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Abstract

Motivation: The inference of gene regulatory networks (GRNs) from DNA microarray measurements forms a core
element of systems biology-based phenotyping. In the recent past, numerous computational methodologies have
been formalized to enable the deduction of reliable and testable predictions in today’s biology. However, little focus
has been aimed at quantifying how well existing state-of-the-art GRNs correspond to measured gene-expression
profiles.

Results: Here, we present a computational framework that combines the formulation of probabilistic graphical mod-
eling, standard statistical estimation, and integration of high-throughput biological data to explore the global behav-
ior of biological systems and the global consistency between experimentally verified GRNs and corresponding
large microarray compendium data. The model is represented as a probabilistic bipartite graph, which can handle
highly complex network systems and accommodates partial measurements of diverse biological entities, e.g.
messengerRNAs, proteins, metabolites and various stimulators participating in regulatory networks. This method
was tested on microarray expression data from the M3D database, corresponding to sub-networks on one of the best
researched model organisms, Escherichia coli. Results show a surprisingly high correlation between the observed
states and the inferred system’s behavior under various experimental conditions.

Availability and implementation: Processed data and software implementation using Matlab are freely available at
https://github.com/kotiang54/PgmGRNs. Full dataset available from the M3D database.

Contact: ali.eslami@wichita.edu

1 Introduction

Modeling the coupled dynamics of gene (protein) expression
patterns in accordance with changing internal and environmental
conditions is an important task in systems biology. To characterize
and uncover the exact dynamics of genome-wide gene regulatory
networks (GRNs), significant research effort has been devoted to
continuously refining computational methods that will allow
researchers to understand the complex interactions of gene regula-
tions (Hughes et al., 2000). Such methods, often referred to as re-
verse engineering (Karlebach and Shamir, 2008; Madhamshettiwar
et al., 2012; Prill et al., 2010; Stolovitzky et al., 2007), have been
used to fit discrete models of GRNs to high-throughput experimen-
tal data. In the literature, gene expression-based inference
approaches have shown modest performance when applied to real
data compared to in silico expression data (Madhamshettiwar et al.,
2012; Marbach et al., 2012). In addition, predictive performance
over a purely microarray expression-based approach can be
improved by incorporating multiple types of data, such as gene set
enrichment (Chouvardas et al., 2016), sequence information (Yu
et al., 2014) and network topology (Hartemink et al., 2001).

On the other hand, GRNs have commonly been modeled using
ordinary differential equations (ODE), Boolean networks and prob-
abilistic graphical models including Bayesian networks (de Hoon
et al., 2002; Friedman et al., 2000; Lovrics et al., 2014). For the
reconstructed GRN model reassessment in light of additional evi-
dence, in the recent past, computational methodologies have been
developed and formalized mathematically, in order to rigorously inte-
grate prior biological knowledge and high-throughput measurements
(Covert et al., 2004; Gat-Viks et al., 2006). Furthermore, such
methodologies have been formalized in a manner that allows for good
predictive descriptions of experimental data. Regardless of the model-
ing or computational approach applied, it is important to assess the
validity of such networks. Given the topology of a biological network
and a partial set of microarray expression profiles for all genes in the
network, a reverse engineering algorithm must infer a probabilistic
dynamical system that best explains the observed experimental data.
In this article, we consider this reverse engineering problem. We de-
scribe the dynamics of a network as trajectories of gene-expression
levels at steady state, given experimental conditions.

In the literature, some methods that can take a biological
network and simulate biological data of different genes as either
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time-series data or steady-state values have been proposed. One of
these is sgnesR (Tripathi et al., 2017), an R package used to simulate
a gene-expression profile from a given gene network using the sto-
chastic simulation algorithm, for which the reaction parameters are
specified under defined constraints. Similarly, a multi-view genomic
data simulator proposed by Fratello et al. (2015) can generate syn-
thetic biological data from ODE-based network models with known
parameters, constructed through an iterative procedure. Simulated
datasets, although fully controlled, are often too simplistic to effi-
ciently explain the complex regulatory interactions among biologic-
al entities compared to real gene-expression data. Another widely
used simulation and modeling tool in systems biology is the complex
pathway simulator (COPASI) (Hoops et al., 2006; Klipp et al.,
2008). COPASI is a stand-alone program that specializes in setting
up and analyzing biochemical and kinetic network models while
also providing some basic stoichiometric analyses. It allows for
more detailed and fine-grained analysis, but also demands more
knowledge, namely about the kinetics of individual processes. An
important factor in the simulation of these models is the knowledge
of kinetic reaction parameters. This information can be extracted
from the literature; however, it is hard to find (Klipp et al., 2008).
Lack of kinetic constants stem from difficulty in measurements and
uncertainties in the function of many proteins and their interactions,
and thus limit the application of some of these approaches.
However, these simulators provide valuable information that can be
used to test network inference methods qualitatively, as well as to
identify model parameters.

In our work, we apply a probabilistic model to statistically assess
the global consistency between GRNs and the gene-expression pro-
file of diverse experimental conditions. Therefore, we explore a
probabilistic framework that allows us to model uncertainty in cel-
lular networks through integration of prior biological knowledge
and high-throughput experimental data. We formalize the model as
a probabilistic factor graph (Kschischang et al., 2001), which can
handle highly complex systems and extensive datasets. This prob-
abilistic model allows us to overcome the drawbacks of models that
assume noiseless observations, because it is able to mix noisy con-
tinuous measurements with discrete regulatory relations among vari-
ables. Furthermore, it does not require the explicit determination of
network kinetic parameters. Our method is applied to Escherichia
coli DNA microarray data, where it is successfully used to predict
the global allowable steady state of genes in the respective extracted
sub-networks. Our analyses are performed on real gene-expression
data and networks. The method is further validated using network
perturbation techniques (Maslov, 2008), as well as gene deletion
experiments. The rest of this article is organized as follows: In
Section 2, we formulate a probabilistic factor graph network (FGN)
framework for the analysis of biological networks given experimen-
tal data. We follow on with the inference model by applying
message-passing algorithm. Section 3 elucidates examples of the
regulatory networks with a brief discussion on data discretization
methodology. Section 4 presents statistical analyses of cellular net-
work examples using the described framework. The article is con-
cluded in Section 5.

2 Model and methods

2.1 Probabilistic model for GRN
To analyze the behavior of gene networks, we need to study regula-
tion functions and interactions among biological entities. Such
relations, for instance, determine the level of gene expression for a
particular gene from a set of transcription factors interacting with
the gene. In practice, the information available for regulation mech-
anisms is incomplete and of variable certainty, which motivates the
employment of a probabilistic framework for inferring such func-
tions. In addition, due to the noisy nature of biological experiments,
probabilistic models help integrate experimental data in a network
context. Therefore, we present a probabilistic model by defining var-
iables and formulating prior biological knowledge on the relations
among them. Each biological entity can be modeled as a discrete or

continuous random variable. This random variable represents the
level in which an entity is present in the cell. Taking partial informa-
tion into account, we derive a distribution function for each variable
that considers interaction relations among them as well as their level
of uncertainty.

Figure 1a shows an example of a simple gene network structure
having four genes. An unsigned directed edge from gene g2 to g1, for
instance, means gene g2 influences the action of g1, through creation
of some specific proteins (Karlebach and Shamir, 2008). Altering the
state of one gene can cause other genes interacting with it to change
their states, leading to a cascade of modifications in the alleles of
genes. The process is repeated iteratively in time until a global steady
state is reached. In general, let g ¼ fg1; g2; . . . ; gng denote the set of
biological random variables, i.e. genes in a network. In this work,
we consider genes as discrete random variables. Each node gi
may take a value from a range of (usually finite) k logical states s ¼
f0;1; . . . ; k� 1g that a variable may attain. We denote by
Pai ¼ fPai;1;Pai;2; . . . ;Pai;mg � g, the set of parents of gi (i.e. set
of variables that regulate gi). By definition, the regulation function fi
for a variable gi is formulated by the conditional probabilities as

fi ¢ pðgijPaiÞ: (1)

This function fi is referred to as the belief that gi takes a certain
state with respect to an assignment from its parents. If Pai ¼ 1
(i.e. gi has no parents), then pðgij1Þ ¼ pðgiÞ. We define the learning
problem of fi as selecting the maximum likelihood of data given
the model. Formally, the Bayesian network shown in Figure 1a im-
plicitly encodes the joint probability distribution as a product of
local conditional distributions:

pðg1; g2; . . . ; gnÞ ¼
1

Z

Yn
i¼1

pðgijPaiÞ; (2)

where Z is a normalization constant. In this work, we employ a
probabilistic factor graph (Kschischang et al., 2001), which explicit-
ly expresses the structure of the joint distribution’s factorization in
Equation (2). For example, Figure 1b expresses the factorization

pðg1; g2; g3; g4Þ / pðg1jg2Þpðg2jg3; g4Þpðg3Þpðg4Þ: (3)

A factor graph visualized as an undirected graph associating
variable nodes and factor nodes is defined as a bipartite graph (see
Fig. 1b), for instance, of the simple network (Fig. 1a). In this con-
text, a variable node denotes each random variable gi, and a factor
node denotes a local function fi. To convert a Bayesian network to a
bipartite graph, simply draw an edge between a variable g and a fac-
tor fj, if the scope of fj contains g. This representation is convenient
and has been successfully utilized in the literature to discover new
regulatory relationships and even optimize regulation functions
(Gat-Viks et al., 2006; Karlebach and Shamir, 2008). However, in
practice, biological dependency graph models contain loops, and the
situation becomes more complex. In this case, the probabilistic FGN
model approximates rather than giving the true belief functions
(Yedidia et al., 2005). Furthermore, we note that, given experimen-
tal measurements at the single cell level, the regulation functions
may suffice to describe the inherent stochasticity of the underlying
biochemical reactions.

(a) (b)

Fig. 1. Graphical probability models: (a) Bayesian gene network and (b) factor

graph equivalent
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2.2 Inference in FGN model
In this section, we discuss the problem of probabilistic inference in
our FGN model. Typically, each experiment provides partial infor-
mation on the state of model variables. Therefore, given experimen-
tal evidence, e.g. the gene-expression profile D specifying real-value
sensor variables and the graphical model, the problem of probabilis-
tic inference seeks computation of the posterior distributions for a
single hidden (unmeasured) variable. This is referred to as marginal
inference. Of particular interest, for instance, would be to compute
pðgijDÞ. Another problem would be to compute the likelihood p(D)
of the evidence. The probabilistic inference is an NP-hard problem
(Cooper, 1990) because it can involve summing an exponentially
large number of terms.

In directed acyclic graphs, many exact inference techniques exist
in the literature, such as variable elimination, naive brute force mar-
ginalization and the family of message-passing algorithms, such as
junction tree, sum-product and belief propagation, which perform
very well (Aji and McEliece, 2000; Kschischang et al., 2001; Pearl,
2014). However, for loopy graphs (graphs that contain cycles, such
as GRNs), messages may circulate indefinitely in loops and hence do
not guarantee convergence. Moreover, even if they do, the steady
state may not represent marginals of the nodes. Accordingly, suffi-
cient conditions to guarantee uniqueness of fixed points and/or con-
vergence have been studied in the literature (Mooij and Kappen,
2007). In this work, we explore the loopy-belief propagation (LBP)
algorithm, a popular message-passing algorithm on loopy graphs.
This algorithm belongs to a class of variational algorithms, which
approximate the marginal-distribution functions, assuming certain
decomposition over a cluster of variables or independent variables
(Mooij and Kappen, 2007; Murphy et al., 1999; Yedidia et al.,
2005). Essentially, it is a fixed-point iterative procedure that tries to
minimize the Bethe free energy, Fbethe (Yedidia et al., 2005). Still it
is a well-defined algorithm and empirically often achieves a good
approximation if the solution converges (Murphy et al., 1999).

In our FGN model, we use belief propagation as the message-
passing protocol. We compute messages sent between ‘variable
nodes’ corresponding to dashed ellipses for the equivalent FGN
shown in Figure 2, as functions of the parent p. A message sent from
p to child c is denoted as lcðpÞ, while a message sent from c to p is
denoted as kcðpÞ. Note that within an ellipse, the message sent from
gi to the local function fi is given by the product of all incoming k
messages. Similarly, a message from fi to gi is the product of fi with
other l messages received at fi summarized for gi. Formally, denote
the set of parents of a gene variable gi by Pai, and the set of children
of gi by Ci. Therefore, for every a 2 Pai,

kgi ðaÞ ¼
X
�fag

Y
d2Ci

kdðgiÞ pðgijPaiÞ
Y

h2Pai fag
lgi ðhÞ

� �
; (4)

and for every d 2 Ci,

ldðgiÞ ¼
Y

c2Ci fdg
kcðgiÞ

X
�fgig

pðgijPaiÞ
Y
a2Pai

lgi ðaÞ
� �

; (5)

where
P

�fxg is the summary operator over all variables except x.
Nodes are updated in parallel, and both k and l messages are nor-
malized at each iteration. Computation of a marginal function of an
individual variable, referred to as the belief of a node in the factor
graph and denoted by bið�Þ, is given by the product of all messages
received by the node:

biðgiÞ ¼
Y
d2Ci

kdðgiÞ
X
�fgig

pðgijPaiÞ
Y
a2Pai

lgi ðaÞ
� �

: (6)

The message-passing algorithm continues until the solution
converges or no significant difference in belief update occurs in
the order of 10�4. In all our inferences, the initial messages were set
to a uniform vector of ones. However, in certain cases, random ini-
tialization yielded similar results since the initial conditions rapidly
‘fade out’.

3 Network models and data

In this article, we test the applicability of our model on two experi-
mentally verified reference networks in E.coli (Gama-Castro et al.,
2016), with real gene-expression data. Of particular interest in
E.coli are the cyclic gene regulatory small sub-networks known as
the ‘SOS DNA repair network’ (Liu et al., 2016; Shen-Orr et al.,
2002) and the ‘acid resistance regulatory network’ (Foster, 2004;
Shimizu, 2013).

The dataset of expression profiles used to model and evaluate
the probabilistic framework consists of uniformly normalized
gene-expression data in the M3D database (Faith et al., 2007). This

compendium of data facilitates large-scale computational analyses
by providing a bulk download of human-curated, computable

experimental metadata, and computer-validated data for integrity.
The compendium data used on E.coli (version 4 build 6) contain
466 microarray expression profiles of 4297 genes collected under

a wide range of experimental conditions, including wild-type, pH
changes, varying oxygen concentrations, antibiotics, heat shock,

growth phases, different media, environmental perturbations, gene
knockout (KO)/knockdown and time series at steady-state level.
In addition, the expert knowledge in RegulonDB (Gama-Castro

et al., 2016) enabled us to assess and validate the network models.

3.1 Model organisms
3.1.1 Escherichia coli: SOS response model

Figure 3 shows an SOS response model that includes 9 genes with
24 edges. The pathway regulates and coordinates cell survival and
repair after extensive DNA damage, which involves lexA and recA
genes as principal mediators. LexA is a repressor protein dimer for
the majority of DNA repair genes while the cell is healthy. On the

other hand, RecA protein acts as a sensor of DNA damage that indu-
ces the response by inhibiting LexA (Liu et al., 2016).

3.1.2 Escherichia coli: acid-resistance model

Escherichia coli has a potent acid-resistant (AR) system enabling it
to survive extreme acidic environments (pH < 2:5). As such, from

both medical and fermentation points of view, the physiological and
molecular response to acid shock has been the subject of intense

study. In this work, we consider an efficient glutamate-dependent
AR regulatory network shown in Figure 4 and also reported in
Foster (2004) and Shimizu (2013). The pathway has LuxR-family

member GadE as the central activator. Moreover, it has at least 11
known regulatory proteins that affect the induction of the response
(see Table 1) (Foster, 2004).

Fig. 2. Messages sent in belief update of FGN example shown in Figure 1b. Arrows

indicate flow of belief messages sent between variable nodes (i.e. dashed ellipses cor-

responding to nodes in Bayesian gene network), l denotes message sent from parent

gene to child gene in FGN model, and conversely, k represents message from child

to parent
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3.2 Discretization of data
In probabilistic graphical models, discretizing a real-value sensor or
node measurement is an integral part of the model, in order to fully
account for dependencies between regulation function priors and

the discretization scheme. Generally, this step is carried out if
prior knowledge suggests that the underlying variables are indeed
discrete, or for computational efficiency. In addition, it helps
improve the robustness of data and reduce noise in the continuous
variables, since discretized data can be more stable with respect to
random variations of mRNA measurements (Gallo et al., 2016).
However, in the biological field, discretization may result in loss of
information.

Finding the optimal discretization is an NP-complete problem
(Chlebus and Nguyen, 1998). In the literature, several methods to
discretize microarray data have been proposed (Friedman et al.,
2000; Gallo et al., 2016; Gat-Viks et al., 2006). According to Gat-
Viks et al. (2006), for real biological gene-expression data, the
variable-specific discretization scheme outperforms the global opti-
mized single common discretization method and is generally more
accurate and flexible than the standard preprocessing approaches
used by Friedman et al. (2000). However, this flexibility can lead to
over-fitting and may decrease learnability. In this work, we applied
gene-specific discretization and employed mixtures of Gaussian dis-
tribution to model the relations between continuous observations on
a gene variable and its discrete logical state, i.e. each Gaussian com-
ponent corresponds to a specific state. Given the experimental
evidence and a logical function prior for each variable, we optimize
the discretization functions using the expectation–maximization
(EM) learning algorithm. In each EM iteration, we infer the poster-
ior distributions and use these to re-estimate the mixture propor-
tions by computing the Gaussian sufficient statistics. The new
discretization distributions are employed in the next iteration, and
the algorithm is allowed to run iteratively until convergence.

4 Results and analysis

4.1 GRNs and data
We constructed a probabilistic FGN model representing the regula-
tory relations for each of the considered networks and applied the
LBP inference algorithm to estimate the marginal posterior distribu-
tions on all gene logical variables. To test the prediction accuracy of
our model, we computed the statistical Pearson correlation, q,
between the inferred marginals of each gene variable Gi and the
probability of Gi’s observed states given by experimental observa-
tions. Furthermore, to verify our results, we compared the perform-
ance of our probabilistic model on the true networks against
random networks. We implemented two network perturbation
methods to obtain random networks. The first perturbation method
produces a network with identical topology to the original regula-
tory model; however, the expression data are perturbed by uniform-
ly redistributing the whole expression profiles of genes using the
Fisher–Yates shuffle algorithm (Knuth, 2014). Entire gene profiles
are swapped in order to keep each profile internally consistent, in
order to be able to quantify how consistent a random set of interac-
tions is with respect to the gene-expression compendium data. We
call this method, randomized node perturbation because the process
depicts permutation of nodes on a graph.

The second method, referred to as randomized edge perturb-
ation, perturbs the regulatory network topology while preserving
the node degree distribution in all nodes as well as preserving the ex-
pression profiles of individual genes. To achieve this, we imple-
mented a simple numerical algorithm, as proposed in the work of
Maslov and Sneppen (2002). The algorithm works by selecting two
existing edges, (i, j) and (k, l), and reconfiguring their endpoints
such that the new edges become (i, l) and (k, j). If any of these new
edges already exists, then the procedure is terminated and a different
pair is selected instead. This process is repeated 10 � jEj times, where
jEj is the cardinality of edges in the network. The resultant network
is a randomized version of the original network. In both methods,
we preserve the degree of all variable nodes in a given network to
rule out the impact of node degree distribution on consistency; the
degree distribution is an important characteristic for nodes in bio-
logical regulatory networks (Maslov, 2008). Then, we performed

lexA

dinI

umuDC

recA

ssb

recF

rpoS rpoH

rpoD

Fig. 3. Graphical representation of E.coli SOS DNA repair true pathway (Liu et al.,

2016)

evgA

ydeO

gadE

gadX

gadAgadBC

gadW

hdeA

phoP

crp

rpoS rpoD

hns

ydeP

Fig. 4. Graphical representation of AR GRN (Shimizu, 2013). Overexpressed EvgA

response regulator indirectly activates acid resistance through transcription of ydeO

(i.e. EvgA ! YdeO ! GadE ! AR). However, without overexpression (under nor-

mal inducing conditions), EvgA can directly activate gadE transcription

Table 1. Two-logical states distribution of SOS response network

predicted marginal posteriors versus observed experimental states

Gene Predicted marginals Observed states

0 1 0 1

lexA 0.9213 0.0787 0.7876 0.2124

dinI 0.2643 0.7357 0.2918 0.7082

umuDC 0.7019 0.2981 0.7232 0.2768

recA 0.5695 0.4305 0.5687 0.4313

ssb 0.9892 0.0108 0.9292 0.0708

recF 0.1005 0.8995 0.2275 0.7725

rpoS 0.7722 0.2278 0.7296 0.2704

rpoH 0.7342 0.2658 0.7232 0.2768

rpoD 0.8670 0.1330 0.8648 0.1352

Note: At the 95% confidence interval, t-statistics mean difference between

model-predicted marginals and observed states is expected to lie between

�0:0664 and 0.0829 (i.e. for each discretization state).
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multiple sampling of the resultant random networks and computed
their average correlation.

In the analysis of our model, we used two- and three-
quantization levels with values 0,1 and 0,1,2 states, respectively. In
these contexts, we note that each state (i.e. Gaussian component)
may correspond to a different range of gene-expression levels for dif-
ferent genes, defined by the estimated parameters of the Gaussian
mixture model (GMM). Therefore, given an observation sample
point for a particular gene, we say that the sample point most likely
belongs to a given state with a certain probability. For instance, the
lexA gene in the SOS response network has a normalized gene-
expression data range between 7.60 and 12.70. According to the
2-states discretization, our lexA GMM parameters were defined by
a 0-state mixture proportion of 0.7939, mean of 9.341, and variance
of 0.4389, and, similarly, a 1-state mixture proportion of 0.2061,
mean of 11.51, and variance of 0.1016.

4.1.1 SOS response model

Tables 1 and 2 summarize the model predictions (i.e. steady-state
marginals) for the nine genes after convergence against the logical
proportions of the discretized compendium data. The message
updates converged at an average of 19.5 and 11.5 iterations for 2-
and 3-states discretization, respectively, using two different types of
initialization, i.e. random and uniform. We then constructed a 95%
confidence interval using t-statistics to estimate the mean difference
between the inferred marginals and the observed experimental
states. For each level state, the expected mean difference interval
contained zero. Thus, at the 95% confidence level, our results show
that there is statistically no significant difference between our
model-predicted marginals and the observed experimental states.
Furthermore, we show the correlation plots between the variable
gene Gi’s inferred marginal posterior in Equation (6) at convergence
and the corresponding probability of its experimental observations
in Figure 5. In both plots, the correlation results are well above
0.95, thereby indicating good approximations of the observed states.
We next investigated the performance of our model under the net-
work perturbation methods. Figure 6a summarizes the comparison
between inferred marginal posterior distributions and the observed
experimental states for random-shuffled datasets. Figure 6b does the
same for randomized topology. In general, the Pearson correlation
coefficient deteriorates with increased randomization, which high-
lights deviation of the model predictions from the experimental
observations. We deduced that the random regulatory networks are
inconsistent to and do not adequately explain the DNA microarray
profiles.

To further test the consistency between extant real biological
data and the given GRN, we demonstrated the performance of our
FGN model through a gene deletion or KO experiment. In gene KO
experiments, the expression of a target protein molecule is stopped

by removing the protein-coding regions from the genome. From the
dataset, we identified recA as the most knocked-out gene in the ex-
perimental samples, having a total of 68 observations. We modified
the model accordingly by fixing the state of the recA variable node
to zero and eliminating the corresponding factor node, then, applied
LBP to estimate the marginal posteriors of the other variables. Then,
we compared the predictions against the observed states. Figure 7
depicts the model prediction accuracy under recA gene KO experi-
mental conditions in which both 2- and 3-states discretization
obtain correlation values q > 0:90. These results confirm that the
given sub-network topology in E.coli is consistent with the gene-
expression data obtained from various biological experiments.

4.1.2 Acid-resistance model

For the AR gene network (see Fig. 4), similarly, we constructed an
FGN model and applied the LBP inference algorithm to estimate the
marginal beliefs. In this model, the message update algorithm
converged at 14 and 20 iterations for 2- and 3-states discretization
levels, respectively. Initial messages at the variable nodes were set
to a uniform vector of ones. For the gene regulation functions,
the Pearson correlation plots are shown in Figure 8. Here too,
the correlation coefficients are >0.90. Furthermore, we tested the
discrepancy of inferred marginals against randomized node- and

(a) (b)

Fig. 6. Average Pearson correlation coefficient plots of n-randomized nodes or edges

for SOS response network. Model predictions are repeatedly evaluated, and aver-

ages of correlation coefficients computed in 10 � jEj random attempts: (a) randomly

shuffled datasets where states are swapped between different variable nodes and (b)

randomly shuffled n-edges over network structure

Table 2. Three-logical states distribution of SOS response network

predicted marginal posteriors versus observed experimental states

Gene Predicted marginal Observed states

0 1 2 0 1 2

lexA 0.9999 0.0 0.0001 0.7811 0.0944 0.1245

dinI 0.7112 0.0029 0.2859 0.4936 0.2553 0.2511

umuDC 0.9772 0.0 0.0228 0.7339 0.0386 0.2275

recA 0.6554 0.3429 0.0017 0.4807 0.2961 0.2232

ssb 0.0501 0.9261 0.0238 0.1567 0.7511 0.0922

recF 0.1104 0.5605 0.3291 0.1373 0.4850 0.3777

rpoS 0.8142 0.1676 0.0181 0.7704 0.1996 0.0300

rpoH 0.6626 0.3374 0.0 0.6524 0.3433 0.0043

rpoD 1.0000 0.0 0.0 0.9678 0.0193 0.0129

Note: At the 95% confidence interval, the t-statistics mean difference be-

tween model-predicted marginals and observed states is expected to lie be-

tween �0:0435 and 0.2229 (i.e. for 0-state level).

(a) (b)

Fig. 7. Pearson correlation plots between proportions of gene experimental observa-

tions and FGN inferred beliefs in recA gene KO model: (a) 2-states discretization

and (b) 3-states discretization. Correlation coefficient q is given in each plot

(a) (b)

Fig. 5. Pearson correlation plots between proportions of observed states and FGN

inferred marginal posteriors for SOS response network: (a) 2-states discretization,

P-value ¼ 1:6858 � 10�14 and (b) 3-states discretization, P-value ¼ 1:7540 �10�15.

Correlation coefficient q is given in each plot
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edge-network models, as in the case of the SOS response pathway.
Similar observations were made, as depicted in Figure 9. However,

in this model, we did not show performance under gene KO experi-
mental conditions since the available expression data do not have

any of the genes participating in this pathway as a deleted gene.

4.2 Software performance
4.2.1 Computational complexity

Overall, the main computational cost of running the software is the
message update equation [i.e. Equations (4) and (5)], which incurs
Oðk2Þ (Noorshams and Wainwright, 2013) per iteration for each

pair of variable and factor nodes in the FGN model, if the state
space of all gi has k possible states. (Recall that message sent is a

function of the parent. Also, we assume that the column vectors of a
regulatory function f ð:; jÞ for j ¼ 0;1; . . . ; k� 1, and their normal-
ization constants have been pre-computed and stored, which can be

done off-line.) This computational cost grows linearly with the num-
ber of edges. Figure 10 depicts a practical overview of the software

performance and run time, where the predicted q is plotted against

increasing iteration of the message-passing algorithm for both SOS
response and AR regulatory networks. In Figure 10a, the messages
converged after 20, and 11 iterations for 2- and 3-states discret-
ization levels, respectively. Similarly, in Figure 10b, the messages
converged after 14 and 20 iterations. An inspection of the figures
reveals that the rate of convergence is at least linear (note that, linear
convergence means that the error (i.e. difference between two
successive q’s) decreases exponentially), which is consistent with
findings in the existing literature (Mooij and Kappen, 2007).

4.2.2 Sparse and dense networks

Here, we demonstrated the performance of our model to discrimin-
ate good GRNs from bad ones. We implemented very sparse and
dense networks by deleting and adding links between gene nodes in
the true GRN, in order to represent a poor network. In the SOS
response network, we created sparse networks by removing 5–17
random edges. Similarly, in the AR regulatory network, we deleted
between 3 and 15 random edges. On the other hand, dense networks
were created by adding 5–30 random edges and 5–40 random edges,
in the SOS response and AR regulatory networks, respectively. For
each sparse or dense network analysis, the model predictions were
repeatedly evaluated 100 times and the average Pearson correlations
computed. Moreover, in the analysis of sparse gene networks, we
assumed that any isolated gene node is not part of the network and
set its inferred marginal to a vector of all zeros.

Figure 11 shows boxplots of the average correlation coefficients
comparison between the true regulatory networks and the poor net-
works for both 2- and 3-states discretization levels. The SOS re-
sponse network model predictions are shown in Figure 11a. In this
figure, for the 2-states discretization analysis, the median correlation
coefficient decreased to 0.8301 (16% decrease) and 0.8886 (10%
decrease) from the true gene network correlation (i.e. 0.9883, see
Fig. 5a), in sparse and dense networks, respectively. Furthermore,
we observed that in the 3-states discretization analysis, the median
correlation coefficient of the true network (i.e. 0.9611) decreased by
10.5% for sparse networks and 11.4% for dense networks.
Similarly, Figure 11b summarizes the model predictions in the AR
regulatory network. Here too, the median correlation coefficient of
the sparse networks in 2-states discretization analysis was observed
to be 0.7277 (21.7% decrease) and in 3-states discretization, 14.4%
less than the true network correlation coefficient of 0.9398.
Moreover, for the dense network analysis, the median correlation
coefficients decreased by 14.5% and 25% in 2- and 3-states discret-
ization, respectively. In general, we observed that as the number of
edges added or removed was increased, the average Pearson correl-
ation coefficients deteriorated. These results suggest that our prob-
abilistic model can robustly separate good GRNs from poor ones.

4.2.3 Impact of discretization levels

Table 3 illustrates the performance of our probabilistic model as the
number of discretization levels increases. Moreover, the correspond-
ing average CPU runtime (this value could change depending on the
processor speed of the computing machine being used.) is shown,

(a) (b)

Fig. 8. Pearson correlation plots between observed states node proportions and

FGN inferred marginal posteriors for AR response network: (a) 2-states discret-

ization, P-value ¼ 8:5579 � 10�13 and (b) 3-states discretization, P-value ¼ 2:920

�10�20

(a) (b)

Fig. 9. Average Pearson correlation coefficient plots of n-randomized nodes or edges

for AR response network. Model predictions are repeatedly evaluated, and averages

of correlation coefficients are computed in 10 � jEj random attempts: (a) randomly

shuffled datasets where states are swapped between different variable nodes and (b)

randomly shuffled n-edges over network structure

(a) (b)

Fig. 10. Pearson correlation plots of LBP message-passing convergence with increas-

ing iteration for both 2- and 3-states discretization levels in: (a) SOS response net-

work and (b) AR regulatory network. CPU runtime until convergence is on average

0.26 and 0.43 s in SOS network for 2- and 3-states discretization, respectively.

Accordingly, CPU runtime for AR network is on average 0.15 and 0.26 s

(a) (b)

Fig. 11. Evaluation of probabilistic FGN model on GRNs with different sparsity in:

(a) SOS response network and (b) AR regulatory network. Performance is compared

to very sparse and dense networks for both 2-states (yellow-fill blue boxplots) and

3-states (red boxplots) discretization levels. Sparse and dense networks are obtained

by deletion of edges from and addition of edges to true (original) GRNs, respective-

ly. (Color version of this figure is available at Bioinformatics online.)
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and as expected, the network with the greater number of edges has a
higher computation time. Results show a decline in predictions
with a higher clustering resolution. It is noteworthy that clustering
algorithms tend to be less robust with respect to the larger overlap
between clusters as k increases (Rodriguez et al., 2019). In addition,
as we increased the number of states above 6 (i.e. in the case of the
SOS response network) and above 9 (i.e. for the AR network),
we observed that the discretization optimization failed due to the
creation of ill-conditioned covariance matrices of the GMM. Thus,
we noted, stems from the nature of the normalized gene-expression
data used in this work. We observed that certain genes, especially in
the SOS response network, have a data range as low as 2.8 or have
multiple data points close to each other, thus leading to instances of
non-invertibility of covariance matrices. Intuitively then, an appro-
priate value of k is limited by the properties of the dataset.

5 Conclusion

Here, we have explored a probabilistic graphical model representa-
tion of biological networks and applied a message-passing algorithm
to investigate the allowable stable states and consistency between
some of the existing experimentally verified pathways in the
Bacterium genome to the diverse high-throughput real biological
data. The mathematical formulation of the model describes steady-
state behavior of systems where the steady-state assumption is high-
ly adequate for a typical high-throughput experimental sampling
rate. Also, in its current form, the model is already capable of han-
dling both minimal time required for spreading perturbations in the
network and undelayed feedback loops. We then applied statistical
analyses to compare the variability between the model-inferred
steady-state marginals and the experimental observed states. Our
findings reveal a high correlation between the given network path-
ways and the diverse experiments gene-expression data. This implies
that the small sub-networks considered are strongly supported by
the measured gene-expression data. A key experimental observation
is that the genetic graph has sparsely distributed and possibly
long edges (Milenkovic and Vasic, 2004). Therefore, even for a
genome-wide GRN, the mathematical formulations described still
apply (Kschischang et al., 2001).Thus, it would be interesting to see
whether our framework can be employed to perceive global patterns
of complex biological networks. Such patterns, however not visible
on a local level, can enable us to build qualitatively new kinds of
hypotheses.

One major simplification that we applied in our network model
is the assumption of static GRNs, which do not adequately explain
transcriptional gene expression, at least not on a cellular system-
wide level. In order to enable true inference of cellular functions and
organization, future methods on more complex models that consider
the fluidity of biological networks (i.e. changing networks with
time, context and conditions), temporality and multi-omics data
would be required. Furthermore, in this work, we applied the

modeling of distributions over discrete functions, primarily since
most of the current biological knowledge on regulatory relations
and transcriptional switches is essentially qualitative. We note that
in its current form, our model cannot predict actual non-discretized
gene-expression levels. However, in order to do so, the framework
can readily be adapted by defining continuous probability distribu-
tion over the regulatory function, fi. This would require much more
data to adequately learn the regulatory relations toward more
significant results (Gallo et al., 2016).
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