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The economic production of wearable energy storage devices exhibiting mechanically-compliable form factors
and reliable performance enable exciting opportunities in emerging technologies of consumer electronics,
human-machine interface, and the Internet of Things. Here we report a hybrid scheme for designing and
nanomanufacturing ultralight, high-performance supercapacitor electrodes through the hydrothermal growth of
two-dimensional MnO, on three-dimensional printed graphene aerogel (GA). The derived mixed-dimensional
hierarchical macroporous composite electrodes exhibit superior specific capacitance and excellent cycling sta-
bility after thousands of cycles. We further explored the integration of a contact mode triboelectric nano-
generator and a mixed-dimensional MnO,/GA based supercapacitor into a self-powered system that is capable of
converting mechanical signals into electrical power and further storing such scavenged power. The holistic
integration of energy harvesting and storage units promises the implementation of self-powered wearable devices
with greater intelligence that can scavenge and store environmental energy through sustainable pathways for
ubiquitous electronics in societally-pervasive applications.

1. Introduction

The economic production and integration of nanomaterials-based
wearable energy storage devices exhibiting mechanically-compliable
form factors and reliable performance will provide exciting opportu-
nities in emerging technologies such as consumer electronics, pervasive
computing, human-machine interface, robotics, and the Internet of
Things (IoT) [1-10]. For continuous and efficient operation, the wear-
able energy storage units should ideally possess characteristics such as
high energy density, lightweight, the capability to withstand large
deformation [11-19]. Moreover, the holistic integration of appropriate
energy harvesting and storage units promises the implementation of
self-powered wearable devices with greater intelligence that can

scavenge and store the environmental energy through sustainable
pathways for sustainable onboard operations.

Electrochemical capacitors or supercapacitors (SCs) are power stor-
age devices which store electric charge in the Faraday double layer on
the electrode surfaces that are in contact with the electrolyte [20]. In
this configuration, stable positive and negative double-layer will form at
the solid-liquid interface [21,22]. To enhance the storage capacity in the
supercapacitors, the electrodes are often modified with materials having
better storage abilities of electric charge [23-27]. To this end, transition
metal oxides have been intensively researched for potential use as the
active materials [28-33]. For instance, manganese dioxide (MnO2) with
characteristics such as environmental friendliness and earth-abundance
has been shown to possess high energy density and fast
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charge/discharge [34,35]. However, the rate capability and reversibility
of MnOs, electrodes are largely limited due to its extremely low electrical
conductivity [36,37]. To address these issues, carbonaceous materials
have been combined with MnO, to form composites with higher elec-
trical conductivities and large specific surface areas [38-41]. These
carbon materials provide continuous networks for electrical conduction
and reduce impedance during cycling [42,43]. In previous studies [44,
45], MnOs-carbon composites were mainly prepared in powder form,
which partly increases the specific capacitance of the active materials
but is ineffective in reducing the device weight. Recently, the 3D printed
graphene aerogel shows promise for serving as the backbone structures
in lightweight MnO,-carbon composites electrode with significantly
boosted specific capacitance [19,46-49].

Herein, we report a hybrid scheme for designing and nano-
manufacturing ultralight and high-performance supercapacitor elec-
trodes through the hydrothermal growth of two-dimensional (2D) MnO»
nanosheets on 3D printed macroporous graphene aerogel (GA)s. The
derived mixed-dimensional hierarchical MnO5/GA composite electrodes
exhibit superior specific capacitance and excellent cycling stability after
thousands of cycles. Compared to previous routes [50-53], the pre-
sented 3D printing template approach provides a more facile, econom-
ical, and controllable solution towards the realization of hierarchically
porous graphene composites. We further presented a proof-of-concept
demonstration of an integrated self-powered system that consists of a
contact mode chitosan-based triboelectric nanogenerator (TENG) device
[54] and the mixed-dimensional MnO5/GA based supercapacitor. We
showed that the integrated system is capable of converting mechanical
signals into electrical power and further storing such scavenged power
in the MnOy/GA supercapacitor.

2. Results and discussion

The ultralight graphene aerogel was 3D printed following our re-
ported procedures [47]. Unlike other approaches where the materials
were heated up during printing or extruded out at room temperature
[55,56], the cold plate in our 3D printing process rapidly freezes the
water-based diluted graphene oxide suspension and selectively solidifies
the aqueous droplets at —25°C (Fig. 1a). During the freeze casting
process, ice crystals grow along the temperature gradient, squeeze gra-
phene nanosheets unidirectionally. The ice crystals are sublimated after
freeze-drying, leaving interconnected micropores [47,57]. These
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micropores allow the manufacturing of MnO, nanosheets in the next
step. Therefore, the water and low-viscosity graphene oxide suspension
can be printed in a drop-on-demand mode, where the materials are
ejected drop-by-drop digitally. Such digital fashion is different from the
traditional 3D printing processes based on the continuous deposition
[58], where the physical properties of the printed device can be affected
by insufficient bond energy and surface voids formed during the inter-
molecular diffusion process [59,60]. In our printing process, the un-
frozen material melts the frozen surface when the liquid solution is
deposited on the previously frozen material. These two materials are
mixed at low temperature (—25 °C) and then frozen together. Since the
aqueous materials possess low viscosity after re-melting, the voids be-
tween layers will be filled by the liquid materials (i.e., graphene oxide
suspension) subjected to surface tension and gravity. Compared to other
advanced graphene aerogel printing technologies [61], the diluted
graphene oxide suspension would provide the low density and large
surface area for printing, and the final assembled graphene oxide can
achieve high structural integrity and superior mechanical properties.

The process flow for manufacturing the mixed-dimensional hierar-
chical MnO,/GA composite with the 3D printed GA as the skeleton is
shown in Fig. 1. Briefly, the equimolar masses of KMnO4 and HCl were
first mixed in 40 ml deionized water with constant stirring for 1 h. The
mixture was then added into a reactor that contained a graphene aerogel
substrate and was placed in an oven at 85°C for 6 h. The obtained
product was washed and rinsed three times with deionized water and
dried in a vacuum oven at 80 °C. Subsequently, the derived MnOy/GA
material was used to construct the electrodes. Fig. 1b shows an optical
image of a MnOy/GA electrode standing on a dandelion without any
deformation of the stem, showcasing the ultra-lightweight nature of the
mixed-dimensional MnO,/GA composite. The cross-section scanning
electron microscope (SEM) image of a MnOs/GA electrode (Fig. 1c)
clearly shows that the 2-D MnO, flakes grow uniformly with a high
density on both sides of the graphene aerogel network.

We then studied the effects of the reaction conditions, e.g., growth
temperature and time, on the growth outcome for 2-D MnO, flakes on
GA. We found that the synthesis at 85 °C yields the optimal growth since
MnO; cannot be successfully crystallized below 80°C (Fig. Sla) and
graphene aerogel substrate may not maintain its intact structure above
90 °C (Fig. S1b). We further explored and identified the optimal reaction
time when the synthesis temperature was fixed at 85 °C. Fig. 2a shows
the MnO2 flakes on GA with different reaction periods (3 h, 6 h, 9 h, and

Hydrothermal
(85 °C 6h)
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Fig. 1. Synthesis and fabrication process of MnO,/GA electrode. (a) Scheme illustration of synthesis and fabrication process of MnO,/GA electrode (b) Optical
image of MnO,/GA electrode standing on a dandelion without any deformation of the stem and (c) SEM image of MnO,/GA electrode.
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12 h). The three-hour synthesis yielded low-density MnO-, flakes on the
surface of graphene aerogel (Fig. 2a-1). With the reaction time increased
to 6 h, the surface of graphene aerogel was fully covered by MnO- flakes
with thin and uniform geometry. Compared to the bare GA framework,
such high-density thin flakes provide a significantly enhanced specific
surface area which is conducive to the contact with the electrolyte and
hence benefits the surface oxidation-reduction reaction [62,63]. When
the reaction time for MnOy growth was further increased to nine and
twelve hours, a large amount of free-standing MnO; clusters accumu-
lated around the specimens, which would have an adverse effect on the
electrode performances [64]. We further characterized the galvanostatic
charge-discharge (GCD) curves for MnOy/GA samples with different
reaction time at specific discharge currents of 2A g%, 5A g~! and 10A
g1, respectively, to reveal and compare the electrochemical perfor-
mance of the electrodes prepared with different processing conditions
(Fig. 2b, Fig. S2). The specific discharge capacities of the samples (at a
specific discharge current of 2A g~!) obtained with different reaction
times are summarized in Fig. 2b. When the reaction time was 3 h, the
specific capacitance of the product is only 94 F g~1. When the reaction
time was 6h, the specific capacitance of the product could reach
213F gfl. With the increase of reaction time, the specific capacity of the
products decreases, from 213Fg~! to 158 Fg~! and 104 F g~. We have
also tested the electrochemical impedance spectroscopy (EIS) curves of
the MnOy/GA samples obtained under different reaction time (Fig. S3)
to differentiate their electrical conductivities. From the -curves,
MnO,/GA samples obtained under different reaction time (3h, 6 h, 9h,
and 12 h) have the same Ry, which means four conditions samples have
similar ohmic resistance. Meanwhile, With the increase of reaction time,
the radius of semi-circle in the high-frequency region becomes larger,
which reflects the increase of electrochemical impedance. The reason
should be that the electrical conductivities were reduced by the growth
of MnO2 flake. However, when the reaction time is 12h, MnOy/GA
sample has a lower slope, with the reason that excessive MnO, flake
significantly increased concentration polarization. The results from the
electron micrographs, GCD and EIS characterizations all suggest that the
optimal synthesis condition for the growth of 2-D MnO3, flakes on the
surface of graphene aerogels is at 85 °C for 6 h.

Subsequently, we analyzed the material and structural properties of
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the samples obtained with the optimal conditions, using Energy-
dispersive X-ray spectrometry (EDS) mapping analysis, Raman spec-
troscopy, and X-ray diffraction (XRD). Fig. S4 shows the elemental
mapping for the MnOy/GA sample, indicating that the Mn and O ele-
ments distribute uniformly on the surface of graphene aerogels. Fig. 2c
shows the comparison of the Raman spectra for the MnOy/GA samples
and the bare graphene aerogel skeleton. In both the spectra, the D-band
at 1358 cm™! and G-band at 1596 cm™! indicate the presence of gra-
phene in the structure [65,66]. As shown in Fig. 2c, three Raman bands
located at 514, 567, and 641 cm™' for the MnO, flakes are in good
agreement with the major vibrational features of Mn-O in the lattice
vibration of a-MnO5 [67-69]. The XRD pattern of the MnOy/GA sample
is shown in Fig. 2d, where the broadening of the XRD peaks is likely due
to the existence of graphene with amorphous structure [70]. The peaks
corresponding to the (110) crystal plane of manganese dioxide has the
largest intensity and a relatively sharp profile. The (110) crystal plane of
MnO; has a high surface energy [71,72] that can promote the reaction
rate in the electrochemical process of supercapacitors, and hence
improve the performance of the electrode.

We further performed cyclic voltammetry (CV) for the bare graphene
aerogel framework and the mixed-dimensional hierarchical MnOy/GA
composite electrodes in three-electrode configurations (Fig. 3a). The
specific capacitance of the MnOy/GA electrodes increased significantly
compared to that of the bare GA framework, which could be attributed
to the pseudocapacitance from the 2-D manganese dioxide flakes.
Meanwhile, the (110) surfaces of manganese dioxide have high energy
and hence enhanced activity promoting the redox reaction [73,74]. The
ultra-high surface area and conductivity of graphene aerogels backbones
provide enhanced contact and electronic conductivity that further
facilitate the redox processes on the surfaces of 2-D MnO» [75]. Fig. 3b
shows the CV curves of MnO,/GA electrodes in the potential window
ranging from O to 0.8V at different scan rates (10mVs ', 20mVs ™,
50 mV s’l, and 100 mV s’l, respectively). Our mixed-dimensional hi-
erarchical MnO,/GA electrodes presented a stable structure and high
conductivity that help stabilize the electrochemical performance under
high-rate charge and discharge conditions [76]. As shown in Fig. 3b,
with the scan rate increased, the rectangular-shaped CV curves for the
MnO3y/GA electrodes remained unchanged, manifesting a stable cycling
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Fig. 3. Electrochemical performance of MnO,/GA electrode. (a) Cyclic voltammetry of graphene aerogel templates and MnO,/GA electrode in a three-electrode
configuration (b) Cyclic voltammetry curves of MnO,/GA electrodes in the potential window of 0-0.8 V at different scan rates (10mVs %, 20mV s, 50mV s~ and
100 mV s~?, respectively) (c) The discharge curves of MnO,/GA electrodes at discharge specific currents of 1A g™, 2A g%, 5A g~* and 10A g%, respectively (d)
Cyclic performance of the MnO,/GA electrode under 5A g~ charge and discharge current.

and satisfactory capacitive behavior [41,76]. Fig. 3c shows the
discharge curves of the MnO2/GA electrodes at discharge specific cur-
rentsof 1A g}, 2A¢g7!, 5A g7}, and 10A g 1. The discharge-specific
capacitance of the MnOy/GA electrode reached 275F g~! when the
discharge specific current is 1 A g~1. When the discharge specific current
was increased to 10A g™, the discharge specific capacitance of the
MnO,/GA electrodes still maintained at 90 F g L. To further characterize
the cyclic stability for potential long-term practical applications, we
measured the specific capacitance of the MnOy/GA electrodes at the
charge/discharge specific current of 5A g™! for 5000 cycles (Fig. 3d).
After 5000 cycles, the specific capacitance of the MnOy/GA electrodes
did not decay but instead increased slightly, likely due to the porous
nature of the graphene aerogels [77,78]. During the cycling, the elec-
trolyte constantly wet the electrode surface and gradually infiltrated
through the macroporous GA framework, hence increasing the contact
area between the electrode and electrolyte and leading to improved
material performance [79]. We have also included a benchmarking
comparison between the performance of our MnOy/GA electrode with
those in the reported work (Supplementary Table 1).

The integration of flexible energy harvesting and energy storage
units into a self-powered system promises the implementation of self-
sustainable wearable devices with greater intelligence that can store
the harvested electric power for other onboard operations [80-83]. The
triboelectric nanogenerator (TENG) emerges as a promising technology
for effectively scavenging the ubiquitous mechanical energy into electric
power through the contact electrification and electrostatic induction
[84-91]. Here, to develop the self-powered system that consists of the
TENG energy harvester and the energy storage unit, we integrated the
3D printed MnO,/GA supercapacitor on the same substrate with a TENG
device made of biopolymer derived materials [54]. An optical image of
the integrated device is shown in Fig. 4a, where the TENG incorporated

a copper foil as the current collector and a chitosan film as the dielectric
layer. The solid-state supercapacitor consisted of the 3D printed
MnO,/GA as the electrode and polyvinyl alcohol/lithium chloride
(LiCl/PVA) gel as the electrolyte and separator [92].

We first characterized the electrochemical performance of the 3D
printed MnO»/GA supercapacitors. The electrochemical impedance
spectroscopy (EIS) results for the device and its simulated equivalent
circuit are shown in Fig. S5. Leveraging the ultrahigh conductivity of the
three-dimensional graphene aerogel, the 3D printed MnOy/GA super-
capacitor exhibited an appealing internal resistance around 2 Ohms and
the corresponding electrochemical impedance was 10 Ohms. Fig. 4b
shows the discharge curves of the 3D printed MnO2/GA supercapacitor
with discharge specific currents of 1A g™}, 2A g7}, 5A g7}, and 10A
g~ 1. The discharge-specific capacitance of the 3D printed MnO,/GA
supercapacitor reached 95F g~! with a discharge current of 1 A g 1. At
discharge specific current of 10 A g%, the discharge specific capacitance
of the MnO2/GA electrode maintained at 45F g~'. The energy and
power densities were also calculated from GCD curves. The maximum
energy density of 21 Wh/kg is achieved at a power density of 800 W/kg,
while the highest power density is 36 kW/kg at the energy density of
10 Wh/kg. Fig. S6 exhibits the cyclic performance of the device with a
5 A g1 discharge current. The 3D MnO,/GA supercapacitor reached an
initial specific capacitance of 80 F g~! and maintained at 63F g~! even
after 1000 cycles of operations. We further characterized the perfor-
mance of the TENG module for converting the mechanical inputs into
electrical power (details in SI). Fig. 4c shows the measured open-circuit
voltage (Voc) (—~40V), short-circuit current (Isc) (~0.15 pA), and
transfer charge (osc) (—24nC). The direct electrical outputs from the
TENG should be rectified for properly charging the energy storage units
[93,94]. Fig. 4d shows the rectified current waveform from the TENG
through a rectifier circuit (Fig. S7). Moreover, we characterized the
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Fig. 4. Self-powered ubiquitous nanosystem. (a) Optical images of integrated self-power system (b) Discharge curves of 3D printed MnO,/GA supercapacitor at
discharge specific currents of 1A g1, 2A g1, 5A g ! and 10A g}, respectively (c) electric performance of the TENG device (d) Gurrent signal of CC-TENG device
after rectification (e) power output of CC-TENG was characterized with different resistive loads (f) TENG charges the supercapacitor.

output power from the TENG module delivered to the external resistive
loads (Fig. 4e). The highest instantaneous power output delivered to the
load was estimated to be 2.5 pW when the external load matches the
internal impedance of the TENG module (~200 M Ohm here) [95,96].
For a proof-of-concept demonstration, we used finger pressing as the
mechanical inputs that can be effectively harvested by the TENG mod-
ule, and the harvested energy was further used to charge the 3D
MnO,/GA supercapacitor (Fig. 4f). When the TENG was pressed by the
human finger, the 3D MnOy/GA supercapacitor became charged with
1.0V in 60s. The voltage change in the supercapacitor during the
pressing process is shown in the enlarged figure. The voltage in the
supercapacitor stabilized at 0.8V subsequently, providing a reliable
electrical source for the operations of other onboard electronics.

3. Conclusions

In summary, we have demonstrated a hybrid scheme for designing
and nanomanufacturing mixed-dimensional ultralight macroporous hi-
erarchy for efficient supercapacitor electrodes, through the hydrother-
mal growth of 2-D MnO, nanosheets on 3-D printed graphene aerogel
with interconnected micropores. The derived mixed-dimensional hier-
archical MnO,/GA composite electrodes exhibit superior specific
capacitance (275 F g 1) and excellent cycling stability after thousands of
cycles. We further presented a proof-of-concept demonstration of an
integrated self-powered system that consists of a contact mode chitosan-
based TENG device [54] and the mixed-dimensional MnO,/GA based
supercapacitor. We showed that the integrated system is capable of
converting mechanical signals into electrical power and further storing
such scavenged power in the MnOy/GA supercapacitor for other on-
board applications. Our work presents an important step towards the
realization of self-powered nanosystems.
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