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Abstract—Current multi-/many-core systems spend large amounts of time and power transmitting data across on-chip interconnects.
This problem is aggravated when data-intensive applications, such as machine learning and pattern recognition, are executed in these
systems. Recent studies show that some data-intensive applications can tolerate modest errors, thus opening a new design dimension,
namely, trading result quality for better system performance. In this article, we explore application error tolerance and propose an
approximate communication framework to reduce the power consumption and latency of network-on-chips (NoCs). The proposed
framework incorporates a quality control method and a data approximation mechanism to reduce the packet size to decrease network
power consumption and latency. The quality control method automatically identifies the error-resilient variables that can be
approximated during transmission and calculates their error thresholds based on the quality requirements of the application by
analyzing the source code. The data approximation method includes a lightweight lossy compression scheme, which significantly
reduces packet size when the error-resilient variables are transmitted. This framework results in fewer flits in each data packet and
reduces traffic in NoCs while guaranteeing the quality requirements of applications. Our cycle-accurate simulation using the

AxBench benchmark suite shows that the proposed approximate communication framework achieves 62 percent latency reduction
and 43 percent dynamic power reduction compared to previous approximate communication techniques while ensuring 95 percent

result quality.

Index Terms—Approximate communication, error control, power consumption, network-on-chips (NoCs)

1 INTRODUCTION

ETWORK-ON-CHIPS (NoCs) are becoming standard com-

munication solutions for connecting cores, caches and
memory controllers on chips [1], [2], [3], [4]. Current multi-
core chips typically have hundreds of cores, and future
projections call for thousands of cores [5], [6], [7]. With sig-
nificant improvement in system performance through
exploiting parallelism on multi-core chips, the state-of-the-
art NoC design can soon become a communication bottle-
neck and struggle to deliver packets in a power-efficient
manner [8], [9]. Recent studies have shown that NoC power
consumption can reach up to 40 percent of the overall chip
power [10], [11], [12]. Consequently, there is a need for inno-
vative power and latency reduction techniques for future
NoC designs.

Recent research shows that several approximate comput-
ing applications, such as pattern recognition, image process-
ing, and scientific computing, can tolerate modest errors
while yielding acceptable results [13], [14], [15], [16], [17], [18].
However, conventional NoC designs for multicore processors
transmit all data with absolute accuracy, which is unnecessary
for such approximate computing applications. Transmitting
data with excessive accuracy consumes excess power and
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increases the network latency. These observations suggest
new design space in which data accuracy can be sacrificed to
some extent to achieve better network performance.

In this work, we propose an approximate communication
framework for NoCs in which the data in a packet are com-
pressed based on the error tolerance of the application to
reduce power consumption and network latency. The pro-
posed approximate communication framework includes a
software-based quality control method and a hardware-based
data approximation method implemented in the network
interface (NI). Before the execution of the application, the
quality control method uses the code analyzer to identify
error-resilient variables and calculate the error tolerance of
each variable based on the application’s quality requirement
on results. We introduce new instructions, namely approxi-
mate load and store, to indicate error-resilient variables with
error tolerance values in the assembly code. When an approxi-
mate load or store is executed, the network interface (NI) com-
presses the data and generates an approximated packet based
on the error tolerance of the variable, using the proposed data
approximation method. As a result, the proposed approxi-
mate communication framework decreases the amount of
data transmitted, resulting in significant improvements in
power consumption and network latency compared to con-
ventional NoC designs.

Specifically, the contributions of this work include the
following:

e We propose an approximate communication frame-
work that employs a hardware-software co-design to
trade result quality for better network performance.
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See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The George Washington University. Downloaded on April 28,2020 at 03:13:31 UTC from |IEEE Xplore. Restrictions apply.


https://orcid.org/0000-0001-6671-8443
https://orcid.org/0000-0001-6671-8443
https://orcid.org/0000-0001-6671-8443
https://orcid.org/0000-0001-6671-8443
https://orcid.org/0000-0001-6671-8443
mailto:yuechen@gwu.edu
mailto:louri@gwu.edu

CHEN AND LOURI: APPROXIMATE COMMUNICATION FRAMEWORK FOR NETWORK-ON-CHIPS

MEM L2 L2
o ] [
- [ [m]-
o | g af &
Q Q | ©
co clc Core Core Core
213 2|3 NI[ L1 NI L1 NI L1
E £
s|e| =&
[ef [m]-
\Eé Core Core Core
2 | Packet | | Packet NI[ L1 NI[ L1 NI L1
2 |Encoder| [Decod: ./
X
s
5
z | * MEM L2 L2
Packet N1] NI] 1]

Network Interface (NI) Write Rep. §
—Packft | Read Rep. g
L S
N Packet Write Reg" ﬁ
Decoder | Read Req, | 2

Fig. 1. Conventional network interface (NI) design: Read request (Req.)
is triggered by cache read miss. Read reply (Rep.) carries the data from
memory (MEM)/L2 cache node to the core/L1 cache node. Write request
(Req.) is triggered by cache write miss and carries the data to the MEM/
L2 cache node. Write reply(Rep.) is send back to the core/L1 cache
node to confirm a successful memory write.

e On the software side, the framework uses a qua-
lity control method to automatically identify error-
resilient variables and calculate the error tolerances
for the variables.

e  On the hardware side, we augment the conventional
network interface with compression/decompression
modules to significantly reduce packet size.

e The performance evaluation of our proposed frame-
work shows that it reduces network latency and
dynamic power consumption by 62 and 43 percent,
respectively, compared to previous approximate
communication techniques [19], [20] while ensuring
95 percent result quality.

2 MOTIVATION AND CHALLENGES

2.1 Motivation
On-Chip Communication is Costly. The increasing scale of data
movement in emerging big-data applications results in heavy
NoC communication loads. For tasks in parallel applications,
communication takes more time than computation does as the
number of compute elements (processor cores) in the system
increases [21], [22]. Communication is also more costly than
computation in terms of energy consumption [21], [22], [23].
Fig. 1 shows a conventional Network Interface (NI)
design [24], [25], [26] in a multi-core system with L2 shard
cache. In this system, when a cache miss occurs during a
memory load operation, a read request packet will be sent
to the memory or the shared cache through the NoC. The
memory or shared cache will use a read reply packet to
send the required data back to the core. When a cache miss
occurs during a memory store operation, the data is incor-
porated into a write request packet and sent to the memory
or shared cache through the NoC. After the memory or
shared cache has received the data, a write reply is sent
back to the core to confirm a successful memory write.
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Fig. 2. High-level workflow

framework.

of the approximate communication

Error Tolerance of Applications. Approximate computing
applications leverage the perceptual limitation of users to
trade result accuracy for less power consumption or execu-
tion time [16], [17], [27], [28]. For example, even though the
approximated output of an image processing application is
not 100 percent numerically correct, the difference is unno-
ticeable to the end user. Therefore, program designers pro-
vide the result error threshold and evaluation metric when
developing approximate computing applications to ensure
result quality. The evaluation metric defines how the quality
of the result is measured by the user (e.g., relative error,
pixel difference). The result error threshold defines the
amount of error that can be tolerated by the user. This situa-
tion inspires us to exploit the error budget of such applica-
tions to improve communication performance in terms of
power consumption and latency.

2.2 Challenges

Ensuring Result Quality. The ability to control the errors
incurred during approximation is required to ensure result
quality [29], [30]. Unrestricted approximation can lead to
disastrous consequences, such as erroneous results or pro-
gram crashes [31], [32], [33]. The previous quality control
methods [9], [19], [20], [34] require program designers to
specify the error-resilient variables and their error toleran-
ces in approximate computing applications. These methods
rely on human engineering to decide the error-tolerance of
each error-resilient variable, which can lead to unpredict-
able quality loss. Therefore, quality control remains a big
challenge for approximate communication.

Low Owverhead of Approximation Logic. An approximate
communication technique requires approximation logic
(including hardware support) to compress packets based on
the quality requirements for the data. Such approximation
logic is located at the critical path, and has strict require-
ment on overheads in terms of latency and area. The imple-
mentation needs to be carefully designed so that these
overheads of approximation do not exceed the performance
gains achieved through approximate communication.

3 APPROXIMATE COMMUNICATION FRAMEWORK

The essence of the proposed approximate communication
framework is to carefully exploit the error tolerance of
applications to reduce packet sizes by compressing data
with an acceptable quality loss. Reducing the number of
bits used decreases the number of flits inside a packet,
which will result in a reduction in power consumption and
network latency. Fig. 2 shows the high-level workflow of
the proposed approximate communication framework. This
framework includes a code analyzer for quality control and
a hardware design for approximate communication in NoC
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Fig. 3. Approximate data compression workflow.

to enhance the performance of the interconnects. The code
analyzer calculates the error tolerance for each variable that
is loaded or stored based on the quality requirements of an
application before the application is executed. In the
approximate communication NoC design, data packets are
compressed in the NI based on the error tolerances of the
corresponding data values using a lossy compression
method during the execution of the application.

The workflow of the framework is described as follows:
when a C code is compiled, the compiler generates the
assembly code and control flow graph. The code analyzer
identifies the error-resilient values and calculates the error
tolerance for each value in the approximable code sections.
Then, the load/store operations for each variable in the
assembly code are replaced with approximate load/store
operations, each associated with a quality requirement as
calculated by the code analyzer. Finally, the assembly code
with the approximate load/store operations is executed in
the proposed architecture with approximate communica-
tion. We discuss lossy data compression for floating point
and integer values based on a given data error threshold in
Section 3.1. Then, we present an example of lossy data com-
pression in Section 3.2. In Section 3.3, we discuss the calcula-
tion of the error tolerance for each load and store instruction
based on the quality requirement specified for the results.

3.1 Approximate Data Compression

Fig. 3 shows the workflow for approximate data compres-
sion. The first step is to truncate the integer or floating point
data based on the error tolerance. In this paper, we define
the error tolerance as the maximum relative error that a
data can accept. Eq. (1) shows the definition of error toler-
ance, where a is approximated a and FE, is relative error

a
=—— < error tolerance. (D)

Egs. (2) and (3) show the representation of single preci-
sion floating point value based on IEEE 754 standard [35]

float = (—1)° x mantissa x 2°°7 (2)
23

mantissa = 2° + E:X;CTIC (X, =0or1). 3)
=1

Based on Egs. (2) and (3), the mantissa always starts with one.
According to the IEEE 754 standard [35], when a data
point is represented in the floating point format, the first bit
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TABLE 1
Frequent Pattern Encoding [36]

Code Pattern Encoded Data Size After Encoding
000  Zero run 3 bits
001  4-bit sign-extended 4 bits
010  1-byte sign-extended 8 bits
011  Halfword sign-extended 16 bits
100  Halfword padded with a zero halfword 16 bits
101 Two halfwords, each 1-byte sign-extended 16 bits
111 Uncompressed word 32 bits

of the mantissa is omitted. We observe that when c bits (of
the 23-bit mantissa) are protected, the maximum relative
error on this floating point data value will be >3° 27
which is less than 27¢ according to the sum of the geometric
sequence (3, ar*! = a(1 —r")/1 —r, where a is the first
term, n is the number of terms, and r is the common ratio in
the sequence). Therefore, using Eq. (3), we can deduce the

following expression for the data error tolerance:
error tolerance = 27" (1 < n < 23). (4)

In Eq. (4) above, the data error tolerance is a number
between 0 and 1, and n is the number of most significant
bits (MSBs) in the mantissa of this floating point value. In a
floating point data value, the 1-bit sign and the 8-bit expo-
nent (a total of 9 bits) are also critical bits, which must be
transmitted. Thus, by truncating 23 — n bits, we can ensure
the value’s relative error is less than 27". For example, to
satisfy a data error tolerance of 10 percent for any floating
point value, we can truncate 18 least significant bits (LSBs),
resulting in a maximum relative error of 6.25 percent.

Eq. (5) shows the representation of a signed integer. In a
signed integer, the MSB represents the sign, and the remain-
ing 31 bits represent the value

31
int =Y X;2" (Xp =0o0r1). &)
=0
We observe that when n bits (of the 31 LSBs) are trun-
cated, the maximum error caused by truncation will be
> ieo Xi2¥ (X = 0 or 1). Thus, we can use Eq. (6) to calcu-
late the number of bits (n) to be truncated for a given error
tolerance

error tolerance = - (Xp=00or1). (6)

With this data truncation method, an integer with a small
absolute value requires a larger number of MSBs to achieve
the same error threshold than is required for an integer
with a large absolute value. For example, for an integer
value of 100, 29 MSBs need to be transmitted to ensure 5
percent error tolerance. On the other hand, for an integer
value of 5,418, only 28 MSBs need to be transmitted to
achieve the same data error tolerance (5 percent).

To overcome this problem, we compress the data using
the frequent data pattern compression method. In previ-
ous research, the frequent data pattern compression mecha-
nism (Table 1) has been proposed [36] and extended to
NoCs with a low-overhead compression and decompression
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Code Frequent Pattern

000 | 0x00 0x00 0x00 0x00
0x00 0x00 0x00 00000XXX
001 ot oxff oxff 11111XXX
0x00 0x00 0x00 OXXXXXXX
010 | s oxff oxff IXXXXXXX
0x00 0x00 OXXXXXXX | XXXXXXXX
011 | o oxff IXOOXXXX | XXXXXXXX
100 | XXXXXXXX | XXXXXXXX | 0x00 0x00
101 | ox00 OXXXXXXX | 0x00 OXXXXXXX
Oxff IXXXXXXX | Oxff IXXXXXXX

Fig. 4. Frequent pattern replacement table: X represents a bit that can be
either 0 or 1. Oxff represents eight 1-bits. 0x00 represents eight 0-bits.

mechanism [9], [37]. In this work, we adopt this mechanism
to compress the approximated data. The essence of frequent
data pattern compression method is to eliminate zeros and
ones in the MSBs and LSBs for both integer and floating
value without effecting the accuracy of the value. We
develop a frequent pattern replacement table based on
Table 1. The table in Fig. 4 shows the static set of frequent pat-
terns and the codes. In this table, the notation X represents a
bit that can be either 0 or 1. Oxff and 0x00 are two hexadeci-
mal numbers, which represent eight 1-bits and eight 0-bits.
The data compressor checks every piece of data and attempts
to match its pattern. If the pattern matches, the data compres-
sor will replace the pattern with the corresponding code. The
0 or 1 represented by X will not be changed during the com-
pression process.

3.2 Example of Approximate Data Compression

Fig. 5 shows an example of the proposed approximation tech-
nique for two integers (I1 and 12) and two floating point
numbers (FP1 and FP2). In this example, 17 LSBs of FP1 and
19 LSBs of FP2 are truncated at the source node to ensure that
the floating point values satisfy error thresholds of 3 and
10 percent, respectively. Since these two floating point num-
bers do not match any pattern, the data cannot be compressed.
When the floating point numbers reach the destination, the
error rates of the approximated floating point data are 0.2 and
1.9 percent, within the error thresholds of 3 and 10 percent,
respectively. For the integer numbers, 20 LSBs of I1 are trun-
cated at the source node, whereas no LSB is truncated for 12
because no error on this value can be tolerated. Then, the

Data Example With
Error Threshold
Requirement

FP1=35.89 FP2=90.52 11 = 5544320 12=48
Error Threshold: 3% |Error Threshold: 10%|Error Threshold: 10% | Error Threshold: 0%

Data Example in
Binary

0x420F8F5C 0x42B50A3D 830

Truncated

Data 010000100000111

0100001010110

Compressed

Data 010000100000111

0100001010110 011101 01000110000

Received Data 0x420E000 0x42B00000

Received Data
in Decimal

FP1=355
Error: 1.09%

FP2 =88.0
Error: 2.78%

11 = 45543424
Error: 5.4%

11=48
Error: 0%

Fig. 5. Working example of approximate data compression.
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data compression logic matches I1 with pattern 011 and repla-
ces the zeros in the MSBs with the corresponding code. Simi-
larly, 12 is found to match pattern 010, and the zeros in the
MSBs are replaced with the corresponding code. When the
compressed data arrive at the destination, the receiver NI
converts the data back into integer values and fills in the trun-
cated bits with zeros. We observe that the errors on the result-
ing integer numbers, namely, 5.4 and 0 percent, are again
within the corresponding error thresholds.

3.3 Code Analysis

The main function of the code analyzer is to identify the error-
resilient values in the approximable code sections and calcu-
late the corresponding error tolerances based on the quality
requirements of the application. To achieve this goal, the code
analyzer needs to analyze the syntax of the source code and
break down all operations into basic operations (addition,
subtraction, multiplication, and division). Notably, the com-
piler can generate a control flow graph (CFG) that describes
the function of the source code in terms of basic operations.
Therefore, we utilize the CFG to identify the error-resilient
values in the code and calculate the error tolerances.

Fig. 6 shows the workflow of the code analyzer by means
of an example. The code analyzer needs three files: the
source code, the CFG and the assembly code. First, the code
analyzer searches for approximable functions in the C code,
CFG and assembly code. The approximable section is
highlighted with orange boxes in the figure.

Second, the code analyzer identifies all variables and
results in the approximable section in the C code, CFG, and
assembly code. In the figure, we highlight the result and the
result quality for this example in yellow boxes. We also
point out the mov operation on variable a, b and ¢ in the
assembly code using yellow arrows.

Algorithm 1. Error Threshold Calculation (ETC)

1: function ETC (Data_Dependency_Graph G, start_V)
2:  letQbea queue

3:  start V.error tolerance « result error tolerance

4:  Q.enqueue(start_V)

5:  while Q is not empty do
6

7

8

v «— Q.dequeue
for all edges w in G.adjacentEdges(v) do
error « calculate_error(v.error_tolerance, v.operation)

9: if w.error_tolerance = empty then
10: w.error_ tolerance < error
11: Q.enqueue(w)
12: end if
13: if w.error_tolerance > error then
14: w.error_ tolerance « error
15: end if
16: end for

17:  end while
18: end function

Third, the analyzer builds a data dependency graph
(highlighted in the green box), which shows the calculation
process for each variable, based on the CFG. For the exam-
ple in the figure, we can see that the intermediate variable
D.21740 is equal to the product of b and ¢ and that the result
d is equal to the sum of a and D.21740.
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Assembly

mov DWORD PTR [rbp-0x14],edi
mov DWORD PTR [rbp-0x18],esi

C Code

int approx (int a, int b, int c) Control Flow Graph

{

> intd; ENTRY

d = a+b*c; D.21740=b *¢;
return d; d=D.21740 + a;

// d: error tolerance 5% return d;

} EXIT

mov DWORD PTR [rbp-Ox1c],edx
mov eax,DWORD PTR [rbp-0x18]
imul eax,DWORD PTR [rbp-0x1c]
mov  edx,eax

mov eax,DWORD PTR [rbp-0x14]
add eax,edx

mov DWORD PTR [rbp-0x4],eax

mov eax,DWORD PTR [rbp-0x4]

Identify

Approximable o 2
Code Section

Code Analyzer

Replace mov
With amov and
Error Tolerance

Calculate Error
Tolerance

v

v v

Data Dependency Graph d: 5% Error Tolerance Assembly with amov \
co amov DWORD PTR [rbp-0x14],edi,$50
a: 5% amov DWORD PTR [rbp-0x18],esi,$25
D.21740 X D.21740: 5% amov DWORD PTR [rbp-Ox1c],edx,$25
. o amov eax,DWORD PTR [rbp-0x18],$25
b: 2.5% imul eax,DWORD PTR [rbp-Ox1c]
c: 2.5% mov edx,eax
amov eax,DWORD PTR [rbp-0x14],$50
add eax,edx
mov DWORD PTR [rbp-0x4],eax
mov eax,DWORD PTR [rbp-0x4
\ [rbp-0x4] )

Fig. 6. Code analyzer workflow: The purple arrow indicates the workflow of the code analyzer. The inputs of the code analyzer are C code, control
flow graph, and assembly. The output of the analyzer is the assembly with amov instructions, which is highlighted in the gray box. (The source code
is compiled by GNU C Compiler (GCC) for X86 instruction set architecture. The control flow graph and assembly code are generated by GCC.

D.21740 is an intermediate variable created by compiler).

Fourth, the code analyzer traverses the data dependency
graph and updates the error threshold for each variable.
The calculated error thresholds are highlighted in the blue
box in Fig. 6. The error threshold for each intermediate data
value is calculated using Algorithm 1. The error threshold
calculation (ETC) algorithm traverses the data dependency
graph in a manner similar to that of breadth-first search
(BFS). Different from the conventional BFS algorithm, at
line 13, we allow the error tolerance to be updated when the
current error tolerance is smaller than the previous one to
prevent erroneous calculation results. The error tolerance
for each variable is calculated based on the error tolerance
for the result and the various operations applied.

Eq. (7) describes the addition and subtraction of & and b,
where @ and b are transmitted through approximate com-
munication and ¢ is the result

é=a+b. (")
From Eq. (1), we can get

E,. = le=d < error tolerance ®
a=a+E,,xa 9)
b=b+Ey xb. (10)

When a and b have the same relative error (E,, =
E,, = E,q), we can get Eq. (11) by combining Egs. (7), (9)
and (10)

c= (a—l—Em(, Xa):l:(b-l—EmbX b) (11)

By combining Egs. (8) and (11) with ¢ = a & b, we find that the
relative error (E,,) for a and b are equal to the relative error
(E,.) for c. Therefore, E,. < error tolerance is ensured when
E,q < error tolerance for the addition and subtraction opera-
tion. For example, @ and b can each contain less than 5 percent
relative error when ¢ can tolerate 5 percent relative error.

Eq. (12) describes the multiplication of & and 5, where a
and b are transmitted through approximate communication
and ¢ is the result

(12)

With the same theory, we can get Eq. (13) for the multiplica-
tion, where a and b are fully accurate variables and E,; is
relative error

E=axb.

c=(a+ Empxa)x(b+ E.q*b). (13)

By combining Egs. (8) and (13) with ¢ = a x b, we find that for
the multiplication operation, E,. = (1 + Emb)2 — 1. Therefore,
E,. < error tolerance is ensured when —1++/1+ E,; <
error tolerance for the multiplication operation. For example,
@ and b can each contain less than 2.5 percent relative error
when ¢ can tolerate 5 percent relative error.

Eq. (14) describes the division of G and b, where G and b
are transmitted through approximate communication and ¢
is the result

&=ab. (14)

For the division operation, we can get and Eq. (15), where a
and b are fully accurate variables and E,,, E, are relative error

¢=(a+E,xa)/(b+ Ey*b). (15)
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Fig. 7. NoC architecture with approximate communication: The quality control table records the approximation information, including addresses, data

error tolerances and int/float indicators, to enable the data approximation

logic to identify and compress approximable data. The data approximation

logic truncates and compresses data based on the data error tolerances and data types. The data decompression logic recovers the data and fills in

truncated bits with zeros after a packet has arrived at the destination NI.

The packet encoder generates packets and injects those packets into the

network. The packet decoder ejects packets from the network and extracts data from packets.

By combining Egs. (8) and (15) with ¢ = a/b, we find that for
the division operation, E,, = |1 — (1 + E,,)/(1 + Eu)|. £, =0
when a and b have the same relative error (E,, = E,;, = E,4)
for the division operation. The condition (E,, = E,, = E,q) is
hard to satisfy during the execution of the program and result
error is depends on the difference between E,, and E,;. Since
the difference of E,, and E,;, is small when both E,, and E,,
are small, we use —1 + /1 + E,, < error tolerance to reduce
the value of E,, and E,;,. For example, @ and b can each contain
less than 2.5 percent relative error when ¢ can tolerate 5 percent
relative error. Therefore, the difference between E,, and E,;
are limited to less than 2.5 percent for the division operation.
Finally, the code analyzer selects and replaces the mov
instructions in the assembly code with approximate mov
instructions. The selected mov instructions load and store the
variable, which locates at the leaf of the data dependency
graph (e.g., a, b, ). We introduce a new type of approximate
move instruction (amov dist, src, error threshold) into the
X86 instruction set for the network to compress approxim-
able packets. The error threshold in the amov instruction is
multiplied by 10 to eliminate decimal point. The final result
is highlighted in the gray box, where 50 indicates a 5 percent
error tolerance and 25 indicates a 2.5 percent error tolerance.
In the next section, we will discuss how the network approxi-
mates packets using these approximate move instructions.

4 ARCHITECTURAL DESIGN OF THE APPROXIMATE
COMMUNICATION FRAMEWORK

Fig. 7 presents a high-level overview of the proposed approx-
imate communication framework along with the proposed
hardware design. We modify the baseline NI to include the
following additional components: the approximate data
compression logic, the data decompression logic and a qual-
ity control table.

When an L1 cache miss is caused by an approximate
store operation, a write request is generated by the L1 cache
with the approximation information. The approximation
information includes the address, data type (int/float) and
error tolerance. The write request is compressed by the
approximate data compression logic at the core/L1 cache
node based on the error tolerance of the data. Then, the
write request is encoded by the packet encoder and injected
into the network. When the shared cache/memory node
receives the write request packet, the data decompression
module recovers the truncated data and adds zeros to the
truncated part to maintain the original data format. Then,
the write request is sent to the shared cache/memory, and a
write replay is generated and transmitted to the core/L1
cache node to confirm the transmission.

When an L1 cache miss is caused by approximate load
operation, a read request is issued by the L1 cache with the
approximation information. Then, the read request is sent to
the packet encoder to generate a read request packet. When
the shared cache/memory node receives the read request, the
approximation information is extracted from the packet and
inserted into the quality control table. When the read reply is
generated by the shared cache/memory, the approximate
data compression logic checks the approximation informa-
tion in the quality control table and truncates the data in
accordance with the approximation information. Then, the
packet encoder prepares the read reply packet and injects
it into the network. When the read reply packet arrives at
the core/L1 cache node, the data decompression module
recovers the data.

The detailed design of the data approximation logic is
discussed in Section 4.1. The detailed design of the data
decompression logic is discussed in Section 4.2. The
detailed design of the quality control table is discussed in
Section 4.3.
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Fig. 8. Data approximation logic flow chart.

4.1 Approximate Data Compression

Fig. 8 shows the flow chart describing the operation of the
approximate data compression logic. In the shared cache/
memory node, the data approximation logic distinguishes
approximable packets from accurate packets depending on
the approximation information stored in the quality control
table. To obtain approximation information from the quality
control table, the data approximation logic sends a read
packet, which contains the address, to the quality control
table. If the reply message contains approximation informa-
tion, then the data approximation logic checks whether the
data value is an integer or floating point value. If it is an
integer value, then the data approximation logic truncates
the data using Eq. (6). If it is a floating point value, then the
data approximation logic truncates the LSBs by comparing
the data’s error tolerance against the error thresholds in
Table 2, which are derived from Eq. (4). The data approxi-
mation logic will always choose the closest error threshold
lower than the data’s error tolerance to ensure data quality.
For example, if the data’s error tolerance is 5 percent, then

TABLE 2
Relationship Between the Float Error
Threshold and the Number
of Truncated LSBs

Float Error Threshold Truncated LSBs
0.25 21
0.125 20
0.0625 19
0.03125 18
0.015625 17
0.0078125 16
0.00390625 15
0.001953125 14
0.000976563 13
0.000488281 12
0.000244141 11
0.00012207 10
1.52588E-05 7
1.90735E-06 4
0 0
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Fig. 9. Hardware design of the quality control table.

the data approximation logic will choose a data error
threshold of 3.125 percent (truncate 18 LSBs) to ensure the
data quality. After the data are truncated, the data compres-
sor checks for frequent patterns, as shown in Fig. 3, and
compresses the data. Finally, the read reply is sent to the
packet encoder and injected into the network.

In the core/L1 cache node, the data approximation logic
distinguishes approximable packets based on the approxi-
mation information in the write requests. After the data for a
given request are truncated, the data approximation logic
deletes the approximation information in the write request
and begins to compress the data. After data compression, the
write request is sent to the packet encoder and injected into
the network.

4.2 Data Decompression

To decompress the data, the decompression logic scans the
data and recognizes the codes for specific frequent patterns.
Then, the logic recovers the truncated data based on the
recognized frequent patterns. After the truncated data are
decompressed, the logic checks the length of each piece of
data and fills in the truncated parts with zeros. After all
data have been recovered, the read reply or write request is
sent to the core/L1 cache node or the shared cache/memory
node, respectively.

4.3 Quality Control Table

Fig. 9 shows the hardware design of the quality control table at
the shared cache/memory node. The quality control table con-
sists of 3 columns of approximation information: addresses,
data types, and error thresholds. The data type column con-
tains 1 bit to describe whether the data are integer (1) or float-
ing point (0) in nature.

In the NI of the shared cache/memory node, the data
approximation logic receives a read packet (A) containing an
address in the quality control table from which to acquire the
approximation information for the data. If the address
matches an entry in the quality control table, then the table
sends a read reply packet with the corresponding approxima-
tion information, which includes the address, data type, and
error tolerance (B). Then, the corresponding entry is deleted
from the table after the reply packet (B) is sent. Otherwise, a
negative signal (C) is sent to the data approximation logic to
indicate that these data require accurate transmission. When a
read request packet (D) arrives at the quality control table, the
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TABLE 3
Simulation Environment Setup

8 x 8 2D mesh
8 virtual channels

NoC Parameters

Wormbhole routing
X-Y routing

System Parameters 64 on-chip cores @2 GHz
32 kB L1 instruction cache
32 kB L1 data cache
4-way associative

64-bank fully shared 16 MB

L2 cache
Quality Loss Threshold 5%
Approximate Communication AxBA [19]
Techniques Used For Quality Control Framework [20]
Evaluation Proposed Framework

table first checks whether it contains approximation informa-
tion. If so, the table extracts and registers the approximation
information. If the requested data contains multiple data
types, multiple entries in the quality control table are occupied
to store approximation information. Then, the quality control
table forwards the read request (E), which now contains only
the address, to the shared cache/memory.

5 EXPERIMENTAL SETUP

We evaluated the performance of the proposed approximate
communication framework using the GEM5 simulator [38]
and the AxBench benchmark suite [39]. By running the
AxBench benchmarks on the modified GEM5 simulator, we
could evaluate the network latency. We used DSENT [40] to
capture the dynamic power consumption of the network. The
detailed settings for the GEM5 simulator are shown in Table 3.

AxBench [39] is an approximate computing benchmark
suite with annotations for approximable code sections and
results (Table 4). We analyzed the workloads based on
AxBench and implemented an error injection function in
the benchmark to simulate the errors introduced by the
approximate communication technique. We integrated the
approximate data compression logic into the GEMS5 simula-
tor to simulate the lossy data compression. In the simula-
tion, our target was 95 percent result quality.

6 EVALUATION AND ANALYSIS

We evaluate the proposed approximate communication frame-
work from four perspectives: approximation performance,
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network latency, dynamic power consumption, result quality
and overhead. We compare the proposed approximate
communication framework with AxBA [19] and the quality
control framework [20]. AXBA includes a base-delta compres-
sion scheme and a quality control method that requires the
program designer to annotate the approximable values and
their error tolerances. The quality control framework includes
a truncation-based compression scheme and a quality control
scheme that allows the network to automatically adjust the
quality of transmission after the result error is measured.
AxBA, quality control framework and previous approximate
communication techniques [9], [19], [20], [41] rely on human
engineer to identify error resilient variable in the source code
to ensure result quality. In this work, we propose a packet com-
pression method that combines data truncation with frequent
pattern compression. To control the result quality, we propose
the use of a code analyzer instead of the programmer’s annota-
tions. The code analyzer scans the approximable code sections
to identify the error-resilient variables and calculate their error
tolerances.

6.1 Approximation Performance Analysis

We evaluate the performance of the proposed approximation
framework with the following three experiments. The first
experiment evaluates the compression rate under a given
data error threshold. The high-performance data approxima-
tion method can achieve a better compression rate than the
low-performance method with the same data error thresh-
old. The second experiment evaluates the number of approx-
imated data packets under a given application quality loss. A
high-performance quality control technique can approximate
more data packets than the low-performance technique
with the same application quality loss threshold. The third
experiment evaluates the data compression rate under a
given application quality loss. A high-performance approxi-
mation framework can achieve a higher compression rate
than the low-performance method with the same application
quality loss threshold.

Fig. 10 shows the relationship between data compression
rate and error threshold when blackscholes benchmark is
approximated using different data approximate methods.
The data error thresholds are ranging from 1 percent error
to 10 percent with a 1 percent stride. As shown in Fig. 10,
the proposed framework achieves a significantly higher
compression rate than both AxBA and quality control
framework. The quality control framework yields a low
data compression rate due to the inefficient data compres-
sion scheme when approximating integer numbers. The
proposed data approximation technique can significantly

TABLE 4
AxBench Benchmark Suite [20], [39]

Benchmark Input Data Size Result Data Size Evaluation Metric
blackscholes 64k floating point (fp) values 64k floating point (fp) values Average relative error
fft 5k random fp numbers 5k fp values Average relative error
inversek2j 100k random (x,y) points 100k (x,y) points Average relative error
jmeint 10k pairs of 3D triangles 10k Boolean values # of mismatches
jpeg 512 * 512 pixel image 512*512 pixel image Average pixel diff.
kmeans 512 * 512 pixel image 512*512 pixel image Average pixel diff.
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Fig. 10. Data compression rate vs. data error threshold for blackscholes
benchmark.

reduce the data size for integer numbers, which improves
the compression rate. Moreover, with the error threshold
increases, the compression rate increases dramatically for
the proposed framework, whereas the AXBA has little
improvement. The base-delta compression scheme used by
AXBA requires a large number of bits to represent the differ-
ence between the base and approximable data. When the
delta value is large, increasing data error tolerance has less
effect on reducing the size of delta. As a result, the compres-
sion rate improvement is limited for AXBA when the data
can tolerate more errors.

Fig. 11 shows the percentage of approximated data pack-
ets using different quality control techniques when the
application can tolerate 5 percent quality loss. The percent-
age of approximated data packets (P,,) is calculated using
Eq. (16), where N, is the number of approximated data
packets and IV is the total number of data packets

Nad
Ny~

FPoa = (16)

Asshown in Fig. 11, the proposed quality control technique
can approximate more data packets than AxBA and quality
control framework. The quality control methods in previous
approximate communication frameworks rely on a human
engineer to identify the error-resilient variable, which limits

60%
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Fig. 11. The percentage of approximated data packets. Quality loss
threshold is 5%.
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Fig. 12. The data compression rate. Quality loss threshold is 5%.

the number of approximated data packets. On the other hand,
the proposed framework discovers error-resilient variables
through code analysis and leads to an average of 10 percent
more approximated data packets than previous works. The
proposed framework can approximate 37 percent of the data
packets on average, whereas AXBA and the quality control
framework can only approximate 27 and 28 percent of the
data packet, respectively. The largest percentage of approxi-
mated data packets is achieved (57 percent) when the jpeg
benchmark is executed on the proposed architecture.

Fig. 12 shows the compression rate for transmitted data
when the quality loss threshold has been set to 5 percent.
From Fig. 12, the proposed framework achieves a 2.33 com-
pression rate on average, which is higher than the 1.93 and
1.73 achieved by the quality control framework and AxBA,
respectively. Therefore, the proposed framework achieves
better performance than AxBA and quality control frame-
work. The high compression rate and more approximated
data packets result in lower network latency and power
consumption, which will be further discussed in Section 6.2.

6.2 Network Performance Analysis

In this section, we evaluate the NoC performance in terms
of network latency and dynamic power consumption using
AxBench. The network power consumption includes static
power and dynamic power. Static power is the leakage
power related to each hardware component. Dynamic
power is related to on-chip traffic intensity. Since the pro-
posed approximate communication framework significantly
reduces the size of the transmitted packet, we specifically
use dynamic power to evaluate the power savings.

6.2.1 Network Latency

Fig. 13 shows the evaluation results for the average network
latency normalized with respect to AXxBA [19]. The network

1
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© o o © © © ©
S & R &

°
=

inversek2j jmeint ipeg kmeans Average

®AXBA = Quality Control Framework ™ Proposed Framework

Fig. 13. Network latency: The results are normalized with respect to
AxBA (lower is better). Quality loss threshold is 5%.
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Fig. 14. Dynamic power consumption: The results are normalized with
respect to AXBA (lower is better). Quality loss threshold is 5%.

latency is defined as the number of clock cycles elapsed
between the sending of a packet at the source node and the
successful delivery of the packet at the destination. Thus, the
network latency includes the time consumed in three proce-
dures, packet generation at the source node, packet transmis-
sion in the network, and data extraction at the destination
node. The packet generation process includes approximate
data compression and packet encoding process at the source
NI. The data extraction process includes packet decoding
and data decompression or updating the quality control
table at the destination NI. We compare our proposed design
with AxBA and the quality control framework. As shown in
Fig. 13, the proposed approximate communication frame-
work achieves an average network latency reduction of 62
percent compared to AXxBA. The largest network latency
reduction in the experiment is achieved for the jpeg bench-
mark (83 percent reduction), while the smallest network
latency improvement is obtained for inversek2j (46 percent).
The proposed framework can achieve such a large latency
reduction on the jpeg benchmark due to the high percentage
of approximable data packets and the high compression
ratio. With the code analyzer, the proposed framework can
approximate 57 percent of the data packets, as seen from
Fig. 11, while AxBA and the quality control framework can
approximate only 35 percent of the data packets. Since most
of the approximable data packets in the jpeg benchmark con-
tain integer data, the frequent pattern compression approach
used in the proposed framework can achieve the best com-
pression ratio, as seen from Fig. 12. On the other hand, the
quality control framework, which converts integers to float-
ing point values to eliminate zeros in the MSBs, achieves its
lowest compression ratio on this benchmark (1.9 compared
with 2.5 for the proposed framework). As a result, the pro-
posed framework is able to achieve latency reductions of 64,
48, 47, and 80 percent on the blackscholes, fft, jmeint, and
kmeans benchmarks, respectively, compared with AxBA.

6.2.2 Dynamic Power Consumption

Fig. 14 shows the amounts of dynamic power consumed by
the different approximate communication techniques in
comparison to the proposed framework for a target result
quality of 95 percent. The dynamic power consumption
includes the dynamic power consumed by both NI and
NoC. As shown in this figure, the proposed framework
achieves an average dynamic power reduction of 43 percent
compared with AxBA [19]. The largest dynamic power
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reduction in this experiment is achieved for the jpeg bench-
mark (50 percent reduction), while the lowest dynamic
power improvement is obtained for blackscholes (36 percent
reduction). For the same reason mentioned in the network
latency analysis, the proposed framework is able to signifi-
cantly reduce the number of flits per packet while ensuring
the quality of the result. Therefore, the dynamic power con-
sumption of the proposed framework is reduced by 44, 43,
42, and 43 percent on the fft, inversek?2j, jmeint, and kmeans
benchmarks, respectively, compared with AxBA.

6.3 Result Quality Analysis

The application quality loss is measured using the applica-
tion-specific metrics given in Table 4. Fig. 15 shows the appli-
cation quality loss for different benchmarks. The red line in
this figure represents the error budget of the approximate
computing application. The figure shows that the proposed
quality control method incurs quality loss of 4.2,2.7, 3.7, 3.1,
4.4, and 2.6 percent on the blackscholes, fft, inversek?j, jmeint,
jpeg, and kmeans benchmarks, respectively. As shown in
Fig. 15, the quality loss for all the benchmarks are less than
5 percent and can be tolerated by the approximate computing
application. Fig. 16 compares the accurate result for the jpeg
benchmark with the approximate result obtained when the
proposed framework is used. The difference between two
outputs is negligible and unrecognizable by human vision.

6.4 Overhead Analysis

We implemented the proposed framework with 128 entries
in the quality control table using Verilog to evaluate the area,
static power, and latency overhead (Table 5). The framework
is synthesized with 32 nm technology using Synopsys Design

(a) Accurate Result

(b) Approximate Result

Fig. 16. Jpeg benchmark result comparison: The threshold of quality loss
is 5%. The result difference is 4.4%.
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TABLE 5
Design Overhead for Each NI
Frameworks  AxBA [19] Quality Control Proposed
Framework [20] Framework
Area 9.28 pm? 8.23 wm? 4.79 m?
Power 2.9 mW 2.6 mW 1.7mW

Vision software. The synthesis results show that for each NI,
the framework incurs an area overhead of 4.79 um?, which is
less than 1 percent of the total NoC area. Compared to quality
control framework [20] and AxBA [19], the proposed frame-
work reduces area overhead by 42 and 48 percent, respec-
tively. When the supply voltage is 1.0 Volt, the framework
incurs a power overhead of 1.7 mW for each NI, which is
only 0.025 percent of the NoC static power consumption.
Compared to quality control framework [20] and AXxBA [19],
the proposed framework reduces static power overhead by
35 and 41 percent, respectively. Regarding the latency over-
head, we find that compression and decompression, as well
as searching and updating the quality control table, each
require one cycle. Therefore, two cycles are added for each
write request, read request, and write reply packet. Three
cycles are added for each read reply packet.

7 RELATED WORKS

Designing an energy-efficient on-chip interconnection is criti-
cal for the current multi-/many-core processors to achieve
better performance [4], [21], [23], [42], [43]. Although many
techniques have been proposed in the pursuit of efficient NoC
design [37], [44], [45], [46], [47], [48], approximate communica-
tion is considered to be the most effective way to improve net-
work performance when an application can tolerate modest
errors [8], [9], [19], [49], [50], [51], [52], [53], [54]. With reduced
accuracy during communication, the approximate communi-
cation framework significantly reduce the time and power
consumed compared to previous NoC optimization techni-
ques [44], [45], [46], [47]. Various approximate communication
techniques have been proposed to enhance the performance
of the interconnect [8], [9], [19], [41], [51], [53]. [8] conducted a
survey on three promising techniques, namely, compression,
relaxed synchronization, and value prediction, to address
communication bottleneck issues in massively parallel sys-
tems for approximate computing applications. The authors
of [9] and [19] proposed lossy data compression techniques to
further reduce the size of the error resilience data before
packet injection. Specifically, [9] utilized the similarity bet-
ween two pieces of data and [19] leveraged the value differ-
ence between two pieces of data to compress data blocks. In
[51], [53], the authors proposed to reduce network congestion
by dropping data in the packet before injected into the net-
work. In [53], the authors explored the application’s error
threshold and proposed an approximation method to drop
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data accordingly. In [55], [56], [57], the authors proposed sev-
eral algorithm to reduce the size of query data.

In the approximate communication framework, a quality
management system ensures that the data error can be toler-
ated by the approximate computing application [31], [32],
[33]. The proposed approximate communication techni-
ques [9], [19], [41], [51], [53] include a software-based quality
management framework, which allows program designer to
assign the error threshold. Significant approximation errors
can be eliminated during approximate computation when a
lightweight result checking system, such as Rumba [34], is
used. ApproxIt [58] proposed a run-time quality calibration
scheme to control the quality of an approximate computing
application with an iterative method. Approxilyzer [59] pro-
vides a solution for the quality management system to quan-
tify the quality impact of a single-bit error. In [60], the
authors suggested that the result-error can be controlled by
managing the input error. However, these quality control
frameworks require the program designer to specify the
approximable variables, which limits the approximate com-
munication technique to further improve NoC performance.
The proposed quality control framework determines error-
resilient value through code analysis, which further enhan-
ces NoC performance with acceptable quality loss.

Table 6 shows the major difference between the proposed
work and our previous works [20], [41]. The data approxima-
tion technique in DEC-NoC [41] applies the error control
code (ECC) to the most significant bits of a floating-point
number (float) to reduce the cost of error correction during
transmission. The data approximation technique in quality
control framework [20] truncates float to reduce the size of a
packet. However, these techniques [20], [41] are insufficient
to support the applications consisting of integer numbers
because of the overheads of converting integer numbers to
floating-point numbers. This paper proposes a data trunca-
tion technique, coupled with frequent pattern compression,
to reduce the data size for both integer and floating-point
numbers. The quality control method in previous works [20],
[41] only relies on human engineering to discover approxim-
able variable. Therefore, previous techniques limit the
amount of approximable data during on-chip communica-
tion. In the proposed framework, we design a code analyzer
to automatically identify all the possible error-resilient val-
ues in the program, which takes full advantage of approxi-
mate communication. As a result, the proposed framework
can achieve better performance of on-chip communication
without violating the quality requirement of applications.

8 CONCLUSION

In this work, we propose an approximate communication
framework consisting of an approximation technique and a
quality control method for power-efficient and low-latency
NoCs. We designed a software-based code analyzer to

TABLE 6
Comparison Between Proposed Framework and Previous Works

Quality Control Framework [20]

Proposed Framework

Frameworks DEC-NoC [41]
Data Approximation Method Protecting MSBs in float
Quality Control Method Manually Control

Truncate LSBs in float

Lossy Compress both int and float

Manually Control Automatically Control
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analyze approximable code sections. This code analyzer
identifies the approximable variables and calculates their
error tolerances based on the quality requirements of the
application. We also proposed an approximate communica-
tion design for NoCs in which floating-point and integer
numbers are compressed based on the error tolerance of the
variables. The proposed approximate communication frame-
work increases the number of approximated packets, thus
achieving better network performance, while ensuring that
the result quality meets the application’s requirements. We
compared the proposed framework with previous approxi-
mate communication techniques called AxBA and quality
control framework. Our detailed evaluation showed that the
proposed approximate communication framework reduces
dynamic power consumption and network latency by 43 and
62 percent, respectively, compared to AXBA.
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