now want to formalize the fact that we can use RelSym for

finding counterexamples. Let us consider a program c , a precon-
dition Φ and a postcondition Ψ. If starting to evaluate c from an

initial symbolic configuration and a set of constraints that satisfy

the precondition Φ, we arrive in a final configuration whose set of

constraint is consistent with the negation of the postconditionΨ (in-

terpreted in the memory of the final configuration), then we know

that the post-condition does not hold. This argument motivates the

following definition.

Definition 7. Let c be a command in FOR (or RFOR) and Φ,Ψ
unary (or relational) assertions. We say that, c symbolically disproves
Ψ from Φ and we write c : Φ ≠⇒ Ψ if and only if exists F such that

• {(MemΦ,c , c, {JΦKMemΦ,c })} ⇒
∗
set

F

• ∃(M, skip,S) ∈ F .SAT(S ∪ {J¬ΨKM })

A counterexample to the validity of a unary triple {Φ}c{Ψ}
consists of a pair of concrete memoriesM1,M2 and I ∈ Intlog

such thatM1 ⊨I Φ and (M1, c)
F
−→∗(M2, skip) butM2 ⊭I Ψ.

We would like to be able to extract, from an execution showing

c : Φ ≠⇒ Ψ, a counterexample for {Φ}c{Ψ}. Unfortunately, this
cannot always be done.

Indeed because in presence of loops, invariants might just ap-

proximate the state after the loop has terminated. That is the in-

variants might not specify precisely enough the state after the

loop body has been executed n times for arbitrary n. For instance:
{z = 0 ∧ x > 0}for (i in 1:x) dotrue z←z + 1{false} is obviously
an invalid triple but the invariant does not say much about the

value of z after the loop has been executed x times. The invariant

Is ≡ z = i would instead do the job, specifying exactly the final

state. When invariants have this property we say they are strong.
With Definition 8 we capture the notion of strength of an invariant.

Definition 8. Given a command c ≡ for (x in e1:e2) doI cb in
FOR (or in RFOR), we say that the invariant I is strong iff ∀σ1,σ2 ∈ Σ,
if σ1 |= (Mf , skip,Sf), σ2 |= (Mf , skip,Sf), and σ1(M) =R
σ2(M) then σ1(Mf) =U σ2(Mf).

Where R =
(
(Var ∪ Arrvar) \U

)
∪ {x}, U = Upd(cb) (or U =

Updr(cb)), andM,Mf ,Sf are respectively the memory right before
10

Relational Symbolic Execution PPDP ’19, October 7–9, 2019, Porto, Portugal

the execution of the for-loop, and the memory and the set of constraints
after the application of the rule s-for-inv (or r-s-for-inv).

The following theorem allows to avoid false positives in interac-

tive refutation.

Theorem 6.3 (Soundness of counterexample finding). Let
Φ,Ψ be unary (or relational) assertions and c a command in FOR (or
RFOR). Then, if c : Φ ≠⇒ Ψ and all the invariants in c (if any) are
strong then ⊭ {Φ}c{Ψ}.

Theorem 6.3 is a soundness result for counterexample finding

which implies (relative) completeness of the proving system w.r.t

to the semantics of FOR (and RFOR). Indeed, provided the program
c is annotated with strong enough invariants, if RelSym cannot

derive c : Φ ≠⇒ Ψ then it has to be the case that ⊨ {Φ}c{Ψ}. The
completeness just mentioned concerns the proving system and has

nothing to do with the semantic completeness of RFOR w.r.t to

FOR which has been already ruled out in Section 4.4.

7 IMPLEMENTATION

RelSym has been implemented in OCaml 4.06 in about 4k LOC. The

queries on satisfiability of set of constraints are discharged using the

SMT solver Z3 [De Moura and Bjørner 2008]. The implementation

is not fully optimized.

7.1 Checking the semantic judgment

Rules s-for-inv and r-s-for-inv, include among the premises a

Hoare triple validity judgment, which ensures that the assertion

provided is an inductive invariant of the loop. By using semantic

validity we allow other potential implementations to use different

analysis techniques for the verification of that triple, e.g., a sound

Hoare logic for FOR (or RFOR). Since we want RelSym to be a self-

contained tool, in the implementation we prove this judgment by

recursively calling RelSym. In particular, while executing the rule s-

for-inv (or r-s-for-inv) on the command for (x in e1:e2) doI c
we use recursively RelSym to prove ⊨ {I ∧ e1 ≤ x ∧ x ≤ e2}c{I [x +
1/x]}, by checking that indeed c : I ∧e1 ≤ x∧x ≤ e2 =⇒ I [x+1/x].
This can also help in practice in finding the right invariant by giving
the user prompt feedback on why the assertion used at the moment

is not an inductive invariant.

7.2 Checking the strength of the invariant

If we want to use RelSym for finding counterexamples to speci-

fications, we might need to check that the invariant is strong as

in Definition (8), so that by Theorem 6.3 we can be sure that the

ground substitution provided (if any) by the SMT is indeed a coun-

terexample. In particular, this ensures that, if the SMT returns a σ
such that σ |= Sf ∪ {¬JΨKMf }, then indeed:

• σ (MemΦ,c) ⊨ Φ

• (σ (MemΦ,c),σ (c))
F
−→∗(σ (Mf), skip)

(or (σ1(M1), c1)
RF
−→
∗
(σ2(M2), c2)),

• σ (Mf) ⊨ ¬Ψ

A way to check this property is to check for unsatisfiability the

following set of constraints:

Sf ∪ {JI [v2 + 1/x]K
F
Mf
} ∪ {

∨
{X ∈F}

X , X ′}

where: F is the set of fresh symbols generated during the execution

of the rule s-for-inv (or r-s-for-inv), and JI [v2 + 1/x]KF
Mf

is

the result of taking the invariant where x has been substituted with

v2+1, interpreted as a constraint throughMf , with all the symbols

in F substituted with their primed versions. If it is not the case that

SAT(Sf ∪ {JI [v2 + 1/x]KFMf
} ∪ {

∨
{X ∈F} X , X ′}) then there is

only a possible way to satisfySf once the symbols generated before

the loop have been fixed, that is given a ground substitution σ for

which σ ⊨ S′′ then there is only one possible σ ′ such that σ ⪯ σ ′

and σ ′ ⊨ Sf . This implies the strength of the invariant I .

8 EXPERIMENTAL RESULTS

We compared our relational symbolic semantics with other tech-

niques used to prove or finding counterexamples to relational prop-

erties. In particular with naive self-composition, simple product

programs and the product programs construction of [Eilers et al.

2018]. Since our implementation does not use any heuristics to

try to improve efficiency it makes sense to compare it with vanilla

versions of these techniques. Also, notice that product programs

and self-composition can be easily embedded in our framework by

just executing self-composed programs and product programs in

SFOR, that is by just using unary symbolic semantics. In this sec-

tion we can see some experimental results that show that relational

symbolic execution is comparable in terms of execution time, calls

to the solver, and number of steps with respect to self-composition

and product programs. The results in Table (1) are about proving

relational properties, while in Table (2) the results are about finding

counterexamples to relational properties. Some of the examples are

taken from standard literature (sometimes adapting them to our

language). In the table an R (Relational) means that relational sym-

bolic execution was used, whileU denotes that the self composed

program was analyzed with unary symbolic semantics, a P denotes

a product program symbolically executed with unary semantics.

Because of space reasons we only show information which showed

discernible differences in resource usage. An ↑ denotes that the

symbolic execution had to be terminated because it was running

for too long, while an ✗ means that the SMT solver was not able to

discharge a query and so the result is unknown. Finally, a ? denotes

absence of information, necessary when RelSym ran out of time

limits. The results regarding execution time are an average over

50 runs executed on an Intel CPU, 2.80GHz with 16 GB of RAM

memory.

The examples concern properties such as non-interference, e.g., n-
inter. example and inter. example series, ni-array example, or exe-

cution time independence e.g., [Antonopoulos et al. 2017], or con-

tinuity e.g., sum-k-lip-cont, or sort-k-lip-cont. On this benchmark

overall relational symbolic execution performs better with respect

to standard unary self composition and comparably to product pro-

grams, in terms of execution time. Besides execution times (unary

and relational semantics) we can consider as measures also other

information such as the number of steps of the semantics (small-

step #SS, big-steps #BS) performed, calls to the solver (#SMT) and

number of final states reached (#S). Using these metrics shows

more clearly how a relational approach can, at times, outperform

other approaches for the verification or interactive refutation of

relational properties. [Eilers et al. 2018] construction for product

11

PPDP ’19, October 7–9, 2019, Porto, Portugal Gian Pietro Farina, Stephen Chong, and Marco Gaboardi

Example R/U/P #BS #SS #SMT #S tm (s)

Darvas R 8 5 3 2 0.39

Darvas U 15 18 5 3 0.04

Costanzo R 30032 42315 10921 4096 139

Costanzo U ? ? ? ? ↑

Antonopoulos R 68 101 20 10 0.15

Antonopoulos U 70 94 22 10 0.16

Terauchi[1] R 34 63 24 4 0.22

Terauchi[1] P 309 2472 179 9 1.49

Terauchi[1] U 46 141 22 4 0.22

Terauchi[2] R 55 91 34 9 0.36

Terauchi[2] U 31 155 10 3 ✗

n-inter. example 1 R 5 4 1 1 0.01

n-inter. example 1 P 33 56 26 4 0.01

n-inter. example 1 U 9 16 1 1 0.01

n-inter. example 2 R 5 4 1 1 0.01

n-inter. example 2 U 9 16 1 1 0.01

n-inter. example 3 R 7 9 1 1 0.01

n-inter. example 3 P 30 87 24 2 0.16

n-inter. example 3 U 13 36 1 1 0.02

n-inter. example 4 R 14 13 8 4 0.08

n-inter. example 4 P 51 109 35 9 0.2

n-inter. example 4 U 16 14 10 4 0.1

sum-k-lip-cont R 8 5 3 2 0.04

sum-k-lip-cont U 8 11 3 2 ✗

sort-k-lip-cont U 55 72 23 12 0.12

sort-k-lip-cont R 31 45 12 6 0.11

sort-k-lip-cont P 50 66 15 12 0.12

Table 1: Experimental results of proving relational proper-

ties. Where Darvas stands for [Darvas et al. 2005], Costanzo

stands for [Costanzo and Shao 2014], Antonopoulos stands

for [Antonopoulos et al. 2017], Terauchi stands for [Ter-

auchi and Aiken 2005]

Example R/P/U #BS #SS #SMT #S tm (s)

ni-array R 291 380 132 37 1.08

ni-array U 342 674 90 16 0.7

[Eilers et al. 2018] R 9 7 3 2 0.03

[Eilers et al. 2018] U 13 25 1 1 0.01

inter. example1 R 3 1 1 1 0.01

inter. example1 P 13 10 10 4 0.08

inter. example1 U 21 33 5 3 0.04

inter. example2 R 3 1 1 1 0.01

inter. example2 P 13 10 10 4 0.07

inter. example2 U 5 4 1 1 0.02

inter-password R 485 714 169 64 1.40

inter-password U 703 960 190 64 1.78

Table 2: Experimental results for finding counterexamples

relational properties.

programs introduces new variables and new branching instructions.

This is the main reasons why the number of SMT calls increases.

More generally: consider the base product program construction in

[Butler and Schulte 2011] and the number of basic instructions per-

formed (e.g. assignments) as a measure: commands are duplicated

even when it doesn’t help. Product self-composition is a generic

syntactic technique. E.g.: take c ≡ p←p + 1, and suppose we want

to show that: ⊨ {p1 = p2}c{p1 = p2}. Under product programs we

could reduce the problem to verifying: ⊨ {p1 = p2}c1×c2{p1 = p2}
that is ⊨ {p1 = p2}p1←p1 + 1;p2←p2 + 1{p1 = p2}. In the unary

symbolic execution of the product program necessarily two assign-

ments will be performed. While executing relationally p←p + 1

might only execute one assignment.

This evaluation shows that although we have trade-offs between

the different techniques and none of them is always better, in several

situations relational symbolic execution brings clear improvements.

9 RELATED WORKS

The works most closely related to ours are the ones that have used

symbolic execution for relational properties. [Milushev et al. 2012]

use symbolic execution to check non-interference by means of

an analysis based on a type directed transformation of the pro-

gram first presented in [Terauchi and Aiken 2005]. The analysis

targets programs written in a subset of C which includes procedures

calls, and dynamically allocated data structures modeled through

a heap. A main difference with our work is that they focus only

on non-interference while we focus on arbitrary relational proper-

ties. Additionally, they use self-composition while we focus on the

design of a formal relational semantics. Finally, they use a generic

approach based on heaps, instead, we focus on arrays as concrete

data structures and we leverage their properties in the design of

our semantics.

In [Person et al. 2008] symbolic execution is used to check dif-

ferences between program versions. The property they analyze,

although relational can be easily described with two separate execu-

tion of the two programs. Indeed, in their work symbolic execution

is used separately for the two programs.

Relational properties have also been studied through many other

techniques. We already mentioned different works that reduce the

verification of relational properties to the one of properties through

self-composition [Barthe et al. 2004; Terauchi and Aiken 2005] and

product programs [Asada et al. 2017; Butler and Schulte 2011; Eil-

ers et al. 2018]. Several works have studied relational versions of

Hoare logics. For example, Benton [Benton 2004] studies relational

Hoare logics for noninterference and program equivalence, and

Barthe et al. [Barthe et al. 2014b, 2012] study relational Hoare logics

for relational probabilistic properties, such as differential privacy.

Their work is based on a denotational semantics based on couplings

and probabilistic liftings, while ours is operational in nature. Other

works such as [Banerjee et al. 2016] have focused on a relational

Hoare logics with frame rules to deal with heap based semantics,

and on situations where keeping the traces not aligned might be

beneficial in the same spirit of dissonant loop rules introduced in

[Beringer 2011]. Other works instead tried to maximize the amount

of synchronicity between the two runs [Pick et al. 2018]. Several

works have studied type systems for the verification of different

relational properties, some examples are noninterference [Nanevski

et al. 2013; Pottier and Simonet 2003; Volpano et al. 1996], security

of cryptographic implementations [Barthe et al. 2014a], differential

12

Relational Symbolic Execution PPDP ’19, October 7–9, 2019, Porto, Portugal

privacy and mechanism design [Barthe et al. 2015], and relational

cost [Çiçek et al. 2017] These approaches are quite different from

ours. For instance [Çiçek et al. 2017] focuses on functional programs,

and uses a type discipline which requires a lot of domain exper-

tise. Other works have applied abstract interpretation techniques

to noninterference [Assaf et al. 2017; Feret 2001; Giacobazzi and

Mastroeni 2004]. While symbolic execution and abstract interpreta-

tions share several similarities, the techniques that the approaches

rely on are quite different. In [Austin and Flanagan 2012] authors

introduce faceted values, that resemble our paired values. They do

this to simulate simultaneous runs of the same program on differ-

ent security levels, in order to provide information flow security

with a dynamic approach as opposed to a static one as we do in

this work. Cartesian Hoare Logic [Sousa and Dillig 2016] and its

quantitative extension [Chen et al. 2017] can be used for reasoning

about generic k-safety properties, and their quantitative analogous.

The language that Cartesian Hoare Logic considers includes arrays

and while loops with breaks. The class of properties they consider

goes beyond relational properties and their analysis is automated.

The main difference between their approach and ours is that we

perform symbolic execution which can also be used to finding bugs

while they only focus, at least on the theoretical part, on proving

correctness via Hoare Logic. Kwon et al. [Kwon et al. 2017] recently

proposed a program analysis for checking information flow poli-

cies over streams based on a technique for synthesizing relational

invariants. This analysis is not based on symbolic execution, but

we plan to explore if their algorithm for synthesizing relational

invariants can be used in our setting.

Similar to our work their semantics is based on couplings and the

probabilistic lifting of relations. Close to our work is also [Albargh-

outhi and Hsu 2018] where a proof technique, casting differential

privacy proofs as a strategy in a game encoded as a set of con-

straints, is presented. In that work authors focus again in finding

proof and not in finding counter examples to differential privacy.

10 CONCLUSIONS

In this work we presented RelSym, a foundational framework for

relational symbolic execution. The framework supports interactive

refutation as well as proving of relational properties for a language

with arrays and loops. We provided some meta theoretical results

about symbolic execution for its use with respect to proving va-

lidity of triples and disproving them and we provided necessary

conditions for which disproving is actually sound. We have shown

the flexibility of this approach by analyzing examples for a range

of different relational properties. We compared the analysis of this

properties using different approaches, i.e., self-composition, prod-

uct programs and relational approach. We have implemented the

tool and in the future we plan to address more complex features

like functions, promises and closures, as well as exploring the gen-

eration of relational loop invariants [Chen et al. 2011; Hoder et al.

2011; Khurshid et al. 2003; Kwon et al. 2017; Qin et al. 2013], limiting

in this way the need for annotations provided by the user.

REFERENCES

Aws Albarghouthi and Justin Hsu. 2018. Synthesizing coupling proofs of differential

privacy. PACMPL 2, POPL (2018), 58:1–58:30. https://doi.org/10.1145/3158146

Timos Antonopoulos, Paul Gazzillo, Michael Hicks, Eric Koskinen, Tachio Terauchi,

and Shiyi Wei. 2017. Decomposition Instead of Self-composition for Proving the

Absence of Timing Channels. In Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI 2017). ACM, New York,

NY, USA, 362–375. https://doi.org/10.1145/3062341.3062378

Kazuyuki Asada, Ryosuke Sato, and Naoki Kobayashi. 2017. Verifying Relational

Properties of Functional Programs by First-order Refinement. Sci. Comput. Program.
137, C (April 2017), 2–62.

Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017.

Hypercollecting semantics and its application to static analysis of information flow.

In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017. 874–887.

Thomas H. Austin and Cormac Flanagan. 2012. Multiple Facets for Dynamic Informa-

tion Flow. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’12). ACM, New York, NY, USA,

165–178. https://doi.org/10.1145/2103656.2103677

Anindya Banerjee, David A. Naumann, andMohammad Nikouei. 2016. Relational Logic

with Framing and Hypotheses. In 36th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2016, December
13-15, 2016, Chennai, India. 11:1–11:16.

Gilles Barthe, Juan Manuel Crespo, and César Kunz. 2011. Relational Verification Using

Product Programs. In Proceedings of the 17th International Conference on Formal
Methods (FM’11). Springer-Verlag, Berlin, Heidelberg, 200–214. http://dl.acm.org/

citation.cfm?id=2021296.2021319

Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. 2004. Secure Information Flow by

Self-Composition. In Proceedings of the 17th IEEE Workshop on Computer Security
Foundations (CSFW ’04).

Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy,

and Santiago Zanella Béguelin. 2014a. Probabilistic relational verification for cryp-

tographic implementations. In The 41st Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January
20-21, 2014. 193–206.

Gilles Barthe, Cédric Fournet, Benjamin Grégoire, Pierre-Yves Strub, Nikhil Swamy,

and Santiago Zanella-Béguelin. 2014b. Probabilistic Relational Verification for

Cryptographic Implementations. SIGPLAN Not. 49, 1 (Jan. 2014), 193–205.
Gilles Barthe, Marco Gaboardi, Emilio Jesús Gallego Arias, Justin Hsu, Aaron Roth, and

Pierre-Yves Strub. 2015. Higher-Order Approximate Relational Refinement Types

for Mechanism Design and Differential Privacy. In Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2015, Mumbai, India, January 15-17, 2015. 55–68. https://doi.org/10.1145/2676726.

2677000

Gilles Barthe, Boris Köpf, Federico Olmedo, and Santiago Zanella Béguelin. 2012.

Probabilistic relational reasoning for differential privacy. (2012), 97–110. https:

//doi.org/10.1145/2103656.2103670

Nick Benton. 2004. Simple Relational Correctness Proofs for Static Analyses and

Program Transformations. In Proceedings of the 31st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’04). ACM, New York, NY,

USA, 14–25.

Lennart Beringer. 2011. Relational Decomposition. In Interactive Theorem Proving.
Springer Berlin Heidelberg, Berlin, Heidelberg, 39–54.

Michael J. Butler and Wolfram Schulte (Eds.). 2011. FM 2011: Formal Methods - 17th
International Symposium on Formal Methods, Limerick, Ireland, June 20-24, 2011.
Proceedings. Lecture Notes in Computer Science, Vol. 6664. Springer.

Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2010. Continuity Anal-

ysis of Programs. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’10). ACM, New York, NY,

USA, 57–70. https://doi.org/10.1145/1706299.1706308

Swarat Chaudhuri, Sumit Gulwani, and Roberto Lublinerman. 2012. Continuity and

Robustness of Programs. Commun. ACM 55, 8 (Aug. 2012), 107–115.

Jia Chen, Yu Feng, and Isil Dillig. 2017. Precise Detection of Side-Channel Vulnera-

bilities using Quantitative Cartesian Hoare Logic. In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas,
TX, USA, October 30 - November 03, 2017. 875–890.

Shikun Chen, Zhoujun Li, Xiaoyu Song, and Mengjun Li. 2011. An Iterative Method for

Generating Loop Invariants. In Proceedings of the 5th Joint International Frontiers in
Algorithmics, and 7th International Conference on Algorithmic Aspects in Information
and Management (FAW-AAIM’11).

Ezgi Çiçek, Gilles Barthe, Marco Gaboardi, Deepak Garg, and Jan Hoffmann. 2017.

Relational cost analysis. In Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017.
316–329.

David Costanzo and Zhong Shao. 2014. A Separation Logic for Enforcing Declarative

Information Flow Control Policies. In Principles of Security and Trust - Third In-
ternational Conference, POST 2014, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014,
Proceedings. 179–198. https://doi.org/10.1007/978-3-642-54792-8_10

13

https://doi.org/10.1145/3158146
https://doi.org/10.1145/3062341.3062378
https://doi.org/10.1145/2103656.2103677
http://dl.acm.org/citation.cfm?id=2021296.2021319
http://dl.acm.org/citation.cfm?id=2021296.2021319
https://doi.org/10.1145/2676726.2677000
https://doi.org/10.1145/2676726.2677000
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1145/2103656.2103670
https://doi.org/10.1145/1706299.1706308
https://doi.org/10.1007/978-3-642-54792-8_10

PPDP ’19, October 7–9, 2019, Porto, Portugal Gian Pietro Farina, Stephen Chong, and Marco Gaboardi

Ádám Darvas, Reiner Hähnle, and David Sands. 2005. A Theorem Proving Approach

to Analysis of Secure Information Flow. In Proceedings of the Second International
Conference on Security in Pervasive Computing (SPC’05). Springer-Verlag, Berlin,
Heidelberg, 193–209. https://doi.org/10.1007/978-3-540-32004-3_20

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceed-
ings of the Theory and Practice of Software, 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems (TACAS’08/ETAPS’08).
337–340.

Marco Eilers, Peter Müller, and Samuel Hitz. 2018. Modular Product Programs. In

Programming Languages and Systems, Amal Ahmed (Ed.). Springer International

Publishing, Cham, 502–529.

Jérôme Feret. 2001. Abstract Interpretation-Based Static Analysis of Mobile Ambients.

In Eighth International Static Analysis Symposium (SAS’01) (LNCS). Springer-Verlag.
Roberto Giacobazzi and Isabella Mastroeni. 2004. Abstract non-interference: parame-

terizing non-interference by abstract interpretation. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2004,
Venice, Italy, January 14-16, 2004. 186–197.

Joseph A. Goguen and José Meseguer. 1982. Security Policies and Security Models. In

1982 IEEE Symposium on Security and Privacy, Oakland, CA, USA, April 26-28, 1982.
11–20.

Joseph A. Goguen and José Meseguer. 1984. Unwinding and Inference Control. In

Proceedings of the 1984 IEEE Symposium on Security and Privacy, Oakland, California,
USA, April 29 - May 2, 1984. 75–87.

Martin Hentschel, Richard Bubel, and Reiner Hähnle. 2014. Symbolic Execution

Debugger (SED). In Proceedings of Runtime Verification 2014 (2014-01-01) (LNCS),
Borzoo Bonakdarpour and Scott A. Smolka (Eds.). Springer, 255–262.

Krystof Hoder, Laura Kovács, and Andrei Voronkov. 2011. Invariant Generation in

Vampire. In Tools and Algorithms for the Construction and Analysis of Systems - 17th
International Conference, TACAS 2011, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2011, Saarbrücken, Germany, March
26-April 3, 2011. Proceedings. 60–64.

Martin Hofmann and Mariela Pavlova. 2008. Elimination of Ghost Variables in Pro-

gram Logics. In Trustworthy Global Computing. Springer Berlin Heidelberg, Berlin,

Heidelberg.

Catalin Hritcu, John Hughes, Benjamin C. Pierce, Antal Spector-Zabusky, Dimitrios

Vytiniotis, Arthur Azevedo de Amorim, and Leonidas Lampropoulos. 2013. Testing

Noninterference, Quickly. In Proceedings of the 18th ACM SIGPLAN International
Conference on Functional Programming (ICFP ’13). 455–468.

Sarfraz Khurshid, Corina S. Păsăreanu, and Willem Visser. 2003. Generalized Symbolic

Execution for Model Checking and Testing. In Proceedings of the 9th International
Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS’03). 553–568.

James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7

(July 1976), 385–394.

Hyoukjun Kwon, William Harris, and Hadi Esmaeilzadeh. 2017. Proving Flow Security

of Sequential Logic via Automatically-Synthesized Relational Invariants. In 30th
IEEE Computer Security Foundations Symposium, CSF 2017, Santa Barbara, CA, USA,
August 21-25, 2017. 420–435.

John McCarthy. 1961. A Basis for a Mathematical Theory of Computation (prelimi-

nary report). In Proceedings of the Western Joint Computer Conference, Cicely M.

Popplewell (Ed.). IRE, AIEE, ACM, 225–238.

Dimiter Milushev, Wim Beck, and Dave Clarke. 2012. Noninterference via Symbolic

Execution. In Proceedings of the IFIP WG 6.1 International Conference on Formal
Techniques for Distributed Systems (FMOODS’12/FORTE’12). 152–168.

Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. 2012. Evaluating the Design

of the R Language - Objects and Functions for Data Analysis. In ECOOP 2012 -
Object-Oriented Programming - 26th European Conference, Beijing, China, June 11-16,
2012. Proceedings. 104–131.

Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. 2013. Dependent Type

Theory for Verification of Information Flow and Access Control Policies. ACM
Trans. Program. Lang. Syst. 35 (2013), 6:1–6:41.

Suzette Person, Matthew B. Dwyer, Sebastian Elbaum, and Corina S. Pǎsǎreanu. 2008.

Differential Symbolic Execution. In Proceedings of the 16th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering (SIGSOFT ’08/FSE-16).
226–237.

Lauren Pick, Grigory Fedyukovich, and Aarti Gupta. 2018. Exploiting Synchrony and

Symmetry in Relational Verification. In Computer Aided Verification.
François Pottier and Vincent Simonet. 2003. Information Flow Inference for ML. ACM

Trans. Program. Lang. Syst. 25, 1 (Jan. 2003), 117–158.
Shengchao Qin, Guanhua He, Chenguang Luo, Wei-Ngan Chin, and Xin Chen. 2013.

Loop invariant synthesis in a combined abstract domain. J. Symb. Comput. 50
(2013), 386–408.

R Core Team. 2013. R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/

Jason Reed and Benjamin C. Pierce. 2010. Distance makes the types grow stronger: a

calculus for differential privacy. In Proceeding of the 15th ACM SIGPLAN interna-
tional conference on Functional programming, ICFP 2010, Baltimore, Maryland, USA,
September 27-29, 2010. 157–168.

Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Emina

Torlak, and Xi Wang. 2018. Nickel: A Framework for Design and Verification

of Information Flow Control Systems. In 13th USENIX Symposium on Operating
Systems Design and Implementation, OSDI 2018, Carlsbad, CA, USA, October 8-10,
2018.

Marcelo Sousa and Isil Dillig. 2016. Cartesian Hoare Logic for Verifying K-safety

Properties. In Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’16). 57–69.

Tachio Terauchi and Alex Aiken. 2005. Secure Information FlowAs a Safety Problem. In

Proceedings of the 12th International Conference on Static Analysis (SAS’05). 352–367.
Dennis M. Volpano, Cynthia E. Irvine, and Geoffrey Smith. 1996. A Sound Type System

for Secure Flow Analysis. Journal of Computer Security 4, 2/3 (1996), 167–188.

14

https://doi.org/10.1007/978-3-540-32004-3_20
http://www.R-project.org/

	Abstract
	1 Introduction
	2 Relational symbolic execution: informally
	3 Examples
	4 Concrete Languages: FOR, RFOR
	4.1 FOR
	4.2 Assertions, triples, validity
	4.3 RFOR
	4.4 Relational assertions, relational triples, and relational validity

	5 Symbolic Languages: SFOR, RSFOR
	5.1 SFOR
	5.2 RSFOR
	5.3 Unary and relational collecting semantics

	6 Meta theory
	6.1 Coverage
	6.2 Proving and soundness
	6.3 Finding counterexamples: strength of invariants and soundness

	7 Implementation
	7.1 Checking the semantic judgment
	7.2 Checking the strength of the invariant

	8 Experimental results
	9 Related Works
	10 Conclusions
	References

