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ABSTRACT Emerging short-lived (ephemeral) connections between wireless mobile devices have raised
concerns over the security of ephemeral networks. An important security challenge in these networks is to
identify misbehaving nodes, especially in places where a centrally managed station is absent. To tackle this
problem, a local voting-based scheme (game) in which neighboring nodes quickly decide whether to discredit
an accused (target) node in mobile networks has been introduced in the literature. However, nodes’ beliefs
and reactions significantly affect the outcome of target node identification in the collaboration. In this paper,
aplain Bayesian game between a benign node and a target node in one stage of a local voting-based scheme is
proposed in order to capture uncertainties of nodes for target node identification. In this context, the expected
utilities (payoffs) of players in the game are defined according to uncertainties of nodes regarding their
monitoring systems, the type of target node and participants, and the outcome of the cooperation. Meanwhile,
incentives are offered in payoffs in order to promote cooperation in the network. To discourage nodes from
abusing incentives, a variable-benefit approach that rewards each player according to the value of their
contribution to the game is introduced. Then, possible equilibrium points between a benign node and a
malicious node are derived using a pure-strategy Bayesian Nash equilibrium (BNE) and a mixed-strategy
BNE, ensuring that no node is able to improve its payoffs by changing its strategy. Finally, the behavior
of malicious and benign nodes is studied via simulations. Specifically, it is shown how the aforementioned
uncertainties and the designed incentives impact the strategies of the players and, consequently, the correct
target-node identification.

INDEX TERMS Misbehavior detection, local voting-based scheme, game theory, uncertainty, ephemeral

networks.

I. INTRODUCTION

A. MOTIVATION

The proliferation of temporal peer-to-peer communication
between wireless devices gives rise to the formation of
short-lived (ephemeral) networks due to the unpredictable
existence of mobile nodes. Ephemeral networks are perva-
sive over a variety of applications, such as vehicular ad hoc
networks, mobile social networks, wireless sensor networks,
etc. [2]-[5]. These networks are attractive to malicious nodes
so they join and manipulate sensed data, thereby influencing
network performance [6]. For example, in the case of vehic-
ular ad hoc networks (VANETS), a malicious vehicle can
inject false information to its neighbors and trigger a serious
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problem on the road. In addition to data manipulation or send-
ing false information, a malicious node can compromise the
vehicle’s routing efficiency by not forwarding the packets that
it received in the network. Therefore, an important security
improvement in ephemeral networks is to reveal the type of
nodes, either benign or malicious, especially in places where
centrally managed stations are absent. In such transitory
distributed networks, quick cooperation among neighboring
nodes can provide effective solutions toward improving net-
work performance [7], [8]. However, nodes are usually selfish
and reluctant to cooperate, simply because they must use their
resources. In addition, each node has some inherent uncer-
tainties in a collaboration, including the type of participants,
the accuracy of its own components (e.g., detection system),
the value of its contribution, and attainable outcomes, all of
which affect the node’s decision about whether to participate.
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In this respect, it is crucial to provide incentives according
to different reactions of nodes under uncertainty in order to
achieve malicious-node detection.

B. RELATED WORK

A variety of precise and effective schemes have been pro-
posed to detect misbehaving nodes. The authors in [9] [10]
have provided a comprehensive literature review on mis-
behavior detection in cyber-physical systems (CPSs) and
intelligent transportation systems, which covered a variety
of solutions for transient networks wherein nodes have dif-
ferent limitations. In particular, Liu et al. [11] studied the
interactions between an attacker and a defender in order to
detect misbehaving nodes in ad hoc networks. They consid-
ered scenarios where a malicious node can either attack or
not attack a benign node, while the defender may be in a
monitoring or non-monitoring state. The interactions between
players were analyzed by game theory, which is a powerful
tool to obtain the best strategies of independent decision mak-
ers [12]. Although this paper clearly described the individual
interactions and uncertainties between two agents, it did not
consider the identification of a misbehaving node for all
nodes in the network. Another approach for misbehavior
detection is to use reputation systems for which a history
of credits is built for nodes based on their past behavior in
the network. However, this method needs a database that can
be created over time, and nodes may have to continuously
monitor their neighbors [13]. Considering short time connec-
tions between nodes, reputation systems do not appear to be
a proper approach in ephemeral networks [14].

In other work, a local revocation process is intro-
duced to consider the dynamic nature of ephemeral
networks [14]-[21]. In the revocation process, a benign node
as an initiator is assumed to detect (or become suspicious
of) a malicious node and broadcasts its identification (ID)
as a target node or an accused node. Then, other benign
neighboring nodes run a local voting-based scheme to decide
whether to discredit the target node. Scholars in [14]-[16]
studied the local revocation process as a sequential voting
game in which a benign node can choose one of three strate-
gies with regard to (w.r.t.) a target node: voting, abstaining,
or self-sacrificing. A benign node chooses between a voting
strategy or an abstaining strategy based on its economic
considerations in the game. Also, the benign node might
use a self-sacrificing strategy to declare the invalidity of its
current identity as well as the identity of the target node.
Some limitations of the proposed revocation process in vehic-
ular ad hoc networks (VANETSs) have been pointed out by
Liu et al. [16]. For example, they underlined the assumption
of complete information for nodes in the game and proved
that the identification of the target node may not be possible
without considering the rate of false positives and the rate of
false negatives.

To address existing problems and introducing new
approaches for misbehavior detection in mobile networks,
Abass et al. [17] introduced an evolutionary game wherein
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all benign nodes cooperate in the voting game, focusing on
unsuccessful revocation and over-reacted revocation deci-
sions. Scholars [18], [19] have developed a weighted voting
game based on clustering architecture to effectively solve the
problem of false accusation. Masdari [20] proposed a collab-
orative false accusation approach to stop wrong accusations
in the network. Diakonikolas and Pavlou [22] emphasized
the inverse power index problem in designing weighted vot-
ing games and proved that the problem is computationally
intractable for a broad family of semi-values. In another
work, Subba er al. [23] proposed an intrusion detection
system (IDS) that employs the concept of election leaders
and a hybrid IDS, with the aim of avoiding the continuous
monitoring of nodes in mobile ad hoc networks (MANETS).
These authors then extended their work in [24] by provid-
ing a multi-layer game theory to address the problem of
dynamic network topologies in VANETSs. While these efforts
are effective at minimizing the volume of IDS traffic, they
do not address the uncertainty of nodes alongside incentives
in local voting games. Others [25] have studied the impact
of incentives on misbehavior detection in unmanned aerial
vehicle (UAV)-assisted VANETSs. Silva et al. [26] proposed a
voting scheme to generate a large set of novel strategies from
available expert-based ones. The proposed scheme selects the
best strategies while the model of opponents are considered
during the game. However, this work does not focus on
identifying a malicious node in an ephemeral network.

C. NOVELTIES AND CONTRIBUTIONS

Some differences distinguish this paper from other signifi-
cant contributions in the literature. First, we design a local
voting game wherein the type of target node can be either
malicious or benign. This is in contrary to several papers [15],
[17], [20], in which authors presume that a benign initiator
broadcasts the ID of a malicious node as the target node.
The reason of our assumption is that every node, including
malicious nodes, can accuse others and all benign nodes do
not necessarily need to know each other in the network. In our
design, nodes vote regarding the type of target node based
on the accuracy and cost of their monitoring systems as well
as a pre-defined belief about the portion of malicious nodes
in the network. These considerations provide a framework
in which nodes look at their resources and potential hostile
environments before taking part in the voting game. Second,
we consider that benign nodes are uncertain about the strategy
of malicious nodes in the network. This is because a malicious
node might intentionally not attack a benign node in order to
obtain its support during the local voting game. This point is
omitted in the design of the local voting game in [14]-[20].
In particular, these works mainly focused on target node iden-
tification based on the rate of participation rather than consid-
ering the malicious node strategy of avoiding being accused.
Third, we design incentives to encourage only knowledgeable
nodes (i.e., nodes that have already monitored the target
node) in the game. Otherwise, the incentives lead to many
random votes in the game, which might spoil the result
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of cooperation. This point is mostly overlooked in the above
literature, and [27] that studied the role of nodes’ incentives
in order to contribute to ephemeral social networks. Fourth,
we consider that both benign nodes and malicious nodes can
take part in the voting game. This implies that a benign node
cannot rely solely on others’ votes, owing to misleading votes
from malicious nodes. The incomplete information of nodes
in voting was not studied in the above literature, includ-
ing [14], [17], [20]. Fifth, the cost of a group participating
in the game (a.k.a., social cost) should be designed based on
nodes’ contributions and their uncertainties about the results.
For example, a cooperative node should be punished less
than an abstaining node when the collaboration becomes
unsuccessful. Finally, a potent design should provide more
rewards for decisive votes. Although some authors studied
weighted voting games [19], [28], they mainly based their
designs on clustering heads rather than the value of a vote
in the middle of a local voting games.

We implement the points above in analyzing misbehavior
detection using the local voting-based scheme in the presence
of uncertainty. Our main contributions in this paper can be
summarized as follows:

o We provide a game layout between a benign player and

a target node in one stage of a local voting game using
a static Bayesian game in order to detect misbehaving
nodes in an ephemeral network. In this regard, we design
expected utilities (payoffs) that capture uncertainties
(explained above) regarding detection systems, types of
participants, type of target node, and outcome of the
game. We also offer incentives in node payoffs in order
to promote cooperation in the network. Furthermore,
we introduce a variable benefit for cooperative nodes
in which rewards are adjusted according to the value of
contributions in the game. This scheme prevents nodes
from abusing incentives by pointless participation.

o« We derive possible equilibrium points between a
benign player and a target node in the game using a
pure-strategy Bayesian Nash equilibrium BNE) and a
mixed-strategy BNE, ensuring that no node can improve
its utility by changing its strategy. The best strategies can
be adopted by malicious nodes and benign nodes w.r.t.
different game parameters.

o We provide extensive numerical results to verify the
analysis and investigate the impact of cooperation
parameters and uncertainties on the identification of
malicious nodes. Our results confirm the influence of
the designed incentives, hence participation rate, on the
strategies of malicious and benign nodes in an ephemeral
network. We observe, in particular, that if the participa-
tion incentives go beyond a certain limit, then correct
target-node identification will be decreased, in spite of
the growing participation rate.

D. PAPER ORGANIZATION
The remainder of this paper is organized as follows. Section II
describes assumptions, the local voting game, and the

VOLUME 7, 2019

objectives of this paper. Section III formulates the game,
including defining parameters, payoff design, and a variable
benefit scheme. Section IV applies Bayesian game analysis to
derive equilibrium points in the proposed model. Section V is
devoted to extensive numerical results. Section VI concludes
the paper.

Il. ASSUMPTIONS AND PROBLEM DESCRIPTION

A. NETWORK MODEL

We study misbehavior detection in a network where nodes
have short-lived connections, and a centrally managed station
is absent. We use a vehicular ad hoc network (VANET) as
a typical example of an ephemeral network to explain our
approach. We assume that nodes (e.g., vehicles) are powerful
enough to have wireless communication among themselves.
We consider a contention-based medium, e.g., IEEE 802.11p
in a VANET, which can represent the nature of wireless
channel access [14]. We further assume that a base station or
a certificate authority has already established the credential
of the nodes; hence, each node has a unique ID.

We assume that there are two types of nodes in the net-
work: malicious and benign. Malicious nodes may attack
benign nodes by disseminating false information. For exam-
ple, a malicious car might inject faulty data to the sensors
of the car that follows it, in order to manipulate an opti-
mal space between them [29]. On the other hand, a benign
node is equipped with a monitoring system to detect abnor-
mal or counterfeit signals. For example, an autonomous
vehicle can use a set of anti-spoofing techniques to detect
fake global positioning system (GPS) signals [30]. However,
benign nodes do not necessarily need to monitor all of their
neighbors, due to the cost of monitoring over all short-lived
connections.

B. LOCAL VOTING GAME

Nodes can participate in a local voting-based scheme (game)
in order to determine the identity of a node in the network.
The voting game starts when an initiator broadcasts the ID
of a target node. Then, neighboring nodes choose either to
vote or not to vote (abstain) on type of the target node. Each
node calculates its costs and benefits in order to choose a
strategy. Nodes can broadcast their decisions sequentially,
and each node’s decision is made in one stage of the game.
We assume that the belief of a node w.r.t. the target node is
independently inferred and does not change (e.g., by other
votes) during the game. This is because nodes are uncertain
about the correctness of other votes. In other words, a node
may not know the types of all previous nodes that have
already voted. Also, the node is unaware of the target node’s
strategy w.r.t. previous nodes. Hence, we assume that a node
votes based on its own detection system. It is worth noting
that monitoring all neighboring nodes and their interactions
might be too costly for a node in an ephemeral network.
The target node is identified when the number of votes in
one type (either malicious or benign) reaches a pre-defined
number. This number is denoted by ny and is studied in
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section V-B. If correct (wrong) votes reach ny;, then we will
have correct (wrong) target node identification. If ny, is not
reached during the game, then we will have undecided target
node identification.

Malicious nodes and benign nodes can choose some strate-
gies in the game. A malicious node can select to attack or
not to attack a benign node, while it is unaware of being
monitored. After a target node is determined, a benign node
checks whether it has already monitored the target node. If it
has not monitored the target node, it will abstain from voting,
simply because it does not have any information about the
node. But, if the benign node has monitored the target node,
it will calculate its payoffs. If its voting payoff outweighs
its abstaining payoff, then the benign node will vote; oth-
erwise, it will abstain. On the other hand, malicious nodes
vote against a benign target node and for a malicious target
node. If there is no possibility for malicious nodes to change
the result of the game in their favor, then they abstain from
voting. We do not consider strategic malicious nodes that can
optimize their types of votes to collect some credits or to send
multiple wrong votes (e.g., Sybil attack [31]).

C. PROBLEM DEFINITION

Fig. 1 shows an example of a local voting game in a VANET
that helps us explain the problem. As can be seen, nodes
0,2, and 5 are malicious, and the other nodes are benign.
We assume that node 0 is the target node and ny, = 2. We also
assume that node 1 casts a correct vote, and node 2 casts
a wrong vote. Now, node 3 should reveal its strategy. Here,
we study the possible reactions of node 3 (as an example
of a benign node) in the game where identification of the
target node is not yet finalized. If node 3 has not monitored
node 0, then it simply abstains. Otherwise, if it has already
monitored node 0, it can select between voting or abstaining.
To choose its strategy, node 3 faces some uncertainties that
greatly impact its decision.

The first uncertainty of node 3 is about its own monitoring
system, which has a predefined detection rate and false alarm
rate. For example, the monitoring system of node 3 might
recognize node 0 as benign, even though it is malicious.
Next, node 0 might choose not to attack node 3 in order
to produce a wrong perception. Hence, node 3, even if not
attacked by node 0, would still be uncertain about the type
of node 0. In addition, node 3 might not have monitored
nodes 1 and 2; hence, it cannot vote based on previous votes.
Moreover, node 3 may not have monitored all remaining
nodes in the voting game, so it cannot count on their correct
votes. This implies that the node is also uncertain about
the outcome of the game, which potentially affects its deci-
sion. Nevertheless, incentives should be offered to encourage
node 3 (and others) in cooperation. This could also avoid
the formation of free-riders (i.e., nodes that benefit from the
results without making any contributions [32]) in the network.
It is worth noting that, depending on the stage of the game,
a node’s strategy could make a different level of impact on
the results. For instance, if node 3 abstains, then the vote of
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FIGURE 1. Example of local voting game in VANETs.

node 4 is absolutely necessary for correct target identification
(ny, = 2). Hence, incentives should be offered w.r.t. the value
of a contribution.

On the other hand, malicious nodes are aware of an existing
voting game in the network. That is, a malicious node knows
that it might become a target node. The objective of a mali-
cious node is to maximize the level of its aggressiveness in
the network without being identified. However, it is uncertain
about being monitored by a benign node, and the strategy of
a benign node in the game (i.e., voting or abstaining). In con-
trast, a benign node knows that some of its neighbors may be
malicious. The objective of a monitoring benign node is to
choose a strategy with the aim of target node identification.
However, a benign node has some limitations in its detection
system. Also, it is uncertain about the strategies of malicious
nodes and, therefore, is uncertain about the type of the target
node. Taking these points into consideration, our goal is the
following:

o To design payoffs for a benign node w.r.t. the explained
uncertainties and the value of its contribution in the
game,

o To determine the best strategies for malicious nodes and
benign nodes.

We address the first problem in section IV by considering
the following: (i) the vote of a benign node that could be
either correct or incorrect; (ii) the probability of correct target
node identification in each stage, which is mainly based on
votes that have already been cast; and (iii) the impact of
a benign node’s strategy on correct, wrong, and undecided
target node identification. We address the second problem in
section V. In particular, we develop one stage of the voting
game as a Bayesian game to study the reactions of a benign
node w.r.t. a target node. This helps us understand the best
strategies of both types of nodes in the network.

To find the best strategies of players in the game, one
could employ the concept of subgame perfect equilibrium,
wherein nodes have complete information in a sequential
game. However, as explained above, complete information
does not seem to be a realistic assumption for nodes in an
ephemeral network. Hence, we do not apply this concept to
our model. Another solution is to use the concept of perfect
Bayesian equilibrium (PBE) in dynamic Bayesian games to
capture the incomplete information of nodes. In this context,
anode needs to update its belief regarding its opponent’s type
according to the game evolution. However, we believe that
the belief of a benign player regarding the type of target node
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should not change by other votes during the game because of
existing uncertainties about the types of neighboring nodes,
their interactions, and the cost of monitoring over all neigh-
bors in an ephemeral network. In principle, we assume that
nodes are relying on their own detection systems to vote on
the type of the target node. In this regard, we can not properly
apply the concept of PBE to our model.

On the other hand, a Bayesian game is general enough to
capture many scenarios between attackers and defenders in
one stage of the game [32]. In particular, we can consider a
potential attacker as a target node that chooses to attack or not
to attack a benign node, and the benign player that can vote or
abstain in one stage of the game. One advantage of applying
Bayesian games to our model is that nodes independently
infer the type of a target node using a detection system,
and they do not need to know the type of all neighbors and
their interactions with each other. In other words, a node can
efficiently select its strategy according to the BNE that max-
imizes its expected utility with a set of parameters. However,
one drawback of using BNE is that a benign node requires a
sensible prior belief regarding the type of neighboring nodes.
We let n denote the prior belief of benign nodes about the
portion of malicious nodes in a network (parameters are
described in section III-A). In practice, a node should be
able to adjust the values of u according to its knowledge
of an environment. Nodes could assign a high value for u
in potentially hostile places such as crowded areas in mega
cities, and a low value for p in safe places such as rural areas.

ill. PROBLEM FORMULATION

In this section, we first introduce a set of parameters that are
required to define the underlying game. Next, we provide
some definitions to facilitate the explanation of our model.
Then, we design payoffs that include individual beliefs and
available voting information in the game. Finally, we propose
a variable-benefit scheme that rewards participants according
to the value of their contributions.

A. PARAMETERS

To describe our model, we need to define a set of given
parameters to design player’s payoffs in the game. We list
these parameters in Table 1. To begin, we assume that a
benign node holds an asset with a security value of w, where
w > 0. This parameter is considered in order to count for
the value of a vulnerable asset in benign nodes that can
be exploited by malicious nodes. . A malicious node could
compromise the asset by paying the cost of an attack, denoted
by ¢,. In contrast, a benign node protects its asset by moni-
toring for attacks, with probability P,,. This monitoring costs
¢ for the node, and all costs are positive. It is rational to
assume that w > ¢, and w > c¢,,. Otherwise, the attacker
and the benign node lose their motivation to attack and to
protect the asset, respectively. A benign node assigns a prior
probability of u for its neighbors to be malicious. We measure
the performance of the monitoring system by considering the
following: (i) v, which represents the detection rate (i.e., true
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TABLE 1. List of parameters in alphabetical order.

Symbols: Meaning
a ] Probability of detection (true positive)
8 Probability of false alarm (false positive)
1 . Prior probability of node being malicious
A - Probability of a remaining node stays in the neighborhood
b R Benefit of correct strategy
—b ' Punishment of incorrect strategy

Ca____ Cost of attack
Cost of group for incorrect identification of

Cab benign target node

Com Cost of groué()l aflci)éiz)?fsogf«(:t identification of
get node

Cm Cost of monitoring of an asset

Cy . Cost of voting

n . Total number of nodes

n; . Number of nodes left at k' stage

n, - Number of required votes at k" stage

‘ to identify target node

ng, . Number of required votes to identify target node

Nyl * Number of correct votes for target node

Ny2 Number of incorrect votes for target node

Dk Probability of successful target identification at k™ stage

P, - Probability of monitoring

q Probability of attack for malicious PLT

s Probability of voting for monitoring PLB

w Value of an asset

Ty, M2 Ny
Ll
I1
J |\
Y | Y
k—1 k" node n=n-—=k

FIGURE 2. k' stage of the game, where n,{, n,5, and n, denote the
number of correct, incorrect, and remaining votes, respectively, and n;
refers to the total number of nodes left to vote.

positive rate), and (ii) B, which denotes the false alarm (i.e.,
false positive rate) for detecting abnormalities. It is sensible
to expect that @ > 0.5 > B.

It is assumed that n nodes are in a neighboring area. Each
benign node can vote by paying ¢, as the cost of voting.
The benefit of a correct strategy and the punishment of an
incorrect strategy for a benign node are denoted by b and —b,
respectively. To generalize the analysis, we design the game
at one stage, say the k* stage, in which the type of a target
node has not yet been determined. Until this stage, it can be
assumed that n,; votes in one type (e.g. malicious) and n,,
votes in another type (e.g. benign) have already been cast
for the type of target node. We let n, denote the number of
remaining votes required to identify the target node. There-
fore, n, = ny — ny or n, = ny, — nyp, depending on the
belief of the k™ node on the type of target node. Also, there
are n; nodes left in the game. Fig. 2 helps us understand these
parameters. We use py to denote the probability of correct
target node identification at the k”* stage. It is assumed that
the cost of the group (neighboring nodes) for the incorrect
identification of a malicious target node and a benign target
node are cg;,;, and cgyp, respectively.
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Vote Abstain
PmU2+(1 _Pm)u?n
Attack (Ula 7_;1) (
P,,v2+ (1= P,) vs)
Pm’LL5+(1*Pm)u67
Agztck (U4a ’04) (
P, vs+ (1 —P,) ve)
Malicious node, u
PLT
Vote Abstain
Pmug+ (1_Pm)u97
Not (/ul7, ’07) (
Attack P,vs+ (1 —P,,) ’119)

Benign node, 1 — p

FIGURE 3. Players’ payoffs in the game relative to a benign player (PLB)
and malicious or benign target node (PLT).

A malicious node can choose to either attack or not attack
a benign node based on its information in the game. In this
regard, the probability of attack is considered and it is denoted
by ¢ in the analysis. Likewise, a node can choose to either
vote or not vote. This is captured by defining the probability
of voting and is denoted by s in the analysis. It is worth
noting that a node considers different parameters to select
its strategy, including the accuracy of the monitoring system,
costs, benefits, punishments, and the probabilities introduced
here. Equipped with these parameters, we are able to design
the expected payoffs for players in the game.

B. GAME DEFINITION AND NOTATIONS
Here, we provide some definitions in order to facilitate the
description of our model.

Definition 1: A Bayesian game G is defined by a tuple
(N,A,®, u, U), where N is a set of players, A is a set of
actions, O is a set of players’ types,  is a common prior, and
U is a set of utilities. These are defined as follows:

o N =(PLT, PLB), where PLT is a target node and PLB is
a benign player.

e A = (aprr, aprp), where apyr € { attack, not attack},
and apy 3 € {vote, abstain}.

o © = (Oprr. OpLB), Where Op 7 € {malicious, benign},
and Op.p € {benign}.

o Prior belief: PLB assigns u for PLT being malicious, and
PLB’s type is common knowledge.

e U = (u, v), where u refers to PLB’s payoff, and v refers
to PLT’s payoff.

Fig. 3 shows the strategic form of the game G, where rows
and columns indicate the actions of a target node and a benign
player, respectively. As can be seen, each window includes
pairs of payoffs (u., v;), where 1 < z < 9, and the subscript
z refers to the actions of both PLB and PLT in one scenario.
For example, (u1, v1) at top left window in Fig. 3 corresponds
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to voting PLB and attacking PLT. As can be seen in Fig. 3,
we need to define u; and v, to provide the layout of the game.

Definition 2: Each player’s payoff can be defined as the
summation of an individual payoff and a group payoff as
follows:

Uy = Uz + Uz g, €Y)
Vy = Vg i+ Vi, 2)

where u; ; and v, ; denote individual payoffs, and u, , and v, ¢
denote group payoffs. The individual payoff only considers
interactions between two players, while the group payoff
accounts for the impact of a player’s strategy on all members
in the neighborhood.

It is worth noting that the group payoffs capture the impact
of anode’s strategy on the security of all nodes in the network.
This comes from a node by either voting or abstaining in
the voting game. Group payoff also provides a framework
to capture incentives for promoting cooperation in the game.
In particular, the collaboration of nodes for malicious node
identification would reward them, while abstaining from the
collaboration could punish them in the game. These rewards
and penalties are included in the group payoff of a node,
because they relate to actions that impact all nodes in the
network. The following section describes the design of both
individual and group payoffs in detail.

C. PAYOFF DESIGN

In what follows, we describe individual payoffs and group
payoffs and find all u, and v, shown in Fig. 3. Individual
payoffs account for the costs and benefit of monitoring and
non-monitoring, whereas group payoffs account for the costs
and benefits of voting or abstaining from the game. The
incentives of the game, including benefits and punishments,
are considered in the group payoffs. This means that a node
measures its group payoff before choosing its strategy. Ini-
tially, we focus on obtaining individual payoffs, i.e., u; ;.
Then, we explain group payoffs, i.e., u; ,. Finally, we use
definition 2 to add individual and group payoffs to obtain all
u; and v,.

1) INDIVIDUAL PAYOFFS

To study individual interactions between two nodes, note
that a malicious node could choose either to attack or not
to attack a benign node. Also, the benign node could be
either in a monitoring state or a non-monitoring state. Hence,
we have four possible scenarios between a malicious node
and a benign node:

o A monitoring PLB faces an attacking PLT.

o A non-monitoring PLB faces an attacking PLT.

o A monitoring PLB faces a non-attacking PLT.

« A non-monitoring PLB faces a non-attacking PLT.
What follows is a study of the payoffs for these scenarios to
evaluate related u,; and v_ ;.

Scenario I: A monitoring PLB faces an attacking PLT.
Here, the monitoring PLB pays —c;, as the cost of monitoring.
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However, it gains (2o — 1)w from its detection system. This
is because the expected gain of the PLB relates to the true
positive rate (o) and the false negative rate (I — «) of its
detection system, i.e., «w—(1 —a)w. Therefore, the individual
payoff of a monitoring PLB in this scenario is equal to —c,, +
(20c — 1)w. This payoff corresponds to u; ; and uy ;, where the
PLT attacks a monitoring PLB. Hence,

upj=uz; = —cp+ Qo — LHw. 3)

On the other hand, the PLT pays —c, as the cost of the
attack. The loss of the PLT can be assumed as the negative
gain of the PLB’s individual payoff [11], i.e. —2a — 1)w.
Therefore, the individual payoff for an attacking malicious
PLT in this scenario equals —c, — (2 — 1)w. This payoff
corresponds to v ; and v2 ;. Hence,

vii=Vv2;=—¢cq— Qa—Dw. @)

Scenario 1I: A non-monitoring PLB faces an attacking
PLT. Here, the non-monitoring PLB does not pay the cost
of monitoring but loses its asset as a result of being in
a non-monitoring state and attacking the PLT. Therefore,
the individual payoff of a non-monitoring PLB in this sce-
nario is equal to —w. This payoff corresponds to u3 ;. Hence,

usi = —w )

On the other hand, the PLT pays —c, as the cost of the
attack, and its gain is equal to the loss of the non-monitoring
PLB, i.e. +w. Therefore, the individual payoff for an attack-
ing malicious PLT in this scenario equals —c,+w. This payoff
corresponds to v3 ;. Hence,

V3= —Cq+ w. 6)

Scenario I11: A monitoring PLB faces a non-attacking PLT.
Here, a monitoring PLB pays —c,, as the cost of monitor-
ing. However, since the PLT is in a non-attacking state, any
possible detection comes from its false alarm rate, i.e., —fw.
Therefore, the individual payoff of a monitoring PLB in this
scenario is equal to —c,, — Bw. This payoff corresponds to
us i, us i, w7, and ug ;. Hence,

Ugj = Us;=U7;=Ug ;= —Cpu — BW. @)

The non-attacking PLT does not gain or lose in the interaction.
Thus,

vai=vs;=v7;=vs;=0. ®)

Scenario IV: A non-monitoring PLB faces a non-attacking
PLT. Here, since there has been neither an attack from the PLT
nor monitoring from the PLB, we have 0 payoff. This payoff
corresponds to ug ;, U9 ;, ve i, and vg ;. Hence,

Ui = ve,i = ug; = vg; =0. 9

Having u, ; and v, ; in hand, we continue defining u; , and
V¢ to be able to use definition 2 and obtain all payoffs.
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2) GROUP PAYOFFS

To study group payoffs, note that a monitoring PLB can
choose between voting and abstaining on the type of PLT in
the game. A non-monitoring PLB always chooses to abstain
from voting because it does not have any information about
PLT. In this respect, we can study group payoffs by consider-
ing four scenarios:

o Monitoring PLB faces an attacking malicious PLT.

o Monitoring PLB faces a non-attacking malicious PLT.

o Monitoring PLB faces a (non-attacking) benign PLT.

o PLB is in a non-monitoring state.

In the first three scenarios, we study the voting and abstain-
ing strategies of a monitoring PLB w.r.t. the probability of
correct target node identification (py) in the game. This is
because the target node is not yet identified in the network;
hence, the PLB should consider the probability of correct,
wrong, or undecided target node identification before choos-
ing its strategy. In this regard, we use Fig. 4(a) to show the
dependency between a monitoring PLB’s strategy and py.
As shown, the left column corresponds to the player’s voting
strategy and the right column corresponds to its abstaining
strategy. Also, the top row (labeled py ) refers to the case that
the target node is correctly identified in the game, and the
lower row (labeled 1 — py) refers to the case that the target
node is not correctly identified in the game. In this figure,
X, Y, Z, and W denote payoffs for different possible cases.
For example, X in the top left window in Fig. 4(a) represents
the case where the PLB votes and target node is correctly
identified in the game. We will design X, Y, Z, and W for
different scenarios between the PLT and a monitoring PLB.
Using Fig. 4(a), we define group payoffs for the voting and
abstaining strategies of the PLB.

Definition 3: Considering two possible outcomes for target
node identification, denoted by py and 1 — pi in Fig. 4(a),
we define two group payoffs for possible strategies of a
monitoring PLB at the k”* stage:

ug (vote) = pr (X) + (1 — p)(Z), (10)
ug (abstain) = pi (Y) + (1 — p)(W), (11

where the payoff of each strategy is weighted by the corre-
sponding probabilities.

In the last scenario, since a non-monitoring PLB always
abstains from voting regardless of the PLT’s strategy, its
group payoff depends on other nodes’ actions in the game.
In what follows, we study payoffs for all the above scenarios
to evaluate related u, o and v, ,.

As can be seen by Egs. (10)-(11), px plays an important role
in the payoffs. In this respect, we obtain pj to evaluate the
voting and abstaining strategies of players. It is noteworthy
that the value of p; increases when the PLB votes correctly.
We use § to denote this improvement in py.

Lemma 1: py and § can be written as follows:

nj

=3 (’?) (ps) (1—ps)" ", (12)

i=n,
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FIGURE 4. Group payoffs: (a) for a monitoring benign player in general,
which is then broken down to the following scenarios: (b) malicious
target node has attacked a monitoring benign node, (c) malicious target
node has not attacked a monitoring benign node, and (d) benign target
node versus a monitoring benign node.

5 — ( nj > (ps)n,—l (1 —ps)nl_(nr_l), (13)
n—1

where pg = A(1— )P, represents the probability of correct
target identification by a remaining node in the game.

This lemma and theorems are proved in the appendix.

Scenario I: The monitoring PLB faces the attacking mali-
cious PLT, which relates to the first row of Fig. 3. The group
payoffs in this scenario correspond to uj g, U2 g, vi,g, and
V2 4. Fig. 4(b) shows the voting payoff (i.e., u;¢) and the
abstaining payoff (i.e., u ) for a monitoring PLB w.r.t. py.
As can be seen in Fig. 4(b), —c, in the left column (i.e.,
vote) represents the cost of voting. Also, —cgy, in the lower
row (i.e., 1 — pi) denotes the cost of incorrect identification
for a malicious target node. The reward for voting in correct
target identification (top left window) and the punishment
of abstaining in incorrect target identification (bottom right
window) are represented by bpy and —b(1 —py), respectively.
These are proportional to p; because the player’s expected
outcome is entangled with the probability of correct target
node identification (p;) in the middle of the game. The
reward and the punishment are considered (as incentives) to
encourage nodes in cooperation. Using Fig. 4(b) along with
equations (10) and (11) in definition 3, we have

urg = pr % (kb —¢v) + (1 —pi) x (— ¢ — com),
= u1,g = pib— ¢ — (1 = pr)cgm, (14)
uz,e = pr % (0) + (1= pr) x (= (1 = pi)b — cgm),
= uzg = —(1 = pi)*b — (1 = pr)cgm. (15)
We also define group payoffs for the PLT in this scenario
by (1 — pi)cgm, which indicates the inverse proportional

relationship between pj and the gain of the malicious PLT.

Hence, we have
Vi,g = V2, = (I — pr)cem. (16)
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FIGURE 5. Group payoffs for monitoring benign node relative to pj.

In order to better understand the impact of a node’s group
payoff on selecting its strategy, we provide a plot in Fig. 5
that shows voting payoffs (i.e., u1 ) and abstaining payoffs
(i.e., uz ¢) of PLB w.r.t. different pys in this scenario. Here,
it is assumed that ¢, = 1, b = 1.5, and ¢gp = 2.
As can be seen, depending on the value of py, voting pay-
offs can outweigh abstaining payoffs, and vice versa. For
example, voting payoffs are dominant for p; < 0.2, which
means that the player votes in this interval of pi. In fact,
voting is an attempt by PLB to increase p; and avoid an
incorrect outcome of the game. The main motivation of the
player, however, comes from the game’s punishment. That is,
the cost of voting is lower than the punishment of the game
when the malicious target node is not correctly identified.
In other words, if py — 0, then —c, > —(1 — px)b (see
lower row of Fig. 4(a)). Therefore, the player votes not only
to increase py but also to avoid punishment in the game.
The same reasoning can be used for other intervals of py,
ie, pr > 0.8 and 0.2 < pir < 0.8, to determine the
motivations of the player for voting and abstaining in the
game.

Scenario II: The monitoring PLB faces the non-attacking
malicious PLT, which relates to the second row of Fig. 3. The
group payoffs in this scenario correspond to u4 g, Us g, V4 g,
and vs ,. Fig. 4(c) shows the voting payoff (i.e., u4 ¢) and
the abstaining payoff (i.e., us ¢) for a monitoring PLB w.r.t.
pk- Here, a monitoring PLB might unintentionally support a
malicious PLT by its vote because the malicious PLT is in
a non-attacking state. In this regard, we define a penalty by
—(1 — py)b for voting in an incorrect target identification
(bottom left window), and a reward by pyb for abstaining
in a correct target identification (top right window). This
prevents the PLB from blind voting (solely to gain the benefit
of collaboration) when it did not sense abnormalities from a
node. Using Fig. 4(c) along with equations (10) and (11) in
definition 3, we have

Uq.¢ :pk(_cv) + (1 _pk)(_(l —pr)b— ¢y _Cgm)a

= sy = —(1 — pe)*b — ¢y — (1 = pi)cgm, (17)
us.g = Pk X (Pkb) + (1 —Pk) X (_ Cgm)s
= us.g = pib — (1 — pi)cgm. (18)
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Since the malicious PLT is in a non-attacking mode,
we define v4, = vs5¢ = 0, which implies that the
non-attacking PLT does not gain or lose in this scenario.

Scenario 111: The monitoring PLB faces a (non-attacking)
benign PLT, which relates to the third row of Fig. 3. The group
payoffs in this scenario correspond to u7 g, ug ¢, v7,¢, and vg 4.
Fig. 4(d) shows the voting payoff (i.e., 7 ¢) and the abstaining
payoff (i.e., ug, ¢) for a monitoring PLB w.r.t. p;. The design of
payoffs in Fig. 4(d) is quite similar to scenario I in Fig. 4(b),
where cgy, is replaced by cg,. Hence, the reasoning for this
scenario follows the same lines as scenario I. Using Fig. 4(c)
along with equations (10) and (11) in definition 3, we have

ur,e = pk x (prb—cv) + (1 —pr) x (= ¢y — cgp),

= 7,4 = pib — ¢y — (1 — pr)cgp, (19)
ug,g = pr % (0) + (1 —pr) x (= = p)b — cgp).
= ug o = —(1 —pr)’b — (1 — pr)cgp. (20)

Since benign PLT is in a non-attacking mode, we have
V7, =Vg g =0.

Scenario IV: The PLB is in a non-monitoring state. In this
case, the PLB abstains from voting, regardless of the PLT’s
strategy. The group payoffs in this scenario correspond to
U3 g, Ug g, U9 g, V3,4, V6,g> and vo . To define u3 ; and ue g,
where the PLT is malicious, we know that the non-monitoring
PLB completely relies on other nodes for target node identi-
fication. If p; = 1, then the node is not harmed, but if p; = 0,
then it gets —cg;, as the cost of the incorrect malicious PLT
identification. Thus, we define u3 ¢ = u6 ¢ = —(1 — pr)com,
where the node does not impact the group decision while it is
affected by other decisions. We can apply a similar reasoning
for ug ¢, with the only difference being that ¢, is replaced
by cgp, because the PLT is benign, i.e., ug ¢ = —(1 — pr)cgp.
On the other hand, we define v3, = (1 — pi)cgm, which
reflects the inverse proportional relationship between pj and
the gain of the attacking malicious PLT. In the case of vg g
and vg g, the benign PLT does not attack; hence, there is no
gain or loss, i.e., vg g = Vg ¢ = 0.

3) TOTAL PAYOFFS

By designing individual payoffs and group payoffs for each
scenario in the game, we can use definition 2 to obtain
all payoffs. For example, u; is the summation of u;; (i.e.,
equation (3)) and u 4 (i.e., equation (14)). Thus, using equa-
tion (1) in definition 2, we have

ur = —cm+ Qa — Hw +pib — ¢, — (1 — pr)cem, (1)

We obtain the remaining payoffs in the same fashion,
as follows:

ur = —Cm+Qa — Dw—1—pp)?b—(1—pi)cgm,  (22)

uz = —w — (1 — pr)cgm, (23)
s = —cm—Pw—(1—pp)*b—c,—(1 = pr)cem, (24)
Uus = —Cm — Pw + pib — (1 — p)cem, (25)
ue = —(1 = pr)cgm, (26)
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U7 = —cm — Pw+pib — ¢, — (1 — pr)cgp, 27)
us = —(1 — pr)*b — (1 — pi)cgy — cm — Bw, (28)
ug = —(1 — pr)cgp, (29)
Vi =Vv2 = —¢q — Qa — Dw+ (1 — pr)cgm, (30
v3 = —cqa+w~+ (1 = pr)cem, (31)
Ve = Vs =Vvg=vy =vg =vg = 0. (32)

D. VARIABLE-BENEFIT SCHEME
So far, we have assumed that the benefit of a correct strategy
(b) is constant, irrespective of its impact on the outcome of the
game. In principle, a variable benefit could be designed to be
commensurate with the impact of k™ player’s strategy on the
target node identification. In this regard, we choose p; and
/0 as two important arguments that directly affect the value
of a strategy in the game. We categorize these benefits into
two cases. The first is the benefit when the PLB has detected
an abnormality in the PLT. This implies that the malicious
PLT has attacked the PLB, or that the abnormality simply
comes from a false alarm. We denote the benefit for a correct
strategy in this case by bj. Here, group payoffs are the same
as in Fig. 4(a), wherein b = by. The second case is when a
monitoring PLB has not detected any abnormalities from the
PLT, i.e., whether the PLT is malicious or benign. We denote
the benefit for a correct strategy in this case by b;. Payoff
tables for this case are the same as those in Fig. 4(b) and
Fig. 4(c), wherein b = b>. By making the PLB indifferent,
by and by can be derived.

Lemma 2: by and b, for the k™ stage of the game can be
obtained as follows:

Cy

@i -2+ D)
Cy

(0 =2w2pt 2+ 1)

b (33)

by (34)

Assuming ¢, = 1, the value of by and b, versus py and
w are shown in Fig. 6. As can be seen in Fig. 6(a), when
pr = 0.5, the highest b; occurs, and when py = 0 or
pr = 1, the lowest by occurs, underlining the fact that the
highest benefit is rewarded for a PLB that faces the highest
uncertainty of py (similar to gambling!). On the other hand,
as shown in Fig. 6(b), when p (the portion of malicious
nodes) grows, the value of benefits also increases. This is
not surprising because as p increases, benign nodes should
be more motivated for participation to reveal the identity of
a target node before malicious nodes determine the game’s
result with their votes.

Here, we study the impact of b; on group payoffs. The
study of group payoffs with b> can be done in the same
fashion. Fig. 7 shows group payoffs with b = b1, where each
subplot corresponds to a window in Fig. 4(b). For example,
the top left subplot in Fig. 7 refers to pxb — ¢, in Fig. 4(b),
where b = by. In Fig. 7, we assume that ¢, = 1 and
cgm = 4. As can be seen, payoffs in the upper row dominate
over those in the lower row. This is because the upper payoffs
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FIGURE 7. Expected group payoffs for scenario | with variable benefits.

show successful target node identification, while the lower
payoffs indicate the unsuccessful counterpart. To understand
this better, let us study the trend of graphs for a few pys.
First, let pr = 0.25, which yields b1 = 1.6 from eq. (33).
Under this assumption, if the game is to successfully identify
the target node (upper row in Fig. 7), then PL2 collects a
higher payoff by abstaining (0 > —0.6). However, if the
game becomes unsuccessful (lower row), then PL2 should
have voted in the game (=5 > —5.2). Next, assume that
pr = 0.75. Interestingly, we obtain the same benefit (i.e.,
by = 1.6). In this case, however, the strategy of PL2 will
be the opposite. That is, PL2 is willing to vote if it thinks the
game will be successful (0.2 > 0), while it abstains if it thinks
the game will be unsuccessful (—.4.4 > —5). This example
helps us summarize the following intuitions for the case of
adaptive benefit: (i) There is no pure strategy for PL2 during
the game w.r.t. a specific py or b; and (ii) py = 0.5 is the only
point where PL2 becomes completely indifferent between
voting and abstaining, regardless of the result of the game
(see pr = 0.5 in Fig. 7). This is the place where our design
offers the highest benefit (see Fig. 6) in order to encourage
PL2 to participate, hence, increase py.

IV. EQUILIBRIUM ANALYSIS

The objective of the players is to maximize their payoffs in the
game. In this regard, we obtain possible equilibrium points
using a Bayesian game to better understand the behavior of
the players. In particular, we obtain the best strategies of
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benign players to identify a malicious node, while we find
the maximum level of aggressiveness for malicious nodes
without being identified. In this respect, we use the interac-
tions between a PLB and a PLT, as illustrated in Fig. 3. Let
us quickly summarize the possible strategies of the players.
A non-monitoring PLB has one pure strategy: abstaining.
A monitoring PLB has two strategies: voting or abstaining.
A benign PLT has one pure strategy: to not attack. Finally,
a malicious PLT could choose two strategies: to attack or
not to attack. Depending on game parameters, a pure-strategy
BNE may or may not exist. This is addressed in the following
theorem.

Theorem 1: Given p and Py, if ¢gy > ¢4 + Qa — Dw +
dcgm,and b > 2 ¢y, then the game has one pure-strategy BNE.
A malicious node attacks and a monitoring benign node votes
in the game.

Remark 1: When the damage caused by incorrect malicious
node identification (cgy,) is higher than the summation of
PLT’s cost of attack (c,), PLT’s individual loss against a
monitoring PLB, i.e., 2o — 1) w, (see eq. (4)), and the impact
of PLB’s vote in the game (§cgy), then a malicious node
attacks a benign node. When the benefit of voting for a
monitoring PLB is more than twice of its cost, then the benign
node chooses to vote.

The pure-strategy BNE, as seen above, holds only under
certain conditions on the parameters. Our game is a finite
strategic-form game. Hence, a mixed-strategy BNE can be
applied to gain a broader perspective for the game analysis.
In this regard, to determine each player’s indifference strat-
egy, we define ¢ as the probability of attack for a malicious
PLT, and s as the probability of voting for a monitoring PLB.

Theorem 2: Given p and P,,, the game defined in section
IIT has a mixed-strategy BNE, which is as follows:

o Malicious node attacks with a probability of ¢*, which
is

f_m+%+m+%

; (35
n
where gi, kK = 1, ..., n, is the probability of attack for
the k;; node in the game
Ak
prmg —’ 36
=g (36)

Ac = w(1+Pu)(20F — 20k + )b+ (1 — Py)
2

x (em + Bw) + ¢y = ptb — Pu(1 — pe) b,

B = u(1 + Pu)(2pf — 2pk + 1)b
+ 1(1 = Py)Qa + Bw.

o Monitoring benign node votes with probability of s*,
which is equal to
. Ca+QaPy—Dw—cgp

(1=Pp)—ca+(1—=20)w+cgn]l—8com

(37

Note that the mixed-strategy provides general equilibrium
points w.r.t. different parameters. In a special case, if all nodes
monitor their neighbors, i.e., P, = 1, then an upper bound
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for the benefit and a lower bound for the detection rate can be

derived using eqs. (36) and (37), respectively.

Corollary 1: In Theorem 2, if P,,, = 1, then
Cy

b < 5 )
(I =2w)2p; —2px + 1)
W — Cq +Cgm(] —9)
2w ’

From eq. (38), it can be seen that as u — %, the upper
bound increases. This allows network designers to select
higher values of benefit in environments where the probabil-
ity of a malicious PLT is higher. On the other hand, eq. (39)
implies that a monitoring system must have a minimum true
positive rate in order to make a malicious node indifferent in
the game.

Corollary 2: In Theorem 2, if P, = 1, and benefits
are designed using b; and b> in Egs. (33) and (34), then
the probability of attack by a malicious node will be zero,
ie.,g*=0.

While the result of this corollary is the most desirable
outcome for every game designer, we should note that achiev-
ing it might require a strong assumption (P,, = 1) and a
complex system for a beneficial design, because it requires
all monitoring nodes in an ephemeral network that adapt their
benefits in each stage according to py.

In the next section, we evaluate the performance of the
game in order to obtain a better picture of the above analysis.

(38)

a> (39

V. NUMERICAL RESULTS

To evaluate our analysis, we assume that 40 nodes can run
the game in an area that is 625 m x 625 m (normal density
~ 100%‘12’S in [33]). Since the analysis is probabilistic, we run
100 iterations for each simulation. Then, we take an average
of the results with 95% confidence interval. The default game
parameters are as follows:

o Monitoring system parameters: « = 0.95, 8 = 0.05,

« Probabilities: P,, = 0.75, u = 0.2, and ¢ = 0.4,

o Costs and benefits: cgp = cgn = 4w =4, b = 3,

cm=cqg=c,=1.

If we change these parameters to better explain a scenario,
then we will explicitly mention it. Nevertheless, we describe
the theoretical results in three subsections. Initially, we study
the impact of incentives (in particular, b) on correct, wrong,
and undecided target node identification. Then, we focus
on the behavior of malicious nodes w.r.t. their portion and
aggressiveness in the network. This section also includes a
comparison among different ny,s. Finally, we compare our
work with scenarios where the uncertainties discussed in this
paper have not been considered, e.g., [15], [17], [20]. In all
these cases, we evaluate and compare the percentage of target
node identification for different sets of given parameters that
lead to different equilibria for the game.

A. IMPACT OF INCENTIVES
Fig. 8 illustrates the percentage of target node identification
versus b. Here, it is assumed that ¢ = 0.7. As shown,
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FIGURE 8. Game outcomes versus benefit variations.

this figure can be categorized into four different regions.
In region I, the percentage of undecided target identification
outweighs correct and wrong identifications for a simple
reason: the benefit is not large enough to persuade nodes
to participate in the game. Region II, however, illustrates a
drastic reduction of undecided identification. This indicates
that voting payoffs become larger in comparison to abstaining
payoffs. In addition, correct identification dominates over
wrong identification, which is the result of the following:
(i) benign nodes with high monitoring and detection rates
(i.e., P, = 0.75 and @ = 0.95), and (ii) malicious nodes with
ahigh level of aggressiveness (i.e., ¢ = 0.7). Region III shows
a slight increase in correct identification and a decrease in
undecided identification because of lower payoffs for abstain-
ing from the game. The increase of wrong identification over
undecided identification is remarkable in region IV. Wrong
votes in this region mainly come from highly encouraged
benign nodes that have not been attacked by a malicious target
node. In other words, since voting payoffs are significantly
larger than abstaining payoffs (i.e., ua > us and uy7 > ug),
a benign node votes in favor of a non-attacking target node.
This observation reveals that persuading every node to vote by
applying the leverage of benefit does not necessarily lead to a
better outcome. Taking all regions into consideration, region
IIT indicates the best option for the benefit design.

B. IMPACT OF MALICIOUS NODES AND Nyy

Fig. 9 shows the percentage of target identification w.r.t. the
portion of malicious nodes and their probability of attack (g)
in the network. As shown, when ¢ increases, correct identi-
fication generally increases, which confirms that aggressive
attackers can be more easily identified. However, wrong iden-
tification is reduced after a certain value of ¢; for example,
g = 0.1 for © = 0.1. When the number of malicious nodes
increases in the network, this decreasing trend starts at higher
values of g; for instance, ¢ = 0.4 for © = 0.2. This reveals
that malicious nodes become more aggressive when their
number increases in the network.

Fig. 10 depicts identification results w.r.t. the variation
of ng, and . As ny, grows larger, a turning point occurs,
whereby undecided identification prevails over correct and
wrong identifications. The reason is that a higher number of
nodes must participate to make an outcome of identification.
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FIGURE 9. Impact of portion of malicious nodes (1) and probability of
attack (q) on identification results.
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FIGURE 10. Impact of required votes, ng,, on target identification.

For example, consider plots for u = 0.2, where ny, = 23 is
the turning point. This number comes from the fact that out
of 40 neighboring nodes, on average, 8 of them are malicious
nodes (40 x 0.2). Also, from the remaining 32 benign nodes,
those that are in the monitoring state, i.e., 24 (32 x 0.75),
might vote depending on their payoffs. If ny, = 23, then
almost all such nodes must participate to avoid undecided tar-
get identification. A designer can adjust the ny; w.r.t. a range
of us to obtain an acceptable correct identification rate.

C. COMPARISON

In this section, we compare our work with the scenarios where
some of the explained uncertainties have not been considered
(e.g.[15], [17], [20]). It is worth mentioning that the compari-
son is limited to highlighting uncertainties in those scenarios.
This is because the nature of their games and objectives are
slightly different. However, this comparison provides us with
insight into the effect of incomplete information at nodes on
the outcome of a local voting game.

Fig. 11(a) shows the impact of the true positive detection
rate (o) on the correct target identification. As can be seen,
it is essential for nodes to have high values of « in order
to gain high correct target identification. The values of «
become more important when fewer benign nodes moni-
tor their neighbors (i.e., smaller P,,). Fig. 11(b) indicates a
comparison between a design with and without uncertain-
ties in the local voting game. In particular, we assume that
a design without uncertainty has the following parameters:
o =1, =0, and g = 1. As shown, the difference between
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FIGURE 11. Impact of game uncertainties relative: (a) detection rate, and
(b) correct identification rate.

graphs is the growth of p. This is because a player without
uncertainty considers a non-attacking malicious node as a
benign node and votes for it. On the other hand, the pro-
posed design prevents benign nodes from voting when they
are unsure about the strategy of malicious nodes. In both
scenarios, when p goes beyond a threshold, here 0.3, correct
target identification is significantly reduced. This comes from
higher payoffs for abstaining in comparison to voting. Inter-
preted differently, benign nodes are unwilling to cooperate in
a game in which a high portion of participants are malicious.

VI. CONCLUSION

In this paper, we have provided a game-theoretic approach
to identify malicious nodes in ephemeral networks, where
central stations are not available. In particular, we have stud-
ied the strategies of nodes in a local voting-based game
using a Bayesian game, in which nodes have incomplete
information about the accuracy of their monitoring sys-
tems, the type of neighbors (benign or malicious), and the
outcome of the game. By offering incentives in expected
utilities, we have provided encouragements for game partici-
pation with the aim of improving correct node identification.
We have derived possible Bayesian Nash equilibrium (BNE)
points and mixed-strategy BNE points to study the best strate-
gies of players in the game. Simulation results have shown the
impact of different parameters, such as participation benefits
and detection rate, on the identification of malicious nodes.

APPENDIX
A. PROOF OF LEMMA 1

Proof: To obtain py, note that n,; and n,, votes have
already been cast until the k™ stage, while there are n; nodes
left in the game. To derive a closed form for pg, note the
following: (i) If n, > ny, then py = 0, which means that
the number of left nodes is less than the number of required
votes to identify the PLT; (ii) if n, = O, then py = 1,
which implies that the PLT has been already identified; (iii) pk
directly depends on n; and their type; and (iv) if n, is reduced,
then py will be increased. Taking these points into account, pi
can be written in the form of eq. (12), where p, represents the
probability of correct target node identification. For instance,
assume n = 10, k =7 (i.e., n; = 3), py = 1/3, and ny, = 4.
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Under such assumptions, if n,; = 0 (i.e., n, = 4), then
equation (12) yields pr = 0 because of the first condition.
If n,; =4 (i.e., n, = 0), then eq. (12) yields pr = 1 because
of the second condition. Also, substituting n, = 1 andn, = 3,
respectively, yields py = 0.7 and p; =~ 0.04, which confirm
the last condition. We can define p; = A(1 — pw)aP,,;, where
A represents the probability of a remaining node to be in the
network and 1 — w is the probability of the remaining node
to be benign.

Since § is defined as the difference that a correct vote can
make in py, we have

8 = pr(voting) — pr(abstaining),

ny

== 3 (M) ey a-py

i=n,—1

”.’) () (1=p)"~", 40

_ Z<,

i=n,

which yields eq. (13). 0

B. PROOF OF LEMMA 2
Proof: A node must remain indifferent between voting
and abstaining for all p;s and us. That is,

Eu(voting), = Eu(abstaining),,
7 £ {attack, not attack), 41)

where Eu(.) denotes expected utility function, and z is the
strategy of PLT. Applying eq. (41) for by (Fig. 4(a)), and
assuming small values of 8, we obtain

Pr(prbr—cy)+(1 _pk)(_cv_cgm)
=(1=p)l—(1=pi)b1—cgml. (42)

Simplifying eq. (42) yields eq. (33). Eq. (34) can be
obtained in the same fashion using Figs. 4(b)-(c). ]

C. PROOF OF THEOREM 1

Proof: We first derive combined payoffs for two types
of PLT (malicious and benign) and the PLB. Then, using
strictly dominated strategies, we prove the theorem w.r.t. the
conditions.

Fig. 12 shows the combination of payoffs. The first and
the second element of each column (e.g., {A, NA}) indicate the
strategy of a malicious PLT and a benign PLT. For instance,
{A, NA} represents the attacking (A) and the non-attacking
(NA) strategies from PLT. In addition, ¢;s and v;s denote
expected payoffs for the PLT and the PLB, respectively. For
instance, v; is obtained as follows:

vy = uPuu; + (1 — p)Ppu7, (43)

where u; and u7 are obtained in eqs. (21) and (27), respec-
tively. Based on the values of ¢;s, if cgn > ¢4 + Qo —
1) W+ 8cgp, then the left column in Fig. 12 ({A, NA}) strictly
dominates the right column ({NA, NA}). On the other hand,
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FIGURE 12. Expected payoffs for combined types of PLT and the PLB.

we need to show that vy > v3 to obtain pure-strategy BNE.
Substituting the equations of v and v3 yields

(1 = Pppw + (1 = Py)(1 — p)(1 = pr)egs + (1 — Py)
x 11(1 = pr)cgm + Pulpf — 2pk + Db —¢,] > 0 (44)

As can be seen, the first three items in eq. (44) are equal to
or greater than zero. Hence, it suffices to say that the last
. . . . o .
Ferm is Posﬁwe. This happens only if b > T This
inequality, however, must hold for all pgs, which means that
the right-hand side of the inequality must be maximized. This

yields pr = 0.5, which implies b > 2 ¢,. (|

D. PROOF OF THEOREM 2

Proof: To obtain g*, we first equalize the expected
utilities for voting and abstaining to obtain g;. Then, we take
an average over all possible values of the pys to get eq. (35).
In this way

Eu [voting] =Eu [abstaining] (45)
where,

Eu[voting] = pqui + (1 — q)us + (1 — w)uz, (46)
Eu[absmining] = uqPuur+p q(l — Pm)u3
+ 1t (1= q)Potts+1¢(1—) (1= Pu) s
+ (1— M)Pmug—i—(l—,u)(l—Pm)ug.
47)

Substituting egs. (21), (24), and (27) into eq. (46), and eqs.
(22), (23), (25), (26), (28), and (29) into eq. (47), and then
substituting eqs. (46) and (47) in eq. (45) yields eq. (36).
Since the malicious PLT might attack the neighboring nodes
regardless of their stage in the game, we take an average over
all values of gs, which yields eq. (35).

To calculate s*, we can equalize the expected utilities of
attack and not attack from the PLT, hence obtaining

pwsvi+Ppp(d=s)va+ (1 —=Py)puvy=0. (48)

Plugging eqs. (30) and (31) back into eq. (48) yields eq. (37).
O
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