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A B S T R A C T   

The economic production of wearable energy storage devices exhibiting mechanically-compliable form factors 
and reliable performance enable exciting opportunities in emerging technologies of consumer electronics, 
human-machine interface, and the Internet of Things. Here we report a hybrid scheme for designing and 
nanomanufacturing ultralight, high-performance supercapacitor electrodes through the hydrothermal growth of 
two-dimensional MnO2 on three-dimensional printed graphene aerogel (GA). The derived mixed-dimensional 
hierarchical macroporous composite electrodes exhibit superior specific capacitance and excellent cycling sta
bility after thousands of cycles. We further explored the integration of a contact mode triboelectric nano
generator and a mixed-dimensional MnO2/GA based supercapacitor into a self-powered system that is capable of 
converting mechanical signals into electrical power and further storing such scavenged power. The holistic 
integration of energy harvesting and storage units promises the implementation of self-powered wearable devices 
with greater intelligence that can scavenge and store environmental energy through sustainable pathways for 
ubiquitous electronics in societally-pervasive applications.   

1. Introduction 

The economic production and integration of nanomaterials-based 
wearable energy storage devices exhibiting mechanically-compliable 
form factors and reliable performance will provide exciting opportu
nities in emerging technologies such as consumer electronics, pervasive 
computing, human-machine interface, robotics, and the Internet of 
Things (IoT) [1–10]. For continuous and efficient operation, the wear
able energy storage units should ideally possess characteristics such as 
high energy density, lightweight, the capability to withstand large 
deformation [11–19]. Moreover, the holistic integration of appropriate 
energy harvesting and storage units promises the implementation of 
self-powered wearable devices with greater intelligence that can 

scavenge and store the environmental energy through sustainable 
pathways for sustainable onboard operations. 

Electrochemical capacitors or supercapacitors (SCs) are power stor
age devices which store electric charge in the Faraday double layer on 
the electrode surfaces that are in contact with the electrolyte [20]. In 
this configuration, stable positive and negative double-layer will form at 
the solid-liquid interface [21,22]. To enhance the storage capacity in the 
supercapacitors, the electrodes are often modified with materials having 
better storage abilities of electric charge [23–27]. To this end, transition 
metal oxides have been intensively researched for potential use as the 
active materials [28–33]. For instance, manganese dioxide (MnO2) with 
characteristics such as environmental friendliness and earth-abundance 
has been shown to possess high energy density and fast 
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charge/discharge [34,35]. However, the rate capability and reversibility 
of MnO2 electrodes are largely limited due to its extremely low electrical 
conductivity [36,37]. To address these issues, carbonaceous materials 
have been combined with MnO2 to form composites with higher elec
trical conductivities and large specific surface areas [38–41]. These 
carbon materials provide continuous networks for electrical conduction 
and reduce impedance during cycling [42,43]. In previous studies [44, 
45], MnO2-carbon composites were mainly prepared in powder form, 
which partly increases the specific capacitance of the active materials 
but is ineffective in reducing the device weight. Recently, the 3D printed 
graphene aerogel shows promise for serving as the backbone structures 
in lightweight MnO2-carbon composites electrode with significantly 
boosted specific capacitance [19,46–49]. 

Herein, we report a hybrid scheme for designing and nano
manufacturing ultralight and high-performance supercapacitor elec
trodes through the hydrothermal growth of two-dimensional (2D) MnO2 
nanosheets on 3D printed macroporous graphene aerogel (GA)s. The 
derived mixed-dimensional hierarchical MnO2/GA composite electrodes 
exhibit superior specific capacitance and excellent cycling stability after 
thousands of cycles. Compared to previous routes [50–53], the pre
sented 3D printing template approach provides a more facile, econom
ical, and controllable solution towards the realization of hierarchically 
porous graphene composites. We further presented a proof-of-concept 
demonstration of an integrated self-powered system that consists of a 
contact mode chitosan-based triboelectric nanogenerator (TENG) device 
[54] and the mixed-dimensional MnO2/GA based supercapacitor. We 
showed that the integrated system is capable of converting mechanical 
signals into electrical power and further storing such scavenged power 
in the MnO2/GA supercapacitor. 

2. Results and discussion 

The ultralight graphene aerogel was 3D printed following our re
ported procedures [47]. Unlike other approaches where the materials 
were heated up during printing or extruded out at room temperature 
[55,56], the cold plate in our 3D printing process rapidly freezes the 
water-based diluted graphene oxide suspension and selectively solidifies 
the aqueous droplets at  25 �C (Fig. 1a). During the freeze casting 
process, ice crystals grow along the temperature gradient, squeeze gra
phene nanosheets unidirectionally. The ice crystals are sublimated after 
freeze-drying, leaving interconnected micropores [47,57]. These 

micropores allow the manufacturing of MnO2 nanosheets in the next 
step. Therefore, the water and low-viscosity graphene oxide suspension 
can be printed in a drop-on-demand mode, where the materials are 
ejected drop-by-drop digitally. Such digital fashion is different from the 
traditional 3D printing processes based on the continuous deposition 
[58], where the physical properties of the printed device can be affected 
by insufficient bond energy and surface voids formed during the inter
molecular diffusion process [59,60]. In our printing process, the un
frozen material melts the frozen surface when the liquid solution is 
deposited on the previously frozen material. These two materials are 
mixed at low temperature ( 25 �C) and then frozen together. Since the 
aqueous materials possess low viscosity after re-melting, the voids be
tween layers will be filled by the liquid materials (i.e., graphene oxide 
suspension) subjected to surface tension and gravity. Compared to other 
advanced graphene aerogel printing technologies [61], the diluted 
graphene oxide suspension would provide the low density and large 
surface area for printing, and the final assembled graphene oxide can 
achieve high structural integrity and superior mechanical properties. 

The process flow for manufacturing the mixed-dimensional hierar
chical MnO2/GA composite with the 3D printed GA as the skeleton is 
shown in Fig. 1. Briefly, the equimolar masses of KMnO4 and HCl were 
first mixed in 40 ml deionized water with constant stirring for 1 h. The 
mixture was then added into a reactor that contained a graphene aerogel 
substrate and was placed in an oven at 85 �C for 6 h. The obtained 
product was washed and rinsed three times with deionized water and 
dried in a vacuum oven at 80 �C. Subsequently, the derived MnO2/GA 
material was used to construct the electrodes. Fig. 1b shows an optical 
image of a MnO2/GA electrode standing on a dandelion without any 
deformation of the stem, showcasing the ultra-lightweight nature of the 
mixed-dimensional MnO2/GA composite. The cross-section scanning 
electron microscope (SEM) image of a MnO2/GA electrode (Fig. 1c) 
clearly shows that the 2-D MnO2 flakes grow uniformly with a high 
density on both sides of the graphene aerogel network. 

We then studied the effects of the reaction conditions, e.g., growth 
temperature and time, on the growth outcome for 2-D MnO2 flakes on 
GA. We found that the synthesis at 85 �C yields the optimal growth since 
MnO2 cannot be successfully crystallized below 80 �C (Fig. S1a) and 
graphene aerogel substrate may not maintain its intact structure above 
90 �C (Fig. S1b). We further explored and identified the optimal reaction 
time when the synthesis temperature was fixed at 85 �C. Fig. 2a shows 
the MnO2 flakes on GA with different reaction periods (3 h, 6 h, 9 h, and 

Fig. 1. Synthesis and fabrication process of MnO2/GA electrode. (a) Scheme illustration of synthesis and fabrication process of MnO2/GA electrode (b) Optical 
image of MnO2/GA electrode standing on a dandelion without any deformation of the stem and (c) SEM image of MnO2/GA electrode. 
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12 h). The three-hour synthesis yielded low-density MnO2 flakes on the 
surface of graphene aerogel (Fig. 2a-1). With the reaction time increased 
to 6 h, the surface of graphene aerogel was fully covered by MnO2 flakes 
with thin and uniform geometry. Compared to the bare GA framework, 
such high-density thin flakes provide a significantly enhanced specific 
surface area which is conducive to the contact with the electrolyte and 
hence benefits the surface oxidation-reduction reaction [62,63]. When 
the reaction time for MnO2 growth was further increased to nine and 
twelve hours, a large amount of free-standing MnO2 clusters accumu
lated around the specimens, which would have an adverse effect on the 
electrode performances [64]. We further characterized the galvanostatic 
charge-discharge (GCD) curves for MnO2/GA samples with different 
reaction time at specific discharge currents of 2A g 1, 5A g 1 and 10A 
g 1, respectively, to reveal and compare the electrochemical perfor
mance of the electrodes prepared with different processing conditions 
(Fig. 2b, Fig. S2). The specific discharge capacities of the samples (at a 
specific discharge current of 2A g 1) obtained with different reaction 
times are summarized in Fig. 2b. When the reaction time was 3 h, the 
specific capacitance of the product is only 94 F g 1. When the reaction 
time was 6 h, the specific capacitance of the product could reach 
213 F g 1. With the increase of reaction time, the specific capacity of the 
products decreases, from 213 F g 1 to 158 F g 1 and 104 F g 1. We have 
also tested the electrochemical impedance spectroscopy (EIS) curves of 
the MnO2/GA samples obtained under different reaction time (Fig. S3) 
to differentiate their electrical conductivities. From the curves, 
MnO2/GA samples obtained under different reaction time (3 h, 6 h, 9 h, 
and 12 h) have the same R0, which means four conditions samples have 
similar ohmic resistance. Meanwhile, With the increase of reaction time, 
the radius of semi-circle in the high-frequency region becomes larger, 
which reflects the increase of electrochemical impedance. The reason 
should be that the electrical conductivities were reduced by the growth 
of MnO2 flake. However, when the reaction time is 12 h, MnO2/GA 
sample has a lower slope, with the reason that excessive MnO2 flake 
significantly increased concentration polarization. The results from the 
electron micrographs, GCD and EIS characterizations all suggest that the 
optimal synthesis condition for the growth of 2-D MnO2 flakes on the 
surface of graphene aerogels is at 85 �C for 6 h. 

Subsequently, we analyzed the material and structural properties of 

the samples obtained with the optimal conditions, using Energy- 
dispersive X-ray spectrometry (EDS) mapping analysis, Raman spec
troscopy, and X-ray diffraction (XRD). Fig. S4 shows the elemental 
mapping for the MnO2/GA sample, indicating that the Mn and O ele
ments distribute uniformly on the surface of graphene aerogels. Fig. 2c 
shows the comparison of the Raman spectra for the MnO2/GA samples 
and the bare graphene aerogel skeleton. In both the spectra, the D-band 
at 1358 cm 1 and G-band at 1596 cm 1 indicate the presence of gra
phene in the structure [65,66]. As shown in Fig. 2c, three Raman bands 
located at 514, 567, and 641 cm 1 for the MnO2 flakes are in good 
agreement with the major vibrational features of Mn-O in the lattice 
vibration of α-MnO2 [67–69]. The XRD pattern of the MnO2/GA sample 
is shown in Fig. 2d, where the broadening of the XRD peaks is likely due 
to the existence of graphene with amorphous structure [70]. The peaks 
corresponding to the (110) crystal plane of manganese dioxide has the 
largest intensity and a relatively sharp profile. The (110) crystal plane of 
MnO2 has a high surface energy [71,72] that can promote the reaction 
rate in the electrochemical process of supercapacitors, and hence 
improve the performance of the electrode. 

We further performed cyclic voltammetry (CV) for the bare graphene 
aerogel framework and the mixed-dimensional hierarchical MnO2/GA 
composite electrodes in three-electrode configurations (Fig. 3a). The 
specific capacitance of the MnO2/GA electrodes increased significantly 
compared to that of the bare GA framework, which could be attributed 
to the pseudocapacitance from the 2-D manganese dioxide flakes. 
Meanwhile, the (110) surfaces of manganese dioxide have high energy 
and hence enhanced activity promoting the redox reaction [73,74]. The 
ultra-high surface area and conductivity of graphene aerogels backbones 
provide enhanced contact and electronic conductivity that further 
facilitate the redox processes on the surfaces of 2-D MnO2 [75]. Fig. 3b 
shows the CV curves of MnO2/GA electrodes in the potential window 
ranging from 0 to 0.8 V at different scan rates (10 mV s 1, 20 mV s 1, 
50 mV s 1, and 100 mV s 1, respectively). Our mixed-dimensional hi
erarchical MnO2/GA electrodes presented a stable structure and high 
conductivity that help stabilize the electrochemical performance under 
high-rate charge and discharge conditions [76]. As shown in Fig. 3b, 
with the scan rate increased, the rectangular-shaped CV curves for the 
MnO2/GA electrodes remained unchanged, manifesting a stable cycling 

Fig. 2. MnO2/GA electrode characterization (a) 
SEM images of MnO2/GA samples with different 
reaction time (3 h, 6 h, 9 h and 12 h) (b) Specific 
discharge capacities of the MnO2/GA samples ob
tained under different reaction time (3 h, 6 h, 9 h 
and 12 h) at a specific discharge current of 2A g 1 

(c) EDX of the optimum product obtained at 85 �C 
for 6 h (d) Raman spectra of MnO2/GA sample 
grown under optimal conditions and graphene 
aerogel template (e) XRD pattern of MnO2/GA 
sample.   
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and satisfactory capacitive behavior [41,76]. Fig. 3c shows the 
discharge curves of the MnO2/GA electrodes at discharge specific cur
rents of 1 A g 1, 2 A g 1, 5 A g 1, and 10 A g 1. The discharge-specific 
capacitance of the MnO2/GA electrode reached 275 F g 1 when the 
discharge specific current is 1 A g 1. When the discharge specific current 
was increased to 10 A g 1, the discharge specific capacitance of the 
MnO2/GA electrodes still maintained at 90 F g 1. To further characterize 
the cyclic stability for potential long-term practical applications, we 
measured the specific capacitance of the MnO2/GA electrodes at the 
charge/discharge specific current of 5 A g 1 for 5000 cycles (Fig. 3d). 
After 5000 cycles, the specific capacitance of the MnO2/GA electrodes 
did not decay but instead increased slightly, likely due to the porous 
nature of the graphene aerogels [77,78]. During the cycling, the elec
trolyte constantly wet the electrode surface and gradually infiltrated 
through the macroporous GA framework, hence increasing the contact 
area between the electrode and electrolyte and leading to improved 
material performance [79]. We have also included a benchmarking 
comparison between the performance of our MnO2/GA electrode with 
those in the reported work (Supplementary Table 1). 

The integration of flexible energy harvesting and energy storage 
units into a self-powered system promises the implementation of self- 
sustainable wearable devices with greater intelligence that can store 
the harvested electric power for other onboard operations [80–83]. The 
triboelectric nanogenerator (TENG) emerges as a promising technology 
for effectively scavenging the ubiquitous mechanical energy into electric 
power through the contact electrification and electrostatic induction 
[84–91]. Here, to develop the self-powered system that consists of the 
TENG energy harvester and the energy storage unit, we integrated the 
3D printed MnO2/GA supercapacitor on the same substrate with a TENG 
device made of biopolymer derived materials [54]. An optical image of 
the integrated device is shown in Fig. 4a, where the TENG incorporated 

a copper foil as the current collector and a chitosan film as the dielectric 
layer. The solid-state supercapacitor consisted of the 3D printed 
MnO2/GA as the electrode and polyvinyl alcohol/lithium chloride 
(LiCl/PVA) gel as the electrolyte and separator [92]. 

We first characterized the electrochemical performance of the 3D 
printed MnO2/GA supercapacitors. The electrochemical impedance 
spectroscopy (EIS) results for the device and its simulated equivalent 
circuit are shown in Fig. S5. Leveraging the ultrahigh conductivity of the 
three-dimensional graphene aerogel, the 3D printed MnO2/GA super
capacitor exhibited an appealing internal resistance around 2 Ohms and 
the corresponding electrochemical impedance was 10 Ohms. Fig. 4b 
shows the discharge curves of the 3D printed MnO2/GA supercapacitor 
with discharge specific currents of 1 A g 1, 2 A g 1, 5 A g 1, and 10 A 
g 1. The discharge-specific capacitance of the 3D printed MnO2/GA 
supercapacitor reached 95 F g 1 with a discharge current of 1 A g 1. At 
discharge specific current of 10 A g 1, the discharge specific capacitance 
of the MnO2/GA electrode maintained at 45 F g 1. The energy and 
power densities were also calculated from GCD curves. The maximum 
energy density of 21 Wh/kg is achieved at a power density of 800 W/kg, 
while the highest power density is 36 kW/kg at the energy density of 
10 Wh/kg. Fig. S6 exhibits the cyclic performance of the device with a 
5 A g 1 discharge current. The 3D MnO2/GA supercapacitor reached an 
initial specific capacitance of 80 F g 1 and maintained at 63 F g 1 even 
after 1000 cycles of operations. We further characterized the perfor
mance of the TENG module for converting the mechanical inputs into 
electrical power (details in SI). Fig. 4c shows the measured open-circuit 
voltage (VOC) (~40 V), short-circuit current (ISC) (~0.15 μA), and 
transfer charge (σsc) (~24 nC). The direct electrical outputs from the 
TENG should be rectified for properly charging the energy storage units 
[93,94]. Fig. 4d shows the rectified current waveform from the TENG 
through a rectifier circuit (Fig. S7). Moreover, we characterized the 

Fig. 3. Electrochemical performance of MnO2/GA electrode. (a) Cyclic voltammetry of graphene aerogel templates and MnO2/GA electrode in a three-electrode 
configuration (b) Cyclic voltammetry curves of MnO2/GA electrodes in the potential window of 0–0.8 V at different scan rates (10 mV s 1, 20 mV s 1, 50 mV s 1 and 
100 mV s 1, respectively) (c) The discharge curves of MnO2/GA electrodes at discharge specific currents of 1A g 1, 2A g 1, 5A g 1 and 10A g 1, respectively (d) 
Cyclic performance of the MnO2/GA electrode under 5 A g 1 charge and discharge current. 
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output power from the TENG module delivered to the external resistive 
loads (Fig. 4e). The highest instantaneous power output delivered to the 
load was estimated to be 2.5 μW when the external load matches the 
internal impedance of the TENG module (~200 M Ohm here) [95,96]. 
For a proof-of-concept demonstration, we used finger pressing as the 
mechanical inputs that can be effectively harvested by the TENG mod
ule, and the harvested energy was further used to charge the 3D 
MnO2/GA supercapacitor (Fig. 4f). When the TENG was pressed by the 
human finger, the 3D MnO2/GA supercapacitor became charged with 
1.0 V in 60 s. The voltage change in the supercapacitor during the 
pressing process is shown in the enlarged figure. The voltage in the 
supercapacitor stabilized at 0.8 V subsequently, providing a reliable 
electrical source for the operations of other onboard electronics. 

3. Conclusions 

In summary, we have demonstrated a hybrid scheme for designing 
and nanomanufacturing mixed-dimensional ultralight macroporous hi
erarchy for efficient supercapacitor electrodes, through the hydrother
mal growth of 2-D MnO2 nanosheets on 3-D printed graphene aerogel 
with interconnected micropores. The derived mixed-dimensional hier
archical MnO2/GA composite electrodes exhibit superior specific 
capacitance (275 F g 1) and excellent cycling stability after thousands of 
cycles. We further presented a proof-of-concept demonstration of an 
integrated self-powered system that consists of a contact mode chitosan- 
based TENG device [54] and the mixed-dimensional MnO2/GA based 
supercapacitor. We showed that the integrated system is capable of 
converting mechanical signals into electrical power and further storing 
such scavenged power in the MnO2/GA supercapacitor for other on
board applications. Our work presents an important step towards the 
realization of self-powered nanosystems. 
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