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ABSTRACT: Histogram reweighting (HR) is a standard
approach for converting grand canonical Monte Carlo
(GCMC) simulation output into vapor−liquid coexistence
properties (saturated liquid density, ρliq

sat, saturated vapor
density, ρvap

sat , saturated vapor pressures, Pvap
sat , and enthalpy of

vaporization, ΔHv). We demonstrate that a histogram-free
reweighting approach, namely, the Multistate Bennett Accept-
ance Ratio (MBAR), is similar to the traditional HR method
for computing ρliq

sat, ρvap
sat , Pvap

sat , and ΔHv. The primary advantage
of MBAR is the ability to predict phase equilibria properties
for an arbitrary force field parameter set that has not been
simulated directly. Thus, MBAR can greatly reduce the
number of GCMC simulations that are required to parameter-
ize a force field with phase equilibria data. Four different applications of GCMC-MBAR are presented in this study. First, we
validate that GCMC-MBAR and GCMC-HR yield statistically indistinguishable results for ρliq

sat, ρvap
sat , Pvap

sat , and ΔHv in a limiting
test case. Second, we utilize GCMC-MBAR to optimize an individualized (compound-specific) parameter (ψ) for 8 branched
alkanes and 11 alkynes using the Mie Potentials for Phase Equilibria (MiPPE) force field. Third, we predict ρliq

sat, ρvap
sat , Pvap

sat , and
ΔHv for force field j by simulating force field i, where i and j are common force fields from the literature. In addition, we provide
guidelines for determining the reliability of GCMC-MBAR predicted values. Fourth, we develop and apply a post-simulation
optimization scheme to obtain new MiPPE non-bonded parameters for cyclohexane (ϵCH2

, σCH2
, and λCH2

).

1. INTRODUCTION

A key use of molecular simulation is the ability to accurately
and efficiently estimate vapor−liquid phase equilibria proper-
ties, i.e., saturated liquid density (ρliq

sat), saturated vapor density
(ρvap

sat ), saturated vapor pressures (Pvap
sat ), and enthalpy of

vaporization (ΔHv). The accuracy of coexistence estimates
depends on the underlying molecular model (a.k.a., force field,
potential model, or Hamiltonian) while the computational
efficiency depends primarily on the simulation methods,
software, and hardware.
Several simulation approaches exist for computing vapor−

liquid coexistence properties.1 These include Gibbs Ensemble
Monte Carlo (GEMC),1,2 grand canonical Monte Carlo
coupled with histogram reweighting (GCMC-HR),1−3 two-
phase molecular dynamics (2ϕMD),4 and isothermal-isochoric
integration (ITIC).5 The improved efficiency of these methods
has greatly enabled the development of accurate force
fields.6−10 However, parameterization of non-bonded inter-
actions with vapor−liquid coexistence calculations over a wide
range of temperatures remains an arduous and time-consuming
task. For example, recent studies have implemented an

exhaustive grid-based search optimization by performing
GCMC-HR simulations with hundreds of non-bonded
parameter sets.11−13

The primary motivation for this work is to reduce the
computational cost of optimizing non-bonded parameters with
vapor−liquid phase equilibria properties. This is achieved by
substituting histogram reweighting with the Multistate Bennett
Acceptance Ratio (MBAR),14,15 a histogram-free reweighting
schema. The proposed GCMC-MBAR method for calculating
phase equilibria is identical to the traditional GCMC-HR
approach except that MBAR reweights configurations rather
than histograms. The benefit of this simple modification is that
GCMC-MBAR can estimate phase equilibria for non-bonded
parameter sets that have not been simulated directly. While
storing configuration files is significantly more memory
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intensive than storing histogram files (and scales as the number
of molecules), this additional storage load can be alleviated
greatly by utilizing basis functions (see section 2.4).
In related studies, Messerly et al. demonstrate how to

combine MBAR with ITIC (MBAR-ITIC) to optimize
generalized Lennard-Jones (Mie λ-6) potentials.16,17 For
MBAR-ITIC, a series of simulations are performed with a
constant number of molecules, constant volume, and constant
temperature (NVT) along a supercritical isotherm and liquid
density isochore(s) with a “reference” force field(s) (θref).
Subsequently, the energies and forces are recomputed for the
configurations sampled with θref using a different “rerun” force
field (θrr). MBAR reweights the reference configurations to
estimate the internal energy (U) and pressure (P) at each (T,
ρ) state point for θrr, without directly running simulations with
θrr. ITIC then converts the MBAR U and P estimates into
vapor−liquid phase equilibria properties for θrr.

5,18

The results from Messerly et al. demonstrate that MBAR-
ITIC is most reliable in the local domain, that is, when θrr ≈
θref.

16 Furthermore, MBAR-ITIC performs best for changes in
the non-bonded well-depth parameter (ϵ) while it performs
significantly worse for large changes in the non-bonded size
(σ) and repulsive exponent (λ) parameters. Because molecular
configurations in condensed phases depend strongly on short-
range interactions, this poor “overlap” is primarily observed
when σrr ≉ σref or λrr ≉ λref. The degree of overlap can be
quantified by the number of effective snapshots (Ksnaps

eff ), which
is essentially the number of non-negligible configurations that
contribute to the estimated ensemble averages. Poor overlap
(low Ksnaps

eff ) is especially problematic for MBAR-ITIC as a large
number of snapshots is needed to obtain precise estimates of P
in the liquid phase, due to large fluctuations in P at high
densities.
Our initial hypothesis was that GCMC-MBAR would

experience better overlap than was observed for MBAR-ITIC
when θrr ≉ θref. There were two main reasons for this
hypothesis. First, as opposed to the fixed density NVT
simulations used in ITIC, GCMC simulations sample from a
wider range of configurations and energies. Second, ITIC
requires larger box sizes (and, thereby, more molecules) than
those typically utilized with GCMC. By utilizing fewer
molecules, GCMC simulations experience larger energy
fluctuations (on a percent basis) which improves the overlap
between states. We also hypothesized that the impact of poor
overlap would be less severe compared to MBAR-ITIC, where
poor overlap leads to sporadic values of P and nonsensical
phase equilibria estimates.
The method outlined in this study is similar in spirit to

“Hamiltonian scaling” (HS), which has been applied to both
GEMC19 and GCMC simulations.1,20−22 The HS approach
samples from multiple force fields (Hamiltonians) in a single
simulation according to a weighted sampling probability. A
separate histogram is stored for each θref by scaling the
fractional contribution of the combined histogram from all
reference force fields. Vapor−liquid phase equilibria properties
for each θref are estimated post-simulation by applying
traditional histogram reweighting to the respective scaled
histograms. For the GCMC implementation of Hamiltonian
scaling (HS-GCMC), μ and T are not stationary during the
simulation, rather the current values of μ and T depend on
which θref is being sampled.
Despite HS-GCMC proving to be a powerful tool to

optimize force field parameters,1,20−22 it has yet to gain

widespread popularity. This is likely due to the added
complexity of both the simulation protocol and the histogram
post-processing. Also, HS requires that a decision be made a
priori regarding which force fields are to be tested. By contrast,
GCMC-MBAR does not require any modification of the
simulation procedure, the post-processing is essentially
unchanged compared to traditional histogram reweighting,
and the non-bonded parameter sets need not be selected prior
to the simulations. This final distinction is of utmost
importance as GCMC-MBAR is capable of predicting phase
equilibria post-simulation for any force field parameter set (θrr
= θref and θrr ≠ θref), whereas HS-GCMC can predict phase
equilibria only for the parameter sets that are tested at run
time.
The outline for this study is the following. Section 2

provides details regarding the force fields, simulation setup,
and the HR/MBAR post-simulation analysis. Section 3
presents results of GCMC-MBAR for four scenarios. Section
3.1 validates that GCMC-MBAR and GCMC-HR yield
indistinguishable coexistence estimates for a fixed force field.
Section 3.2 applies GCMC-MBAR to a recently proposed ϵ-
scaling approach. Section 3.3 shows how GCMC-MBAR can
predict coexistence properties for force field j by reweighting
configurations sampled with force field i. Section 3.4
demonstrates how GCMC-MBAR can be utilized to rapidly
optimize the united-atom Mie λ-6 parameters for cyclohexane.
Section 4 discusses some limitations and provides recom-
mendations for future work. Section 5 reviews the primary
conclusions.

2. METHODS
2.1. Force Fields. The force fields utilized in this study are

Mie Potentials for Phase Equilibria (MiPPE),8,12,13 Trans-
ferable Potentials for Phase Equilibria (TraPPE-UA, referred to
simply as TraPPE6,23,24), and Nath, Escobedo, and de Pablo
revised (NERD).25,26 Each force field adopts a united-atom
(UA) representation, where nonpolar hydrogens are not
modeled explicitly.
We employ fixed bond lengths for each force field studied.

Note that this is inconsistent with the original NERD force
field, which was developed using a harmonic bond potential.
The primary reason we utilize fixed bond lengths for the
NERD potential is to allow for a valid comparison of our
GCMC-MBAR values with the GCMC-HR results of Mick et
al.,12 which were also obtained using fixed bonds. Furthermore,
section S2 of Supporting Information demonstrates that the
branched alkane NERD phase equilibria results obtained with
fixed bonds (as reported by Mick et al.12) agree with the
flexible-bond results (as reported by Nath et al.26).
Angular bending interactions for each force field are

evaluated using a harmonic potential:

u
k
2
( )bend

eq
2θ θ= −θ

(1)

where ubend is the bending energy, θ is the instantaneous bond
angle, θeq is the equilibrium bond angle, and kθ is the harmonic
force constant.
Dihedral torsional interactions for each force field are

determined using a cosine series:

u c c c

c

(1 cos ) (1 cos 2 )

(1 cos 3 )

tors
0 1 2

3

ϕ ϕ
ϕ

= + + + −
+ + (2)
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where utors is the torsional energy, ϕ is the dihedral angle, and
cn are the Fourier constants. Bond lengths, θeq, kθ, and cn values
for each force field are reported in section S1 of the Supporting
Information.
In accordance with ref 27, we simulate cyclohexane using the

TraPPE CHx−CH2−CH2−CHy torsional parameters instead
of the TraPPE C−C−C−C six-member ring torsional
parameters reported in Table 3 of ref 24. This choice is
made to better replicate the vapor−liquid coexistence densities
reported in ref 24, as we suspect there is a typographical error
in ref 24 for the TraPPE C−C−C−C six-member ring
torsional potential. Note that, subsequent to submitting this
manuscript, an alternative equation to eq 2 is now provided on
the official TraPPE Web site28 for the cyclohexane torsional
potential (although we are still wary of a possible sign error for
the c1 term).
Non-bonded interactions between sites located in two

different molecules or separated by more than three bonds
within the same molecule are calculated using a Mie λ-6
potential (of which the Lennard-Jones, LJ, 12−6 is a subclass):

u r
r r

( , , ; )
6 6

nb
6/ 6 6

σ λ λ
λ

λ σ σϵ =
−

ϵ −
λ λ−

(3)

where unb is the non-bonded energy, σ is the distance (r)
where unb = 0, −ϵ is the energy of the potential at the

minimum; (that is, unb = −ϵ and u
r

nb∂
∂

= 0 for r = rmin), and λ is

the repulsive exponent. Note that Coulombic (electrostatic)
interactions are not computed because the MiPPE, TraPPE,
and NERD force fields do not include charges for any of the
compounds studied.
The non-bonded Mie λ-6 force field parameters for MiPPE,

TraPPE, and NERD are provided in Table 1. MiPPE reports a
“generalized” (MiPPE-gen) and “short/long” (MiPPE-SL) CH
and C parameter set. The “short” and “long” parameters are
implemented when the number of carbons in the backbone is
≤ 4 and > 4, respectively. Also note that the NERD force field
has several different CH3 non-bonded parameter sets.
Non-bonded parameters between two different site types

(i.e., cross-interactions) are determined using Lorentz−
Berthelot combining rules29 for ϵ and σ and an arithmetic
mean for the repulsive exponent λ (as recommended in ref 8):

ij ii jjϵ = ϵ ϵ (4)

2ij
ii jjσ

σ σ
=

+
(5)

2ij
ii jjλ

λ λ
=

+
(6)

where the ij subscript refers to cross-interactions and the
subscripts ii and jj refer to same-site interactions.
2.2. Simulation Setup. The results presented in sections

3.1 and 3.2 are obtained by reprocessing simulation output that
were analyzed in previous studies with histogram reweight-
ing.12,13 New simulation results are provided in sections 3.3
and 3.4 for 2-methylpropane, 2,2-dimethylpropane, 2,2-
dimethylbutane, 3,3-dimethylhexane, 3-methyl-3-ethylpentane,
2,2,4-trimethylhexane, 2,3-dimethylbutane, 2,3,4-trimethylpen-
tane, and cyclohexane.
Each compound is simulated with grand canonical Monte

Carlo (GCMC), that is, constant chemical potential (μ),

volume (V), and temperature (T). A series of nine GCMC
simulations are performed, two in the vapor phase, six in the
liquid phase (with a temperature spacing of approximately 20
K), and one near critical which acts as the “bridge” between
the vapor and liquid phases. A single simulation is performed at
each state point (μ, V, T), with the exception of the MiPPE
cyclohexane results, which are obtained from 20 independent
replicate simulations.
The system volume is constant for a given compound. The

cubic box side length is 3 nm for 2-methylpropane, 2,2-
dimethylpropane, 2,3-dimethylbutane, and cyclohexane, 3.5
nm for 2,3,4-trimethylpentane and 3,3-dimethylhexane, and 4
nm for 2,2,4-trimethylhexane and 3-methyl-3-ethylpentane.
The prescribed μ, T, and V values for the branched alkanes are
the same as those utilized in Mick et al. and vary somewhat
between force fields.12 All simulated state points (μ, V, T) are
reported in section S9 of Supporting Information.
A low-density (less than 20 molecules) initial configuration

is utilized for the vapor phase simulations, while the bridge and
liquid phase simulations are initialized with a high-density
(around 150 molecules) configuration. To verify that finite size
effects are negligible in the low-density vapor phase, we
confirm that the saturated vapor compressibility factor (Zvap

sat )
converges smoothly to 1 for each compound (see section S7 of
Supporting Information).30

Each GCMC simulation performed in this study consists of
an equilibration and production stage of 2 × 107 and 2.5 × 107

Monte Carlo steps (MCS), respectively. Snapshots (i.e.,
number of molecules, internal energy, and optionally the xyz

Table 1. Non-bonded (Mie λ-6) Parameters for
TraPPE,6,23,24 MiPPE,8,12,13 and NERD25,26

united-atom ϵ/kB (K) σ (nm) λ

MiPPE
CH3 121.25 0.3783 16
CH2(sp

3) 61 0.399 16
CH(sp3), gen. 15 0.46 16
C(sp3), gen. 1.2 0.61 16
CH(sp3), short 15 0.47 16
C(sp3), short 1.45 0.61 16
CH(sp3), long 14 0.47 16
C(sp3), long 1.2 0.62 16
CH(sp) 148.5 0.357 28
C(sp) (1-alkyne) 206 0.2875 16
C(sp) (2-alkyne) 118 0.312 16
CH2 (cyclohexane)

a 69.7 0.3902 16
TraPPE

CH3 98 0.375 12
CH2(sp

3) 46 0.395 12
CH(sp3) 10 0.468 12
C(sp3) 0.5 0.640 12
CH2 (cyclohexane) 52.5 0.391 12

NERD
CH3 (general) 104.00 0.391 12
CH3 (2-methylpropane) 78.23 0.388 12
CH3 (2,2-dimethylpropane) 74.50 0.391 12
CH3 (methyl side chain) 70.00 0.385 12
CH3 (ethyl side chain) 83.00 0.382 12
CH2(sp

3) 45.80 0.393 12
CH(sp3) 39.70 0.385 12
C(sp3) 17.00 0.391 12

aThis work. See section 3.4
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coordinates) are stored every 200 MCS to reduce the
correlation between sequential configurations. Thus, the
number of snapshots (Ksnaps) for a single state point (μ, V,
T) is 1.25 × 105.
Displacement and rotation moves are required to thermally

equilibrate the system at the simulation temperature while
molecule insertion and deletion moves ensure that μ is equal to
the prescribed value. Cyclohexane simulations also employ
crank-shaft moves to sample internal configurations, which can
be challenging for ring molecules.31,32 The type of Monte
Carlo move implemented for each step is selected randomly.
The displacement, rotation, and molecule swap move
probabilities for branched alkanes are 30%, 10%, and 60%,
respectively. The move probabilities for cyclohexane are 30%,
10%, 40%, and 20% for displacement, rotation, molecule swap,
and crank-shaft moves, respectively.
All simulations utilize coupled-decoupled configurational-

bias Monte Carlo (CBMC)23 to enhance the insertion
acceptance rate, with 100 angle trials, 30 dihedral trials, 10
initial site trials, and 4 subsequent site trials. The move
probabilities are consistent with those of Mick et al. and
Soroush Barhaghi et al.,12,13 while the CBMC dihedral trials
and initial site trials differ slightly. Section S3 provides an
example of the CBMC acceptance rates for the different
simulation state points.
Consistent with previous MiPPE studies,8,12,13 we utilize a

1.0 nm non-bonded cut-off distance with analytical tail
corrections for internal energy.29 Although TraPPE6,23,24 and
NERD25,26 were parameterized using a 1.4 nm and 1.38 nm
cut-off, respectively, we compare our TraPPE and NERD
validation results with those from Mick et al.,12 which also
utilizes a 1.0 nm cut-off.
All simulations are performed using GPU optimized Monte

Carlo (GOMC)33 development version. Although GOMC is
capable of implementing graphics processing units (GPUs), all
simulations are performed with central processing units
(CPUs) because of the relatively simple systems that are
studied (i.e., small box sizes and no electrostatics). A
description of the compiler and machine hardware is provided
in section S4 of Supporting Information.
Initial configurations are generated with Packmol,34 while

psfgen is used to generate the coordinate (*.pdb) and
connectivity (*.psf) files.35 Example GOMC input files with
corresponding shell and Python scripts for preparing, running,
and analyzing simulations are provided at https://github.com/
ramess101/MBAR_GCMC.
2.3. Comparison between GCMC-MBAR and GCMC-

HR. Converting the GCMC simulation output into vapor−
liquid phase equilibria properties requires significant post-
processing through reweighting. Histogram reweighting (HR)
and, more generally, configuration reweighting is an important
tool in many fields of molecular simulation.36,37 In fact, it has
long since been known that it is possible to estimate properties
for state j by reweighting configurations that were sampled
with state i.1,38−40

For example, umbrella sampling simulations are often
processed using the weighted histogram analysis method
(WHAM) to compute free energy differences between states.41

WHAM (or HR) is essentially an approximation of MBAR
and, therefore, MBAR should be favored for free energy
calculations whenever a histogram-free approach is feasi-
ble.42,43 In this study, we implement MBAR in Python 2.7

through the pymbar package available at https://github.com/
choderalab/pymbar.
Before demonstrating how to compute vapor−liquid phase

equilibria with GCMC-MBAR in sections 2.3.2 and 2.3.4, we
review the traditional GCMC-HR approach in section 2.3.1.
We also discuss the steps of this procedure that are the same
for both GCMC-HR and GCMC-MBAR in section 2.3.3. We
refer the interested reader to the literature for derivations and
more detailed discussion of the GCMC-HR equations (cf. ref
1).

2.3.1. Histogram Reweighting. Histogram reweighting
computes the ensemble average of a given observable (O,
e.g., U and ρ) according to

O O Pr N U( , ) ( , ; , )
U N
∑∑μ β μ β⟨ ⟩ = ×

(7)

where ⟨···⟩ denotes an ensemble average and Pr(N, U; μ, β) is
the probability of observing N molecules with internal energy
U for a given chemical potential (μ) and inverse temperature
(

k T
1

B
β ≡ , where kB is the Boltzmann constant). The double

summation is computed numerically where U and N are
discretized into a 2-dimensional histogram. The probability is
obtained with HR from36,37

Pr N U
K N U U N

K U N f
( , ; , )

( , ) exp( )

exp( )
i
R

snaps i

i
R

snaps i i i i i

1 ,

1 ,

μ β
β βμ

β βμ
=
∑ − +
∑ − + + ̂
=

=
(8)

where R is the number of runs, Ksnaps,i(N, U) is the number of
(uncorrelated) configuration “snapshots” in the ith run (with βi
and μi) that have N molecules and U within the histogram bin
width, Ksnaps,i is the total number of snapshots for run i (i.e.,
Ksnaps,i = ∑N,U Ksnaps,i(N, U)), and fî is an estimate for the
reduced free energy, which is calculated with the relationship

f

K N U U N

K U N f

( , )

ln
( , ) exp( )

exp( )U N

i
R

i

i
R

snaps i i i i i

1 snaps,

1 ,

∑∑

μ β
β βμ

β βμ

̂ =

−
∑ − +
∑ − + + ̂
=

=
(9)

where fî ≡ f(̂μi, βi). Note that because fî can also be viewed
simply as a constant that solves the self-consistent equations,
the GCMC-HR literature1 typically adopts the notation Ci (or
more specifically, −Ci) instead of fî. We prefer fî for a clear
comparison with the MBAR expressions that follow.

2.3.2. Histogram-Free Reweighting. Equations 7, 8, and 9
only allow for reweighting simulations at a different β and μ.
By contrast, MBAR can also be applied to reweight simulations
for different force field parameters (θ). The analogous MBAR
equation to eq 7 is

O O x N W( , , ) ( , ; , , ) ( , , )
n

K

n n n
1

snaps
tot

∑θ μ β θ μ β θ μ β⟨ ⟩ = ×
=

(10)

where (xn, Nn) are uncorrelated configurations sampled from i =
1, ..., R simulations at inverse temperature (βi), chemical
potential (μi), and reference force field parameters (θref,i), and
Ksnaps
tot ≡ ∑i = 1

R Ksnaps,i is the total number of snapshots for all R
runs. Wn(θ, β, μ) is the weight of the nth configuration for an
arbitrary μ, β, and θ. Wn is computed with the following
expression (analogous to eq 8)
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W

f u x N

K f u x N

( , , )

exp ( , , ) ( , ; , , )

exp ( , , ) ( , ; , , )

n

n n

i
R

i i i i n n i i i1 snaps,

θ β μ
θ β μ θ β μ

θ β μ θ β μ

=
[ ̂ − ]

∑ [ ̂ − ]=
(11)

where u(xn, Nn; θ, β, μ) is the reduced potential energy
evaluated with θ, β, and μ for configuration (xn, Nn). The
reduced free energy is computed with an expression analogous
to eq 9

f

u x N

K f u x N

( , , )

ln
exp ( , ; , , )

exp ( , , ) ( , ; , , )n

K
n n

i
R

i i i i n n i i i1 1 snaps,

snaps
tot

∑

θ β μ

θ β μ
θ β μ θ β μ

̂ =

− [− ]
∑ [ ̂ − ]= =

(12)

For the grand canonical ensemble, the reduced potential
energy is

u x N U x N N( , ; , , ) ( , ; )n n n n nθ β μ β θ βμ= − (13)

2.3.3. Comparison between HR and MBAR. The
similarities between MBAR (eqs 11 and 12) and HR (eqs 8
and 9) are readily apparent after substituting eq 13 into eqs 11
and 12. Indeed, the difference between HR and MBAR is
primarily that of bookkeeping, although the histogram-free
approach of MBAR does have some benefits when varying
force field parameters, as discussed below.
In the histogram context, snapshots with similar U(θref)

would not necessarily belong in the same U histogram bin
when recomputed with a different force field. Similarly, we
cannot easily separate out snapshots in the same U histogram
that were performed with multiple θref. However, if we perform
sums over snapshots, we can carry out simulations at different
force field parameters (θref,i). Furthermore, we can reevaluate
the configurational energy (U(xn, Nn; θrr)) with a range of
different parameters for the relatively small expense of
rerunning only a subset of uncorrelated snapshots with θrr.
If, however, all R simulations are performed with a single

reference force field (θref) and θrr = θref, these two sets of
equations (HR: eqs 7, 8, and 9. MBAR: eqs 10, 11, and 12) can
be seen as equivalent in the limit of infinitesimal histogram bin
widths. In the zero bin width limit, no histogram contains more
than 1 snapshot and, therefore, U and N for each histogram
can be taken to be the U(xn, Nn) and Nn of the single
observation in that histogram, while histograms with no
snapshots can be omitted. Thus, Ksnaps,i(N, U) is either 1 or 0,
and the sum over all histograms becomes a sum over snapshots
conducted in all R simulation runs. Equations 8 and 9 then
reduce to eqs 11 and 12, respectively.
Both HR and MBAR require solving a system of R − 1

nonlinear equations for self-consistency (eqs 8 and 9 for HR
and eqs 11 and 12 for MBAR). Specifically, initial guesses for fî
are updated iteratively until convergence. There is provably
only one solution15 as long as certain criteria are met that will
be discussed below. Thus, although a range of different solver
methods exist, the only difference is efficiency and numerical
stability.
2.3.4. Computing Phase Equilibria. For both GCMC-HR

and GCMC-MBAR, the pressure is computed from

P
k T
V

B f B( , , ) ln ( , , )Bθ β μ θ β μ= Ξ + = ̂ +
(14)

where Ξ is the grand canonical partition function and B is an
additive constant, which is determined by fitting a straight line
to ln Ξ with respect to N at very low densities. At these low
densities, the system is assumed to behave as an ideal gas and,

therefore, the slope is unity and B bk T
V
B= × , where b is the y-

intercept from the straight line regression.
Having determined B, the saturated vapor pressure (Pvap

sat ) is
computed with eq 14 at the desired saturation temperature
(Tsat) and corresponding saturation chemical potential (μsat).
μsat is obtained by equating the pressures in the vapor and
liquid phases at a fixed value of Tsat. This is done by integrating
Pr (HR) or Wn (MBAR) for the two phases separately, that is,
by dividing the snapshots into low and high density regimes.
For example, the equality of pressures is satisfied for HR when

Pr N U

Pr N U

( , ; , )

( , ; , )

U N N

U N N

sat sat

sat sat

c

c

∑ ∑

∑ ∑

μ β

μ β=
>

≤ (15)

where Nc is an estimate for the number of molecules at the
critical density, which serves to distinguish between snapshots
that are in the vapor or liquid phases. The analogous MBAR
equation is

W W( , , ) ( , , )
n

K

n
n

K

n
1

sat sat

1

sat sat
snaps
liq

snaps
vap

∑ ∑θ β μ θ β μ=
= = (16)

where Ksnaps
liq and Ksnaps

vap are the number of liquid and vapor
snapshots, respectively.
By solving eqs 15 (HR) or 16 (MBAR) for μsat, the vapor

and liquid saturation densities and energies (ρliq
sat, ρvap

sat , Uliq
sat, and

Uvap
sat ) are also computed with a modified version of eqs 7 (HR)

or 10 (MBAR), where only snapshots from the desired phase
are included in the weighted average. For example, when
computing ρliq

sat and Uliq
sat, the double summation in eq 7 (HR) is

performed only for N > Nc and the sum in eq 10 (MBAR) is
only over Ksnaps

liq liquid snapshots.
Having computed the pressure, internal energies, and

densities for the saturated vapor and saturated liquid, the
enthalpy of vaporization is calculated with

H U U P V V( )v vap
sat

liq
sat

vap
sat

vap
sat

liq
satΔ = ̅ − ̅ + ̅ − ̅ (17)

where U̅ and V̅ denote molar energy and molar volume,
respectively.

2.3.5. Uncertainties in Phase Equilibria. All uncertainties in
this study are reported at the 95% confidence level. Unless
otherwise stated, uncertainties for ρliq

sat, ρvap
sat , Pvap

sat , ΔHv, and Zvap
sat

are determined with the following bootstrap resampling
analysis:44

1. Perform a set of GCMC simulations with single replicate
at each state point (μ, V, T)

2. Randomly select (with replacement) a subset of the
Ksnaps
tot snapshots from step 1

3. Compute phase equilibria for random subset of step 2
following procedure outlined in sections 2.3.2 and 2.3.4

4. Repeat steps 2 and 3 Nsets times, where Nsets = 100 in
this study

5. Generate distribution from Nsets values of ρliq
sat, ρvap

sat , Pvap
sat ,

ΔHv, and Zvap
sat

6. Determine the interval that excludes the lowest and
highest 0.025 × Nsets values of distribution
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Note that it is important to compute the uncertainties for ΔHv
and Zvap

sat directly, rather than applying standard propagation of
errors methods that typically neglect the correlation between
properties.45

2.3.6. Number of Effective Snapshots. The performance of
HR and MBAR depends primarily on good phase space
overlap. For HR, good overlap means that the different sets of
simulated T and μ sample configurations and densities that are
representative of the vapor and liquid phases at Tsat and μsat.
For MBAR, an additional requirement is that the config-
urations sampled with θref also represent feasible configurations
for θrr.

16,46 The amount of overlap can be quantified by the
number of effective snapshots (Ksnaps

eff ),47 using Kish’s formula:

K
W

W
( )n n

n n
snaps
eff

2

2=
∑
∑ (18)

which reduces to Ksnaps
eff = (∑n Wn

2)−1 when the weights are
normalized. This has the property that when the weights are
equal, Ksnaps

eff = Ksnaps
tot , when all but one weight is negligible,

Ksnaps
eff ≈ 1, and behaves appropriately for intermediate cases.

Messerly et al.16 propose a heuristic that MBAR estimates are
sufficiently reliable to compute phase equilibria with ITIC
when Ksnaps

eff > 50. Section 3.3 tests whether this is a reasonable
heuristic for GCMC-MBAR as well.
2.4. Basis Functions. When applying GCMC-MBAR to

different force field parameter sets (θrr ≠ θref) it is necessary to
recompute the internal energy for each snapshot (U(xn, Nn;
θrr) in eq 13). GCMC-HR typically requires millions of
snapshots for precise estimates of ρliq

sat, ρvap
sat , Pvap

sat , and ΔHv over
a wide range of Tsat. The naive GCMC-MBAR approach when
θrr ≠ θref is to store the molecular configurations (xn) at each
snapshot and then recompute U(xn, Nn; θrr). Although this
“rerun” process in GOMC is orders of magnitude faster than
performing direct GCMC simulations with θrr, the naive
approach is memory intensive and computationally expensive.
Fortunately, basis functions can greatly accelerate the energy
recomputation step.16,46 Section 3.4 utilizes basis functions to
rapidly recompute the non-bonded energies for θrr ≠ θref.
Basis functions are applicable whenever the energy can be

separated linearly with respect to the force field parameters.
For example, the Mie λ-6 non-bonded energy is separated into
a repulsive and attractive term that can be expressed as

u C C r C r C r( , ; )nb
6 6

6= −λ λ
λ− −

(19)

where C6 and Cλ are proportional to ϵσ
6 and ϵσλ, respectively.

Therefore, the total non-bonded energy between all α and β
sites (Uαβ

nb) is simply

U C C C r C r C C( , )
i j

ij
i j

ij
nb

6 6
6

6 6∑ ∑= − = Ψ + Ψαβ λ λ
λ

λ λ
≠

−

≠

−

(20)

where Ψλ(≡ ∑i≠jrij
−λ) is the repulsive basis function, Ψ6(≡

−∑i≠jrij
−6) is the attractive basis function and, for simplicity,

∑i≠j denotes a sum over all unique pairwise interactions. Note
that, because Cλ depends on λ, a separate repulsive basis
function is required for each value of λ. For this reason, we
adopt the common practice of limiting λ to integer values.
With eq 20, the total non-bonded internal energy for all

interaction sites of all Ksnaps
tot snapshots can be recomputed for

any ϵ and σ with linear algebra instead of computing unb(θrr;
rij) for each unique pairwise interaction. Storing Ψλ and Ψ6 for
Ksnaps
tot snapshots also greatly reduces the memory storage load

compared to storing Ksnaps
tot configurational snapshots (which

must be full-precision for reliable “rerun” results).
Although it is preferable to output Ψλ and Ψ6 at runtime,

including this capability would require significant modification
of GOMC. Instead, we utilize the GOMC “rerun” feature to
indirectly compute Ψλ and Ψ6 post-simulation. Specifically, we
recompute Uαβ

nb for σrr ≠ σref with λrr = λref and ϵrr = ϵref, such
that C6,rr ≠ C6,ref and Cλ,rr ≠ Cλ,ref. We then perform an
additional “rerun” calculation for each value of λrr ≠ λref.
Having completed these “reruns,” the configuration files are no
longer needed. Finally, we solve a system of equations for Ψ6
and Ψλ.
For example, the Lennard-Jones 12−6 and Mie 16−6 basis

functions (Ψ6, Ψ12, and Ψ16) are obtained by solving the
following expression:

C C

C C

C C

U

U

U

( , ) ( , ) 0

( , ) ( , ) 0

( , ) 0 ( , )

( , , 12)

( , , 12)

( , , 16)

6 ref ref 12 ref ref

6 rr ref 12 rr ref

6 rr ref 16 rr ref

6

12

16

nb
ref ref

nb
rr ref

nb
rr ref

σ σ
σ σ
σ σ

σ

σ

σ

ϵ ϵ
ϵ ϵ
ϵ ϵ

Ψ
Ψ
Ψ

=

ϵ

ϵ

ϵ

αβ

αβ

αβ (21)

where Uαβ
nb(σref, ϵref, 12) is the reference non-bonded energy,

Uαβ
nb(σrr, ϵref, 12) is the “rerun” non-bonded energy for σrr ≠

σref, ϵrr = ϵref, and λrr = λref = 12, and Uαβ
nb(σrr, ϵref, 16) is the

“rerun” non-bonded energy for σrr ≠ σref, ϵrr = ϵref, and λrr = 16.
2.5. ϵ-Scaling. Recently, Weidler and Gross proposed an ϵ-

scaling approach for converting the Transferable Anisotropic
Mie (TAMie)7 parameters into individualized (compound-
specific) parameters (iTAMie).48 The philosophy for individ-
ualized parameters is that some compounds have sufficient
reliable experimental data to refine the force field parameters
for a specific molecule. However, refitting all non-bonded
parameters simultaneously would likely lead to an under-
specificed optimization. To avoid overfitting, Weidler and
Gross optimize a single adjustable parameter (ψ) that scales all
the ϵ values in a molecule according to

ii ii
ind tranψϵ = × ϵ (22)

where ϵii
ind is the individualized ϵ value for united-atom ii, ϵii

tran

is the corresponding transferable ϵ value, and ψ is a fixed value
for a given compound.
GCMC-MBAR is ideally suited for this “ϵ-scaling” approach

for at least two reasons. First, MBAR is most reliable when
extrapolating in ϵ rather than σ and/or λ.16 Second, because ϵrr
= ψ × ϵref while σrr = σref and λrr = λref, recomputing the total
non-bonded energy for each snapshot is simply

U Urr
nb,tot

ref
nb,totψ= × (23)

where Urr
nb,tot and Uref

nb,tot are the total non-bonded energy with
θrr and θref, respectively. Therefore, ϵ-scaling does not require
storing and recomputing configurations or basis functions.
Section 3.2 applies the GCMC-MBAR ϵ-scaling approach to

convert the MiPPE-SL semi-transferable parameters into
individualized parameters (iMiPPE) for 8 branched alkanes
and 11 alkynes. For consistency with the original MiPPE-SL
optimization, we use the same scoring function for the
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branched alkanes and alkynes as Mick et al.12 and Soroush
Barhaghi et al.,13 respectively
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(24)

where S is the scoring function, Nexp is the number of (pseudo-
)experimental data points, wx are the weights for property x
(see below), Tj

sat are the saturation temperatures for data point
j, and the absolute percent deviation (APD) is defined as

X
X X

X
APD( ) 100sim exp

exp
=

−
×

(25)

where Xsim and Xexp correspond to the respective simulation
and (pseudo-) experimental values for property X (e.g., ρliq

sat).
The derivative terms in eq 24 are computed with

d X T

d

X T X T

T T

APD( ( ))

T

APD( ( )) APD( ( ))j j j

j j

sat
1

sat sat

1
sat sat=

−
−

+

+
(26)

where j + 1 and j are sequential data points ordered according
to Tsat and Tj + 1

sat − Tj
sat = 10 K.

In accordance with the work of Mick et al.12 and Soroush
Barhaghi et al.,13 the target values (Xexp) are not experimental
data, rather they are computed values from correlations fit to
experimental data. Specifically, the alkyne correlations are from
the Design Institute for Physical Properties (DIPPR)49 while
the branched alkane correlations are from the National
Institute of Standards and Technology (NIST) Reference
Fluid Properties (REFPROP) database.50−53 Although RE-
FPROP correlations exist for ethyne,53 propyne,53 and 1-
butyne,54 we utilize the DIPPR correlations for consistency
within the alkyne family and to be consistent with Soroush
Barhaghi et al.
We use the same weights (wx) in eq 24 as Mick et al.12 and

Soroush Barhaghi et al.,13 namely, wx = (0.6135, 0.0123,
0.2455, 0.0245, 0.0613, 0.0061, 0.0245, 0.0123) and (0.757, 0,
0.152, 0, 0.076, 0, 0.015, 0) for branched alkanes and alkynes,
respectively. The ρliq

sat weights are greatest due to both the high
precision of experimental data and the high importance for the
MiPPE force field to reproduce this property. The Pvap

sat weights
are second greatest, demonstrating the importance of this
property but the slightly higher experimental uncertainties.
The ρvap

sat and ΔHv weights are 0 for alkynes as the DIPPR
database does not report ρvap

sat and the DIPPR ΔHv
uncertainties are relatively large for most alkynes. Despite
having weights that are an order of magnitude smaller, the
derivative terms help ensure that the optimal force field has
similar accuracy over the entire temperature range.

3. RESULTS

Four different applications for GCMC-MBAR are demon-
strated in this study, where slightly different types of simulation
output are required. Section 3.1 demonstrates that GCMC-
MBAR yields consistent results to those previously reported
using histogram reweighting when the force field parameters
do not change, that is, θrr = θref. The same simulation output as
GCMC-HR is used in this application, namely, a 2 × Ksnaps

tot

array containing the number of molecules (N) and the internal
energy (U) for all Ksnaps

tot snapshots. Section 3.2 demonstrates
how these same data can be used with MBAR to perform a
one-dimensional optimization with ϵ-scaling. Section 3.3
investigates how well GCMC-MBAR performs when predict-
ing vapor−liquid coexistence properties for force field j from
configurations sampled with force field i, where i and j are
common force fields from the literature. In this case, a 3 ×
Ksnaps
tot array is required, where the additional column is the

internal energy computed with force field j. Section 3.4
presents a case study for optimizing Mie λ-6 non-bonded
parameters for cyclohexane. Basis functions are employed as a
computationally efficient method for predicting vapor−liquid
phase equilibria with hundreds of ϵCH2

, σCH2
, and λCH2

values
that are unknown at runtime. Using basis functions requires
storing a (NΨ + 1) × Ksnaps

tot array, where NΨ is the number of
basis functions and the NΨ + 1 column corresponds to the
values of N. For example, the Mie 16−6 potential has two basis
functions (NΨ = 2), one for Ψ6 and one for Ψ16. Supporting
Information contains basis function files for the TraPPE and
MiPPE simulations of cyclohexane.

3.1. Validation of GCMC-MBAR for θrr = θref. Section 2.3
demonstrated that MBAR and HR are mathematically
equivalent in the limit of zero bin width when θrr = θref.
Figure 1 provides numerical validation that GCMC-MBAR and
GCMC-HR yield indistinguishable vapor−liquid coexistence
properties (tabulated GCMC-MBAR estimates and uncertain-
ties are provided in section S8 of the Supporting Information).
The evidence for this conclusion is that the median percent
deviation is approximately zero and the largest deviations are
within a few percent, which are typically smaller than the
combined statistical uncertainties between HR and MBAR.
Note that the uncertainties are largest near the critical point,
that is, reduced temperatures (Tr) ≈ 1.
The percent deviations shown in Figure 1 are averaged over

the 31 branched alkanes studied by Mick et al.12 (only the
MiPPE-SL data are re-evaluated) and the 11 alkynes studied by
Soroush Barhaghi et al.13 The GCMC-HR values used in
Figure 1 were not recomputed in this study but were taken
from the literature.12,13 For a fair comparison between GCMC-
HR and GCMC-MBAR, the GCMC-MBAR values were
computed using the same raw simulation data as Mick et al.
and Soroush Barhaghi et al. However, for simplicity, we only
reprocess one of the five replicate simulations.

3.2. Post-simulation ϵ-Scaling with GCMC-MBAR. As
discussed in section 2.5, ϵ-scaling is used to obtain an
individualized (compound-specific) parameter (ψ) for well-
studied compounds, that is, those with a large amount of
reliable experimental data.48 In this section, we demonstrate
that GCMC-MBAR is an efficient tool for performing ϵ-
scaling.
Figure 2 presents the ϵ-scaling results for 8 branched alkanes

and 11 alkynes using the MiPPE-SL force field as θref (ψ = 1).
The same simulation data as discussed in section 3.1 are
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repurposed to compute phase equilibria properties over a range
of ψ values (where ϵrr = ψ × ϵref) without performing any
additional simulations. Optimal ψ values for individualized
MiPPE (iMiPPE) are provided in section S5 of the Supporting
Information.
Weidler et al. tend to characterize the individualization as

being useful when the scaling is greater than 0.4% (i.e., |1 − ψ|

> 0.004).48 With this rationale, 3-methylpentane is the only
branched alkane that merits ϵ-scaling with the MiPPE-SL force
field. Similarly, the TAMie force field also found ψ ≈ 1 for all
branched alkanes, except 3-methylpentane.
Figure 2 shows that the MiPPE parameters require a greater

degree of scaling for alkynes than for branched alkanes. A truly
transferable force field should have ψ ≈ 1 for all compounds.
Although ψ values for iTAMie were not reported for alkynes,
the largest ψ value for olefins, ethers, and ketones was ≈1.01.48
Therefore, the transferability of the MiPPE force field appears
to be slightly poorer for 2-pentyne and 2-hexyne, which have
an optimized ψ > 1.01.
It is also interesting that only 3 out of 19 compounds require

ψ < 1. Thus, the well-depths appear to be slightly
underestimated by the MiPPE force field. By contrast, this
trend was not observed in ref 48 for TAMie. Also, note that
branched alkanes have a pronounced minimum in S with
respect to ψ, whereas the minimum is more gradual for the
alkynes. We attribute this, in part, to the fact that the alkynes
do not include ΔHv (a property that depends strongly on ϵ) in
the scoring function, that is, w4 = 0 and w7 = 0.

3.3. Performance of GCMC-MBAR when Varying ϵ, σ,
and λ. A more demanding test of GCMC-MBAR than ϵ-
scaling is to vary several non-bonded parameters simulta-
neously, including σ and λ. To perform a test of GCMC-
MBAR when θrr ≉ θref, we estimate the phase equilibria of
several branched alkanes for force field j by reweighting
configurations sampled with force field i (denoted as θi ⇒ θj),
where i and j are either the MiPPE-gen, MiPPE-SL, TraPPE, or
NERD force fields.
TraPPE ⇔ MiPPE-gen is the most challenging test as all

three non-bonded parameters (ϵ, σ, and λ) for all four united-
atom types (CH3, CH2, CH, and C) are different between the
TraPPE and MiPPE-gen force fields. TraPPE ⇒ NERD is the
second most challenging test because all ϵ and σ values are
substantially different but λ = 12 for both force fields. MiPPE-
gen ⇒ MiPPE-SL is considerably easier because these two
force fields only differ in the ϵ and/or σ values for the CH and
C sites. Furthermore, the difference in ϵ and σ values between

Figure 1. Percent deviations between coexistence properties
computed using histogram reweighting (HR) and Multistate Bennett
Acceptance Ratio (MBAR). The HR and MBAR results are in good
agreement, that is, within a few percent and a median percent
deviation of approximately 0%. Top-left, top-right, bottom-left, and
bottom-right panels correspond to saturated liquid density, saturated
vapor density, saturated vapor pressure, and enthalpy of vaporization,
respectively. Middle line denotes the median deviation, boxes depict
the first and third quartiles, and whiskers represent the range that
contains 95% of the data.

Figure 2. One-dimensional post-simulation optimization of the ϵ-scaling parameter (ψ) for select branched alkanes (left) and alkynes (right) with
MiPPE-SL as initial force field. MBAR enables prediction of scoring function over range of ψ values from configurations that were sampled with ψ =
1 (dashed line). Open symbols correspond to the optimal ψ value for a given compound.
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MiPPE-gen and MiPPE-SL is significantly smaller than that
between TraPPE and NERD (see Table 1). Therefore, MiPPE-
gen ⇒ MiPPE-SL corresponds to θrr ≈ θref, which is an
important scenario when fine-tuning force field parameters.
Figures 3 and 4 compare the GCMC-MBAR predicted

values for θrr ≠ θref (symbols) to the literature GCMC-HR
values (lines) obtained by direct simulation. Figure 3 contains
λrr = λref (TraPPE ⇒ NERD and MiPPE-gen ⇒ MiPPE-SL)
while Figure 4 corresponds to λrr ≠ λref (TraPPE ⇔ MiPPE-
gen).
The good agreement between corresponding symbols and

lines in Figures 3 and 4 shows that MBAR is extremely reliable
at predicting vapor phase properties (ρvap

sat and Pvap
sat ) for both λrr

= λref and λrr ≠ λref. Figure 3 demonstrates that GCMC-MBAR
is remarkably accurate at predicting liquid phase properties
(ρliq

sat and ΔHv, which depends on both phases) when λrr = λref,
even for the fairly significant differences in the TraPPE and
NERD σ values. However, Figure 4 shows that GCMC-MBAR
is unreliable for liquid phase properties when λrr ≠ λref. This
undesirable behavior can be explained by the low number of
effective snapshots in the liquid phase.
Figure 5 demonstrates that Ksnaps

eff is typically much greater in
the vapor phase (Ksnaps

eff,vap) than in the liquid phase (Ksnaps
eff,liq).

Specifically, Ksnaps
eff,vap ≫ 50, while Ksnaps

eff,liq < 50 when λrr ≠ λref

(TraPPE⇔ MiPPE-gen) and Ksnaps
eff,liq > 50 for λrr = λref (MiPPE-

gen ⇒ MiPPE-SL and TraPPE ⇒ NERD). Therefore, similar
to the conclusions of Messerly et al.16 for MBAR-ITIC, Ksnaps

eff >
50 is a good indication that the GCMC-MBAR estimates are
reliable. In comparison, MBAR-ITIC experiences even worse
overlap at near-saturated liquid conditions (K̅snaps,liq

eff ≈ 1) for
TraPPE ⇒ MiPPE-gen (λrr ≠ λref).

16

The strong disparity between Ksnaps
eff,vap and Ksnaps

eff,liq when λrr ≠
λref is expected for at least two reasons. The first reason is that
the vapor phase has fewer molecules overall. Ksnaps

eff (or
alternatively Wn) is greatest when the reduced potential energy
(u in eq 13) is similar for θrr and θref, such that the ratio of
Boltzmann factors is close to unity. The reduced potential
energy is proportional to the total internal energy (U), which is
an extensive property that depends on both N and θ.
Therefore, even when θrr ≉ θref, small values of N lead to
u(θrr) ≈ u(θref).
The second reason is that there are more instances of close-

range interactions in the liquid phase. Varying λ changes the
slope and location of the repulsive wall, which greatly impacts
the non-bonded energy at short distances (i.e., r < σ). These
large changes in U when λrr ≠ λref causeWn ≈0 for the majority
of liquid phase configurations. For similar reasons, the overlap
in the liquid phase is markedly worse when σrr ≉ σref. For

Figure 3. Comparison between GCMC-MBAR estimates (symbols, θrr ≠ θref) and MBAR-HR literature values12 (lines) with a constant repulsive
exponent, i.e., λrr = λref. MBAR predicts both liquid and vapor properties accurately for λrr = λref. GCMC-MBAR estimates for the NERD and
MiPPE-SL force fields are computed using configurations sampled from TraPPE and MiPPE-gen, respectively. Top-left, top-right, bottom-left, and
bottom-right panels correspond to saturated liquid density, saturated vapor density, saturated vapor pressure, and enthalpy of vaporization,
respectively.
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Figure 4. Comparison between GCMC-MBAR estimates (symbols, θrr ≠ θref) and MBAR-HR literature values12 (lines) with a nonconstant
repulsive exponent, i.e., λrr ≠ λref. MBAR predicts only vapor properties accurately for λrr ≠ λref. GCMC-MBAR estimates for the TraPPE force field
are computed using configurations sampled from MiPPE-gen, and vice versa. Top-left, top-right, bottom-left, and bottom-right panels correspond
to saturated liquid density, saturated vapor density, saturated vapor pressure, and enthalpy of vaporization, respectively.

Figure 5. Number of effective snapshots (Ksnaps
eff ) in the liquid (left panel) and vapor (right panel) phases. Good overlap (Ksnaps

eff ≫ 50) is achieved in
the vapor phase for each system, while poor overlap in the liquid phase (Ksnaps

eff < 50) is observed for λrr ≠ λref. The amount of overlap explains why
GCMC-MBAR is highly reliable in both phases for λrr = λref (see Figure 3), while GCMC-MBAR is not reliable in the liquid phase for λrr ≠ λref (see
Figure 4). Color scheme is the same as in Figures 3 and 4. Closed and open symbols correspond to λrr = λref and λrr ≠ λref, respectively.
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example, Ksnaps
eff,liq is significantly greater for MiPPE-gen ⇒

MiPPE-SL than TraPPE ⇒ NERD (see Figure 5).
Although GCMC-MBAR is unreliable for ρliq

sat and ΔHv when
λrr ≠ λref, GCMC-MBAR provides considerable improvement
in predicting ρvap

sat and Pvap
sat when λrr ≠ λref compared to what

was previously observed for MBAR-ITIC.16 Therefore, similar
to MBAR-ITIC, optimizing Mie λ-6 parameters requires
performing direct simulations for each value of λ. However,
as opposed to MBAR-ITIC, GCMC-MBAR can help
determine where these additional simulations should be
performed, i.e., GCMC-MBAR can localize the likely optimal
ϵ and σ values for λrr ≠ λref.
We recommend the following algorithm for optimizing Mie

λ-6 parameters with GCMC-MBAR:

1. Simulate initial reference force field (θref
⟨0⟩), e.g., TraPPE

2. Compute basis functions for various values of λ
3. Optimize ϵ and σ for each λ (ϵ⟨i⟩, σ⟨i⟩) by:

(a) estimating ρliq
sat, ρvap

sat , Pvap
sat , and ΔHv with GCMC-

MBAR
(b) minimizing scoring function (S)

4. Perform additional simulations with ϵ⟨i⟩, σ⟨i⟩ from Step 3
for each λ

5. Repeat Steps 3 and 4 until min(Ksnaps
eff ) ≫ 50 for θ⟨i⟩

6. Determine overall optimal parameter set (θopt)

Note that Step 2 is optional in that GCMC-MBAR (step 3a)
does not require basis functions. Because the Mie λ-6 potential
is amenable to basis functions, however, we implement step 2
to reduce the cost of recomputing the energy for θrr.

The stopping criterion is based on the minimum number of
effective snapshots min(Ksnaps

eff ), which always corresponds to
the liquid phase at lower values of Tsat (see Figure 5).
Therefore, GCMC-MBAR estimates should be reliable over
the entire range of saturation temperatures when min(Ksnaps

eff )
≫ 50. If this is true for the optimal region of parameter space,
any additional iterations would be ill-advised and unnecessary
as the optimization would primarily be fitting to the
uncertainty in the simulation output. Section 3.4 presents an
application of this approach for cyclohexane.

3.4. Case Study: Post-simulation Optimization of
Cyclohexane Mie λ-6 Parameters. In this section, we
present how GCMC-MBAR can rapidly convert a pretuned
Lennard-Jones 12−6 potential (TraPPE) into a Mie λ-6
potential (MiPPE) without performing hundreds of simu-
lations. We have chosen cyclohexane for this case study as
MiPPE does not yet have non-bonded parameters for this
compound, while the TraPPE force field does. Also, because
cyclohexane consists of a single united-atom site type (CH2), it
is a convenient molecule for representing the scoring function
in 2-dimensions (ϵCH2

and σCH2
for a given value of λCH2

).
The scoring function is computed with the branched alkane

weights (wx) and REFPROP correlations50,55 as target data
(Xexp). To avoid finite size effects in the near critical region,
data are excluded for Tsat > 0.95Tc. Specifically, Xexp consists of
REFPROP ρliq

sat, ρvap
sat , Pvap

sat , and ΔHv values from 360 K to 520 K
with 5 K intervals.

Figure 6. First iteration scoring function values with respect to ϵCH2
and σCH2

for cyclohexane. GCMC-MBAR enables rapid optimization of Mie λ-
6 parameters from a single reference force field (θref

⟨0⟩ = θTraPPE, depicted as a white triangle). Top-left, top-right, bottom-left, and bottom-right
panels correspond to λCH2

= 12, λCH2
= 14, λCH2

= 16, λCH2
= 18, respectively. White Xs represent the optimal parameter sets (the lowest value of S)

for each λCH2
.

Journal of Chemical & Engineering Data Article

DOI: 10.1021/acs.jced.8b01232
J. Chem. Eng. Data 2019, 64, 3701−3717

3711

http://dx.doi.org/10.1021/acs.jced.8b01232


Figure 6 depicts the scoring function for the first iteration of
the optimization, where GCMC simulations were performed
with the TraPPE parameters (depicted as a white triangle in
Figures 6 and 7). Similar figures have been reported in the
literature using GCMC-HR.12,13 The key difference is that the
heat maps reported in the literature were obtained by
performing GCMC simulations with hundreds of different
parameter sets. By contrast, the results shown in Figure 6 were
obtained by performing GCMC simulations with a single
parameter set, namely, the TraPPE parameters. MBAR
reweights these same configurations for all other parameter
sets. Furthermore, U(θrr) is computed with basis functions,
enabling the GCMC-MBAR recompute step to be extremely
fast.
Note that the TraPPE force field utilizes a Lennard-Jones

12−6 potential (i.e., λTraPPE = 12) and, therefore, the results in
the top-left panel of Figures 6 and 7 are for the case where λrr =
λref = 12, while the other panels correspond to λrr ≠ λref. Figure
7 shows that, as expected, the average number of effective
snapshots in the liquid phase (K̅snaps,liq

eff ) is much greater for λrr
= λref than for λrr ≠ λref.
When λrr = λref, MBAR-ITIC is reliable (K̅snaps,liq

eff > 50) for σrr
= σref ± 0.0025 nm,16 while Figure 7 (top left panel) suggests
that GCMC-MBAR is reliable over a much wider range (σrr ≈
σref ± 0.01 nm). Although the overlap is significantly better for
GCMC-MBAR compared to MBAR-ITIC for λrr ≠ λref, Figure
7 demonstrates that GCMC-MBAR and MBAR-ITIC follow a
similar trend, namely, the high K̅snaps,liq

eff region corresponds to
σrr < σref when λrr > λref and ϵrr > ϵref. This poses a challenge for

parameterization because the optimal σCH2
value is fairly

constant while the optimal ϵCH2
value tends to increase with

respect to λCH2
.

In addition, the smooth contours in Figure 6 for λrr = λref =
12 and the wide range of parameters over which K̅snaps

eff,liq ≫ 50
suggests that GCMC-MBAR is highly reliable for optimizing
ϵCH2

and σCH2
for a fixed value of λCH2

. Even more remarkable,

considering the erroneous prediction of ρliq
sat and ΔHv for λrr ≠

λref (see Figure 4), is that GCMC-MBAR predicts smooth
contours for λ ≠ 12 despite lower values of K̅snaps

eff,liq. This
characteristic would be important when implementing gradient
descent optimization schemes. By contrast, MBAR-ITIC yields
sporadic contours for λrr ≠ λref that are unreliable for
optimization.16

The optimal parameter sets (depicted as white Xs in Figures
6 and 7) correspond to the lowest value of S for each value of
λCH2

. Having minimized the scoring function for λCH2
= 12, 14,

16, 18, and 20 (not shown in Figure 6), we perform additional
simulations with the optimal parameter sets (θ⟨1⟩) serving as
new reference parameter sets. Because GCMC-MBAR is
reliable over a wide range of ϵCH2

and σCH2
values for λrr =

λref, we only reweight snapshots generated with the same value
of λCH2

. Also, because the optimal ϵCH2
and σCH2

parameters for

λCH2
= 12 already have min(Ksnaps

eff ) ≫ 50, we only consider

λCH2
≥ 14.

Figure 7. First iteration average number of effective snapshots in the liquid phase (K̅snaps
eff,liq) with respect to ϵCH2

and σCH2
for cyclohexane. K̅snaps

eff,liq ≫
50 over a wide range of parameters when λrr = λref = 12 (top-left panel), while K̅snaps

eff,liq is typically less than 50 for λrr ≠ λref (other panels). Top-left,
top-right, bottom-left, and bottom-right panels correspond to λCH2

= 12, λCH2
= 14, λCH2

= 16, λCH2
= 18, respectively. Symbols are the same as in

Figure 6.
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Figure 8 presents the results from this second iteration of the
two-dimensional optimization for each λCH2

. Also depicted in

the λCH2
= 16 panel are the TAMie cyclohexane parameters.56

Note that the first iteration optimal parameter sets (white Xs)
are similar to the second iteration (white +s and star), which
provides further evidence that the first iteration results for λrr ≠
λref are quite reliable. We verify that the optimization has
converged, that is, min(Ksnaps

eff ) ≫ 50 for θopt
⟨2⟩ (see Figure S6 in

Supporting Information).
Table 2 summarizes the parameter sets obtained at each

stage of the optimization. Table 2 shows that, similar to other

alkanes in the MiPPE force field, λCH2
= 16 is once again found

to be the optimal repulsive exponent (with the lowest S) when
only considering even integer values. This optimal λCH2

= 16
value also agrees with the TAMie force field.56 The overall
optimal parameter set (θ⟨2⟩, λCH2

= 16) is included in Table 1

as the MiPPE cyclohexane parameters. ϵCH2
and σCH2

are
reported with three and four digits, respectively, consistent
with other MiPPE parameters and to provide a qualitative
measure of uncertainty. Note the close agreement between the
MiPPE and TAMie parameters (ϵCH2

/kB = 69.568 K, σCH2
=

0.38967 nm, and λCH2
= 16), which were optimized with a

slightly different objective function and experimental data set.
It is important to verify that the final parameter set does

indeed provide accurate predictions of vapor−liquid coex-
istence properties. For this reason, after completing the
optimization, we perform direct GCMC simulations with the
overall optimal parameter set (MiPPE). Twenty independent
replicate simulations are performed at each state point (μ, V,
T) to reduce and rigorously quantify the statistical
uncertainties for the MiPPE cyclohexane results.
Furthermore, because we have performed the MiPPE

parameterization with a relatively small box size (27 nm3), it
is important to test for the existence of finite-size effects. By
performing additional simulations with a larger box size
(42.875 nm3), we conclude that finite-size effects are only
significant (larger than the combined uncertainties) for ρvap

sat

and ΔHv near the critical point. Specifically, we estimate that

Figure 8. Second iteration scoring function values with respect to ϵCH2
and σCH2

for cyclohexane. Pseudo-optimal parameter sets from the first
iteration serve as reliable reference parameter sets for refining the optimization. Top-left, top-right, bottom-left, and bottom-right panels correspond
λCH2

= 14, λCH2
= 16, λCH2

= 18, and λCH2
= 20, respectively. White star represents the overall optimal parameter set (MiPPE: θ⟨2⟩, λCH2

= 16), white

+s correspond to optimal parameter sets (θ⟨2⟩) for λCH2
≠ 16, and the white diamond is the TAMie parameter set (for λCH2

= 16). White Xs depict

the single reference force field for each λCH2
(i.e., λrr = λref) and are the same as in Figures 6 and 7.

Table 2. Optimal Mie λ-6 Cyclohexane Parameters for λCH2

= 12, 14, 16, 18, and 20a

λCH2

ϵCH2

⟨0⟩ /kB
(K)

σCH2

⟨0⟩

(nm)
ϵCH2

⟨1⟩ /kB
(K)

σCH2

⟨1⟩

(nm)
ϵCH2

⟨2⟩ /kB
(K)

σCH2

⟨2⟩

(nm) Sopt

12 52.5 0.391 53.0 0.394 1.79
14 61.5 0.393 61.5 0.393 1.03
16 70.0 0.389 69.7 0.3902 0.463
18 77.0 0.389 76.5 0.390 0.791
20 84.0 0.388 82.5 0.389 1.07

aSuperscript denotes the iteration stage of the optimization. Stage 0
corresponds to the TraPPE force field and stage 2 for λCH2

= 16 is the
MiPPE force field. The final column reports the optimal scoring
function (Sopt) for each λCH2

(computed with θ⟨1⟩ for λCH2
= 12 and

with θ⟨2⟩ for λCH2
= 14, 16, 18, and 20).
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finite-size effects for both ρvap
sat and ΔHv are between 1% and

2% for Tsat > 480 K (see section S6.5 in Supporting
Information).
Figure 9 is provided to quantify the improved accuracy

achieved for the two iterations by comparing the percent
deviations for between pseudo-experimental (REFPROP)
values and the zeroth iteration (TraPPE: θ⟨0⟩, λCH2

= 12),

first iteration (θ⟨1⟩ for λCH2
= 14, 16, and 18), and final iteration

(MiPPE: θ⟨2⟩, λCH2
= 16) parameter sets. Figure 9 also includes

percent deviations for several of the most reliable force fields
from the literature.22,24,27,56−59 Additional phase equilibria and
deviation plots are provided in section S6 of Supporting
Information, including a detailed comparison between the
MiPPE and TAMie force fields.
Even the first iteration parameters demonstrate considerable

improvement compared to the zeroth iteration (TraPPE) for
predicting ρvap

sat and Pvap
sat without significantly diminishing the

accuracy for ρliq
sat and ΔHv. In fact, the first iteration λCH2

= 16
parameter set achieves similar deviations as the TAMie force
field. The second (final) iteration provides further improve-
ment in each property compared to the first iteration. In

comparison with literature force fields, MiPPE (and TAMie)
are arguably the most accurate at predicting ρvap

sat , Pvap
sat , and

ΔHv. With the exception of the Exponential-6,21 MiPPE
provides similar accuracy for ρliq

sat as the other literature force
fields.
In this optimization example (an exhaustive 2-dimensional

grid search over even integer values of λCH2
), each proposed

parameter set could be simulated directly in parallel. Therefore,
the real time to solution for GCMC-MBAR would be similar to
that of the GCMC-HR approach utilized by Mick et al.12 and
Soroush Barhaghi et al.,13 although GCMC-MBAR would still
reduce the total CPU time. In general, however, higher
dimensional optimization algorithms are performed in
sequence, where each iteration proposes new parameter
set(s). In this scenario, GCMC-MBAR (with basis functions)
is orders of magnitude faster than the literature GCMC-HR
approach, which would require performing new GCMC
simulations for each iteration.
While a higher dimensional parameterization would

necessitate a more sophisticated optimization scheme (step
3b), the GCMC-MBAR analysis (step 3a) would be
unchanged. If the basis functions were implemented with

Figure 9. Percent deviations relative to REFPROP cyclohexane values55 for MiPPE (θ⟨2⟩, λCH2
= 16), zeroth iteration (TraPPE: θ⟨0⟩), first iterations

(θ⟨1⟩, λCH2
= 14, 16, 18), and several literature force fields.22,24,27,56−59 The first iteration parameter sets provide significant improvement compared

to the zeroth iteration, while the second iteration (MiPPE) performs comparably to the most accurate literature force fields. Top-left, top-right,
bottom-left, and bottom-right panels correspond to saturated liquid density, saturated vapor density, saturated vapor pressure, and enthalpy of
vaporization, respectively. MiPPE uncertainties (95% confidence intervals) are obtained from 20 independent replicates. For clarity, the
uncertainties for θ⟨0⟩, θ⟨1⟩, and Errington et al.22 are omitted.
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GCMC-MBAR (step 2), however, recomputing the energy for
θrr would require an attractive and repulsive basis function for
all ii (same) and ij (cross) pair interaction sets. For example,
propane would require six basis functions (an attractive and
repulsive basis function for the CH3−CH3, CH3−CH2, and
CH2−CH2 interactions). Although the memory requirement
scales linearly as the number of basis functions, the storage
load should still be manageable and significantly less compared
to storing configurations. Furthermore, although generating
these additional basis functions also requires a larger number
of “rerun” calculations (recall section 2.4), the increase in
computational cost is negligible compared to performing direct
GCMC simulations with each proposed parameter set.

4. DISCUSSION

The results presented in this study were obtained by
performing simulations with only a single reference force
field. As shown in previous studies, a logical approach for
improving the performance of MBAR is to include additional
reference force fields.16,17 For example, in section 3.4, we did
not utilize the snapshots from λCH2

= 14 when computing

properties for λCH2
= 16 and vice versa. Using multiple

reference force fields would certainly increase the number of
effective snapshots. However, the top-left panel of Figure 7
demonstrates that a single reference provides sufficient overlap
over a wide region of ϵ and σ parameter sets when λrr = λref.
For this reason, we deemed it unnecessary to combine the
snapshots from θ⟨0⟩ and the four θ⟨1⟩ reference simulations.
As molecular insertion moves are frequently rejected in high

density systems, GCMC simulations are typically not reliable
at low saturation temperatures (Tsat < 0.65Tc). Because ITIC
does not suffer from this low-temperature limitation, we
recommend combining the MBAR-ITIC and GCMC-MBAR
methods when predicting vapor−liquid coexistence properties
from near-triple-point to near-critical-point conditions.
Although GCMC-HR is a standard approach for computing

vapor−liquid coexistence, HR has also been applied to GEMC
simulations (GEMC-HR).60 Therefore, while the present study
presents how MBAR can be applied to GCMC simulations, an
analogous GEMC-MBAR approach is worth investigating in
future work.
The main objective of GCMC-MBAR is similar to that of

Hamiltonian scaling (HS), namely, to efficiently estimate phase
equilibria properties for many force field parameter sets (θ) by
maximizing the information content extracted from each
simulation. Despite some apparent similarities between HS-
GCMC and GCMC-MBAR, the means by which these two
methods accomplish this objective are quite distinct. Both
methods take advantage of the concept of a mixture distribution
that corresponds to multiple θ.61 The difference is that
GCMC-MBAR generates this mixture distribution by combin-
ing configurations (or basis functions) sampled from
independent simulations, while HS-GCMC samples directly
from this mixture distribution in a single simulation and stores
a combined (and scaled) histogram for each θref. Thus, HS-
GCMC improves efficiency by modifying the sampling,
whereas GCMC-MBAR simply modifies the post-simulation
data analysis. Because HS-GCMC uses histograms in the
analysis, in contrast with GCMC-MBAR, only the parameters
that are simulated in the original mixture distribution can be
combined. A possible synergy, beyond the scope of this study,

could exist between the two methods by employing HS for
sampling and MBAR for data analysis.
The present study has focused on the van der Waals Mie λ-6

non-bonded parameters (ϵ, σ, and λ). However, GCMC-
MBAR can also be applied to parameterize electrostatic non-
bonded parameters, e.g., point charges (q).46 While the
number of effective snapshots should still provide a reasonable
estimate of reliability for qrr ≠ qref, we recommend that future
work test the range of qrr over which GCMC-MBAR is reliable.

5. CONCLUSIONS
This study demonstrates how the Multistate Bennett Accept-
ance Ratio (MBAR) can replace the traditional histogram
reweighting approach for estimating vapor−liquid coexistence
properties from grand canonical Monte Carlo simulations.
MBAR and HR are mathematically equivalent in the limit of
infinitesimal bin widths when the coexistence properties are
computed for the reference force field. However, the primary
benefit of MBAR is the ability to estimate properties for force
fields that are not simulated directly, which greatly accelerates
non-bonded parameterization.
We perform a one-dimensional ϵ-scaling post-simulation

optimization of several branched alkanes and alkynes. We
provide empirical evidence that GCMC-MBAR is accurate
when the number of effective snapshots is greater than 50,
which is typically the case in the vapor phase and in the liquid
phase when λrr = λref. We then show how GCMC-MBAR can
rapidly parameterize a family of Mie λ-6 potentials starting
with a pretuned Lennard-Jones 12−6 potential (TraPPE).
Specifically, with only two stages of direct GCMC simulation
we consider hundreds of ϵCH2

, σCH2
, and λCH2

parameter sets.
The optimized Mie 16−6 parameters for cyclohexane form the
most recent contribution to the Mie Potentials for Phase
Equilibria (MiPPE) force field.
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■ NOTE ADDED AFTER ASAP PUBLICATION
In the version of this paper that was published ASAP April 15,
2019, Figure 6 was incorrect. The corrected version was
reposted June 10, 2019. Later, an error was corrected in the
paragraph following eq 20, and the corrected version was
reposted June 12, 2019.
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