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ABSTRACT
In order to understand the role of fluorination on the interactions and partitioning of alcohols in
aqueous and organic environments, isobaric-isothermal ensembleMonte Carlo simulations are used
to determine environmental predictors, such as free energies of hydration and solvation in 1-octanol
and n-hexadecane. Calculations are performed with the united-atom Transferable Potentials for
Phase Equilibria (TraPPE) force field and compared against available experimental data. TraPPE was
found to provide reliable qualitative predictions of trends with respect to the effect of fluorination
on partitioning. Investigation of the local solvation environment around the hydroxyl group reveals
that fluorination of carbons closest to the hydroxyl group has the greatest effect on solvation free
energies for alcohols in water, 1-octanol and n-hexadecane.
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1. Introduction

Perfluoroalkyl substances (PFAS) are a broad class of
compounds where fluorine has been substituted for
hydrogen on the alkyl chains. The most widely used and
industrially relevant PFAS are surfactants, where fluori-
nation of the alkyl tails renders them both hydrophobic
and oleophobic, giving rise to unusual properties, such as
exceptional chemical and thermal stability and very low
interfacial tension at the air–water interface [1–3]. Owing
to their unique properties, PFAS are used in a broad
array of consumer applications, including coatings for
non-stick cookware [4], grease-resistant paper [5], and
stain resistant fabrics. Industrial applications include fire-
fighting foams [6] and mist-suppressants in hard chrome
plating [7].
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The strength of the C-F bond, which contributes to
the stability of fluorinated surfactants, also makes them
extremely resistant to thermal, chemical, or photo degra-
dation; experiments have shown that perfluorinated sur-
factants are highly resistant to biological degradation [8].
Numerous studies have shown the widespread distribu-
tion of PFAS in the environment [9,10]. As a result, PFAS
are now considered to be a significant environmental
threat [11].

Concerns about the environmental impact of PFAS
led to the phase-out of the two most common surfac-
tants, perfluorooctanoic acid (PFOA) and perfluorooc-
tanesulfonate (PFOS); however, the development of new
fluorinated surfactants, some with reduced potential for
bioaccumulation, is on-going [12,13]. Analysis of fire
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sites where aqueous film forming foams (AFFF) had
been used in Ontario, Canada, identified 103 different
PFAS [14]. Fast atom bombardment and high resolution
quadrupole-time-of-flightmass spectrometry performed
on seven AFFF formulations used by the United States
Military identified 10 unique classes of compounds, with
perfluoroalkyl chain lengths ranging from 4 to 12 carbon
atoms [15]. The physicochemical properties, environ-
mental fate, and toxicity of these compounds are largely
unknown [15].

Environmental fate models rely on numerous physi-
cal property data, two of the most important of which
are the Henry’s law constant and the octanol–water par-
tition coefficient, logKow [16]. Given the breadth of
PFAS chemistry and the lack of available experimental
data, predictive methods are needed to fill these criti-
cal knowledge gaps. Prior work on the partitioning of
fluorotelomer alcohols showed that common tools, such
as EPISuite [17], CLOGP [18], SPARC [19] and COS-
MOTherm [20], produce a wide variety of results, with
some predictions 2–5 orders of magnitude different than
experiment [21].

Alternatively, atomistic computer simulations, com-
bined with free energy methods such as thermodynamic
integration [22], free energy perturbation [23,24], or
adaptive biasing force [25,26], have been used with great
success in the prediction of free energies of hydration
and solvation in organic solvents for a wide variety of
compounds [27–30]. While most work has focused on
applications to drug [31–33] discovery, other calculations
have focused on predicting the environmental fate of
potentially toxic compounds, such as energetic materials
[34,35], ionic liquids [36], and fluorinated alcohols [37].
Additionally, computer simulations provide information
on atomic-level structure, supporting the development of
structure-property relationships.

While molecular dynamics simulations are widely
used for the calculation of free energies of solvation,
systems with large energy barriers to configurational
and/or conformational change may exhibit biased sam-
pling, leading to incorrect free energies if care is not taken
[38]. On the other hand, Monte Carlo simulations allow
the system to hop between states and in some cases, may
offer conformational sampling advantages over molecu-
lar dynamics. Free energies can be determined directly
from Gibbs ensemble Monte Carlo simulations from the
ratio of number densities of the solute in each phase
[39–41]:

�Gtransfer
i = −RT ln

⎛
⎝
〈
ρ
liquid
i

〉
〈
ρ
gas
i
〉
⎞
⎠

eq

(1)

where R and T are the molar gas constant and absolute
temperature in K, respectively, and

〈
ρ
liquid
i

〉
and

〈
ρ
gas
i
〉

are the ensemble averaged number density (molecule/
Å3) for solute i in liquid and gas phase at equilibrium,
respectively.

Gibbs ensemble Monte Carlo provides a straightfor-
ward way of determining free energies of transfer as
long as a sufficient number of successful exchanges of
the solute between phases occurs, which usually requires
the use of advanced configurational-bias sampling meth-
ods [40–43]. For dense liquids with strong electrostatic
interactions, obtaining adequately converged results for
certain solutes may be challenging, even with state-of-
the-art sampling algorithms for the molecule exchange
move. The fluoro-alcohol systems of interest in this
work present a perfect storm of sampling problems: the
hydroxyl group has strong electrostatic interactions with
the solvent (water or octanol) and it is difficult to find
a favourably sized cavity to insert the bulky fluorinated
alkyl tail. With enough intermediate states, nearly any
molecule exchange between phases is possible [44], but if
free energies of transfer are the quantity of interest, it may
be more effective to perform standard thermodynamic
integration or free energy perturbation. Therefore, this
work describes the implementation of thermodynamic
integration (TI) and free energy perturbation (FEP)
methods into theMonte Carlo simulation engine GOMC
[45], and the application of TI and FEP to determine
the air–water, air-oil, air-octanol, and octanol–water par-
tition coefficients for eight carbon alcohols with vary-
ing degrees of fluorination. Partitioning of fluorotelomer
alcohols is of interest because they can degrade to form
perfluorooctanoic acid (PFOA) [46]. The local solvation
structure around C8 alcohols is determined and used to
explain the impact of fluorination of the alkyl tail on
partitioning.

2. Force field

Calculations were performed using the SPC water model
[47], and the Transferable Potentials for Phase Equilib-
ria (TraPPE) force field [48–50] to represent a variety
of fluorinated analogues of 1-octanol and n-hexadecane,
which are listed in Table 1. All non-bonded force field
parameters are listed in Table 2.

In TraPPE, a united-atom representation is used for
all CFx and CHx groups; i.e. hydrogen or fluorine atoms
bonded to carbon atoms are not represented explic-
itly and are, instead, combined with carbon atoms to
form a single interaction site or ‘pseudo-atom’. Interac-
tions between pseudo-atoms are described by pairwise-
additive 12–6 Lennard-Jones potentials, combined with
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Table 1. Fluorinated 1-octanol analogues studied in this work.

Molecular structure Molecular formula Molecular name

CH3(CH2)7OH H8

CH3(CH2)6CF2OH F1H7

CH3(CH2)5(CF2)2OH F2H6

CF3(CF2)5(CH2)2OH H2F6

CF3(CF2)6CH2OH H1F7

CF3(CF2)7OH F8

Table 2. Non-bonded parameters for alcohols, fluoroalcohols
and fluorotelomer alcohols.

Group ε/kB (K) σ (Å) qi

TraPPE-UA
CH3 98.0 3.75 0.0/0.265*
CH2 46.0 3.95 0.0/0.265*
CF3 87.0 4.36 0.0/0.265*
CF2 27.5 4.73 0.0/0.265*
O (alcohol) 93.0 3.02 −0.700
H (alcohol) 0.0 0.0 0.435

SPC
O 78.21 3.167 −0.820
H 0.0 0.0 0.410

*Partial charges for the Cα bonded to oxygen.

partial charges to represent Coulombic interactions:

Uinter(rij) = ULJ(rij) + UCoul(rij) (2)

ULJ(rij) = 4εij

[(
σij

rij

)12
−
(

σij

rij

)6
]

(3)

UCoul(rij) = qiqj
4πεorij

(4)

where rij, εij, σij, qi, and qj are the separation, Lennard-
Jones well depth, pseudo-atom diameter, and partial
charges, respectively, for the pair of interaction sites
i and j and εo is the permittivity of vacuum. Non-
bonded parameters for alkyl [48], perfluoro [49], and
hydroxyl groups [50] were taken from the original
TraPPE papers and are listed in Table 2. Parameters for
unlike interactions were determined using the Lorentz-
Berthelot combining rules [51,52]

σij = (σii + σjj)/2 (5)

εij = √
εiiεjj (6)

United-atoms were connected with rigid bonds, for
which the parameters are listed in Table S1 of the sup-
porting information. Bond bending was governed by a
harmonic potential

Ubend = kθ (θ − θ0)
2 (7)

where θ is themeasured bond angle, θ0 is the equilibrium
bond angle, and kθ is the force constant. Bond bending
constants were taken fromTraPPE [48–50], and are listed
in Table S1 in supporting information. Rotations around
dihedral angles were described with a cosine series

Utorsion =
m∑
i=1

ci(1 + cos(niφ − δi)) (8)

where φ is the dihedral angle, ci are dihedral force con-
stants, n is the multiplicity, and δi is the phase shift.
Existing torsional potentials for the C–C-C–C backbone
for n-alkanes and perfluoroalkanes in TraPPE were refit
to use the form of Equation (8) or taken from prior work
[37]. Constants for all dihedral potentials are listed in
Table S2 in supplementary information.

New Fourier coefficients for torsions in CH3(CH2)5
(CF2)2OH (F2H6) and CH3(CH2)6CF2OH (F1H7) were
optimised to reproduce rotational barriers determined
from relaxed potential energy scans generated from
MP2/6-31+ g(d,p) ab initio calculations. All ab initio
calculations were performed in Gaussian 09 [53].

3. Calculation of solvation free energies

This section describes key details of the implementation
of free energy perturbation and thermodynamic integra-
tion in GOMC. Free energy perturbation is discussed,
first, followed by thermodynamic integration. Computa-
tional details for the calculations are given in Simulation
Methodology.

In free energy perturbation (FEP) [23,24], the free
energy difference between two states A (e.g. non-
interacting solute) and state B (e.g. fully interacting
solute) is given by

�G(A → B) = − 1
β
ln 〈exp(−β�UA,B)〉A (9)

where �UA,B = UB − UA is the energy difference
between the system in state A and B, and 〈exp
(−β�UA,B)〉A is the ensemble average for simulation in
state A. For most systems, there is limited phase-space
overlap between state A and B, leading to poor conver-
gence of the free energy. By constructing an artificial
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pathway through multistage sampling [54], satisfactory
phase-space overlap can be achieved, greatly improving
the accuracy and precision of the free energy calculation
[55,56]. Using themultistage sampling approach, the free
energy difference between two statesA and B, withN − 2
intermediate states given by [57]

�G(A → B) = − 1
β

N−1∑
i=0

ln 〈exp(−β�Ui,i+1)〉i (10)

where �Ui,i+1 = Ui+1 − Ui is the energy difference
of the system between states i and i+ 1, and 〈exp
(−β�Ui,i+1)〉i is the ensemble average for simulation
performed in intermediate state i. A coupling parameter
0.0 ≤ λ ≤ 1.0 is used to smoothly transform the simu-
lated system between states A (λ = 0.0) and B (λ = 1.0),
where

Ui = λiUB + (1 − λi)UA (11)

Naive linear scaling of the intermolecular interactions
with respect to λ produces a well-known numerical
instability (end-point catastrophe) in the limit of λ →
0 and λ → 1 for Lennard-Jones potentials [58,59], which
can be avoided by shifting and scaling the Lennard-Jones
potential via the soft-core scheme [60,61]. Electrostatic
interactions do not have the same numerical instability if
a two-step transformation is applied [62], and it has been
shown that it is computationally efficient to scale them
linearly [63].

Therefore, in this work, soft-core scaling is used for
the Lennard-Jones interactions, while linear scaling is
used for the Coulombic interactions. Separate λLJ and
λCoul were used to independently control the scaling of
Lennard-Jones and Coulombic interactions, respectively.
The energy of the solute interacting with the solvent is
given by

Ui(rij) = λLJULJ(rsc−ij) + λCoulUCoul(rij) (12)

where

rsc−ij = (α(1 − λLJ)
pσij

6 + rij6)1/6 (13)

rsc−ij, α, and p are the scaled distance, softness parameter,
and soft-core power, respectively. To improve numerical
convergence of the calculation, a minimum interaction
diameter σmin = 3.0Å was defined for any atom with a
diameter less than σmin, e.g. hydrogen atoms attached to
oxygen in water or alcohols [62].

The effect of long-range corrections on predicted
free energies were determined for Lennard-Jones and

Coulombic interactions via a linear coupling with λ.

ULRC(LJ) = λLJ�ULRC(LJ) (14)

ULRC−Coul = λCoul[�Uself + �Ucorrection + �Ureciprocal]
(15)

where�ULRC(LJ),�Ureciprocal,�Uself ,�Ucorrection are the
change in the long-range correction energy due to adding
a fully interacting solute to the solvent for both the
Lennard-Jones and Coulombic interactions.

In thermodynamic integration, the free energy change
is calculated from

�G(A → B) =
∫ λ=1

λ=0

〈
dU
dλ

〉
λ

dλ (16)

where dU/dλ is the derivative of energy difference with
respect to λ, and 〈dU/dλ〉i is the ensemble average for
a simulation run at intermediate state λ. To calculate
the free energy using thermodynamic integration, the
derivative of the intermolecular energy with respect to
λ must be evaluated for both the Lennard-Jones and
Coulombic interactions of the solute with the solvent.

dULJ(rij)
dλLJ

= ULJ(rsc−ij) + λLJpα
6

(1 − λLJ)
p−1

×
(

σij
6

rij5

)
FLJ(rsc−ij) (17)

dUCoul(rij)
dλCoul

= UCoul(rij) (18)

FLJ(rij) = −dULJ(rij)
drij

= 4εij
rij

[
12
(

σij

rij

)12
− 6

(
σij

rij

)6
]

(19)

The derivative of the long-range correction energies
with respect to λ is given by

dULRC(LJ)

dλLJ
= �ULRC(LJ) (20)

dULRC−Coul

dλCoul
= �Uself + �Ucorrection + �Ureciprocal

(21)

4. Simulationmethodology

4.1. Free energy calculations

The free energy calculations described in Section 3
were implemented in the development version of the
open-source Monte Carlo simulation engine GOMC
[45], which is available to the public via GitHub [64].
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To calculate the free energy of solvation/hydration, all
intermediate λ states were equilibrated independently
in the canonical ensemble (NVT) for 5× 106 Monte
Carlo steps (MCS) at 298K, followed by a 3× 107 MCS
isobaric-isothermal (NPT) ensemble simulation at 1 bar
and 298K. Production data were taken from a subse-
quent 5× 107 MCS NPT simulation, which used the
final configuration of the prior NPT simulation as the
initial configuration. For production runs, all λ states
were simulated independently in parallel. During the
production run, the change in energy (�Ui,j) between
the current lambda state and all other lambda states,
and the derivative of potential with respect to lambda
(dUCoul/dλCoul, dULJ/dλLJ), were evaluated and stored
for post-simulation analysis every 5× 103 MCS. A sam-
ple of GOMC free energy output is provided in Table S3.
The implementation of free energy methods into GOMC
was validated through calculations of free energies of
solvation for various n-alkanes in 1-octanol. A compari-
son with prior calculations performed with NPT-Gibbs
ensemble Monte Carlo simulations [41] is provided in
Table S4, and shows that all methods produce free ener-
gies that are within 0.1 kcal/mol of each other.

To calculate the free energy of solvation in water and
1-octanol, 23 intermediate lambda states, as shown in
Figure 1, were used

λcoul,LJ ∈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

(0.0, 0.0), (0.0, 0.05), (0.0, 0.1), (0.0, 0.15),
(0.0, 0.2), (0.0, 0.25), (0.0, 0.3), (0.0, 0.35),
(0.0, 0.4), (0.0, 0.45), (0.0, 0.5), (0.0, 0.6),
(0.0, 0.7), (0.0, 0.8), (0.0, 0.9), (0.0, 1.0),
(0.2, 1.0), (0.4, 1.0), (0.6, 1.0), (0.7, 1.0),

(0.8, 1.0), (0.9, 1.0), (1.0, 1.0)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

while 16 intermediate states were used to calculate the
free energies of solvation in n-hexadecane.

λcoul,LJ ∈

⎧⎪⎪⎨
⎪⎪⎩

(0.0, 0.0), (0.0, 0.05), (0.0, 0.1), (0.0, 0.15),
(0.0, 0.2), (0.0, 0.25), (0.0, 0.3), (0.0, 0.35),
(0.0, 0.4), (0.0, 0.45), (0.0, 0.5), (0.0, 0.6),
(0.0, 0.7), (0.0, 0.8), (0.0, 0.9), (0.0, 1.0)

⎫⎪⎪⎬
⎪⎪⎭

While it is possible to alter the Lennard-Jones and
Coulomb interactions simultaneously, recent work sug-
gests it is more efficient to first turn on the full
Lennard-Jones interactions before scaling the Coulom-
bic interactions [63,65]. For liquid phase systems con-
taining 1-octanol or water, the λ vectors were defined
to turn on the full Lennard-Jones interaction, first,
before introducing Coulombic interactions between the
solute and the solvent, as shown in Figure 1, to avoid
the direct interaction of atoms with ‘naked’ charges

Figure 1. The transformation pathway starting from non-
interacting solute (0.0, 0.0) to fully interacting solute (1.0,
1.0) in λ vector space, which is shown as an orange square
on the Cartesian plane formed by the axes λCoulomb and λLJ ,
which control the solute Coulombic and Lennard-Jones inter-
actions, respectively. Intermediate states are denoted by the
arrowheads.

[62,66]. The soft-core parameters used for Lennard-
Jones interactions were, α = 0.5, p = 2, and σmin = 3.0
[62,67].

A variety of methods were used to analyse the result-
ing data, including thermodynamic integration (TI) [68],
Bennett acceptance ratio (BAR) [69], andmultistate Ben-
nett acceptance ratio (MBAR) [70], as implemented in
the software alchemlyb [71] and alchemical-analysis [72].
A parser for GOMC output was implemented for both
alchemlyb and the alchemical-analysis. Since alchemical-
analysis is no longer supported by its authors, the GOMC
parser for it was stored in a separate GitHub repository
[73].

To determine the free energy of solvation/hydration
accurately, the data points used in the calculation must
be sampled at equilibrium conditions and be uncorre-
lated. Several techniques have been developed [74,75]
to detect uncorrelated samples; both alchemlyb [71]
and alchemical-analysis [72] use an autocorrelation time
analysis, as implemented in pymbar [70]. In autocorre-
lation time analysis, the autocorrelation function CA(i)
is determined for a data point i in a given data series
(in this work dU/dλ), and the autocorrelation time (τ )
is calculated as the integral of CA(i) [76]. Once the
autocorrelation time (τ ) is obtained, the gth element
of the data series is treated as an uncorrelated sample,
where g = 1 + 2τ . In pymbar, a data point is defined
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as statistically independent if CA(i) = 0; however, the
autocorrelation function becomes noisy as CA(i) → 0,
making it difficult to rigorously determine uncorrelated
samples. In practice, pymbar provides a conservative esti-
mate of uncorrelated data, and tends to under-predict the
number of uncorrelated samples.

In addition to using only uncorrelated samples, care
must be taken to ensure that data used in the free energy
calculation are collected from simulations that have
reached equilibrium. Prior molecular dynamics simula-
tions have shown, for example, challenges in converging
liquid phase densities and free energies of solvation in
1-octanol [77]. In this work, NPT simulations of 3× 107
MCS were used to equilibrate the system at each λi prior
to the production run, ensuring stability of the density
during free energy calculations, as shown in Figure S2
for perfluorooctanol in 1-octanol. Once free energy data
were collected, convergence of the data were assessed
by calculating free energies of hydration/solvation in
both the forward and reverse directions with alchemical-
analysis [72]. In the forward direction, the free energy
was calculated using data in the order in which they were
collected, while in the ‘reverse’ direction, the free energy
was calculated from the data ordered in the reverse of
which it was collected. As shown in Figure 2 for F2H6, the
forward and reverse calculations match within the statis-
tical uncertainty of the data, suggesting convergence of
the free energy calculations [72,78]. Free energies were
calculated from simulation data using a variety of ther-
modynamic integration methods (trapezoidal rule (TI)
and cubic spline (TI-CUBIC)), and free energy pertur-
bation techniques (Bennett acceptance ratio (BAR) and
multi-state Bennett acceptance ratio (MBAR)). MBAR
results are discussed in the body of the paper, while
results for TI and BAR may be found in Table S5 of the
supporting information. For simulations that have high
quality sampling, and sufficient overlap between energy
difference distributions, it is expected that all methods
will produce similar results. As shown in Figure 3, good
agreement for all intermediate states was achieved with
all methods.

Additional insight is provided by the overlap matrix,
as shown in Figure 4. The overlap matrix quantifies the
overlap of the �Ui,j distributions between neighbouring
intermediate states (i and j) and gives the probability of
observing a sample from state i in state j, which can be
used to detect intermediate states with insufficient over-
lap. In this case, the data shown in Figure 4 conform to the
recommendations of Klimovich et al. [72]. Neighbour-
ing states along the main diagonal have overlap values
significantly above the recommended value of 0.03, indi-
cating sufficient overlap between states has been achieved
to obtain reliable free energy predictions.

Figure 2. Solvation free energy for F2H6 in n-hexadecane plot-
ted as a function of simulation steps. The agreement between the
forward and reverse calculation is within the standard error bar
(purple bar), indicating convergence of the free energy simula-
tions.

Figure 3. Intermediate free energy differences for solvation of
F2H6 in n-hexadecane, calculated by a variety of thermodynamic
integration and free energy perturbation techniques.

4.2. Monte Carlo simulations

NVT ensemble simulations were performed with a move
ratio of 50% displacements, 20% rotations, 20% coupled-
decoupled configurational-bias (CD-CBMC) regrowth
[79], and 10% crankshaft [80,81]. Parameters for the
configurational-bias regrowth move were 100 angle tri-
als, 50 dihedral trials, and 10 trial locations for grown
pseudo-atoms. NPT ensemble simulations were per-
formed with similar move ratios, except for the addition
of 1% volume changes, while the percentage of displace-
ment moves was reduced to 49%. Non-bonded potentials
were truncated at 14 Å [48–50] and analytical tail cor-
rections were applied to the energy [82]. For simulations
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Figure 4. Overlap matrix for the solvation of F2H6 in
n-hexadecane.

with electrostatic interactions, the real space part of elec-
trostatic potential was truncated at 14 Å and an Ewald
convergence tolerance of 1× 10−5 was used [83].

During grand canonical and Gibbs ensemble Monte
Carlo simulations, molecule swap moves are frequently
used to sample phase-space. Intra-box swap moves may
also be used to enhance the sampling of phase-space
in NVT and NPT ensemble simulations. For polar
molecules, where an atom has a naked charge, such as
hydrogen in many alcohol and water models, during a
swap move it is possible to a place opposing charges
in close proximity. This produces very large negative
energies that overwhelm the repulsive component of
the Lennard-Jones potential, leading to the sampling of
unphysical states. A common workaround is to intro-
duce a hard inner cut-off and reject any trial moves that
bring atom centres closer than 1 Å [84]. Using a hard
inner cut-off in free energy simulations, however, pro-
duces incorrect sampling of the solvent structure in the
limit ofλ → 0, leading to inaccurate free energies. There-
fore, intra-box swap moves were not used during free
energy simulations.

Liquid phase systems contained one solute in a solvent
box of 200 1-octanol, 150 n-hexadecane, or 1000 water
molecules. Initial cubic box sizeswere selected to produce
densities that were close to equilibrium,with a side length
of 37.6, 41.6, and 31.3 Å for 1-octanol, n-hexadecane,
and water, respectively. Initial configurations were gener-
ated with Packmol [85], and Psfgen was used to generate
coordinate (*.pdb) and connectivity (*.psf) files [86].

Radial distribution functions for solute-solvent sys-
tems were determined by performing a 5× 106 MCS
equilibration in the canonical ensemble at 298K, fol-
lowed by 7× 107 MCSNPT ensemble simulation at 1 bar
and 298K, where production data were taken from the
last 5× 107 MCS of the simulation. Atomic coordinates
for all atoms in the system were stored every 2.5× 103

MCS. Radial distribution functions were calculated from
saved configurations with the gofr tool in VMD [87].

5. Results and discussion

5.1. Free energies of hydration

Free energies of hydration predicted by simulation for
each solute in SPCwater are listed in Table 3. From trends
in the data, where �Gwater(H8) < �Gwater(H2F6) <

�Gwater(H1F7) < �Gwater(F8), it was hypothesised that
fluorination near the head group has the greatest impact
on the solubility of fluorinated alcohols in water. This
was confirmed through free energy calculations for two
additional molecules: F1H7 and F2H6. For each of these
molecules, Cα (F1H7) or Cα and Cβ (F2H6) were flu-
orinated, while the remaining carbon atoms were CH2
or CH3 groups. Fluorinating Cα produces a 1.5 kcal/mol
increase (less negative) in the free energy of hydration
compared to 1-octanol, while fluorination of Cβ and
Cα produces only an additional 0.1 kcal/mol change in
�Gwater . This free energy change, due to fluorination of
only Cα , accounts for almost half of the difference in
�Gwater between 1-octanol and perfluorooctanol.

Further insight into the role fluorination near the
hydroxyl group plays in the altering the free energy
of hydration, was obtained by calculating the separate
Lennard-Jones and Coulombic contributions to the free
energy for each solute, which are listed in Table 4.
For solutes where Cα is hydrogenated, the Coulom-
bic contribution to the free energy is between −6.5
and −6.1 kcal/mol, while for solutes where Cα is fluo-
rinated, the Coulombic contribution is reduced to −5.6
to −5.4 kcal/mol. This provides evidence that fluorina-
tion of Cα reduces hydrogen bonding of the solute with
water compared to 1-octanol. H1F7 and F1H7 have sim-
ilar �Gwater of −1.6 and −1.4 kcal/mol, respectively,
which is a result of competing changes in the Lennard-
Jones and Coulombic interactions. Compared to 1-
octanol, fluorinating the last seven carbon atoms (H1F7),
increases the Lennard-Jones contribution to �Gwater
by 0.9 kcal/mol, while the Coulombic interaction is
decreased by 0.8 kcal/mol. Fluorinating Cα only (F1H7)
results in a 1.1 kcal/mol decrease in the Coulombic con-
tribution, with a 0.4 kcal/mol increase in the Lennard-
Jones contribution to the free energy of hydration.
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Table 3. Calculated free energies of hydration and solvation for alcohols predicted with the MBAR method, with a comparison to
experimental data. Numbers in parenthesis correspond to the uncertainty in the last digit.

�GC16(kcal/mol) �G1−octanol(kcal/mol) �Gwater (kcal/mol) log Kow

Molecule ρliq(298K) Sim. Exp. Sim. Expt. Sim. Expt. Sim. Expt.

CH3(CH2)7OH(H8) 826(5) −5.15(5) −6.3 [88] −8.6(2) −8.13 [88] −2.9(2) −4.09 [89] 4.2(2) 3.0 [90]
CF3(CF2)5(CH2)2OH(H2F6) 1743(13) −4.16(7) −4.0(1) [91] −7.1(2) −7.2(3) [91], −1.7(2) −0.76(3) [91], 4.0(2) 4.7(3) [21]

−4.16(7) −6.01 [92] −2.01 [92],
0.50 [93]

CF3(CF2)6CH2OH(H1F7) 1847(14) −4.10(7) −6.0(2) −1.6(2) 3.2(2)
CF3(CF2)7OH(F8) 1897(15) −3.32(7) −5.2(2) 0.0(3) 3.8(2)
CH3(CH2)6CF2OH(F1H7) 971(7) −4.38(6) −6.1(2) −1.4(2) 3.4(2)
CH3(CH2)5(CF2)2OH(F2H6) 1124(7) −4.34(6) −5.7(2) −1.3(2) 3.2(2)

Table 4. Contribution of Lennard-Jones and Coulombic energy to the free energies of hydration/solvation
predicted by MBAR [71]. Numbers in parenthesis correspond to the uncertainty in the last digit.

Molecule �G1−octanol(kcal/mol) �Gwater (kcal/mol)

LJ Coulomb Total LJ Coulomb Total

CH3(CH2)7OH (H8) −4.84(7) −3.8(2) −8.6(2) 3.6(2) −6.47(9) −2.9(2)
CF3(CF2)5(CH2)2OH (H2F6) −3.85(7) −3.3(2) −7.1(2) 4.8(2) −6.48(9) −1.7(2)
CF3(CF2)6CH2OH (H1F7) −3.5(1) −2.6(2) −6.0(2) 4.4(2) −6.08(9) −1.6(2)
CF3(CF2)7OH (F8) −3.06(9) −2.1(1) −5.2(2) 5.4(3) −5.30(8) 0.0(3)
CH3(CH2)6CF2OH (F1H7) −4.15(6) −1.9(1) −6.1(2) 4.0(2) −5.4(1) −1.4(2)
CH3(CH2)5(CF2)2OH (F2H6) −3.84(6) −1.8(2) −5.7(2) 4.3(2) −5.59(9) −1.3(2)

It should be noted that a key difference between this
work and past calculations with NAMD [94] for the same
molecules andmodels is that in this work long-range cor-
rections for Lennard-Jones interactions are included in
the free energy calculation, whereas, in past work, they
were not [37]. In preliminary calculations, the contri-
bution of long-range corrections to the free energy of
hydration for these molecules was found to be approx-
imately −1.0 to −0.8 kcal/mol, which is consistent with
prior calculations for n-alkanes [95]. Accounting for this
difference in the treatment of long-range corrections to
the Lennard-Jones interactions brings the results shown
in Table 3 in good agreement with prior calculations
[37]. Inclusion of long-range corrections for the Lennard-
Jones interactions substantially improves the agreement
of�Gwater predictions of simulation with experiment for
1-octanol, but makes agreement with the most reliable
experimental data for H2F6 worse [91].

To further understand how fluorination near the head
group affects the solubility of alcohols in water, radial dis-
tribution functions (RDF) were calculated for O(solute)-
O(solvent) and Cα(solute)-O(solvent), and are presented
in Figure 5. For all molecules, for O(solute)-O(solvent)
interactions, a peak is observed at approximately 2.75 Å
corresponding to hydrogen bonding between water and
the solute. Peak heights varied, depending on the degree
of fluorination near the hydroxyl group. Similar peak
heights were observed for theO-ORDF for 1-octanol and
H2F6 interacting with water, while a slightly lower peak
height was observed for H1F7. The lowest peak heights
were observed for perfluorooctanol, F1H7, and F2H6,

which all have a fluorinated α carbon. For theCα(solute)-
O(water) radial distribution functions, perfluorooctanol,
F1H7, and F2H6 all show similar behaviour with a
first peak at approximately 3.9 Å, while the first peak
in the RDF for 1-octanol, H1F7, and H2F6 occurs at
3.7 Å. These results for the O-O and Cα-O RDFs are
consistent with prior calculations with the OPLS-AA
force field [37], and show clearly that fluorination of
Cα creates steric hindrance to solute-solvent hydrogen
bond formation, strongly impacting on hydration free
energies. These results are consistent with the work of
Dalvi and Rossky, which concluded for perfluoroalkanes,
that increased hydrophobicity was due to the increased
volume occupied by fluorine compared to hydrogen
atoms [96].

5.2. 1-octanol free energies of solvation

Free energies, predicted by the TraPPE-UA force field for
each solute in 1-octanol, are listed in Table 3 and indi-
vidual contributions of Lennard-Jones and Coulombic
interactions to solvation free energies are listed in Table 4.
Free energies of solvation for 1-octanol and H2F6 in 1-
octanol were found to be in excellent agreement with
experiment, with errors of 0.47 and 0.1 kcal/mol, respec-
tively. Calculated free energies of solvation show amono-
tonic increase (become less negative) as fluorination of
the alkyl tail increases. This is similar to the phenomena
observed for hydration free energies, though fluorina-
tion of the alkyl tail has a larger impact on solvation
free energies in octanol than in water, as evidenced by
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Figure 5. Radial distribution function for solute interactions with
water: (A) O(solute)-O(water) and (B) Cα (solute)-O(water). Data
are represented by: octanol (solid black line), H2F6 (solid green
line), H1F7 (solid red line), and perfluorooctanol (solid blue line),
F1H7 (dashed orange line), and F2H6 (dashed indigo line).

the calculated octanol–water partition coefficients for all
fluorinated alcohols being lower than that of 1-octanol,
despite also having lower hydration free energies.

The peak height in radial distribution functions for
O(solute) with O(1-octanol), shown in Figure 6, follow
a similar trend as the solvation free energies. The largest
peak height was observed for 1-octanol in 1-octanol,
while the lowest peak height was for perfluorooctanol.
These results suggest that Cα fluorination state plays a
significant role in in the predicted free energy, since flu-
orination near the hydroxyl group sterically hinders the
solvent’s ability to form hydrogen bonds with the solute.
These results were confirmed by additional free energy
calculations performed for F1H7 and F2H6. Fluorina-
tion of both the α and β carbons (F2H6) produces a free
energy of solvation that is within 0.5 kcal/mol of perfluo-
rooctanol, while fluorinating only the α carbon produces
a free energy of solvation that is similar to H1F7.

Fluorination of Cα produced a marked decrease in the
Coulombic contribution to the free energy. For F1H7,
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Figure 6. Radial distribution function for solute interactions
with 1-octanol: (A) O(solute)-O(1-octnaol) and (B) Cα (solute)-O(1-
octanol). Data are represented by: octanol (solid black line), H2F6
(solid green line), H1F7 (solid red line), andperfluorooctanol (solid
blue line), F1H7 (dashed orange line), and F2H6 (dashed indigo
line).

F2H6, and perfluorooctanol, the Coulombic contribu-
tion varied from −2.1 to −1.8 kcal/mol, compared to
−3.8 kcal/mol for 1-octanol. Unlike solvation in water,
fluorination of Cβ and later carbons also impacted the
hydrogen bonding of solutes with 1-octanol. Coulombic
contributions to the free energy decrease with increas-
ing fluorination, regardless of position on the alkyl
tail; for H2F6 �GCoul = −3.3 kcal/mol, while for H1F7
�GCoul = −2.6 kcal/mol. Radial distribution functions
for Cα(solute)-O(solvent) interactions show decreased
height of the first peak going from 1-octanol to H2F6
andH1F7.While bothwater and 1-octanol form complex
hydrogen bonded networks, the alkyl tail of 1-octanol
creates additional constraints on the microstructures
that may form. Adding bulky fluorine atoms to the
alkyl tail of solutes, beyond Cα and Cβ , appears to
be capable of creating steric hindrance to hydrogen
bond formation between the solute and the 1-octanol
solvent.
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5.3. n-hexadecane free energies of solvation

The air-hexadecane partition coefficient provides a mea-
surement of non-specific interactions betweenmolecules
and plays an important role as a compound descrip-
tor used in linear solvation energy relationships (LSER).
LSER models are used for prediction of solute partition-
ing in a variety of process, providing data that are needed
for transport and environmental fate modelling [97,98].
Additionally, water-hexadecane partition coefficients are
used to model lipophilic systems, such as the core of
lipid bilayers [99,100]. Predicting solvation free energies
of fluorinated 1-octanol analogues in n-hexadecane pro-
vides additional insight into the role of fluorine in alter-
ing Lennard-Jones interactions between the solute and
organic solvents, without the complications of hydrogen
bonding present in the solvent 1-octanol.

Free energies predicted by the TraPPE-UA force field
for each solute in n-hexadecane are listed in Table 3.
Experimental data for these compounds is limited to
1-octanol and H2F6. For H2F6, simulations predicted
�GC16 = −4.16 kcal/mol, which is in close agreement
with the experimental value of −4.0 kcal/mol from
Goss et al. [91]. For 1-octanol, simulations predict
�GC16 = −5.15 kcal/mol vs. the experimental value of
−6.3 kcal/mol.

Interestingly, the data follow the same trend with
increasing fluorination as the free energies of hydra-
tion (�GC16(H8) < �GC16(H2F6) < �GC16(H1F7) <

�GC16(F8)), despite the absence of specific hydrogen
bonding interactions. Fluorinating only Cα (F1H7) pro-
duces a 0.77 kcal/mol increase in the free energy of sol-
vation compared to 1-octanol, while fluorination of Cβ

andCα (F2H6) produces only an additional 0.04 kcal/mol
change in�GC16. The free energy change due to fluorina-
tion of only Cα accounts for almost half of the difference
in�GC16 between 1-octanol and perfluorooctanol. Fluo-
rination ofCβ and later carbons (H2F6) produces only an
additional 0.18 kcal/mol change in �GC16, as compared
to F2H6.

Radial distribution functions for each solute inter-
acting with n-hexadecane are presented in Figure 7.
For O(solute)-CHx(n-hexadecane), 1-octanol and H2F6
have similar behaviour, while, for all other solutes, the
first peak is slightly lower and shifted to larger dis-
tances, illustrating the additional space occupied by the
fluorine atoms near the hydroxyl group. For the CHx
or CFx(solute)-CHx(n-hexadecane) radial distribution
functions, the most highly fluorinated molecules, H1F7
and perfluorooctanol, display similar behaviour, while a
reduction in the number of fluorine atoms (i.e. F1H7 and
F2H6), causes the first peak in the RDF to shift to smaller
distances.
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Figure 7. Radial distribution function for solute interactions with
n-hexadecane: (A) interaction of O(solute)-CHx(n-hexadecane)
and (B) CHx or CFx(solute)-CHx(n-hexadecane). Data are repre-
sented by: octanol (solid black line), H2F6 (solid green line),
H1F7 (solid red line), and perfluorooctanol (solid blue line), F1H7
(dashed orange line), and F2H6 (dashed indigo line).

6. Conclusions

In thiswork, free energies of solvation inwater, 1-octanol,
andn-hexadecanewere calculatedwithMonteCarlo sim-
ulations in the isobaric-isothermal ensemble for a variety
of fluorinated analogues of 1-octanol. The combination
of SPC water and TraPPE-UA were found to provide a
good qualitative reproduction of experimental data.

Davli and Rossky concluded that the molecular basis
for hydrophobicity exhibited by perfluoroalkanes was
due to the larger volume occupied by fluorine compared
to hydrogen atoms [96]. Similarly, this work has shown
that the larger volume of fluorine atoms compared to
hydrogen leads to the oleophobic behaviour of fluoroal-
cohols. Fluorination of the α and β carbons was found to
have the greatest impact on the free energy of hydration
and the free energy of solvation in 1-octanol. The addi-
tion of fluorine atoms to the alpha and beta carbons cre-
ates a steric hindrance to hydrogen bonding between the
solute and the solvent. In 1-octanol and n-hexadecane,
subtle effects of fluorination of methyl groups further
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away from the hydroxyl group onhydrogen bondingwere
observed. Down-chain fluorination increases the volume
occupied by the solute, while intramolecular geometri-
cal constraints and barriers to dihedral rotation limit the
ability of 1-octanol to reorient to form hydrogen bonds
with the solute. In n-hexadecane, reductions in the free
energy of solvation with fluorination are largely due to
increases volume occupied by fluorine atoms and their
lower energy density.
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