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Microstructure evolution-based constitutive models in macro-scale simulation tools require statistical microstruc-
ture input at each integration point. This paper reports several robust procedures for interpolating orientation
distribution functions (ODFs) from coarsely spaced experimental measurement grids to finely spaced model-
ing grids. The procedures are based on representing ODFs using generalized spherical harmonics (GSH) func-
tions. Relying on the linearity of the expansion space, the core of the procedures involves weighting of the GSH
expansion coefficients over a given variable such as space, strain, or temperature, thus providing ODFs as a
function of location, deformation, or thermal treatment. Interpolation approaches including regression and lin-
ear/bilinear/barycentric weighting are explored and discussed in terms of their accuracy and suitability. Upon
establishing the expansion coefficients of the interpolated ODF, a linear programing problem is solved within
the expansion space to construct the interpolated ODF. The procedures are applied to a comprehensive data set
obtained by neutron diffraction for a hemispherical part made of depleted a-uranium. Utilizing the ODF interpo-
lation procedures, texture is interpolated over the part revealing significant anisotropy in the texture dependent
thermal expansion and elastic stiffness coefficients. The results of this work facilitate introducing thermal expan-
sion and elastic anisotropy into numerical tools for simulating thermo-mechanical loading of microstructurally
heterogeneous components using the ODF informed crystal mechanics-based models to more accurately estimate
the effective properties required by such simulations.

1. Introduction

Modeling the behavior of polycrystalline metal components sub-
jected to thermal and mechanical loading during processing or ser-
vice conditions requires spatially resolved computational techniques
[1-6]. In order to reveal critical aspects of anisotropic material behav-
ior, knowledge of the spatial distributions of microstructural features is
necessary. Crystallographic texture is such a feature and can be quan-
titatively described by an orientation distribution function (ODF) [7],
which is the normalized probability density associated with the occur-
rence of a given crystal orientation in the polycrystal. Since the orien-
tations of the crystals making up the polycrystalline aggregate govern
anisotropic properties such as elastic stiffness and thermal expansion,
in particular for highly anisotropic low symmetry metals, knowledge of
the orientation distribution allows for an estimate of the bulk properties
based on known single crystal properties.
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Finite element (FE) method-based numerical simulations that embed
texture at finite element material points have been developed [8-15]. Of
particular interest for the present development is the FE implementation
of the elasto-plastic self-consistent (FE-EPSC) crystal plasticity model
[16,17], which is capable of predicting homogenized thermal expan-
sion, elasticity, and plasticity [18]. The FE-EPSC model is able to pre-
dict spatial variation of anisotropic deformation because it accounts for
spatial variation of crystal lattice orientations of constituent grains and
their inherent single crystal anisotropy across FE integration points.

Accurate FE models of components are best constructed based on ex-
perimental characterization of position-dependent microstructure. How-
ever, experimental measures of microstructures are generally limited
to a finite number of positions within a component due to the na-
ture of characterization efforts by electron, X-ray, or neutron-based
texture measurements. For predictive modeling capabilities, a consid-
erably finer FE grid/mesh spacing is necessary than is possible to
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experimentally measure. While it is comparably straight-forward to in-
terpolate scalar, vector, or tensor quantities, interpolation schemes of
the mathematically much more complex ODFs are much more involved.
Thus, the construction of finely spaced material points considering the
spatial variation of the ODF within models based on more coarsely
spaced experimental datasets is an important task needing to be ad-
dressed.

In recent works [19,20], we presented a rigorous procedure for re-
ducing large datasets of crystal orientations using generalized spherical
harmonics (GSH) functions. The procedure involved matching the ex-
pansion coefficients of an ODF containing any number of crystal orien-
tations with those of an ODF containing a predetermined compact set of
discrete orientations. The linearity of the expansion space was exploited
to set a linear programming problem to match the expansion coefficients
of the given ODF with those of a compact ODF by varying the weights
of orientations in the compact ODF. The compact ODF was then used to
model ODF-property relationships and their evolution in crystal plastic-
ity simulations. A number of works reported the GSH representation of
ODF-sensitive mechanical properties in an effort to accelerate homoge-
nizations of ODF-effective properties or property bounds [21-27].

In this paper, we develop a GSH-based interpolation methodology to
interpolate partial datasets of orientation distributions from a coarse
experimental grid of texture measurements to a finite element mesh
resolution grid. In the description that follows, the term interpolation
will be used to describe both interpolation methodologies and regres-
sion methods. These methods advantageously exploit the linearity of the
GSH expansion space to interpolate expansion coefficients over space,
strain, or temperature. Upon interpolation, an ODF corresponding to
the interpolated coefficients at a given point in space is constructed by
solving the linear programing problem in the expansion space [19]. We
verify this procedure by comparing with an available quaternion inter-
polation approach [28,29]. We then apply it to a hemispherical compo-
nent of depleted a-uranium (a-U) with orthorhombic crystal structure
for which a comprehensive experimental texture dataset is obtained by
spatially resolved neutron diffraction texture measurements. Neutron
diffraction measures textures averaged over mm? to cm3 volumes due
to the deep penetration of thermal neutrons into most materials com-
bined with beam spot sizes of ~0.1-1 cm?. This is especially beneficial
for the bulk characterization of high atomic number (Z) materials, for
which electrons and X-rays have limited penetration and the character-
ization is therefore limited to near the surface [30].

It is shown that the interpolation procedure developed here is robust
and can be used for initializing finite element models based on more
limited experimental datasets. This is a novel and unique approach for
interpolating orientation distributions. Significant changes in the spa-
tially resolved tensorial components for thermal expansion and elastic
stiffness are revealed by interpolating texture over the hemispherical
part of a-U, indicating that the predicted distortion with temperature
of the part is strongly anisotropic. Such simulations can only be carried
out accurately with the knowledge of single crystal constants and the
texture at each finite element integration point.

2. Methodologies for interpolation of partial datasets of
orientation distributions

This section summarizes two methodologies for texture interpola-
tion. A procedure involving quaternions has been developed [28] and
used in the literature for finding an orientation between two crystal ori-
entations [29]. We use it here as a reference to compare and verify the
proposed GSH-based procedure for the interpolation of ODFs.

An ODF, f(g), is a probability density function describing the occur-
rence of a crystal lattice orientation, g in a volume of a polycrystalline
material. The function is appropriately normalized to be expressed as:

f(g)dg=d7V,/ floydg =1, )
oS
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where V is the total volume and dV is the volume increment correspond-
ing to all grains falling within the dg increment in Bunge-Euler space.
The OS stands for the orientation space encompassing all orientations
[7,31]. An ODF can be defined using a discrete set of crystal lattice
orientations, which can be described by a set of three independent vari-
ables such as Euler angles e.g. in Bunge notation [7], an angle-axis pair
[32], a Rodriguez vector [33], or quaternions [34]. In this work, we will
rely on either three Euler angles in Bunge notation g = (¢ ,,®,¢,) or a
set of unit quaternion vector components q = (g, 4,, g3, 44) to describe a
crystal orientation.

2.1. Quaternion procedure

Taking advantages of the spherical linear interpolation (‘slerp’)
method [28,29], the quaternion description facilitates a convenient way
for interpolating between two crystal orientations. Specifically, the slerp
method interpolates along an arc between two quaternions on the unit
hypersphere using the following equation:

sin((1 — 1)) sin(t0)
sin(0) 2 sin(0)

q,() =q 2
where ¢ is the final interpolated quaternion, ¢ is a fraction defining the
weighted average of the first quaternion (q, ) and the second quaternion
(q,), and 6 is the angle between the two quaternions calculated using:

0 =cos'(q, - q) 3)

In order to interpolate an ODF, each orientation within the ODF
must be interpolated individually from its initial to its final state, which
make an input pair of quaternions for the interpolation in the quater-
nion space. Consequently, the two ODFs must be represented using the
same number of discrete orientations. The collection of discrete orien-
tations obtained by interpolating the pairs is the final interpolated ODF.
The method has been well established and utilized in several prior stud-
ies [29,35], especially in those involving the interpolation between two
ODFs experiencing the same or a similar deformation path. While the in-
terpolation involving quaternions is convenient, two interpolated ODFs
may not always contain the same number of discrete orientations or
may not always evolve from one to another as a consequence of evolu-
tion during plastic deformation. Thus, the method is rather restricted to
modeling textures. The method would also break down when twinning
abruptly reorients a fraction of a crystal rather than gradual reorienta-
tion of the entire crystal by slip or in recrystallization. To relax these
constraints, other methods based on probability distribution interpola-
tion techniques can be explored and utilized [36-41]. The next section
describes procedures for the interpolation of orientation distributions
developed in this work.

2.2. GSH procedure

Contrary to the interpolation between pairs of orientations in the pre-
vious section, the interpolation/regression procedures developed in this
section rely on representing an ODF using GSH expansion coefficients.
These coefficients represent a given ODF as a point in GSH expansion
space. The procedures developed here find an interpolated ODF (output
from the procedures) by interpolating between points representing mea-
sured ODFs (input to the procedures). To facilitate representation of the
ODF by a finite set of orientations, e.g. as input into an EPSC model we
perform an approximation of the interpolated ODF from the coefficients
to a weighted set of discrete crystal orientations using a recently devel-
oped methodology involving the GSH representation of the ODF [20].
Here, a linear programming problem is solved using the Matlab built in
function, linprog, which moves the weighted average of the coefficients
in a predetermined set of random orientations by adjusting their weights
to match the interpolated ODF point in the expansion space, as will be
described below.



T.J. Barrett, A. Eghtesad and R.J. McCabe et al.

2.2.1. Representation of ODFs

The harmonic series representation used in this procedure follows
the formulation of Bunge as described in [7]. In this formulation, the
ODF is represented by a GSH series in the form:

oo 4+l +l
f@=Y Y 3 ™), “
1=0 m=—I n=-1

where, e and T™(g) are the expansion coefficients and the GSH func-
tion, respectively. Reduction of the expansion series is possible by tak-
ing advantage of crystal and sample symmetries. For example, the sym-
metrized expansion series for orthorhombic-orthotropic! symmetry is
[71:

M) NQ)

f@=) FIT(g), ©)

1=0 p=1 v=1

where Tl“ “(g) is the symmetrized GSH function. The number of triplet
(L v, u) combinations defines the number of dimensions of the expan-
sion space. Each triplet corresponds to one expansion coefficient and
therefore the number of triplets allowed by symmetry up to the chosen
order for the expansion determines the dimensionality of the space. The
expansion in the present work is chosen to be [=16. Note that [=16 is
the default for the EDAX orientation imaging microscopy (OIM) analysis
software, TexSEM Laboratories (TSL). Pertaining to the nomenclature of
the symmetrized GSH function, the first column of dots above T repre-
sents crystal symmetry (orthorhombic), while the second column of dots
represents sample symmetry (orthotropic), and no dots at the given lo-
cation represent no symmetry i.e. triclinic symmetry [7,20].

Expansion coefficients for an individual orientation g, in an ODF
containing a number of discrete orientations are evaluated using the
complex conjugated T+/ as [7]

KF' = @+ DT+ (g). (6)

The coefficients "FI‘“’ for a given orientation g, can be visualized
as a point in the multidimensional expansion space defined by (I, v, u)
triplet. When Eq. (6) is applied to a set of selected individual crystal
orientations, it is used to construct a texture hull. The hull is made up of
points corresponding to the expansion coefficients of these orientations.
Any empty space between the points in the hull can be filled using a
weighted combination of the existing points, g. As a result, the hull is
convex and a compact representation of the complete set of all physically
realizable ODFs. The hull is in the core of the compact reconstruction
of interpolated ODFs to get weighted Bungle-Euler angles, as will be
described later.

Eq. (6) also applies to any given ODF to obtain a point in the hull
after calculating the volume average of the expansion coefficients cor-
responding to the individual crystal orientations within the given ODF.
Here, a given ODF described by a finite set of N, orientations weighted
by weights « is be represented as a point in the hull
B

Ncrys Ncry:
= Y kakF Y ke =1,0< <l ™
k=1 k=1

The bar placed on top of F indicates that the coefficients have been
weighted. The weighting of coefficients corresponds to weighting of the
crystal orientations belonging to the given ODF. Thus, the linearity of
the expansion space facilitates the representation of a single crystal ori-
entation as well as a weighted polycrystalline ODF.

The interpolation/regression of ODFs is accomplished using the av-
eraged expansion coefficients (FI” “) to create a target point in the expan-
sion space. The subsequent generation of a compact ODF corresponding
to the target point is accomplished using the hull points (* F 1“”), as de-
scribed next.

1 The first symmetry refers to symmetry at the crystal level, while the second
symmetry refers to a statistical symmetry at the sample level.
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Fig. 1. Simplex showing the areas corresponding to each vertex used to calcu-
late corresponding weights in the Delaunay triangulation.

2.2.2. Interpolation of ODFs

We explore several interpolation methods, each requiring a differ-
ent number of input ODFs, N. For linear interpolation N=2, for bilin-
ear interpolation N=4, and for barycentric weighting N=3. Note that
linear/bilinear/barycentric interpolation belong to the same technique.
Interpolation between N ODFs is performed on each expansion coeffi-
cient defined by a combination of (u, v, [) with respect to a dependent
variable such as spatial coordinates, x, or accumulated plastic strain, .

Linear interpolation between two ODFs uses the following equa-
tion:

FI0) = (1 —1) | FI" +1,F}", 0<i<1 @)

where t is the distance defining the weighted average between expan-
sion coefficients of the first ODF, | F/", and expansion coefficients of
the second ODF, , F**, and F,“” are the resulting interpolated expansion
coefficients. The ODF corresponding to FI" Y can be constructed, as will
be explained below.

A two-dimensional (2D) grid of ODFs can be interpolated using bilin-
ear interpolation. Four ODFs are used as an input to interpolate in two
spatial dimensions, x and y. For a given point of interest (x, y), bilinear
interpolation is performed using:

(x=x1)(3-)
(2 =x1) (v2=31) 5,
(2o=)0-n) o, =x)-2)

(xz_xl)(yZ_yl)lz ! (xz—xl)(yz—yl)zz :
V<Y<Yp , X| <X<X5, ©)

(x2 = x) (32 -¥) = v

I:"”U(x,y) - Fuu
(xz - xl)(yz —Yl) 11 !

1

>

where Fl””(x,y) are the resulting interpolated expansion coefficients,
while ;;F/"” are the input expansion coefficients at points (x;, y;). Bi-
linear interpolation is linear along each of the edges and inherently
quadratic through the 2D space.

When ODF data is available in a highly irregular grid, Delaunay tri-
angulation and barycentric weighting can conveniently be used. The
Delaunay triangulation is performed to find a set of triangles, referred
to as simplices, that discretize the space. This is done in Matlab using
the built in Delaunay function. For a given point of interest v(x, y), the
enclosing simplex and barycentric weights are found using the Matlab
function tsearchn, which uses the Delaunay triangulation as an input.
The areas, A;, corresponding to each vertex, v;, are depicted in Fig. 1.
The barycentric weights, w;, of each vertex, are calculated using the fol-
lowing equations

A,
w,:j,A:ZA,.. (10)

i=1

The weighted average of the expansion coefficients at each vertex is
the target point

3
A = Z w;  F" an
i=1



T.J. Barrett, A. Eghtesad and R.J. McCabe et al.

The barycentric weighting method is continuous throughout the sim-
plex and linear along all edges.

2.2.3. Regression analysis of ODFs

Similar to interpolation methods, regression analysis can be per-
formed on the expansion coefficients when multiple ODFs area avail-
able. This allows more data to be incorporated into the determination
of textures between grid points facilitating smoothing, which is usually
beneficial. One-dimensional (1D) quadratic regression (local using par-
tial data or global using all data) is performed using the polyfit least-
squares regression function in Matlab. A second order polynomial is fit
for each expansion coefficient as a function of e.g. spatial position or
strain as
Fl“” = J!_’I*’”x2 +0/"x+ R". (12)

The coefficients P/"”,Q_“”, and R;‘”are fit independently for each di-
mension (y, v, 1) with respect to spatial coordinate x or strain level e.

Two-dimensional (2D), (x, y), quadratic regression is usually done
using the locally weighted regression function, ‘loess’, in Matlab. This
function weights points within a user defined span using the tricube
function:

3\3

(Vo=s0+ 0=07)

w;=|1-| 7 | (13)

Where, (x, y) are the predictor values, (x;, y;) are the nearest neighbors,
and d is the furthest distance from the predictor value within the span.
For this work, 20 spatial points were used for each regression. Symmetry
can be introduced to include more data at the boundaries and improve
regression quality.

A locally weighted 2nd order regression (i.e. quadratic LOESS) is
performed on each of the expansion coefficients to determine the target
point.

FI = B 4 QMx + Ry + Sy + T/°x? + 032, (14)

The variables PI"”, Q_;‘”, R;‘”, S‘I"”, TI"”, and UI"” are regression coef-
ficients, which are calculated by minimizing the weighted residuals. If
the residual of a data point is more than six times the median absolute
deviation of the resulting regression the data point is removed and the
regression is repeated. Since texture hull by definition is a convex and
compact space representing the complete set of all physically realizable
ODFs, the target point must lie within the hull. With the regression meth-
ods due to intrinsic nonlinearity, it is possible to generate a target point
that is outside of the texture hull and therefore is not physically possi-
ble. It is not possible to reconstruct a compact ODF for such a point. In
this case another interpolation techniques is used which by default will
always produce a target point that is in the hull and is physically pos-
sible. It is worth mentioning that regression is not restricted to LOESS.
Methods such as ‘kriging’ [42] have also been explored yielding similar
results to those obtained by LOESS. Alternative techniques can easily be
implemented into our overall procedure.

2.2.4. Compact reconstruction of interpolated ODFs

After GSH coefficients have been interpolated, as a final step, it is
necessary to generate an equivalent compact ODF in the form of Bunge-
Euler angles in order to enable crystal mechanics simulations. For com-
putational efficiency of the crystal mechanics simulations, it is desirable
for the ODF to be as compact as possible. A compact ODF consisting
of a certain number of weighted orientations corresponding to the tar-
get point, 13"1” Y, is constructed by solving a linear programming problem
[20]. A uniform ODF is conveniently generated in MTEX and the ex-
pansion coefficients for each crystal orientation, k, of this uniform ODF,
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"FI‘“’ are calculated. Typically the number of discrete crystal orienta-
tions chosen to represent an ODF (k =1..K) is of the order of a few hun-
dred. These orientations are invariant — only their weights change. To
initialize the procedure, the weight per orientation, Xa, is set equal (i.e.
1/K). Using the built in Matlab function linprog a linear programming
problem is set to find the weights of each crystal orientation, Xa, in such
a way that the sum of the weighted expansion coefficients of the uni-
form ODF, ka* F", evolve to the target £/"". The only requirement for
finding the weights is that the target point, £"’, must be within the hull
of points, kF[””. Since the hull is convex and compact, a linear combi-
nation of single crystal points is possible, provided that the target point
lies within the hull. The system of equations is

N,

ey
B =Kk — W =0, Y Fa=1 (15)
k=1

with the inequality constraints
a0, W20 (16)

and the objective function to minimize is

o M) N(I)

2 X w a7

1=0 p=1 v=1

The slack variable, W[’“’, is necesary for the linprog solver. The
linprog function adjusts the weights until a prescribed tolerance is
achieved. This tolerance is defined by

Mg

M) N(l)
TOL= Y 3 3 |F/—*a*F/"| (18)
pu=1 v=1

I

Il
o

The tolerance is set to TOL=10"12 to ensure that the sum of the
weighted expansion coefficients of the compact ODF are identical to the
target point. Once the weights are found, the compact interpolated ODF
is available.

2.2.5. Texture difference index

To evaluate the quality of the interpolated textures we introduce the
texture difference index (TDI). This measure is used to quantify the ac-
curacy of interpolated textures in terms of their spectral representation
corresponding to [=16. The TDI is calculated using:

o vMUNOTNO,| 7 FHU
Zl=02,4=1 ZU:] | =5
d

TDI =

19)

where, F"]“” and F 1"” are the expansion coefficients for the target (mea-
sured) ODF and compact (interpolated) ODF, respectively. d is the fur-
thest distance between any two points in the convex hull, which is made
up of expansion coefficients corresponding to a uniform ODF. The TDI
as defined in Eq. (19) represents the distance of the interpolated ODF
to the measured ODF normalized by the furthest possible distance. This
definition bounds the TDI between 0 and 1, a TDI of O corresponds to
a perfect fit, while a TDI of 1 corresponds to a single crystal on the
boundary of the hull at the furthest possible point from the target.

3. Results
3.1. Verification case study: tension and compression of alloy AA6022-T4

The objective of this case study is to interpolate between simulated
tension and compression textures deformed to different levels of true
strain and to compare the equally weighted tension and compression
textures for the given strain level with the initial texture. Texture evolu-
tion between true strain levels of 0.1, 0.2, and 0.3 in tension and com-
pression creates the interpolation space with strain as a variable. The
largest strain space of 0.6 provides a stringent test for the methodology.
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Fig. 2. Pole figures for textures (input): (a) calculated with EPSC for simple tension along RD to the strain levels indicated in the figure and (b) calculated with EPSC
for simple compression along RD to the strain levels indicated in the figure. Pole figures for interpolated textures (output) between (a) and (b) for a given strain level
using: (c) the GSH procedure with linear interpolation of expansion coefficients and (d) the quaternion procedure. (e) Initial (undeformed) texture.

The case resembles interpolation of texture gradients in a beam exposed
to pure bending, where the top of the beam is in compression, the bot-
tom of the beam is in tension, and the middle of the beam is undeformed
[11]. Thus, the simulated data for tension and compression mimics spa-
tially resolved texture measurements across a plastically deformed beam
subjected to pure bending, which leads to a variation from top to bottom
changing from axial tension to axial compression. If the beam is assumed
to be long, the non-zero shear deformation between top and bottom of
it is small. Fig. 2 shows a set of pole figures obtained by EPSC calcu-
lations (Fig. 2a and b for tension and compression, respectively) and
based on the interpolation methodologies involving GSH (Fig. 2¢) and
quaternions (Fig. 2d). The EPSC calculations use the undeformed ODF
shown in Fig. 2e as input [43]. In this case study, the GSH procedure is
restricted to linear between tension and compression. The texture inter-
polated for the strain free state between the given strain level in tension
and compression is expected to resemble the initial texture (Fig. 2e),
since the face-centered cubic Al alloy exhibit approximately symmetric
tension vs. compression behavior. The comparison between pole figures
in Fig 2e and those obtained using the interpolation procedures in Fig. 2¢
and d can be used to evaluate the accuracy.

Interpolation using quaternions is always performed between two
orientations, in this case one predicted for tension and one predicted for
compression to the same magnitude of plastic strain that originated from
the same undeformed initial crystal orientation. This approach satisfies
two constraints of the quaternion procedure: (1) the texture predicted
in tension is represented by the same number of discrete orientations as
the texture predicted in compression and (2) pairing between the orien-
tations from the discrete sets is ensured because the same initial crystal
orientation evolves in both tension and compression. The interpolated
ODF between those evolved in tension and compression corresponds to
the initial ODF. Thus, the average of a given ODF evolved a strain step
into tension and the same given ODF evolved the same strain amount
into compression is the original given ODF. This is only true for the ini-
tial texture (ODF) that is symmetric with respect to the loading axes
(mirror symmetry on the plane defined by the loading axis) and under
slip deformation, as is the case here. To verify the GSH method, we per-
form the same interpolation. As is evident from comparing the triplet
of pole figures in Fig. 2e with the three triplets of Fig. 2c, the linear in-
terpolation of the expansion coefficients loses accuracy with increasing
strain, while the strain-free texture interpolated using the quaternion

Table 1

TDI calculated for each scheme interpolating be-
tween compression and tension textures at strain lev-
els of 0.1, 0.2, and 0.3 as compared to the initial un-
deformed texture.

e=0.1 £=0.2 £=03
Quaternion 0.0038 0.0147 0.0286
Linear interpolation 0.0096 0.0305 0.0541

methodology (Fig. 2d) agrees well with the actual initial texture. As
explained earlier, the GSH interpolation operates on the entire distri-
bution rather than individual crystal orientations. Furthermore, the use
of simulated crystal orientations allowed to assign pairs of quaternions.
However, such assignment would not be possible for textures experi-
mentally determined at the same deformation levels. Nevertheless, the
case study facilitates evaluation of the accuracy of the GSH method for
subsequent interpolation of ODFs that do not contain the same number
of discrete orientations and that do not evolve from one to another. The
GSH procedure interpolates ODFs as probability distributions, which are
represented using the expansion coefficients. Thus, accuracy of the in-
terpolation of the coefficients is the key to the accuracy of the overall
ODF interpolation.

The accuracy of the interpolation schemes is quantified using the
TDI. Table 1 shows the TDI of the interpolated textures between com-
pression and tension textures at strain levels of 0.1, 0.2, and 0.3 as com-
pared to the initial undeformed texture. This shows rate at which each
scheme deteriorates. Two textures with a TDI < 0.05 are considered to
be in good agreement, and TDI < 0.03 represents excellent agreement.
The quaternion method produces good results at strain levels up to 0.3,
while the GSH interpolation method loses accuracy after e =0.2.

Fig. 3 shows for selected coefficients FI”" that inherent non-linearity
of the GSH expansion coefficients develops with strain. Satisfactory ac-
curacy of the GSH procedure can be achieved even for the strain level of
0.3 by taking into account the non-linearity of the expansion coefficients
by making them continuous functions using quadratic regression analy-
sis in 1D. The global regression was performed using data points at ¢ of
+0.2 and +0.4 as input for interpolation output at £ of 0 and +0.3. This
is shown in Fig. 4. Note that the bottom row textures in Fig. 4a—c are all
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Fig. 3. One-dimensional evolution path with true strain for three selected expansion coefficients F during simple tension and simple compression along RD of
cubic-triclinic texture of AA6022-T4. Input for the interpolation consists of four textures generated using EPSC. The star symbols represent accurate solutions and

are also determined using EPSC.
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obtained using EPSC simulations from
011 Fig. 2 (top row) to those based on the

continuous expansion coefficient interpola-
tion (bottom row): (a) texture after simple
tension to the strain level indicated in the
figure, (b) top - initial (undeformed) texture
and bottom - interpolated texture, and (c)
~ texture after compression to the strain level
2, indicated in the figure. The continuous
expansion coefficients used to calculate the
bottom row pole figures are obtained using

el Opf’

the quadratic regression analysis with data at ¢ of +0.2 and +0.4 (Fig. 3). The pole figure frame and the intensity bar showing the multiples of random distribution

are the same as those in Fig. 2.
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Fig. 5. Single crystal elastic [38] and thermal expansion [39] constants for a-U as a function of temperature.

Table 2
TDI calculated for quadratic regression textures at strain levels of
+0.3 and the initial undeformed texture.

£=-0.3 Undeformed texture e=0.3

Quadratic regression 0.0300 0.0291 0.0177

continuously interpolated consistent with Fig. 3. Table 2 shows the TDI
calculated for each texture, all textures show excellent agreement.

3.2. Application case study: formed a-uranium hemisphere

The texture in a clock-rolled plate of «-U is spatially non-uniform,
which leads to anisotropic stiffness and thermal expansion properties.
Thermal expansion in particular, shows a strong dependence on texture
making it highly relevant for the interpolation study. If such a plate

is subjected to a temperature change there would be thermal residual
stresses generated. Moreover, if the plate is formed at temperature into a
hemisphere, the geometrical constraints imposed by the forming die will
not allow the hemisphere to distort freely, and thus the internal residual
stresses will be enhanced. Finally, the shape will be non-hemispherical
upon removal of the die. In order to predict these distortions and resid-
ual stresses using a finite element model the initial spatially varying
orientation distribution is needed as input. Fig. 5 shows temperature-
dependent single crystal properties of a-U that will be used for calcu-
lating the homogenized crystallographic texture sensitive bulk elastic
stiffness tensor and thermal expansion tensor properties using the self-
consistent approach [16,44]. Since the preferred orientation of the crys-
tals making up the polycrystalline aggregate governs elastic stiffness and
thermal expansion, in particular of the highly anisotropic a-U, texture
characterization allows for an estimate of these properties in bulk poloy-
crystals based on the known single crystal properties [45-47] and the
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Fig. 6. Schematic of half the arcs as cut from the hemisphere with the polar angles (along arcs) and azimuth (Az) angle (along equator of hemisphere). Measured
pole figures are shown for several polar angles along RD (Az=0°) and TD (Az=90°). The indicated frame pertains only to pole figures, the pole figure axes are
parallel to the azimuthal, polar, and radial directions. The intensity bar showing the multiples of random distribution is the same as in Fig. 2.

spatial orientation distributions. Measurement of these orientation dis-
tributions is described next.

3.2.1. Experimental

Spatially resolved texture characterization of a depleted a-U
hemisphere was performed using neutron diffraction. The texture
measurements were conducted on arc-shaped samples cut from equa-
tor to pole of the hemisphere (Fig. 6). The experimental setup consisted
of custom made sample holders allowing the arcs to be mounted to the
standard sample holders of the robotic sample changer [48] of the High
Pressure/Preferred Orientation (HIPPO) beam line [49,50] at the pulsed
neutron spallation source at LANSCE [51], which is a neutron time-of-
flight diffractometer for bulk microstructural characterization of ma-
terials at ambient and non-ambient (temperature, pressure, load etc.)
conditions [49-51]. Owing to the 45 detector panels, covering ~25%
of the sphere around the sample [52] each sample orientation provides
45 inverse pole figures in a neutron time-of-flight measurement with
constant detector locations. The arc samples were measured at angles of
—45°, 22.5°, and 45° around the vertical axis. The arcs were rotated and
translated to complete the measurement along each arc. The samples
were held by a robotic sample changer [48] with pre-programmed an-
gles ensuring that the neutron beam impinged on the arcs in the radial
direction when the sample was rotated to 0° vertical rotation angle. This
procedure ensures that the reference coordinate system (radial/normal
direction, azimuthal and polar directions) was the same for each probed
sample volume. A 2mm cadmium slit, a strong thermal neutron ab-
sorber, was installed in front of the samples to limit the illuminated
volume to a 2mm radial slice of the arc. The count time was 20 min
(at full proton accelerator current, slightly longer typically), leading to
about one hour of beam time per probed volume on an arc (i.e. po-
lar increment) or about 9 h total per arc with measurements occurring
at 10° polar increments along the arcs. A total of 121 texture measure-
ments were made on arcs representing half of the hemisphere. Rolled Cu
sheet, with a known orthorhombic texture symmetry was glued to the
arcs and the texture of this phase was analyzed simultaneously. In case
of a misorientation of the arc with respect to the reference coordinate
system, the symmetry of the texture of the rolled Cu sheet would have
been destroyed. This phase thus provided a check of the orientation of
each slice of the uranium arc.

Data analysis consisted of simultaneous Rietveld refinements against
all collected histograms (three times 44 histograms, one detector defec-
tive) with procedures described in detail in [53,54]. No texture sym-
metry was imposed. The ODF was represented by the E-WIMV method
[55] with a 7.5° resolution. The measuring coordinate system is such
that the pole figures would have the radial outer surface at the top
vertically, the radially inner surface at the bottom vertically, and the
azimuthal circumference at constant polar angle left/right horizontally.
The center of the pole figures is therefore the polar circumference. Later,
pole figures are rotated for presentation in their local frame to have
their radial direction at the center, polar direction horizontally, and az-
imuthal direction vertically (spherical coordinate system).

Fig. 6 shows a schematic of the arcs as cut from the hemisphere
along with «-U pole figures for two arcs in 10° polar increments. The
pole figures at the north pole of the hemisphere, measured from a piece
cut from that location, are at the top. The pole figures are contoured in
multiples of random distribution (mrd), i.e. a pole density of 5 indicates
a five times higher pole density than for a sample with random crystal
orientations. As is evident, the a-U pole figures show a strong preferred
orientation of (002) poles (c-axes) towards the radial direction of the
arc segment. At the north pole, the (020) poles (b-axes) are preferably
oriented along the prior RD of the rolled plate that was formed into
the hemisphere [56-58]. The b-axes are preferably oriented along the
polar circumference and the (200) poles (a-axes) are preferably oriented
along the azimuthal direction. It can be seen that the b-axes tend to
align along the major tensile direction during the forming operation. The
equator of the hemisphere was effectively subjected in tension along the
polar circumference during the forming operation, which in turn means
that going from the north pole along the prior RD axis shows a small
development of the (020) pole density, but going from the north pole to
the equator along other than the RD axis shows a significant variation of
the (020) pole density. This disparity in texture variation along different
polar circumferential directions is what would generate internal stresses
and distortions during a temperature change of the hemisphere. Due
to the axisymmetric forming process, the pole figures at the equator
are approaching a single component orientation, where the c-axes are
preferentially along the radial direction, the b-axes are preferentially
along the polar circumference, and the a-axes are preferentially along
the azimuthal circumference.
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The {020} pole figures for all measured textures are plotted in Fig. 7.
The objective of clock-rolling is to produce an axi-symmetric texture
with regard to the plate ND. However, process variations always result
in some texture asymmetry, and this is usually most obvious in the pres-
ence of an {020} peak somewhere about the periphery of the pole figure
(ND normal). The {020} peak is a convenient texture reference and we
use a common convention of orienting the position of the {020} peak
as the RD of the plate. The {020} pole reveals a clear peak alignment
with the polar circumference showing significant texture evolution due
to forming.

3.2.2. Calculations

The developed GSH texture interpolation procedure is applied to the
measured data presented in the previous section. The data collected
in 10° polar and 15° azimuthal increments represents a coarse (sparse)
grid requiring a substantial refinement to facilitate initializing a finite
element model of the hemispherical part for crystal mechanics-based
thermo-mechanical simulations. Data was only measured for half of the
hemisphere. We assume orthotropic sample symmetry and rotate the
data 180° around the ND two-fold symmetry axis for each measured
point. At the equator of the hemisphere, we assume no symmetry.

Fig. 8a shows calculated normal components of the thermal expan-
sion tensor at 25 °C for all measured textures, i.e. on the discrete grid of
the texture measurement. The predicted shear components of the ther-
mal expansion tensor are orders of magnitude smaller than the normal
components and omitted here. The crystal values are homogenized using
the self-consistent approach in EPSC and are shown in the local spher-
ical frame. Fig. 8a reveals the texture effects of the thermal expansion
values. Similarly, Fig. 8b depicts the values for three shear components
of the elastic stiffness tensor at 25 °C calculated using EPSC. These were
chosen due to their strong texture dependence.

Fig. 9 shows several projections of the texture hull for a-U. Since the
interpolation is performed between measured texture data, considera-
tion of the entire texture hull is not necessary. Consequently, the a-U
hemisphere sub-space in the hull is delineated based on the measured
data. Since the a-U hemisphere contains a small sub section of all phys-
ically realizable textures, the corresponding sub-space is smaller.

Orientation distributions can be used in the upper bound homoge-
nization theory to obtain predictions of bounds for the effective proper-
ties. These rigorous first-order bounds using the orientation distribu-
tion are readily available, especially for the diagonal components of
the elastic stiffness and thermal expansion tensors. The upper bound
for these components is evaluated as the volume average over single

Materialia 6 (2019) 100328

Fig. 7. Projected {020} poles measured by neu-
tron diffraction on a hemisphere made of de-
pleted a-U plotted in measured frame defined
by azimuthal direction (), polar direction (¢),
and radial direction (r). The dashed lines pass
through pole figures shown in Fig. 6. The inten-
sity bar showing the multiples of random distri-
bution is the same as in Fig. 2.

crystals [59-62]. To verify that the linear interpolation between two
textures corresponds to the linear interpolation in these properties, we
equally weighted textures in Fig. 10a and c to get b and calculate the
properties. The average texture in Fig. 10b is obtained by averaging the
expansion coefficients of the pole cap and RD Pol 30 textures. The av-
erage expansion coefficients are used to construct the averaged texture.
The volume average calculated properties for the three textures are pro-
vided in Table 3 and are regarded as the upper bound. The upper bound
properties for texture in Fig. 10b can be alternatively calculated as the
average between the values for textures in Fig. 10a and c. The small per-
cent difference between the values based on the averaged texture and
those based on averaging the values validates the GSH texture interpola-
tion methodology in the linear expansion space. However, our objective
is to use more accurate estimates of the effective properties than up-
per bound. We rely on the EPSC model for the calculation of effective
properties. With the texture information, we can additionally calculate
the reorientation of the grains and the change in the elastic coefficients
throughout a forming simulation.

Pole figures showing the results of spatial 1D texture interpolation
based on the linear method and the regression analysis along RD in 2.5°
increments are shown in Fig. 11. Pole figures corresponding to input
textures are boxed in on the left. The nearest 20 neighbors are used as
input textures for the regression method. Qualitatively, the peaks in the
interpolated/regressed textures appear to be correct.

Fig. 12 shows values for the selected components of thermal expan-
sion and elastic stiffness tensors in the local frame computed for the
azimuthal, radial, and polar direction using EPSC for the textures in
Fig. 11 i.e. as a function of polar angle from the pole cap (0°) to the
equator (90°) along Az =0. As is evident, significant changes in the val-
ues occur that can only be computed with knowledge of the bulk tex-
ture and the single crystal properties. The plot includes values based
the measured orientation distributions and two interpolation methods.
The linear interpolation of ODFs results in a linear distribution of ther-
mal expansion and elastic stiffness coefficients between measured data
points. The regression method provides similar values to the linear in-
terpolation method for polar angles greater than 10° with the addition
of curvature between points. For polar angles less than 10°, the pole cap
values are smoothed out due to weighting by the surrounding points.
Although the pole figure intensities in Fig. 7 seem to be continuous func-
tions of position on the hemisphere (the texture changes smoothly), the
texture at the pole cap is a discontinuity causing some deviations for the
LOESS analysis. This is due to the fact that as the pole cap is approached,
there is a numerical singularity where textures having polar circumfer-
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Fig. 8. Predicted (a) thermal expansion coefficients and (b) elastic stiffness tensor components at 25 °C for each measured texture.

0 Hull

B o-U Formed Hemisphere

Fig. 9. A texture hull for orthorhombic-
triclinic ODFs in the first three dimensions
of the expansion space containing the sub
hull made up of the a-U hemisphere tex-
tures.
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Fig. 10. Global sample frame pole figures showing (a) the measured pole cap texture, (b) the linearly interpolated texture half way between (a) and (c), and (c) the
measured texture at a polar angle of Pol = 30° along the RD axis (Az=0°). The intensity bar and the pole figure frame are the same as in Fig. 2.

020

002

Table 3

Selected upper bound (i.e. the volume weighted average over crystal values) thermal expansion and elastic stiffness
tensor components evaluated for the pole cap texture (Fig. 10a), RD Pol30 (Fig. 10c) texture, and the averaged
texture (Fig. 10b). The coefficient average is obtained by averaging the values for the pole cap and RD Pol30
textures to determine the percent difference between the coefficient average and the ODF average results.

dpp [X109 K] @y, [x10° K]

a, [X10° K1 Cyy,, [GPa] Gy, [GPal  Cypyy [GPa]

Pole cap 12.6474 11.6624
RD Pol30 14.1903 10.2823
Texture average 13.4188 10.9723
Coefficient average 13.4343 10.9544
% difference 0.12 0.16

16.8247 56.93 59.15 59.15
16.6619 56.89 55.56 63.14
16.7433 56.90 57.41 61.11
16.7458 56.91 57.36 61.15
0. 015 0.01 0.1 0.06

RD Linear Interpolation
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ence directions originally aligned with the RD evolve much faster. Dur-
ing the forming process there is a combined bending and tension stress
state along the polar circumference of the hemisphere. There is also a
state of compression along the azimuthal circumference. These states of
mechanical fields drive the texture evolution. Works like [63,64], have
shown the strong dependence of texture evolution on the compression
direction for a-U. As a result, the textures near the pole cap vary substan-
tially with the probing direction, while the pole cap texture is invariant
experiencing only rigid motion. It is this difference in texture evolution
that leads to the numerical singularity that is seen at the pole cap caus-
ing oscillations in the LOESS smoothing. It is important to note that the
regression method does not necessarily produce the same texture as a
measured texture at the measurement position whereas an interpolated
texture necessarily does.

Fig. 13 shows pole figures comparing results obtained based on the
LOESS regression and bilinear interpolation methods with experimen-
tal measurements. The coordinates for each pole figure are specified by
the values of Az and Pol in the figure. Input textures for the bilinear
interpolation scheme are distinguished with boxes. The particular sec-
tion of the hemisphere depicting the comparisons was chosen due to the
large texture gradient observed. Interpolation/regression is most accu-
rate where gradients are small making this the most difficult section for
validation. Note that interpolation along the edges of measured points
reduces to 1D linear interpolation for bilinear and barycenric interpo-
lation, while 3** and 4 are the only interpolated textures influenced by

RD Quadratic Loess Regression
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Fig. 11. {020} pole figures along RD in 2.5°
increments. Linearly interpolated textures are
on the left and quadratic loess regressed tex-
tures are on the right. Pole figures correspond-
ing to input textures are boxed in on the left.
The nearest 20 neighbors (in all directions) are
used as input textures for quadratic regression
on the right. The intensity bar showing the mul-
tiples of random distribution is the same as in
Fig. 2.

the data in 2D. All of the textures labeled 3 in Fig 13 were produced
using bilinear interpolation, but the same results would be obtained
if barycentric interpolation were used. Input textures for the quadratic
LOESS regression includes the 20 nearest neighbors excluding the five
experimentally measured textures for a fair comparison and validation.
These five excluded textures are denoted by 1*. Considering these tex-
tures in the analysis would improve the results. As explained earlier, the
regression method does not always produce the same measured textures
at the coordinates of measured textures. For this reason we also show
the resulting regressed textures for four of the input textures, which are
denoted by 1. The TDI of each of the resulting textures as compared
to the experimental data is shown in Table 4. For the input textures
the TDI for bilinear and barycentric interpolation is 0, while there is a
small difference for the LOESS regression textures. At the data points ex-
cluded from the interpolation and regression the average TDI is 0.00684
and 0.00694, respectively. The negligibly small TDI confirms excellent
agreement.

Finally, thermal expansion coefficients at room temperature based
on textures interpolated to a uniform 1°x1° grid over the hemisphere
are shown in Fig. 14. This level of refinement is similar to what would
be seen on a finite element mesh for the same part. For Fig. 14a, tex-
ture for each material point is obtained by interpolating the measured
data using barycentric weighting at the irregular grid of texture data
for ¢ <30° and bilinear weighting at the regular grid of texture data
for ¢ >30°. For Fig. 14b, textures for each material point obtained by
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Fig. 12. Predicted coefficients of thermal expansion (CTE) and selected components of elastic stiffness tensor at room temperature for textures in Fig. 11. The circles,
stars and lines are plotted using experimentally measured textures, linearly interpolated textures, and regressed textures, respectively.
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Fig. 13. {020} pole figures showing the
comparison between 1) measured and cal-
culated by 2) quadratic loess regression, 3)
two-dimensional bilinear interpolation, and 4)
barycentric interpolation. The coordinates for
each pole figure are specified by the values of
Az and Pol. Input textures for the quadratic
loess regression include the 20 nearest neigh-
bors excluding 1* textures. Input textures for
the bilinear interpolation scheme are 1 and are
boxed in. The intensity bar is the same as in
Fig. 2.

Table 4
TDI calculated for each interpolation technique as compare to the measured texture.
Az90 Az90 Az90 Az105 Az105 Az105 Az120 Az120 Az120
Pol40 Pol50 Pol60 Pol40 Pol50 Pol60 Pol40 Pol50 Pol60
Barycentric 0 0.0079 0 0.0066 0.0084 0.0055 0 0.0058 0
Bilinear 0 0.0079 0 0.0066 0.0084 0.0055 0 0.0058 0
Loess 0.0029 0.0082 0.0028 0.0062 0.0087 0.0054 0.0041 0.0062 0.0029

quadratic LOESS regression. The coefficients of thermal expansion are
calculated using the self-consistent method available in EPSC. As is ev-
ident, both methods produce reasonably smooth continuous distribu-
tions between measured data points. However, the LOESS regression
has smoother contours while the bilinear interpolation matches the mea-
sured data exactly.

4. Discussion

This work explores several interpolation methods between experi-
mental datasets of orientation distributions taking advantage of the lin-
ear expansion space of GSH to enable crystal mechanics-based finite el-
ement thermo-mechanical simulations. The procedure is first validated
against an established procedure involving quaternions and then applied
to a case study of a-U. The interpolation procedure involving quater-
nions is convenient for interpolating between ODFs having the same
number of discrete orientations that evolved from one to another. Ad-

vantageously, the new GSH procedure developed here is a probability
distribution interpolation technique. Comprehensive texture data form-
ing orientation distributions at experimental grid points is collected by
neutron diffraction and presented for a hemispherical, a-U part. Data re-
finement by interpolation is necessary to initialize a finite element mesh
of the same part.

The detailed analysis revealed that filtering out rigid rotations should
be done before performing interpolation/regression to minimize differ-
ences between textures and that the quadratic LOESS regression method
is the most appropriate of the explored methods for refining data in 1D
and 2D. The added benefit of LOESS regression is ‘outlier’ detection and
data smoothing from large deviations. The fact that LOESS regression
does not necessarily match the measured data exactly is a benefit of the
technique, as the regression can be considered to lie within the experi-
mental uncertainty/error. While regression analysis is often successful,
it is possible that it will generate a target point that is outside of the tex-
ture hull that is physically inadmissible. This could happen if the amount
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Fig. 14. Predicted thermal expansion coefficients at room temperature based on textures at each material point after a) interpolation using barycentric weighting
at the irregular grid of texture data for ¢ < 30" and bilinear weighting at the regular grid of texture data for ¢ > 30° and b) loess regression weighting.

of measured data is insufficient or if the data contains many outliers. In
this case the linear interpolation method should be used, as it will al-
ways produce a target point that is in the hull as physically possible. The
linear/bilinear/barycentric weighting always match the measured data,
even if the measured data contains outliers. In this study, all regressions
produced coefficients lie within the texture hull.

5. Conclusions

This paper develops a robust procedure for the interpolation of ori-
entation distributions aimed at initializing FE models embedding ODF
sensitive and crystal mechanics-based constitutive models. The proce-
dure is based on representing ODFs using GSH functions into the linear
expansion space of the weighting coefficients. At the core of the proce-
dure is weighting of the expansion coefficients of ODFs within the linear
expansion space of GSH. Several approaches including the linear, bilin-
ear, regression and barycentric weighting are explored to perform the
interpolation. It is found that the quadratic LOESS regression method is
the most appropriate for weighting and simultaneous smoothing of suf-
ficiently large experimental data sets. While linear/bilinear/barycentric
interpolation also successfully refine measured data, this method is rec-
ommended for small sets of experimental data, where the regression
may be statistically insignificant. Upon establishing the expansion coef-
ficients of the interpolated ODF, a linear programing problem is solved
within the expansion space to construct the interpolated ODF. The pro-
cedure is applied to interpolate a comprehensive data set obtained by
neutron diffraction for a hemispherical part made of depleted «-U. It
is shown that the procedure is robust and can be used for initializ-
ing finite element models. Significant changes in the torsional com-
ponents for thermal expansion and elastic stiffness are revealed by
plotting these properties over the hemispherical part of a-U meaning
that the predicted distortion with temperature of the part are strongly
anisotropic. Heating/cooling simulations of parts made of a-U can now
be carried out more accurately because material properties based on

texture and single crystal constants are available at each FE integration
point.
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