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Summary

� Plant genotype strongly affects disease resistance, and also influences the composition of

the leaf microbiome. However, these processes have not been studied and linked in the

microevolutionary context of breeding for improved disease resistance. We hypothesised that

broad-spectrum disease resistance alleles also affect colonisation by nonpathogenic symbionts.
� Quantitative trait loci (QTL) conferring resistance to multiple fungal pathogens were intro-

gressed into a disease-susceptible maize inbred line. Bacterial and fungal leaf microbiomes of

the resulting near-isogenic lines were compared with the microbiome of the disease-suscepti-

ble parent line at two time points in multiple fields.
� Introgression of QTL from disease-resistant lines strongly shifted the relative abundance of

diverse fungal and bacterial taxa in both 3-wk-old and 7-wk-old plants. Nevertheless, the

effects on overall community structure and diversity were minor and varied among fields and

years. Contrary to our expectations, host genotype effects were not any stronger in fields with

high disease pressure than in uninfected fields, and microbiome succession over time was sim-

ilar in heavily infected and uninfected plants.
� These results show that introgressed QTL can greatly improve broad-spectrum disease

resistance while having only limited and inconsistent pleiotropic effects on the leaf micro-

biome in maize.

Introduction

Phyllosphere microbiomes – the communities of bacteria and
fungi living on and in plant leaves – profoundly affect the health
of their hosts and the entire ecosystem (Lindow & Brandl, 2003;
Vorholt, 2012; Laforest-Lapointe et al., 2017). Leaf-dwelling
microbes can interfere with the exchange of gases and plant-
derived volatiles (Bringel & Cou�ee, 2015), alter patterns of her-
bivory (Clay, 1990; Humphrey et al., 2014), participate in nitro-
gen cycling (Murty, 1984; Papen et al., 2002; F€urnkranz et al.,
2008), and influence drought resistance (Schardl et al., 2004;
Rodriguez et al., 2009). Microbial symbionts are also noted for
their role in disease resistance; manipulation of the phyllosphere
microbiome can alter disease susceptibility in various species
including tomato, poplar, wheat, and Arabidopsis thaliana (Mas-
sart et al., 2015; Busby et al., 2016; Ritpitakphong et al., 2016;
Berg & Koskella, 2018). Despite the importance of leaf microbes
to plant health, little information is known about whether they
are affected by systematic changes in host genotype, such as those
introduced by crop breeders.

Previous studies of microbiome heritability have compared
distantly related genotypes to each other, or mutated genes to the

wild-type (Bodenhausen et al., 2014; Horton et al., 2014; Ritpi-
takphong et al., 2016; Wagner et al., 2016; Wallace et al., 2018).
Here, we take a new approach by using germplasm from a real
breeding experiment. We compare leaf microbiome composition
before and after the introgression of quantitative trait loci (QTL)
from disease-resistant maize lines into disease-susceptible lines to:
(1) test whether systematic genetic changes commonly used in
breeding programs have the potential to alter crop microbiomes,
and (2) disentangle the relationships between host genotype, dis-
ease resistance and leaf-associated microbes.

The ecological, physiological and molecular mechanisms by
which the microbiome influences disease resistance are complex
and poorly understood. For instance, in A. thaliana, the foliar
community did not directly inhibit the pathogen Botrytis cinerea
but still conferred resistance via an unknown interaction with the
plant host (Ritpitakphong et al., 2016). Inoculation with individ-
ual fungal endophytes substantially reduced symptoms of
Melampsora rust infection in Populus trichocarpa, but other endo-
phytes had no effect or even increased disease severity (Busby
et al., 2016). And in tomato, the ability of the phyllosphere
microbiome to improve resistance to Pseudomonas syringae
depended on the nutrient status of the plant (Berg & Koskella,
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2018). These examples illustrate the need for further investiga-
tion of the links between pathogens, the rest of the leaf micro-
biome, and their shared host.

One potential link between disease resistance and the micro-
biome is a shared sensitivity to plant genotype, which largely
determines the plant phenotype. Host phenotype, in turn, deter-
mines the habitat available to both pathogenic and non-
pathogenic microbes. Several studies have detected host genetic
variation affecting the phyllosphere microbiome either among or
within plant species (Sapkota et al., 2015; Wagner et al., 2016;
Wallace et al., 2018), but most of the plant genes and traits that
shape microbiome composition remain unknown. In laboratory
settings, mutations in cuticle synthesis genes affect the composi-
tion of foliar bacterial communities (Bodenhausen et al., 2014;
Ritpitakphong et al., 2016), and salicylic acid signalling and glu-
cosinolate biosynthesis genes can alter root microbiome composi-
tion (Bressan et al., 2009; Lebeis et al., 2015). A genome-wide
association study of field-grown A. thaliana revealed that genes
affecting cell wall traits, defence-response pathways, and trichome
development were overrepresented among the candidate genes at
QTL affecting foliar microbiome composition (Horton et al.,
2014). In poplar, downregulation of a key enzyme in the lignin
biosynthetic pathway dramatically changed the composition of
endophyte communities in leaves, stems, and roots (Beckers
et al., 2016). Additionally, evidence is mounting that the plant
innate immune system is centrally involved in regulating micro-
bial symbionts (Hacquard et al., 2017).

Some of the plant traits implicated in microbiome variation
have also been implicated in quantitative disease resistance
(QDR), or partial resistance to one or more pathogens (Poland
et al., 2009; Niks et al., 2015; Beckers et al., 2016; Yang et al.,
2017). For example, salicylic acid is a critical hormonal regulator
of defence responses (Loake & Grant, 2007); and while the leaf
cuticle can be a physical barrier to pathogens and a reservoir for
antimicrobial compounds, it also can be recognised and used by
pathogens to stimulate invasion (Martin, 1964; Bessire et al.,
2007; Kachroo & Kachroo, 2009; Serrano et al., 2014). QDR is
a valuable target for crop improvement for several reasons. Com-
pared with the immunity conferred by large-effect resistance (or
ʻR’) genes, QDR is generally more difficult for pathogens to
overcome via co-evolution (St Clair, 2010). Additionally, unlike
the highly specific R-genes, QDR genes can be effective against
several pathogens (Wisser et al., 2011; Wiesner-Hanks & Nelson,
2016; Yang et al., 2017). The resulting broad-spectrum protec-
tion, or multiple disease resistance (MDR), is desirable when sev-
eral pathogens are present or disease pressures are unpredictable.

By definition, MDR loci affect colonisation success of multiple
pathogenic microorganisms. Therefore we hypothesised that they
might also influence other microbiome members. MDR is usually
a quantitative plant trait underlain by a large number of relatively
small-effect genes, likely with diverse functions. Although a few
MDR genes have been identified (Krattinger et al., 2009; Wiesner-
Hanks & Nelson 2016; Sucher et al., 2017), most of the mecha-
nisms underlying MDR remain unknown. Despite this, systematic
breeding methods such as controlled crosses and recurrent selec-
tion enable genetic improvement of this complex trait.

We used germplasm from an MDR breeding programme to test
whether QTL introgressed from disease-resistant lines have
pleiotropic effects on the maize leaf microbiome. We compared the
foliar microbiomes of improved and unimproved maize lines in sev-
eral fields, at early-season and late-season time points, both with and
without pathogen infection. Our data enabled us to test several
hypotheses. First, because these MDR lines were selected for resis-
tance to three different fungal pathogens (Lopez-Zuniga et al., 2019;
Martins et al., 2019), we hypothesised that the introgressed alleles
would have stronger effects on the fungi than bacteria. Second,
because these loci have known effects on disease resistance, we
hypothesised that their effects on the microbiome would be stronger
in environments with higher disease pressure (Fig. 1). Finally, we
hypothesised that disease establishment would disrupt patterns of
microbiome succession over the growing season. Our results suggest
that introgression of QTL from disease-resistant lines can greatly
improve broad-spectrum disease resistance with only limited, con-
text-dependent side effects on the maize leaf microbiome.

Materials and Methods

Field experimental design

To test our hypotheses, we compared microbiome composition
of near-isogenic plants with and without introgressed chromo-
some segments that conferred MDR (Lopez-Zuniga et al., 2019;
Martins et al., 2019). Two MDR inbred lines (NC304 and Ki3)
were crossed with H100, a disease-susceptible line. Using single-
seed descent, the resulting F1 offspring were backcrossed three
times to H100 and then self-fertilised for four genera-
tions (Fig. 2). The resulting populations of c. 200 BC3F4:5 near-
isogenic lines (NILs) were mostly genetically identical to the
recurrent elite parent (H100) but retained small chromosome
segments from the donor lines. These NILs were assessed for
resistance to three fungal pathogens: Bipolaris maydis,
Setosphaeria turcica and Cercospora zeae-maydis, the causative
agents of southern corn leaf blight, northern corn leaf blight and
grey leaf spot, respectively.

For this study, we selected eight NILs (four per cross; Support-
ing Information Table S1) that were highly resistant to all three
pathogens. The strong MDR phenotypes of these NILs are likely
to reflect larger-than-average contributions from the MDR par-
ent genome (c. 10% per NIL, compared with the expected 6.25%
based on the breeding design; alleles from Ki3 were also more
homozygous than expected (92% compared with the expected
78%) (Supporting Information Fig. S1; Lopez-Zuniga et al.,
2019). Within each set of NILs there was little overlap between
introgressed regions, and cumulatively they carried c. 40% of
each MDR parent genome (Fig. S1). We planted these eight
NILs and their parent lines in multiple fields at the Central Crops
Research Station (Clayton, NC, USA; Table S2). Replicate plots
were planted in two fields in 2016, and in four fields in 2017
(Fig. 2c). Twenty kernels per line were planted per field, except
for the recurrent parent H100, which was planted at a replication
of 30 kernels per field. Due to uneven germination, final sample
sizes varied among replicates.
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To reduce microbial inoculum from kernel surfaces, we soaked
kernels in 3% hydrogen peroxide for 2 min and rinsed them in
distilled water immediately before planting. In each field, plants
were randomly arranged in five to six adjacent rows of 40–50
plants each, spaced 12 inches apart. To reduce edge effects, we
surrounded plots with two rows of border plants. All plots were
maintained using standard agronomic conditions for rainfed

maize. All fields were separated by < 2 km and had similar soil
types but different crop rotation histories (Fig. 2b; Table S2).

Pathogen inoculation and disease scoring

In 2017, we explored the effects of pathogen invasion on foliar
microbiomes by inoculating 1-month-old plants in two of the

Fig. 1 Host–pathogen–microbiome relationships involve complex interactions among all community members. (a) In our simplified model, host genotype
can affect the late-season microbiome both directly and through cascading effects via disease resistance; for this reason, we hypothesised that multiple
disease resistance (MDR) alleles would exert stronger effects on the microbiome when disease pressure is higher. Furthermore, host genotype could affect
disease severity both directly (via immune system and other traits that impact pathogen success) and indirectly (via traits that influence early microbiome
assembly, which in turn interacts with the pathogen). (b) The repercussions of breeding-induced changes in a microbial symbiont’s relative abundance
(Fig. 4) will depend on whether it has a positive effect, negative effect or no effect on host health. For example, if quantitative trait loci (QTL) introgression
causes a beneficial organism to increase in abundance, or a harmful organism to decrease in abundance, the expected outcome for the host plant would be
an improvement in health or performance.

Fig. 2 Overview of experimental design. Panel (a) illustrates the crossing design used to generate the eight near-isogenic lines (NILs) used in this
experiment that were mostly genetically identical to their disease-susceptible parent line H100, but which had chromosome segments introgressed from a
donor line (Ki3 or NC304) that conferred multiple disease resistance (MDR). Eight NILs were planted in randomised plots along with the three parent lines.
(b) Locations of the replicate plots within Central Crops Research Station, Clayton, NC, USA. Map data and imagery: Google. (c) Summary of the sampling
scheme for six experimental replicate plots over 2 yr. For the pilot experiment in 2016, only a single time point was sampled at two fields, and only fungi
were quantified. In 2017, we quantified both bacteria and fungi; plants were sampled at two time points in four fields, two of which were inoculated with
either southern leaf blight (SLB) or northern leaf blight (NLB).
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four fields. Plants in field ʻC10’ were inoculated with
Cochliobolus heterostrophus (causal agent of southern leaf blight);
plants in field ʻD3’ received Setosphaeria turcica (causal agent of
northern leaf blight). The other two fields received no inocula-
tion (Fig. 2c). Inoculations were performed by incubating ster-
ilised sorghum grains in pathogen cultures, then dropping
infected grains into the whorl of each plant (Sermons & Balint-
Kurti, 2018). At 2 wk after inoculation, we visually scored symp-
tom severity using the Field Book application (Rife & Poland,
2014). Northern leaf blight symptoms were scored by estimating
the percentage of each leaf damaged by lesions, then averaging
these scores for each plant. Southern leaf blight symptoms were
scored for entire plants on a scale from 1 (complete leaf mortal-
ity) to 9 (asymptomatic) (Lopez-Zuniga et al., 2019).

Sample collection

In both years, we collected leaf samples for microbiome quantifi-
cation when plants were 3 wk old. In 2017 only, we sampled
leaves again when plants were 7 wk old. The increase in experi-
mental scope between years reflected an increase in available
resources. We used a standard hole punch to remove three discs
evenly spaced from the base to the tip of a single leaf (Fig. S2).
For the early time point, we sampled the third leaf; if the third
leaf was too small or too damaged (< 5% of plants), we sampled
the second or fourth leaf instead. For the second time point we
sampled the oldest leaf that was at least 50% green and was not
touching the soil, because the microbiomes of older leaves are
more likely to reflect host-driven processes than younger leaves,
which are in earlier stages of microbiome assembly and more
prone to stochastic influences (Maignien et al., 2014). We
selected green tissue and avoided lesions because we were primar-
ily interested in direct genotype effects on nonpathogenic micro-
bial symbionts, rather than differences in pathogen abundance
(Fig. S2); leaves with insufficient green tissue were not sampled.
Leaf discs were collected into sterile tubes and stored on ice until
transfer into �20°C. Tools were rinsed in 70% ethanol between
samples to reduce transfer of microbes among plants.

DNA extraction, library preparation and sequencing

To remove loosely associated microbes from leaf surfaces, we vor-
texed leaf discs in sterile water for 10 s on maximum speed and
shook them dry before freezing them at �80°C. Lyophilised leaf
discs were randomised into 96-well plates and powdered using a
Retsch MM301 mixer mill (Retsch GmbH, Haan, Germany;
1 min, 25 Hz). Several wells were left empty as negative controls;
to several others we added a mock community as positive con-
trols (ZymoBiomics Microbial Community Standard; Zymo
Research, Irvine, CA, USA). We extracted DNA using the Syn-
ergy 2.0 Plant Kit (OPS Diagnostics, Lebanon, NJ, USA) follow-
ing the manufacturer’s instructions, except that we doubled the
length of the bead-beating step.

We generated amplicon libraries separately for bacteria and
fungi using a two-PCR-step approach. First, we amplified 16S-v4
and ITS1 using the standard primer pairs 515f/806r and ITS1f/
ITS2, respectively. Primers included upstream ʻframeshift’

stretches of 3–6 random nucleotides to increase library complex-
ity, plus a binding site for universal Illumina adaptors. Each 10-
ll reaction included 0.4 ll of each primer (10 lM), 5 ll of
5Prime HotMasterMix (Quanta Bio, Beverly, MA, USA), 1.5 ll
of template DNA, and 0.15 ll PNA PCR-blocker to reduce
amplification of plastid sequence (for bacterial libraries only;
Lundberg et al., 2013). The PCR program for fungal libraries
included an initial 2-min denaturation at 95°C; 27 cycles of
denaturation at 95°C/ 20-s primer annealing at 50°C/ 50-s
extension at 72°C; and a final 10-min extension at 72°C. The
program for bacterial libraries was identical except that the
primer annealing step was at 52°C and was preceded by a 5-s
PNA annealing step at 78°C. PCR products were cleaned by
adding 7 ll of magnetic SPRI bead solution, washing magnet-
bound DNA twice with 70% ethanol, and eluting in 10 ll ultra-
pure water.

The second PCR step added dual-indexed universal Illumina adap-
tors. The forward and reverse primers consisted of (from 50 to 30) the
P5 or P7 adaptor sequence (respectively), a unique 8-bp index, and a
binding site for annealing to amplicon sequences. PCR conditions
were as above, except that only eight cycles were performed and 1 ll
of the first-step PCR product was used as the template. We then
pooled 1 ll from each reaction to create separate pools for fungi and
bacteria, which we purified by adding magnetic bead solution at a
ratio of 0.8 : 1 (v/v), washing twice with 70% ethanol, and eluting
DNA in ultrapure water. Aliquots of the fungal and bacterial pools
were combined at equimolar concentrations.

The final combined pool derived from the 2017 samples was
sequenced at 1344-plex on an Illumina HiSeq2500 machine in
Rapid Run mode (Illumina, Inc., San Diego, CA, USA; 250-bp
paired-end reads). To increase library complexity, a 5% phiX
spike-in was added before sequencing. Because this first sequenc-
ing run yielded ample internal transcribed spacer (ITS) sequence
but low coverage of 16S amplicons, we sequenced the 16S ampli-
con pool again on the HiSeq platform and on the MiSeq using
V2 chemistry (250-bp paired-end reads) along with the smaller
pool of ITS amplicons from the 2016 samples. All sequencing
was performed by the North Carolina State University Genomic
Sciences Laboratory (Raleigh, NC, USA).

Sequence processing and quality filtering

After trimming primers from raw, demultiplexed FASTQ files
using CUTADAPT v.1.12 (Martin, 2011), we processed sequences
using DADA2 v.1.10.1 (Callahan et al., 2016). We required for-
ward and reverse 16S reads to have a maximum of two expected
errors and no ambiguous bases, then truncated them at 220 bp
and 160 bp, respectively. We required forward and reverse ITS
reads to have a maximum of 1 and 2 expected errors (respec-
tively) and no ambiguous bases, but did not truncate reads to a
fixed length. Error rates were inferred from 39 106 reads; this
was done separately for the ITS data and 16S data, and separately
for each independent sequencing run. Quality-filtered reads were
de-replicated, de-noised, and merged to generate amplicon
sequence variants (ASV) tables. At this point we merged bacterial
ASV tables from the three 16S sequencing runs with each other,
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and also merged fungal ASV tables from 2016 and 2017, which
had been sequenced separately. After removing chimeric ASVs,
we assigned taxonomy using the RDP Classifier (Wang et al.,
2007) trained on the RDP (v.16) training set for bacteria and the
UNITE database for fungi (K~oljalg et al., 2005; Cole et al.,
2014).

We discarded ASVs without taxonomic assignment at the
kingdom level and ASVs that were assigned to chloroplasts or
mitochondria (ʻnonusable reads’). We used the mock community
positive controls to determine a within-sample relative abun-
dance threshold that removed most contaminant ASVs while
retaining as much of the data as possible. This threshold (0.091%
for bacteria, 0.221% for fungi) was then applied to all samples.
We then removed ʻnonreproducible’ ASVs that were not
observed at least 25 times in at least five samples (Lundberg et al.,
2012). Together, these filtering steps reduced the dataset to 1502
bacterial ASVs while retaining 93.3% of the data. For fungi, the
dataset retained 548 ASVs and 90.5% of the original sequences.
Finally, we excluded samples with < 500 usable reads. Of the
original 1728 fungal samples, 194 were excluded from analysis;
for bacteria, 174 of 1315 were excluded. The number of reads
remaining after all filtering steps was saved as the ʻsampling
effort’ for each sample, normalised and centred for use as a
covariate in downstream analyses.

Data analysis

We used R v.3.6.0 for all analysis, especially the packages PHY-

LOSEQ, TIDYR, LME4, DESEQ2, VEGAN, and LMERTEST (McMurdie
& Holmes, 2013; Love et al., 2014; Bates et al., 2015;
Kuznetsova et al., 2017). When applicable, we used the false dis-
covery rate (FDR; Benjamini & Hochberg, 1995) to adjust P-val-
ues from multiple comparisons. All analyses were performed in
parallel for fungi and bacteria. Code and raw data are available in
a Zenodo repository (Wagner et al., 2019); raw reads are available
in the NCBI Sequence Read Archive under BioProject
#PRJNA565009.

We estimated alpha diversity using the Shannon and abun-
dance-based coverage estimator (ACE) metrics, which describe
community evenness and richness, respectively (Hughes et al.,
2001). For analyses that required normalisation (e.g. ordination)
we applied the variance-stabilising transformation from the
ʻDESEQ2’ package (Love et al., 2014; McMurdie & Holmes,
2014). When modelling relative abundances of individual taxa,
we tested only taxa with abundances that were at least 10% of the
mean taxon abundance (Wagner et al., 2016). For example, the
mean bacterial ASV was observed 50 689 times across the full
dataset; therefore, we excluded all bacterial ASVs that were
observed fewer than 5069 times. This greatly reduced the number
of tests to be performed but retained most of the data; for exam-
ple, across the full dataset it reduced the number of bacterial
ASVs from 1502 to 576 while retaining 98.9% of all observa-
tions. We explored overall patterns of microbiome variation by
performing multivariate ANOVA on the Bray–Curtis dissimilar-
ity matrix of the full variance-stabilised dataset (Oksanen et al.,
2018). This model included the predictor variables ʻGenotype’,

ʻRep’ (i.e. field and year), ʻGenotype 9 Rep’, ʻTime point’, and
ʻGenotype 9 Time point’.

Characterisation of beta diversity and changes in beta diver-
sity In addition to overall microbiome composition, we were
interested in whether QTL introgression from disease-resistant
lines affected microbiome variability. One host genotype might
be hospitable to only a small subset of microbes, whereas another
may be hospitable to a wider range of symbionts. The former
host would be expected to exhibit low variability among biologi-
cal replicates, whereas the latter has the potential to exhibit higher
variability among biological replicates due to stochastic and
microenvironmental effects. Such a scenario would manifest as a
host genotype effect on beta dispersion.

Beta dispersion for groups of samples was calculated using the
function ʻvegan::betadisper’ (Oksanen et al., 2018). For such
analyses, samples were grouped in several different ways depend-
ing on the question being asked. For example, to ask whether
beta diversity differed between early and late time points, we
identified a centroid location in ordination space for each time
point, and then calculated each individual sample’s distance to its
corresponding centroid. This ʻDistance_to_Centroid’ metric
could then be used to compare beta diversity of the two groups
using standard statistical approaches as detailed below. We used
the same approach to assess differences in beta diversity among
host genotypes and between time points in specific fields.

These analyses tested whether leaf microbiomes of one group
of plants were more homogeneous than those of another group;
however, they were not meant to compare overall microbiome
composition between the groups. Rather, our conclusions about
differences in microbiome composition between genotypes were
drawn from the multivariate ANOVA and negative binomial
models described above and below.

Testing effects of MDR alleles on the juvenile and adult maize
microbiomes Next, we tested the hypothesis that introgression
of QTL from MDR lines altered microbiome composition. We
conducted these analyses separately for 3-wk-old plants (ʻearly’
time point) and 7-wk-old plants (ʻlate’ time point). For each time
point we performed multivariate ANOVA of Bray–Curtis dis-
similarity, using a model that included ʻGenotype’, ʻRep’, and
their interaction as predictor variables. Because we were specifi-
cally interested by contrasting MDR genotypes to the susceptible
line H100 (Fig. 2a), we repeated this analysis 10 times, each time
subsetting the data to include only H100 and one MDR geno-
type. P-values were corrected for multiple comparisons and
FDR < 0.05 was considered statistically significant (Benjamini &
Hochberg, 1995).

We took a similar approach to test whether QTL introgression
from disease-resistant lines altered alpha and beta diversity. We
modelled ACE, Shannon, and beta diversity (i.e. distance to the
centroid for the corresponding genotype within each Rep) using
separate linear mixed-effects models with ʻGenotype’, ʻRep’, and
their interaction as fixed-effect predictors. ACE diversity was log-
transformed to improve homoscedasticity. Standardised sequenc-
ing depth and a ʻPlate’ random-intercept term were included as
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nuisance variables to control for variation in sampling effort and
batch effects. Post hoc Dunnett t-tests (Dunnett, 1955) were used
to contrast each MDR genotype to H100 within each Rep while
controlling the family-wise error rate. Finally, to determine
which microbial taxa responded to host genotype, we fit negative
binomial models to counts of individual ASVs, genera, families,
orders, classes and phyla, using ʻGenotype’, ʻRep’, and their
interaction as predictor variables. For these analyses, H100 was
set as the reference genotype, so that the coefficients from the
model described contrasts between MDR lines and the disease-
susceptible control. P-values were adjusted to correct for multiple
comparisons (across all taxa tested, in 10 MDR genotypes, in
multiple experimental replicates) at FDR < 0.05.

Investigating the effect of disease on seasonal microbiome
dynamics We analysed the effect of pathogen invasion on the
microbiome by comparing microbiome succession between time
points: (1) in inoculated vs uninoculated fields; and (2) as a func-
tion of infection severity at the individual plant level within each
field. First, we performed a partial constrained distance-based
redundancy analysis (based on the Bray–Curtis dissimilarity met-
ric) to characterise the overall community response to Time
point9 Field interactions after controlling for sequencing depth.
We used permutation tests to statistically compare this model to
an alternative model containing only Time point and Field main
effects. To determine which taxa drove this interaction, we fit
negative binomial models for individual ASVs, genera, families,
orders, classes, and phyla in response to the Time point9 Field
interaction; likelihood ratio tests were used to compare these to
alternative models with only the Time point and Field main
effects. To investigate how disease affected alpha and beta diver-
sity at the field level from early season to late season, we calcu-
lated each individual plant’s change in Shannon diversity and in
Distance_to_Centroid between time points (centroid calculated
for each Field at each Time point). We then fit linear mixed
models to these calculated values with ʻField’ as a fixed-effect pre-
dictor. Standardised sequencing depth and a ʻPlate’ random-in-
tercept term were also included as nuisance variables to control
for variation in sampling effort and batch effects. Statistical sig-
nificance was assessed using ANOVA with Type III sums of
squares and Satterthwaite’s approximation for denominator
degrees of freedom. We used Tukey’s Honest Significant Differ-
ence test to compare the early-to-late changes in alpha and beta
diversity among fields while controlling the family-wise error
rate. Finally, within each inoculated field, we regressed each
plant’s change in alpha diversity and in community composition
(i.e. Bray–Curtis dissimilarity between the two time points)
against symptom severity.

Results

The final fungal dataset included 546 ASVs and 1533 samples
from six replicate plots over 2 yr. The bacterial dataset included
1502 ASVs and 1141 samples from four plots in 2017 only. The
2017 data included two time points: early (3-wk-old plants) and
late (7-wk-old plants), whereas the 2016 data represented the

early time point only (Fig. 2c). Median replication ranged from
N = 11 to N = 14 per genotype per replicate (Fig. 2c). The
median sequencing depth per sample was 29 283 for fungi and
97 955 for bacteria.

Bacterial microbiomes were structured largely by time point,
which explained 17.6% of the variation in community structure
(Fig. 3; Table 1). Experimental replicate (i.e. field) and host
genotype each explained only c. 3% of the variation. At the early
time point, communities were dominated by Pantoea spp. (53.5-
% relative abundance) followed by Herbaspirillum spp. (12.3%).
However, 4 wk later, the relative abundances of these groups had
declined sharply to 4.4% and 2.0%, respectively. The dominant
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Fig. 3 Maize leaf microbiomes shifted dramatically between 3 and 7wk
after planting. (a, b) Overall microbiome composition shifted strongly
between time points. MDS1 and MDS2 are the two major axes of
variation after ordination of the Bray–Curtis dissimilarity matrix using
nonmetric multidimensional scaling, that is, numerical summaries of
community composition. Each point represents one leaf sample; points
separated by smaller distances in MDS space indicate samples with more
similar microbiomes. (c, d) On average, alpha diversity was higher at the
late time point than the early time point. The top, middle and bottom lines
of the boxes mark the 75th percentile, median and 25th percentile,
respectively; box whiskers extend 1.5 times the interquartile range above
and below the box. (e, f) Beta diversity (i.e. variation among samples) was
stable over time for bacteria, but increased for fungi between time points.
Boxplot statistics are the same as in panels (c, d).
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bacterial members of the adult maize leaf microbiome belonged
to the genera Sphingomonas (38.9%) and Methylobacterium
(29.2%; Table S3).

By contrast, fungal communities were strongly shaped by
experimental replicate (i.e. field and year; Table 1); however, time
point became the dominant predictor when data from 2016 were
excluded, indicating that differences between years contributed
to this result (Fig. S3). In 2016 the most abundant fungal genus
in seedling leaves was Sporobolomyces (31.7% relative abundance)
followed by Epicoccum (12.7%). The following year, the same
genera were again the two most common in young leaves,
although in the opposite order (Epicoccum 24.7%, Sporobolomyces
8.3%). In older plants, Epicoccum remained the most abundant
genus, despite declining to 9.8% relative abundance. Overall,
there was a high degree of overlap in the most abundant genera
within leaf microbiomes of seedlings in 2016 and 2017
(Table S3). However, one-third of ASVs changed significantly in
relative abundance between years (Fig. S4).

We detected modest host genetic effects on overall composi-
tion of both bacterial and fungal microbiomes, as well as an inter-
action between host genotype and time point (Table 1); we
explore these results in more detail below. On average, alpha
diversity of both kingdoms was higher in 7-wk-old plants relative
to 3-wk-old plants (Fig. 3c,d). By contrast, beta diversity (i.e.
variation among samples) of bacterial communities did not
change between time points, whereas beta diversity of fungal
communities increased (Fig. 3e,f).

In juvenile plants, QTL introgression altered the relative
abundances of diverse taxa but not overall community
structure

First, we investigated whether the introgression of QTL from
MDR genotypes altered microbiome composition in the leaves of
young, undiseased maize plants. For these analyses we used data
from both years, but included only the data from the early time
point (3 wk after planting). Alpha diversity, measured using the
ACE metric, varied among genotypes (ANOVA, Geno-
type9 Rep, P = 0.070 and P = 0.0038 for bacteria and fungi re-
spectively; Table S4). However, the strength and direction of this
effect varied across experimental replicates. In some replicates,
the NILs deviated from H100 in the same direction as the MDR
parent lines, consistent with the hypothesis that the introgressed
QTL affect both disease resistance and early microbiome

diversity. In others, however, there was no apparent genetic varia-
tion at all (Fig. S5). This suggests that host genotype interacts
with the environment in complex ways to influence the taxo-
nomic diversity of leaf-associated microbial communities in
maize. Tests of beta diversity – that is, variation in microbiome
composition among individuals of the same genotype – showed
similar patterns. Beta diversity varied among genotypes, but the
direction and strength of the effect were inconsistent among
experimental replicates (Table S5; Fig. S6).

In addition to alpha and beta diversity, we investigated the
effects of QTL introgression from MDR lines on overall commu-
nity structure using permutational multivariate analysis of vari-
ance (MANOVA). Only one of the two disease-resistant parent
lines (and none of the NILs) differed from H100 in bacterial
microbiome composition (Table 2). Similarly, fungal community
composition did not differ between any of the MDR lines and
H100 at the early time point, contradicting our hypothesis that
these loci would have stronger and more consistent effects on
fungi than bacteria. Nevertheless, we detected a diverse range of
individual taxa that changed in relative abundance in response to
MDR allele introgression. For instance, 33 fungal genera were
either enriched or depleted in at least one NIL relative to the
common disease-susceptible parent line H100, with effect sizes
ranging from c. four-fold to over 1000-fold (Wald test,
FDR < 0.05; Fig. 4a; Table S6). These differing patterns detected
by permutational MANOVA and by negative binomial models
are not necessarily contradictory; the former method can detect
simultaneous shifts in a large number of species, even if most or
all of those shifts are too subtle to be detected using univariate
models (Anderson, 2001). Similarly, strong responses by a rela-
tively small number of taxa – such as those observed in MDR
NILs (Fig. 4) – may be missed by permutational MANOVA if
the rest of the community stays relatively stable.

Many taxa responded similarly to several introgressions. For
example, several groups (including Neorhizobium, Cryptococcus,
and Uwebraunia) were consistently enriched or depleted in at
least five NILs. This strengthens the evidence that introgression
from disease-resistant lines is likely to alter the abundance of cer-
tain microbiome members, because multiple nonoverlapping
introgressions had similar effects on these taxa. However, the
inconsistency of this response across fields and years suggests that
the QTL for microbiome composition have lower penetrance
than the QTL for disease resistance (Lopez-Zuniga et al., 2019).
For instance, multiple taxa (such as Buchnera, Selenophoma,

Table 1 Results of permutational MANOVA for fungal and bacterial community composition in the leaves of maize plants.

Bacteria Fungi

R2 Pseudo-F test P R2 Pseudo-F test P

Genotype 0.010 F10,1086 = 1.50 0.002 0.008 F10,1456 = 1.72 0.001
Time point 0.176 F1,1086 = 255.13 0.001 0.121 F1,1456 = 256.10 0.001
Rep 0.034 F3,1086 = 16.60 0.001 0.154 F5,1456 = 65.37 0.001
Genotype9 Time point 0.009 F10,1086 = 1.27 0.015 0.008 F10,1456 = 1.65 0.001
Genotype9 Rep 0.022 F30,1086 = 1.08 0.115 0.023 F50,1456 = 0.97 0.730

P-values are based on 999 permutations of the Bray–Curtis dissimilarity matrix calculated from variance-stabilised amplicon sequence variant (ASV) tables.
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Moesziomyces, Udeniomyces, and Naganishia) were strongly and
consistently enriched across five or more NILs in one environ-
ment, but were consistently depleted or unaffected in other envi-
ronments (Fig. 4; Table S6).

In adult plants, introgressed QTL improved disease
resistance with minimal effects on microbiome diversity

Next, we investigated whether QTL introgressed from MDR
lines affected the maize leaf microbiome later in the season. At 3
wk before this late-season sampling, plants in two of the four
fields received pathogen inoculations so that at the 7-wk time
point plants in field C10 were infected with southern leaf blight
and those in field D3 were infected with northern leaf blight.
Resistance to both diseases was improved in all eight MDR NILs
relative to the susceptible parent line H100 (Fig. 5; all
P < 4.7e�7, all R2 > 0.70). However, we collected microbiome
data only from green tissue, avoiding lesions of infected plants
(Fig. S2). ASVs corresponding to the introduced pathogens
(Bipolaris maydis and Setosphaeria turcica) were removed from the
dataset before analysis because we were primarily interested in
direct effects of MDR alleles on the nonpathogenic microbiome,
rather than cascading effects on the microbiome driven by
improved disease resistance.

Our results provided mixed support for our hypothesis that
host genotype effects would be stronger at the late time point
(after disease establishment) than the early time point. Permuta-
tional MANOVA showed that the introgressed QTL had
stronger effects on overall community structure in the late time
point, particularly for fungi (Table 2). For both kingdoms,
genetic differences in alpha diversity were minor and were com-
parable between time points (Fig. S5). QTL introgression tended
to decrease beta diversity of fungal communities only at the later
time point, and only in the two fields that had been inoculated

with pathogens. This suggests that at least some of their effects
on the microbiome were mediated through their effects on dis-
ease resistance (Fig. S6). However, we detected considerably
more host-genotype-sensitive taxa at the earlier time point
(Fig. 4; Table S6). Although there was some overlap between the
sets of taxa responding to introgression at the two time points,
the patterns of depletion and enrichment often differed. For
instance, several bacterial genera that were frequently and
strongly depleted in MDR lines at the late time point (Sphingob-
acterium, Chryseobacterium, Roseomonas, Stenotrophomonas, and
Cellulomonas) were not affected by the introgressions at the early
time point (Fig. 4). This indicates that introgression-induced
microbiome differences in seedlings did not generally persist
throughout the growing season.

Altogether, our results indicate that QTL introgression from
disease-resistant lines shifted the relative abundance of diverse
bacterial and fungal taxa in the leaves of 3-wk-old and 7-wk-old
maize plants (Fig. 4). However, the effects of these introgressions
on the microbiome were much more variable among environ-
ments than their effects on disease resistance (Lopez-Zuniga
et al., 2019; Martins et al., 2019). This suggests that changes in
the relative abundance of potentially protective microbes is
unlikely to be a major mechanism by which these particular
MDR alleles confer improved disease resistance.

Seasonal microbiome dynamics were largely insensitive to
disease status

Finally, we shifted our focus away from host genotype to investi-
gate the relationship between disease and the microbiome. We
hypothesised that disease establishment would disrupt the normal
succession of maize leaf microbiomes both: (1) at the whole-field
level; and (2) at the individual plant level. To test these hypothe-
ses, we compared patterns of microbiome change over time in

Table 2 Results of permutational MANOVA of fungal and bacterial community composition in maize leaves at two time points.

MDR line (vs H100)

Bacteria Fungi

Early time point Late time point Early time point Late time point

Geno. Geno.9 Rep Geno. Geno.9 Rep Geno. Geno.9 Rep Geno. Geno.9 Rep

Ki3 0.014* 0.024 0.016* 0.026 0.003 0.016 0.009** 0.023**
DRIL32.063 0.009 0.026 0.012 0.030 0.005 0.023 0.011* 0.018
DRIL32.095 0.011** 0.022 0.007 0.022 0.004 0.017 0.005 0.019
DRIL32.134 0.009 0.021 0.007 0.023 0.004 0.019 0.012* 0.020
DRIL32.140 0.007 0.018 0.008 0.019 0.002 0.017 0.007 0.015
DRIL62.030 0.009 0.025 0.011 0.032 0.006 0.023 0.019*** 0.022
DRIL62.032 0.008 0.024 0.010 0.030 0.004 0.019 0.009** 0.025**
DRIL62.054 0.009 0.023 0.008 0.026 0.005 0.018 0.008 0.022
DRIL62.127 0.008 0.021 0.006 0.025 0.002 0.015 0.008 0.019
NC304 0.009 0.028 0.022* 0.031 0.008 0.024 0.021*** 0.029*

Each MDR line was individually compared with the common disease-susceptible genetic background, H100. R2 values are shown for the Genotype and
Genotype9 Rep terms of each model. For the early time point, the replicate factor included variation among fields and between years; for the late time
point, it only included variation among fields. Statistical significance was based on comparison of pseudo-F values after 999 permutations of the Bray–Curtis
dissimilarity matrix calculated from variance-stabilised ASV tables.
Bold values indicate statistically significant results at FDR < 0.05.
*FDR < 0.05; **FDR < 0.1; ***FDR < 0.01.
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two pathogen-infected fields vs two control fields, and in heavily
infected individual plants vs less-infected individuals of the same
genotype within a field.

Microbiome composition and diversity changed dramati-
cally between 3 and 7 wk after planting in all fields, regardless
of infection status (Fig. 6). Community composition diverged
among fields over time (Fig. 6a; distance-based redundancy
analysis, Time point9 Field P = 0.001), especially for fungi.
Notably, fungal communities in pathogen-inoculated fields
diverged in overall composition from those in noninoculated
fields (Fig. 6a). However, the relative abundances of individ-
ual taxa generally changed in the same direction over time in

all four fields (Fig. 6b). Furthermore, the average shift in rela-
tive abundance between time points was similar in magnitude
between infected and uninfected fields (Fig. 6b,c). Temporal
changes in alpha and beta diversity varied in magnitude
among fields for both bacteria and fungi (Fig. 6d; ANOVA
P < 0.05 for all), but these differences did not correspond to
disease treatment. Together, these results did not support our
prediction that microbiome composition would shift more
dramatically over time in environments with higher disease
pressure.

Because our disease treatments had to be applied to entire
fields, replication was low and treatment was confounded with

(a) (b)

Fig. 4 Introgression of quantitative trait loci (QTL) from multiple disease resistance (MDR) lines altered the relative abundance of diverse taxa in leaves of
3-wk-old and 7-wk-old maize. The enrichment/depletion of fungal (top) and bacterial (bottom) genera caused by introgression of MDR alleles into the
H100 genetic background is shown for (a) the early time point/juvenile plants, and (b) the later time point/adult plants. MDR genotypes ʻKi3’ and ʻNC304’
are the parent lines; the others are near-isogenic lines (NILs) derived from crosses between those lines and the disease-susceptible line H100 (Fig. 2). Taxa
with significant decreases or increases in relative abundance (Wald test, FDR < 0.05) are shown in red or blue, respectively. The relative abundance of each
genus is shown to the right of each heat plot; to improve figure clarity for the less abundant taxa, the x-axes were truncated and the relative abundances of
the more common taxa are shown numerically. Fungal taxa unidentified at the genus level were excluded for clarity. Additional data on enrichment/
depletion of organisms from other taxonomic levels are provided in Supporting Information Table S6.
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other factors such as the species of crops planted in adjacent
fields, proximity to roads and trees, and the species of crops
planted the previous year (Fig. 2; Table S2). As an additional test
to circumvent this problem, we investigated whether temporal
changes in microbiome composition and diversity were correlated
with disease susceptibility within individual plants. We found no
evidence that symptom severity altered microbiome succession in
either NLB-infected or SLB-infected plants (Fig. S7). This result
suggests that overall infection severity (measured at the whole-
plant level) does not necessarily alter microbiome composition in
the remaining green leaf tissue.

Discussion

Breeding for MDR involves selecting alleles that alter the inva-
sion success of several different pathogens. We demonstrated that
different maize genotypes, identical except for the presence of
QTL introgressed from disease-resistant lines, remain mostly
similar in microbiome structure (Table 2). They do, however,
differ in abundance of a wide variety of microbial taxa both early
in development and later in the growing season (Figs 4, S6;
Tables 1, S6). Interestingly, some of these taxa (e.g. Uwebraunia,
Cryptococcus, Pseudopithomyces) responded similarly to multiple
independent introgressions (Fig. 4), suggesting that the underly-
ing genes may involve partially redundant mechanisms. Many
others, however, were consistently depleted in one field or time
point but consistently enriched in a different environmental con-
text (e.g. Buchnera, Roseateles, Selenophoma,Moesziomyces). Coun-
terintuitively, in some environments seedlings of MDR
genotypes were enriched in two fungal genera known to contain
many pathogens (Curvularia and Mycosphaerella; Fig. 4a),
although all plants were asymptomatic.

The inconsistency of these QTL effects highlights one of the
primary obstacles to understanding the relationship between host
genotype and microbiome composition. Genotype–environment
interactions for microbiome composition and diversity are com-
mon (Peiffer et al., 2013; Agler et al., 2016; Wagner et al., 2016),
contributing to the typically low heritability of these complex
communities. Environmental variation has compounded effects
on plant microbiomes because it not only directly influences the
composition of the ambient pool of free-living organisms from
which the host-associated community is derived, but also alters
the expression of host genes and the emergent host phenotype
(Lundberg et al., 2012; Wagner et al., 2016). This, in turn, deter-
mines the habitat available to potential symbionts. In general,
these genotype–environment interactions greatly limit our ability
to predict microbiome responses to changes in the host genotype,
and therefore are a high-priority topic for future study (Busby
et al., 2017). In the particular case of our study, they suggest that:
(1) disease resistance is not a reliable predictor of microbiome
composition; and (2) microbiome alteration is unlikely to be a
mechanism through which MDR alleles confer improved disease
resistance.

Because these NILs carried introgressions covering up to 10%
of the genome, we cannot rule out the possibility that linked
genes – rather than the MDR alleles themselves – caused the
observed shifts in microbiome composition. To determine
whether the MDR alleles themselves caused the observed
changes, follow-up experiments would need to compare the NILs
with improved disease resistance to other NILs from the same
population that did not show improved disease resistance. This,
combined with data from a wider range of MDR lines, would
greatly help to clarify the relationship between MDR per se and
microbiome composition. Nevertheless, our results demonstrate

Fig. 5 Introgression of quantitative trait loci (QTL) from two multiple disease resistance (MDR) parent lines improved resistance to northern leaf blight
(NLB; left) and southern leaf blight (SLB; right) in 6-wk-old plants. Symptoms were scored 2 wk after pathogen inoculation. The top, middle and bottom
lines of the boxes mark the 75th percentile, median and 25th percentile, respectively; box whiskers extend 1.5 times the interquartile range above and
below the box. For NLB, all comparisons to the susceptible genetic background H100 were significant at P < 9.3e�4 (N = 141; genotype R2 = 0.71); for SLB,
all comparisons were significant at P < 1.6e�7 (N = 147; genotype R2 = 0.76).
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that QTL introgression from disease-resistant lines can alter the
relative abundances of diverse leaf symbionts (Fig. 4). Whether
caused by linkage or true pleiotropy, these side effects have the
potential to either facilitate or interfere with the process of breed-
ing for increased MDR (Fig. 1b).

We also hypothesised that, in addition to directly affecting leaf
microbiomes, MDR alleles would indirectly influence them
through cascading effects of improved disease resistance (Fig. 1a).

For this reason, we expected to observe stronger host genotype
effects after disease establishment. However, our data only par-
tially supported this hypothesis, which relied on the assumption
that disease establishment would profoundly disrupt the micro-
biome. This assumption was contradicted by our comparisons of
microbiome composition in infected vs uninfected fields, and of
severely vs mildly infected plants (Figs 6, S7). We propose several
possible explanations for the weaker-than-expected effect of
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Fig. 6 Maize leaf microbiomes (bacteria, left;
and fungi, right) changed over the growing
season regardless of disease pressure. All
results are shown for four fields that are
labeled according to the disease treatment
they received (NLB/northern leaf blight,
SLB/southern leaf blight, or none/control).
(a) Partial distance-based redundancy
analysis, constrained on the interaction
between time point and field, shows that
microbial communities in different fields
became more distinct from each other over
time. (b) Changes in relative abundance over
time varied among fields for all taxa shown
(likelihood ratio tests of negative binomial
models with and without Time point9 Field
interaction term; FDR < 0.05). (c) The
average magnitude of fold changes in
relative abundance over time was similar
between infected and noninfected fields.
Fields with different letters were significantly
different based on post hoc Tukey tests,
P < 0.05. Each point represents one taxon.
The top, middle and bottom lines of the
boxes mark the 75th percentile, median and
25th percentile, respectively; box whiskers
extend 1.5 times the interquartile range
above and below the box. The y-axis was
truncated for clarity, obscuring several
outliers. (d) Changes in alpha diversity
(Shannon metric) and beta diversity (distance
to centroid) between time points differed
among fields, but without regard to disease
status (ANOVA, all P < 0.05; post hoc Tukey
tests, P < 0.05).
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pathogen invasion on the leaf microbiome. First, we deliberately
sampled green tissue and avoided lesions (Fig. S2), which likely
biased our dataset away from capturing the most strongly per-
turbed local communities. This choice was intentional because
our primary interest was in direct effects of QTL introgression on
nonpathogenic microbes; nevertheless, we expected to observe
changes in microbiome composition as a result of the plant’s sys-
temic response to infection (Gu et al., 2016; Hacquard et al.,
2017). Second, the observed succession between time points
likely reflected many causal factors, including plant development
and strong morphological differences between juvenile and adult
leaves, a changing biotic context including insect communities
and neighbouring plants, and higher temperatures and humidity.
The combined impact of these factors on the microbiome may
have swamped out any signal of pathogen invasion. Finally,
because our disease treatments could only be applied at the
whole-field level, differences in microbial succession among fields
also could have masked community responses to disease. A fol-
low-up experiment that randomises disease treatments while min-
imising environmental variation would test this hypothesis.

Our finding that the introduced pathogens did not trigger
strong cascading effects on the rest of the microbiome was sur-
prising. One possible explanation is that other organisms were
acting as keystone or ʻhub’ taxa that interact with a large number
of other microbes within the community (Agler et al., 2016; Her-
ren & McMahon, 2018). If such keystone taxa were insensitive
to the presence of the pathogen, they may have had a stabilising
effect on the rest of the community. Keystone taxa also may have
contributed to the highly variable effects of QTL introgression
among environments. For example, it is possible that different
taxa occupied ʻhub’ positions in the microbial interaction net-
works within different environments, and that some of these hub
organisms responded to the introgressed QTL while others did
not. Improved statistical methods for analysing microbial interac-
tion networks, combined with manipulative experiments with
synthetic microbial communities, would help to investigate this
possibility (Vorholt et al., 2017; R€ottjers & Faust, 2018; Carr
et al., 2019). Our results could reflect either direct effects of
introgressed QTL or indirect effects via interacting microbes
(Fig. 4; Hassani et al., 2018).

Altogether, our results indicate that MDR can be improved in
maize through introgression of QTL from disease-resistant lines,
without major side effects on microbiome structure or diversity.
In our experiment such side effects were environment-specific
and were limited to individual taxa (Fig. 4). The upshot for plant
health – and ultimately, breeding outcomes – depends on
whether individual symbionts increase or decrease in frequency
during breeding, and whether they have a positive or negative
effect on the host (Fig. 1b). Amplicon sequencing approaches
provide insufficient resolution to determine what effects the dif-
ferentially abundant taxa had on their hosts, if any. Re-inocula-
tion experiments under controlled conditions would help to
determine whether these organisms affect disease resistance either
positively or negatively. Another unresolved question that our
data could not address was whether the introgressed QTL
affected leaf microbiomes in ways other than changing relative

abundance, for example by altering the total microbial load in
leaves or by inducing changes in microbial gene expression and
metabolic activity, which also could contribute to disease resis-
tance (Chapelle et al., 2016). Understanding these complex links
between the plant microbiota, pathogens, host phenotype, and
environment will be crucial for developing microbiome-based
solutions for sustainable disease control (Massart et al., 2015;
Berg et al., 2017; Busby et al., 2017).
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