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Abstract

Aliovalent doping of CdSe nanocrystals (NCs) via cation exchange processes has resulted in 

interesting and novel observations for the optical and electronic properties of the NCs.  However, 

despite over a decade of study, these observations have largely gone unexplained, partially due to 

an inability to precisely characterize the physical properties of the doped NCs.  Here, 

electrostatic force microscopy was used to determine the static charge on individual, cation-

doped CdSe NCs in order to investigate their net charge as a function of added cations. While the 

NC charge was relatively insensitive to the relative amount of doped cation per NC, there was a 

remarkable and unexpected correlation between the average NC charge and PL intensity, for all 

dopant cations introduced. We conclude that the changes in PL intensity, as tracked also by 

changes in NC charge, are likely a consequence of changes in the NC radiative rate caused by 

symmetry breaking of the electronic states of the nominally spherical NC due to the Coulombic 

potential introduced by ionized cations.

Keywords: semiconductor nanocrystals, aliovalent doping, cation exchange, electrostatic force 

microscopy, nanocrystal charge, symmetry breaking
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Paper

For decades, semiconductor nanocrystals (NCs) have been studied for their interesting 

electrical and optical properties,1,2,3 which also make them potentially suitable for a number of 

applications, including solar energy conversion4,5,6, optoelectronic devices7,8,9,10, and biomedical 

imaging11,12,13,14.  Major advances in the colloidal NC field directly arose from the ability to 

control the composition, size, and morphology of NCs, which is made possible by a number of 

different synthesis techniques.15,16  Cation exchange, a chemical transformation used to modify a 

crystal whereby a cation from solution is inserted or exchanged with a host cation, has recently 

become a highly effective tool for enabling the synthesis of nanoparticles with novel chemical 

compositions.17,18  Cation exchange has been used to synthesize novel core/shell NCs19, branched 

NC structures20, heterostructured nanorods21,22, and core and core/shell nanoplatelets23, NC 

compositions and morphologies that are otherwise unobtainable by direct synthesis.

Cation exchange has also been used to dope NCs by carefully controlling the number of 

cations in solution that become available for exchange.24,25  Doping of NCs can also be achieved 

through a variety of other methods, including nucleation and growth doping26, surface 

treatments27,28, and etching-regrowth-doping29, but cation exchange has become one of the more 

popular techniques due to its relative simplicity.30  Doping NCs via cation exchange is 

advantageous since it affords supposedly excellent control over doping levels while also 

allowing for undoped control samples for facile evaluation of the effects of doping on the NC.24  

While a number of synthesis methods and doped NC systems are available and have been 

studied24,25,30,31,32,33,34,35,36, many effects of doping on the photophysics of NCs are not well 

understood.  Specifically, we focused on the cation exchange aliovalent doping of CdSe NCs 

with Ag+ to produce series of samples that differ only by the amount of Ag added.25  These Ag+ 
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doped CdSe NCs demonstrate unusual photophysics whereby a substantial increase in the 

exciton photoluminescence (PL) intensity was observed upon doping with a small amount of Ag+ 

followed by a subsequent decrease in PL intensity with further increasing doping amounts.25  

Additionally, a dopant “defect” PL peak also grew in to the red of the main band-edge peak with 

increasing dopant amount.  Recently, it was found that introducing Ag+ during a one-pot 

synthesis/cation exchange procedure resulted in a broad, intense dopant PL peak with no exciton 

PL.37  These divergent behaviors exemplify the need for greater understanding about the cation 

exchange doping process of NCs in general, and in particular, about how Ag+ dopants affect NC 

PL.  

Doping of NCs via cation exchange could result in the creation of locally charged 

particles depending on the nature of the doping process.29  For example, the introduction of the 

aliovalent Ag+ impurity ion as an interstitial dopant would cause a locally positive charge inside 

the NC.  Conversely, the introduction of Ag+ as a substitutional dopant would result in a locally 

negative charge as the Cd2+ ions are displaced from the crystal lattice.  We hypothesized that 

direct measurements of the charged state of the doped NCs as a function of the added Ag+ per 

NC could provide insight into the unusual exciton photoluminescence properties reported for Ag+ 

doped CdSe NCs,25 as well as provide a greater understanding of the cation exchange doping 

process itself. 

Here we report a dramatic and unexpected relationship between the charges of individual 

CdSe NCs doped with Ag+ and the photoluminescence properties for these NC samples.  

Specifically, we found that as the number of dopant ions per NC was varied, the subsequent 

changes in the ensemble exciton PL intensity and the average electrostatic charge per NC as 

determined with electrostatic force microscopy (EFM) were highly correlated.  Conversely, the 
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average charge measured per NC did not seem to depend strongly on the quantity of dopant ions 

added during the cation exchange process.  Indeed, despite adding between one and hundreds of 

Ag+ dopant ions on average per CdSe NC, the average charge measured using EFM never varied 

by more than ± 1e. We further show this fixed and stable charge results from both the cation 

exchange process (i.e. replacing a +2 cation with a +1 cation and/or a +1 cation interstitial), and 

the attraction of counterions to the charged NC surface.  By calculating the radiative rate for 

CdSe NCs of various configurations of charges near the surface of the NC, we accurately 

modeled both the changes in the charge state of the NC and the changes in PL intensity, thus 

showing that the combination of surface and interior charges due to doping can explain the 

observed photophysical behavior. 

CdSe NCs were made using variations on known synthesis procedures38,39 and were then 

doped with Ag+, Li+, or Ca2+ ions using a cation exchange procedure adapted from Sahu et al.25 

The amount of dopant introduced into the NC was quantified using inductively coupled plasma 

mass spectrometry (ICP-MS).  Absorption spectroscopy showed little to no change in the 

absorbance with increasing dopant concentration, even at extremely high doping amounts, as 

seen in Figure 1a.  Enhancement in the exciton PL intensity with increasing added Ag+ was 

sometimes observed (though not always) while a dopant peak consistently grew in to the red of 

the main peak with increasing Ag+ added, as evident in Figure 1b.  These trends in PL spectra 

also agree with the trends reported for Ag+ doped CdSe NCs in Reference 25.  From dark-field, 

high-resolution scanning transmission electron microscopy (ADF-STEM) (Figure 1c), one can 

see that the size, shape, and crystal structure of the NCs also remain unchanged with added 

dopants, as expected for doping via cation exchange processes.  
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Similar optical spectra were measured for doping controls in which the CdSe NCs were 

doped with LiNO3, Ca(NO3)2, and AgClO4 (Supporting Information Figures S12 and S13).  

Importantly, similar trends in absorbance and PL spectra were observed for these control 

samples.  Thus, the exciton PL changes observed for AgNO3 doping are not due exclusively to 

the Ag+ cations acting as internal dopants within the NCs.  Rather, the changes in exciton PL are 

due to the mere presence of a charged cation in the interior or on the surface of the NC.  Note 

that while we observed changes in the exciton PL peak intensity with all dopants, the red-shifted 

dopant PL peak was only present with introduction of the Ag+, both with AgNO3 and AgClO4 

added, but not the Li+ or Ca2+ cations.  This is expected behavior as this peak is attributed to the 

presence of the Ag+ as a dopant within the CdSe lattice.25,37

EFM is an exceptionally sensitive technique that can be used to measure the charged state 

of single NCs to less than 1 elementary charge e.40,41,42,43,44  EFM is a modification of atomic 

force microscopy that works by measuring the long-range electrostatic forces between a 

conductive cantilever and a conductive substrate.  In our EFM experiment, a first pass of the 

Figure 1. (a) Absorbance and (b) PL spectra for a series of Ag+ doped CdSe NCs.  The inset 
in (b) magnifies the weak PL feature near 700 nm. (c) ADF-STEM images for three samples 
with different doping levels, (left) 0 Ag/NC, (middle) 83 Ag/NC, (right) 270 Ag/NC.  Scale 
bars in the top images represent 3 nm and scale bar in the bottom image represents 1 nm.

Page 6 of 20

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



cantilever measures the topography of the sample.  In a subsequent second pass, the tip is lifted 

off the surface and scanned at a constant height under an applied AC and DC voltage, and 

thereby is sensitive to long-range capacitive and Coulombic forces (See SI for a detailed 

description of EFM).41,43 

Representative samples of EFM images are shown in Figure 2 for two different Ag+ 

doped CdSe NC samples with 0 Ag/NC (top) and 0.5 Ag/NC (bottom).  Images 2a and 2e are 

standard AFM height images and are used to identify the location and heights of the individual 

NCs.  Images 2b and 2f correspond to the changes in cantilever resonance frequency at the first 

harmonic of the AC voltage Δν(ω), from which the charges of the individual NCs located in the 

height image are calculated (See SI for details of calculation).  Images 2c and 2g correspond to 

changes in the cantilever resonance frequency at the second harmonic of the AC voltage Δν(2ω) 

and give information that depends on the dielectric constant of the individual NCs.  Our 

measured dielectric constants for individual NCs were consistent with previously reported values 

for CdSe41,45,46, suggesting accurate modeling of the tip-substrate capacitance.  Each NC sample 

exhibited a distribution of calculated charges.  As shown in Figure 2f, the NCs doped with about 

0.5 Ag/NC are predominantly bright, indicating negatively charged NCs.  Conversely, the NCs 

with 0 Ag/NC shown in Figure 2b are less bright, representing more neutral NCs.  The NCs also 

contain a distribution in measured charge per NC as shown in the histograms, Figures 2d and 2h.  

EFM images for this entire doping series are shown in Fig. S7. 
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For a given dopant quantity of Ag/NC, we used the mean value of the charge distribution 

to determine the average charge per NC. We then used these average values to plot the average 

charge per NC as a function of doping amount, as presented in Figure 3a. Similar data were 

acquired for the doping control samples AgClO4, LiNO3, and Ca(NO3)2 and are shown in Figure 

3c. While CdSe NCs as synthesized are nominally neutral41, after the washing and rinsing 

process with no cation exchange (i.e. the undoped sample), the average charge per NC as 

measured with EFM ranged from -0.5 to -2.0 e. We presume that this negative charge results 

from a slight loss of metal carboxylate passivating ligands from the NC surface during the 

exposure to ethanol, leaving unpassivated Se anions.47  Note that with respect to the average 

charge per NC, we could not find a simple monotonic trend with increasing dopant added, nor 

did we find consistent relationships between charge and dopant level among several doping 

trials.  Corresponding plots of the maximum PL intensities vs. dopant concentration for these 

same sets of samples are also given in Figure 3 (b, d).  Over several trials, we generally (but not 

Figure 2. EFM images for samples with 0 Ag/NC (top) and 0.5 Ag/NC (bottom).  (a,e) 
AFM height images, (b,f) charge images measuring cantilever response at Δν(ω), (c,g) 
dielectric constant images measuring cantilever response at Δν(2ω).  (d,h) Histograms 
showing the distributions of NC charges in the corresponding EFM images.
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always) observed an initial increase in exciton PL intensity with added dopant, consistent with 

previous reports on Ag+ doping of CdSe NCs Sahu et al.25  Note that we did not observe an 

enhanced PL intensity due to Ag doping for every trial and there was no consistent trend in 

exciton PL intensity with respect to average Ag/NC amounts (see Supporting Information 

Figures S8-S11).  Additionally, some trials show an overall decrease in the PL intensity, 

attributed to the substantial washing and workup procedures used for the doping process.  

Further, the inability to reproducibly create homogenously doped NCs with this post-synthesis 

cation exchange process makes it impossible to obtain identical results across all doping trials.   

We believe that the inconsistency and non-monotonic nature of the PL intensity enhancement 

with added Ag is due to the absence of an asymmetrical charge placement around the NC, as 

discussed subsequently.  

In comparing the EFM and the PL data for the Ag+ doped CdSe samples (Figures 3a and 

b) we found a remarkable correlation between the average charge per NC and the exciton PL 

intensity.  Increases or decreases in NC charge tracked similar increases or decreases in the PL 

intensity, as the amount of Ag+ was varied.  It is important to note that the EFM and PL 

experiments are completely unrelated except for the sample: the former is an average over 

hundreds of NCs that are dried on a graphene substrate and the latter is an ensemble 

measurement in solution.  This result suggests that the PL intensity changes seen across dopant 

levels are intimately associated with a charging event due to the introduction of anions and 

cations to the NCs.  Considering the significant evidence that the Ag+ impurity ions are 

introduced interstitially with eventual conversion to substitutional dopants25,48,49 and the lack of a 

trend in the charge with respect to the dopant amount, the PL intensity changes are likely not 

exclusively due to the internal dopants.  Further evidence for this hypothesis comes from the 
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control doping samples, which showed a clear enhancement in the exciton PL intensity upon 

introduction of the other cations that do not necessarily dope the NC lattice (Figure 3d).  These 

Li+ and Ca2+ doped CdSe samples also showed similar charge/PL correlations as when doping 

with Ag+. 

In total, the EFM and PL data suggest that simply exposing NCs to anions and cations 

during the cation exchange process, including the Ag+ ions, is actually causing the PL/charge 

changes that we and others have observed.  Thus, the PL enhancement is not a direct result of 

dopant type, but rather a result of passivation of the NC surface and/or the creation of an 

Figure 3. (a,c) Average charges for (a) the trial of Ag+ doping and (c) the series of control doping trials 
with AgNO3, AgClO4, LiNO3, and Ca(NO3)2.  (b,d) The maximum exciton PL intensities for (b) a trial of 
Ag+ doping and (d) a series of control doping trials.
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electrostatic field inside the NC, both possibilities suggested by electrochemical measurements 

of the ξ-potential for similar systems.50 

We propose that the changes in exciton PL and the demonstrated correlation between PL 

intensity and average NC charge result from the effects of symmetry breaking of the NC due to 

the presence of off-center fixed charges.  In CdSe NCs, the lowest energy exciton state is 

optically dark due to the spin selection rule.51  Recent theoretical work has showed that charged 

defect centers can break the NC symmetry allowing for a brightening of the lowest exciton state 

in CdSe NCs.52  Specifically, depending on the location of the defect centers with respect to the 

NC crystal lattice orientation, the resulting breaking of inversion symmetry can lead to up to a 

10-fold increase in the radiative rate, with a coinciding increase in the PL quantum yield.52  This 

model was then extended to consider different configurations of charge and compensating 

counter-charges to investigate their effects on the radiative lifetime and PL and absorption 

spectra.53 

Here we modeled the Ag+ doped NCs with a set of simplified configurations of positive 

charges representing the Ag+ dopants and negative charges representing counter-ions, as shown 

in Figure 4a.  Leveraging the recently developed theoretical model for the symmetry-breaking 

effect of a charged center on exciton fine structure and level mixing,41,52,53 we calculated using a 

four-band effective mass model that incorporates exchange and axial field effects that a selection 

of these structures gave an increased radiative rate over an undoped NC, with the same order of 

magnitude as we and others have observed in the brightening of the NC PL (Figure 4b).25  Note 

that in these calculations, correctly accounting for the long-range exchange interaction, as 

described in Reference 41, was necessary to properly model the changes in radiative rate.54  For 

the conformations in which we have unbalanced charges, such as those highlighted in green in 
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Figure 4a, we would also expect to see a permanent charge from EFM, whether positive or 

negative.  Those conformations that demonstrated an increased radiative rate are the same as 

those for which we would expect to observe an EFM charge.  Conversely, for the configurations 

with balanced dopant/counter-ion charges for which we would expect to observe a neutral 

particle in EFM, we found little to no increase in the radiative rate. 

While theory suggests the PL changes due to added charges proceed through modifying 

the radiative rate of the NC, an alternative explanation is that the added ions are changing the 

non-radiative rate perhaps through interactions with the NC surface. To test this possibility, we 

took measurements of the NC PL lifetime and PL efficiency, which allowed for a determination 

of changes in radiative and non-radiative decay rates associated with different doping levels. 

Raw time-resolved single photon counting PL decay curves and information on the measured 

decay rates are given in the SI in Figure S14 and Tables S1 and S2.  In short, the trend in the 

calculated radiative rates inferred from the time-resolved PL decays and the quantum yield 

measurements better matched the changes in the relative oscillator strength for the calculated 

configurations (Figure 4b).  By contrast, changes in the non-radiative rate extracted from this 

analysis were typically much smaller and would result in a much smaller contribution to the 

overall PL enhancement if changes in the non-radiative rate were the dominant effect. Thus 

overall, the combination of calculations backed by the time-resolved PL measurements provide 

evidence that the PL enhancement observed for Ag+ doped CdSe is a result of a radiative rate 

acceleration caused by symmetry breaking and consequent brightening of the dark exciton state 

by the introduced charge.
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Note that while we see qualitative agreement between experimental and calculated 

radiative rates, obtaining exact quantitative agreement would require knowledge of the exact 

charge placement and distribution with respect to the NC crystal structure.  Clearly, this level of 

knowledge of the doping process down to the single NC level is beyond what is currently 

possible to experimentally determine.  Indeed, the heterogeneity in the cation exchange process 

Figure 4.  (a) Various configurations of charges within a NC.  Positive charges 
represent Ag+ ions and negative charges represent counterions.  The configurations 
highlighted in green are those that presented accelerated radiative rates.  (b) 
Calculated radiative rate acceleration for the various configurations in (a). Tau is 
the radiative lifetime, which is inversely proportional to the radiative rate. 

Page 13 of 20

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



creates difficulty in consistently producing identical NC samples due to the natural 

irreproducibility of the required post-processing precipitation and washing steps.  Coupled with 

the inability to precisely characterize and control the chemical nature of NC surfaces down to the 

atomic level and the sensitivity in PL to the exact placement of the ions within and on a NC, each 

sample doping set is best considered independently. Indeed, there are many combinations of 

dopant ions and counterions that can lead to an enhancement in the PL intensity/increase in NC 

charge.  Thus it is expected that there are a wide variety of possible trends that could be observed 

in PL intensity/NC charge with increasing exposure to ions.  For illustration, some of these 

additional configurations are expressed in the cartoon of Figure S15.  Some of these 

configurations (those in symmetrical arrangements) can reduce the radiative decay rate while 

others (the asymmetrical configurations) can increase the rate, and thus non-monotonic 

dependences in PL with respect to amount of Ag added are observed.  However, at low doping 

concentrations, such as with the introduction of a single charged Coulomb center, an increase of 

the radiative decay rate is extracted from the analysis of time-resolved PL data, which is 

qualitatively consistent with the calculated effect due to a fixed charged center. 

While sample heterogeneity makes predicting the changes in charge and PL intensity 

across doping levels problematic, there is a clear correlation between NC average charge and PL 

intensity.  The observed changes are definitely caused by the introduction of the cations, whether 

as dopants that enter the NC or as charges that sit near the surface of the NCs.  Scanning 

transmission electron microscopy-electron energy loss spectroscopy measurements are one 

possible route to locate the dopants within the NCs to parse out which configurations of Ag+ 

doped NCs give specific optical and charge results.  Combining this physical characterization 

with single molecule fluorescence studies will elucidate the effects of doping on the optical 

Page 14 of 20

ACS Paragon Plus Environment

Nano Letters

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



properties of the NCs and will help to correlate the dopant quantity and location to the already 

established charge/PL intensity connection explained here.

In conclusion, cation dopants were introduced to CdSe NCs using a cation exchange 

procedure and the resulting photophysical properties were generally comparable to those of 

similar systems previously studied.  EFM was used to characterize the charge of the doped CdSe 

NCs, and an unexpected and remarkable relationship between average charge and ensemble 

exciton PL intensity was observed.  The NC samples that exhibited an exciton PL intensity 

enhancement had greater charge than those that were dimmer.  These findings suggest that the 

enhancement in PL intensity previously ascribed to the Ag dopants sitting interstitially within the 

NC lattice might be better explained by the mere presence of a cation providing a charge that 

causes an electric field resulting in increased radiative decay, a proposition supported by both the 

experimental results and theoretical work presented here.
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