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a b s t r a c t 

Microstructure evolution-based constitutive models in macro-scale simulation tools require statistical microstruc- 

ture input at each integration point. This paper reports several robust procedures for interpolating orientation 

distribution functions (ODFs) from coarsely spaced experimental measurement grids to finely spaced model- 

ing grids. The procedures are based on representing ODFs using generalized spherical harmonics (GSH) func- 

tions. Relying on the linearity of the expansion space, the core of the procedures involves weighting of the GSH 

expansion coefficients over a given variable such as space, strain, or temperature, thus providing ODFs as a 

function of location, deformation, or thermal treatment. Interpolation approaches including regression and lin- 

ear/bilinear/barycentric weighting are explored and discussed in terms of their accuracy and suitability. Upon 

establishing the expansion coefficients of the interpolated ODF, a linear programing problem is solved within 

the expansion space to construct the interpolated ODF. The procedures are applied to a comprehensive data set 

obtained by neutron diffraction for a hemispherical part made of depleted 𝛼-uranium. Utilizing the ODF interpo- 

lation procedures, texture is interpolated over the part revealing significant anisotropy in the texture dependent 

thermal expansion and elastic stiffness coefficients. The results of this work facilitate introducing thermal expan- 

sion and elastic anisotropy into numerical tools for simulating thermo-mechanical loading of microstructurally 

heterogeneous components using the ODF informed crystal mechanics-based models to more accurately estimate 

the effective properties required by such simulations. 
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. Introduction 

Modeling the behavior of polycrystalline metal components sub-

ected to thermal and mechanical loading during processing or ser-

ice conditions requires spatially resolved computational techniques

1–6] . In order to reveal critical aspects of anisotropic material behav-

or, knowledge of the spatial distributions of microstructural features is

ecessary. Crystallographic texture is such a feature and can be quan-

itatively described by an orientation distribution function (ODF) [7] ,

hich is the normalized probability density associated with the occur-

ence of a given crystal orientation in the polycrystal. Since the orien-

ations of the crystals making up the polycrystalline aggregate govern

nisotropic properties such as elastic stiffness and thermal expansion,

n particular for highly anisotropic low symmetry metals, knowledge of

he orientation distribution allows for an estimate of the bulk properties

ased on known single crystal properties. 
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Finite element (FE) method-based numerical simulations that embed

exture at finite element material points have been developed [8–15] . Of

articular interest for the present development is the FE implementation

f the elasto-plastic self-consistent (FE-EPSC) crystal plasticity model

16,17] , which is capable of predicting homogenized thermal expan-

ion, elasticity, and plasticity [18] . The FE-EPSC model is able to pre-

ict spatial variation of anisotropic deformation because it accounts for

patial variation of crystal lattice orientations of constituent grains and

heir inherent single crystal anisotropy across FE integration points. 

Accurate FE models of components are best constructed based on ex-

erimental characterization of position-dependent microstructure. How-

ver, experimental measures of microstructures are generally limited

o a finite number of positions within a component due to the na-

ure of characterization efforts by electron, X-ray, or neutron-based

exture measurements. For predictive modeling capabilities, a consid-

rably finer FE grid/mesh spacing is necessary than is possible to
. 

https://doi.org/10.1016/j.mtla.2019.100328
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mtla
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mtla.2019.100328&domain=pdf
mailto:marko.knezevic@unh.edu
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xperimentally measure. While it is comparably straight-forward to in-

erpolate scalar, vector, or tensor quantities, interpolation schemes of

he mathematically much more complex ODFs are much more involved.

hus, the construction of finely spaced material points considering the

patial variation of the ODF within models based on more coarsely

paced experimental datasets is an important task needing to be ad-

ressed. 

In recent works [19,20] , we presented a rigorous procedure for re-

ucing large datasets of crystal orientations using generalized spherical

armonics (GSH) functions. The procedure involved matching the ex-

ansion coefficients of an ODF containing any number of crystal orien-

ations with those of an ODF containing a predetermined compact set of

iscrete orientations. The linearity of the expansion space was exploited

o set a linear programming problem to match the expansion coefficients

f the given ODF with those of a compact ODF by varying the weights

f orientations in the compact ODF. The compact ODF was then used to

odel ODF-property relationships and their evolution in crystal plastic-

ty simulations. A number of works reported the GSH representation of

DF-sensitive mechanical properties in an effort to accelerate homoge-

izations of ODF-effective properties or property bounds [21–27] . 

In this paper, we develop a GSH-based interpolation methodology to

nterpolate partial datasets of orientation distributions from a coarse

xperimental grid of texture measurements to a finite element mesh

esolution grid. In the description that follows, the term interpolation

ill be used to describe both interpolation methodologies and regres-

ion methods. These methods advantageously exploit the linearity of the

SH expansion space to interpolate expansion coefficients over space,

train, or temperature. Upon interpolation, an ODF corresponding to

he interpolated coefficients at a given point in space is constructed by

olving the linear programing problem in the expansion space [19] . We

erify this procedure by comparing with an available quaternion inter-

olation approach [28,29] . We then apply it to a hemispherical compo-

ent of depleted 𝛼-uranium ( 𝛼-U) with orthorhombic crystal structure

or which a comprehensive experimental texture dataset is obtained by

patially resolved neutron diffraction texture measurements. Neutron

iffraction measures textures averaged over mm 

3 to cm 

3 volumes due

o the deep penetration of thermal neutrons into most materials com-

ined with beam spot sizes of ∼0.1–1 cm 

2 . This is especially beneficial

or the bulk characterization of high atomic number (Z) materials, for

hich electrons and X-rays have limited penetration and the character-

zation is therefore limited to near the surface [30] . 

It is shown that the interpolation procedure developed here is robust

nd can be used for initializing finite element models based on more

imited experimental datasets. This is a novel and unique approach for

nterpolating orientation distributions. Significant changes in the spa-

ially resolved tensorial components for thermal expansion and elastic

tiffness are revealed by interpolating texture over the hemispherical

art of 𝛼-U, indicating that the predicted distortion with temperature

f the part is strongly anisotropic. Such simulations can only be carried

ut accurately with the knowledge of single crystal constants and the

exture at each finite element integration point. 

. Methodologies for interpolation of partial datasets of 

rientation distributions 

This section summarizes two methodologies for texture interpola-

ion. A procedure involving quaternions has been developed [28] and

sed in the literature for finding an orientation between two crystal ori-

ntations [29] . We use it here as a reference to compare and verify the

roposed GSH-based procedure for the interpolation of ODFs. 

An ODF, f ( g ), is a probability density function describing the occur-

ence of a crystal lattice orientation, g , in a volume of a polycrystalline

aterial. The function is appropriately normalized to be expressed as: 

 ( 𝑔 ) dg = 

dV 

𝑉 
, ∫𝑂 𝑆 

𝑓 ( 𝑔 ) dg = 1 , (1)

d

here V is the total volume and dV is the volume increment correspond-

ng to all grains falling within the dg increment in Bunge-Euler space.

he OS stands for the orientation space encompassing all orientations

7,31] . An ODF can be defined using a discrete set of crystal lattice

rientations, which can be described by a set of three independent vari-

bles such as Euler angles e.g. in Bunge notation [7] , an angle-axis pair

32] , a Rodriguez vector [33] , or quaternions [34] . In this work, we will

ely on either three Euler angles in Bunge notation 𝑔 = ( 𝜑 1 , 𝛷, 𝜑 2 ) or a

et of unit quaternion vector components 𝐪 = ( 𝑞 1 , 𝑞 2 , 𝑞 3 , 𝑞 4 ) to describe a

rystal orientation. 

.1. Quaternion procedure 

Taking advantages of the spherical linear interpolation (‘ slerp’ )

ethod [28,29] , the quaternion description facilitates a convenient way

or interpolating between two crystal orientations. Specifically, the slerp

ethod interpolates along an arc between two quaternions on the unit

ypersphere using the following equation: 

 𝑓 ( 𝑡 ) = 𝐪 1 
sin ( ( 1 − 𝑡 ) 𝜃) 

sin ( 𝜃) 
+ 𝐪 2 

sin ( 𝑡𝜃) 
sin ( 𝜃) 

(2)

here q f is the final interpolated quaternion, t is a fraction defining the

eighted average of the first quaternion ( q 1 ) and the second quaternion

 q 2 ), and 𝜃 is the angle between the two quaternions calculated using:

= co s −1 
(
𝐪 1 ⋅ 𝐪 2 

)
(3)

In order to interpolate an ODF, each orientation within the ODF

ust be interpolated individually from its initial to its final state, which

ake an input pair of quaternions for the interpolation in the quater-

ion space. Consequently, the two ODFs must be represented using the

ame number of discrete orientations. The collection of discrete orien-

ations obtained by interpolating the pairs is the final interpolated ODF.

he method has been well established and utilized in several prior stud-

es [29,35] , especially in those involving the interpolation between two

DFs experiencing the same or a similar deformation path. While the in-

erpolation involving quaternions is convenient, two interpolated ODFs

ay not always contain the same number of discrete orientations or

ay not always evolve from one to another as a consequence of evolu-

ion during plastic deformation. Thus, the method is rather restricted to

odeling textures. The method would also break down when twinning

bruptly reorients a fraction of a crystal rather than gradual reorienta-

ion of the entire crystal by slip or in recrystallization. To relax these

onstraints, other methods based on probability distribution interpola-

ion techniques can be explored and utilized [36–41] . The next section

escribes procedures for the interpolation of orientation distributions

eveloped in this work. 

.2. GSH procedure 

Contrary to the interpolation between pairs of orientations in the pre-

ious section, the interpolation/regression procedures developed in this

ection rely on representing an ODF using GSH expansion coefficients.

hese coefficients represent a given ODF as a point in GSH expansion

pace. The procedures developed here find an interpolated ODF (output

rom the procedures) by interpolating between points representing mea-

ured ODFs (input to the procedures). To facilitate representation of the

DF by a finite set of orientations, e.g. as input into an EPSC model we

erform an approximation of the interpolated ODF from the coefficients

o a weighted set of discrete crystal orientations using a recently devel-

ped methodology involving the GSH representation of the ODF [20] .

ere, a linear programming problem is solved using the Matlab built in

unction, linprog , which moves the weighted average of the coefficients

n a predetermined set of random orientations by adjusting their weights

o match the interpolated ODF point in the expansion space, as will be

escribed below. 
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Fig. 1. Simplex showing the areas corresponding to each vertex used to calcu- 

late corresponding weights in the Delaunay triangulation. 
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.2.1. Representation of ODFs 

The harmonic series representation used in this procedure follows

he formulation of Bunge as described in [7] . In this formulation, the

DF is represented by a GSH series in the form: 

 ( 𝑔 ) = 

∞∑
𝑙=0 

+ 𝑙 ∑
𝑚 =− 𝑙 

+ 𝑙 ∑
𝑛 =− 𝑙 

𝐹 

mn 
𝑙 

𝑇 mn 
𝑙 

( 𝑔 ) , (4) 

here, 𝐹 

𝑚𝑛 
𝑙 

and 𝑇 𝑚𝑛 
𝑙 

( 𝑔) are the expansion coefficients and the GSH func-

ion, respectively. Reduction of the expansion series is possible by tak-

ng advantage of crystal and sample symmetries. For example, the sym-

etrized expansion series for orthorhombic-orthotropic 1 symmetry is

7] : 

 ( 𝑔 ) = 

∞∑
𝑙=0 

𝑀( 𝑙) ∑
𝜇=1 

𝑁( 𝑙) ∑
𝑣 =1 

𝐹 

𝜇𝑣 

𝑙 
𝑇̈ 

𝜇𝑣 

𝑙 
( 𝑔) , (5) 

here 𝑇̈ 
𝜇𝑣 

𝑙 
( 𝑔) is the symmetrized GSH function. The number of triplet

 l, 𝜈, 𝜇) combinations defines the number of dimensions of the expan-

ion space. Each triplet corresponds to one expansion coefficient and

herefore the number of triplets allowed by symmetry up to the chosen

rder for the expansion determines the dimensionality of the space. The

xpansion in the present work is chosen to be l = 16. Note that l = 16 is

he default for the EDAX orientation imaging microscopy (OIM) analysis

oftware, TexSEM Laboratories (TSL). Pertaining to the nomenclature of

he symmetrized GSH function, the first column of dots above T repre-

ents crystal symmetry (orthorhombic), while the second column of dots

epresents sample symmetry (orthotropic), and no dots at the given lo-

ation represent no symmetry i.e. triclinic symmetry [7,20] . 

Expansion coefficients for an individual orientation g k in an ODF

ontaining a number of discrete orientations are evaluated using the

omplex conjugated 𝑇̈ ∗ 𝜇𝑣 

𝑙 
as [7] 

 𝐹 

𝜇𝑣 

𝑙 
= ( 2𝑙 + 1 ) ̈𝑇 ∗ 𝜇𝑣 

𝑙 

(
𝑔 𝑘 
)
. (6) 

The coefficients 𝑘 𝐹 

𝜇𝑣 

𝑙 
for a given orientation g k can be visualized

s a point in the multidimensional expansion space defined by ( l, 𝜈, 𝜇)

riplet. When Eq. (6) is applied to a set of selected individual crystal

rientations, it is used to construct a texture hull. The hull is made up of

oints corresponding to the expansion coefficients of these orientations.

ny empty space between the points in the hull can be filled using a

eighted combination of the existing points, g k . As a result, the hull is

onvex and a compact representation of the complete set of all physically

ealizable ODFs. The hull is in the core of the compact reconstruction

f interpolated ODFs to get weighted Bungle-Euler angles, as will be

escribed later. 

Eq. (6) also applies to any given ODF to obtain a point in the hull

fter calculating the volume average of the expansion coefficients cor-

esponding to the individual crystal orientations within the given ODF.

ere, a given ODF described by a finite set of N crys orientations weighted

y weights 𝛼 is be represented as a point in the hull 

̄
 

𝜇𝑣 

𝑙 
= 

𝑁 𝑐𝑟𝑦𝑠 ∑
𝑘 = 1 

𝑘 𝛼𝑘 𝐹 

𝜇𝑣 

𝑙 
, 

𝑁 𝑐𝑟𝑦𝑠 ∑
𝑘 = 1 

𝑘 𝛼 = 1 , 0 < 

𝑘 𝛼< 1. (7) 

The bar placed on top of F indicates that the coefficients have been

eighted. The weighting of coefficients corresponds to weighting of the

rystal orientations belonging to the given ODF. Thus, the linearity of

he expansion space facilitates the representation of a single crystal ori-

ntation as well as a weighted polycrystalline ODF. 

The interpolation/regression of ODFs is accomplished using the av-

raged expansion coefficients ( ̄𝐹 

𝜇𝑣 

𝑙 
) to create a target point in the expan-

ion space. The subsequent generation of a compact ODF corresponding

o the target point is accomplished using the hull points ( 𝑘 𝐹 

𝜇𝑣 

𝑙 
) , as de-

cribed next. 
1 The first symmetry refers to symmetry at the crystal level, while the second 

ymmetry refers to a statistical symmetry at the sample level. 

𝐹

.2.2. Interpolation of ODFs 

We explore several interpolation methods, each requiring a differ-

nt number of input ODFs, N . For linear interpolation N = 2, for bilin-

ar interpolation N = 4, and for barycentric weighting N = 3. Note that

inear/bilinear/barycentric interpolation belong to the same technique.

nterpolation between N ODFs is performed on each expansion coeffi-

ient defined by a combination of ( 𝜇, 𝜈, l ) with respect to a dependent

ariable such as spatial coordinates, x , or accumulated plastic strain, ɛ .

Linear interpolation between two ODFs uses the following equa-

ion: 

̂
 

𝜇𝑣 

𝑙 
( 𝑡 ) = ( 1 − 𝑡 ) 1 𝐹 

𝜇𝑣 

𝑙 
+ 𝑡 2 𝐹 

𝜇𝑣 

𝑙 
, 0 < 𝑡 < 1 (8) 

here t is the distance defining the weighted average between expan-

ion coefficients of the first ODF, 1 𝐹 

𝜇𝑣 

𝑙 
, and expansion coefficients of

he second ODF, 2 𝐹 

𝜇𝑣 

𝑙 
, and 𝐹 

𝜇𝑣 

𝑙 
are the resulting interpolated expansion

oefficients. The ODF corresponding to 𝐹 

𝜇𝑣 

𝑙 
can be constructed, as will

e explained below. 

A two-dimensional (2D) grid of ODFs can be interpolated using bilin-

ar interpolation. Four ODFs are used as an input to interpolate in two

patial dimensions, x and y . For a given point of interest ( x, y ), bilinear

nterpolation is performed using: 

̂
 

𝜇𝑣 

𝑙 
( 𝑥 , 𝑦 ) = 

(
𝑥 2 − 𝑥 

)(
𝑦 2 − 𝑦 

)
(
𝑥 2 − 𝑥 1 

)(
𝑦 2 − 𝑦 1 

)
11 

𝐹 

𝜇𝑣 

𝑙 
+ 

(
𝑥 − 𝑥 1 

)(
𝑦 2 − 𝑦 

)
(
𝑥 2 − 𝑥 1 

)(
𝑦 2 − 𝑦 1 

)
21 

𝐹 

𝜇𝑣 

𝑙 

+ 

(
𝑥 2 − 𝑥 

)(
𝑦 − 𝑦 1 

)
(
𝑥 2 − 𝑥 1 

)(
𝑦 2 − 𝑦 1 

)
12 

𝐹 

𝜇𝑣 

𝑙 
+ 

(
𝑥 − 𝑥 1 

)(
𝑦 − 𝑦 1 

)
(
𝑥 2 − 𝑥 1 

)(
𝑦 2 − 𝑦 1 

)
22 

𝐹 

𝜇𝑣 

𝑙 
, 

𝑦 1 < 𝑦 < 𝑦 2 , 𝑥 1 < 𝑥 < 𝑥 2 , (9) 

here 𝐹 

𝜇𝑣 

𝑙 
( 𝑥 , 𝑦 ) are the resulting interpolated expansion coefficients,

hile 𝑖𝑗 𝐹 

𝜇𝑣 

𝑙 
are the input expansion coefficients at points ( x i , y j ). Bi-

inear interpolation is linear along each of the edges and inherently

uadratic through the 2D space. 

When ODF data is available in a highly irregular grid, Delaunay tri-

ngulation and barycentric weighting can conveniently be used. The

elaunay triangulation is performed to find a set of triangles, referred

o as simplices, that discretize the space. This is done in Matlab using

he built in Delaunay function. For a given point of interest v ( x, y ), the

nclosing simplex and barycentric weights are found using the Matlab

unction tsearchn , which uses the Delaunay triangulation as an input.

he areas, A i , corresponding to each vertex, v i , are depicted in Fig. 1 .

he barycentric weights, w i , of each vertex, are calculated using the fol-

owing equations 

 𝑖 = 

𝐴 𝑖 

𝐴 

, 𝐴 = 

3 ∑
𝑖 = 1 

𝐴 𝑖 . (10) 

The weighted average of the expansion coefficients at each vertex is

he target point 

̂
 

𝜇𝑣 

𝑙 
= 

3 ∑
𝑖 = 1 

𝑤 𝑖 𝑖 𝐹 

𝜇𝑣 

𝑙 
(11) 
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The barycentric weighting method is continuous throughout the sim-

lex and linear along all edges. 

.2.3. Regression analysis of ODFs 

Similar to interpolation methods, regression analysis can be per-

ormed on the expansion coefficients when multiple ODFs area avail-

ble. This allows more data to be incorporated into the determination

f textures between grid points facilitating smoothing, which is usually

eneficial. One-dimensional (1D) quadratic regression (local using par-

ial data or global using all data) is performed using the polyfit least-

quares regression function in Matlab. A second order polynomial is fit

or each expansion coefficient as a function of e.g. spatial position or

train as 

̂
 

𝜇𝑣 

𝑙 
= 𝑃 

𝜇𝑣 

𝑙 
𝑥 2 + 𝑄̄ 

𝜇𝑣 

𝑙 
𝑥 + 𝑅̄ 

𝜇𝑣 

𝑙 
. (12)

The coefficients 𝑃 
𝜇𝑣 

𝑙 
, ̄𝑄 

𝜇𝑣 

𝑙 
, and 𝑅̄ 

𝜇𝑣 

𝑙 
are fit independently for each di-

ension ( 𝜇, 𝜈, l ) with respect to spatial coordinate x or strain level 𝜀 . 

Two-dimensional (2D), ( x, y ), quadratic regression is usually done

sing the locally weighted regression function, ‘loess’, in Matlab. This

unction weights points within a user defined span using the tricube

unction: 

 𝑖 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 
1 − |

( √ (
𝑥 − 𝑥 𝑖 

)2 + 

(
𝑦 − 𝑦 𝑖 

)2 

) 

𝑑 
|
3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

3 

(13)

here, ( x, y ) are the predictor values, ( x i , y i ) are the nearest neighbors,

nd d is the furthest distance from the predictor value within the span.

or this work, 20 spatial points were used for each regression. Symmetry

an be introduced to include more data at the boundaries and improve

egression quality. 

A locally weighted 2nd order regression (i.e. quadratic LOESS ) is

erformed on each of the expansion coefficients to determine the target

oint. 

̂
 

𝜇𝑣 

𝑙 
= 𝑃 

𝜇𝑣 

𝑙 
+ 𝑄̄ 

𝜇𝑣 

𝑙 
𝑥 + 𝑅̄ 

𝜇𝑣 

𝑙 
𝑦 + 𝑆̄ 

𝜇𝑣 

𝑙 
xy + 𝑇̄ 

𝜇𝑣 

𝑙 
𝑥 2 + 𝑈̄ 

𝜇𝑣 

𝑙 
𝑦 2 . (14)

The variables 𝑃 
𝜇𝑣 

𝑙 
, 𝑄̄ 

𝜇𝑣 

𝑙 
, 𝑅̄ 

𝜇𝑣 

𝑙 
, 𝑆̄ 

𝜇𝑣 

𝑙 
, 𝑇̄ 

𝜇𝑣 

𝑙 
, and 𝑈̄ 

𝜇𝑣 

𝑙 
are regression coef-

cients, which are calculated by minimizing the weighted residuals. If

he residual of a data point is more than six times the median absolute

eviation of the resulting regression the data point is removed and the

egression is repeated. Since texture hull by definition is a convex and

ompact space representing the complete set of all physically realizable

DFs, the target point must lie within the hull. With the regression meth-

ds due to intrinsic nonlinearity, it is possible to generate a target point

hat is outside of the texture hull and therefore is not physically possi-

le. It is not possible to reconstruct a compact ODF for such a point. In

his case another interpolation techniques is used which by default will

lways produce a target point that is in the hull and is physically pos-

ible. It is worth mentioning that regression is not restricted to LOESS.

ethods such as ‘kriging’ [42] have also been explored yielding similar

esults to those obtained by LOESS. Alternative techniques can easily be

mplemented into our overall procedure. 

.2.4. Compact reconstruction of interpolated ODFs 

After GSH coefficients have been interpolated, as a final step, it is

ecessary to generate an equivalent compact ODF in the form of Bunge-

uler angles in order to enable crystal mechanics simulations. For com-

utational efficiency of the crystal mechanics simulations, it is desirable

or the ODF to be as compact as possible. A compact ODF consisting

f a certain number of weighted orientations corresponding to the tar-

et point, 𝐹 

𝜇𝑣 

𝑙 
, is constructed by solving a linear programming problem

20] . A uniform ODF is conveniently generated in MTEX and the ex-

ansion coefficients for each crystal orientation, k , of this uniform ODF,
 𝐹 

𝜇𝑣 

𝑙 
are calculated. Typically the number of discrete crystal orienta-

ions chosen to represent an ODF ( k = 1.. K ) is of the order of a few hun-

red. These orientations are invariant – only their weights change. To

nitialize the procedure, the weight per orientation, k 𝛼, is set equal (i.e.

/ K ). Using the built in Matlab function linprog a linear programming

roblem is set to find the weights of each crystal orientation, k 𝛼, in such

 way that the sum of the weighted expansion coefficients of the uni-

orm ODF, 𝑘 𝛼𝑘 𝐹 

𝜇𝑣 

𝑙 
, evolve to the target 𝐹 

𝜇𝑣 

𝑙 
. The only requirement for

nding the weights is that the target point, 𝐹 

𝜇𝑣 

𝑙 
, must be within the hull

f points, 𝑘 𝐹 

𝜇𝑣 

𝑙 
. Since the hull is convex and compact, a linear combi-

ation of single crystal points is possible, provided that the target point

ies within the hull. The system of equations is 

̂
 

𝜇𝑣 

𝑙 
− 

𝑘 𝛼𝑘 𝐹 

𝜇𝑣 

𝑙 
− 𝑊 

𝜇𝑣 

𝑙 
= 0 , 

𝑁 𝑐𝑟𝑦𝑠 ∑
𝑘 = 1 

𝑘 𝛼 = 1 (15) 

ith the inequality constraints 

 𝛼≥ 0, 𝑊 

𝜇𝑣 

𝑙 
≥ 0 (16) 

nd the objective function to minimize is 

∞

𝑙= 0 

𝑀 ( 𝑙 ) ∑
𝜇= 1 

𝑁 ( 𝑙 ) ∑
𝑣 = 1 

𝑊 

𝜇𝑣 

𝑙 
(17) 

The slack variable, 𝑊 

𝜇𝑣 

𝑙 
, is necesary for the linprog solver. The

inprog function adjusts the weights until a prescribed tolerance is

chieved. This tolerance is defined by 

OL = 

∞∑
𝑙= 0 

𝑀 ( 𝑙 ) ∑
𝜇= 1 

𝑁 ( 𝑙 ) ∑
𝑣 = 1 

|𝐹 

𝜇𝑣 

𝑙 
− 

𝑘 𝛼𝑘 𝐹 

𝜇𝑣 

𝑙 
| (18) 

The tolerance is set to TOL = 10 − 12 to ensure that the sum of the

eighted expansion coefficients of the compact ODF are identical to the

arget point. Once the weights are found, the compact interpolated ODF

s available. 

.2.5. Texture difference index 

To evaluate the quality of the interpolated textures we introduce the

exture difference index ( TDI ). This measure is used to quantify the ac-

uracy of interpolated textures in terms of their spectral representation

orresponding to l = 16. The TDI is calculated using: 

DI = 

∑∞
𝑙= 0 

∑𝑀 ( 𝑙 ) 
𝜇= 1 

∑𝑁 ( 𝑙 ) 
𝑣 = 1 |𝐹 

𝑢𝑣 
𝑙 

− 𝐹 

𝜇𝑣 

𝑙 
|

𝑑 
(19) 

here, 𝐹 

𝑢𝑣 
𝑙 

and 𝐹 

𝜇𝑣 

𝑙 
are the expansion coefficients for the target (mea-

ured) ODF and compact (interpolated) ODF, respectively. d is the fur-

hest distance between any two points in the convex hull, which is made

p of expansion coefficients corresponding to a uniform ODF. The TDI

s defined in Eq. (19) represents the distance of the interpolated ODF

o the measured ODF normalized by the furthest possible distance. This

efinition bounds the TDI between 0 and 1, a TDI of 0 corresponds to

 perfect fit, while a TDI of 1 corresponds to a single crystal on the

oundary of the hull at the furthest possible point from the target. 

. Results 

.1. Verification case study: tension and compression of alloy AA6022-T4 

The objective of this case study is to interpolate between simulated

ension and compression textures deformed to different levels of true

train and to compare the equally weighted tension and compression

extures for the given strain level with the initial texture. Texture evolu-

ion between true strain levels of 0.1, 0.2, and 0.3 in tension and com-

ression creates the interpolation space with strain as a variable. The

argest strain space of 0.6 provides a stringent test for the methodology.
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Fig. 2. Pole figures for textures (input): (a) calculated with EPSC for simple tension along RD to the strain levels indicated in the figure and (b) calculated with EPSC 

for simple compression along RD to the strain levels indicated in the figure. Pole figures for interpolated textures (output) between (a) and (b) for a given strain level 

using: (c) the GSH procedure with linear interpolation of expansion coefficients and (d) the quaternion procedure. (e) Initial (undeformed) texture. 
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Table 1 

TDI calculated for each scheme interpolating be- 

tween compression and tension textures at strain lev- 

els of 0.1, 0.2, and 0.3 as compared to the initial un- 

deformed texture. 

𝜀 = 0.1 𝜀 = 0.2 𝜀 = 0.3 

Quaternion 0.0038 0.0147 0.0286 

Linear interpolation 0.0096 0.0305 0.0541 
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he case resembles interpolation of texture gradients in a beam exposed

o pure bending, where the top of the beam is in compression, the bot-

om of the beam is in tension, and the middle of the beam is undeformed

11] . Thus, the simulated data for tension and compression mimics spa-

ially resolved texture measurements across a plastically deformed beam

ubjected to pure bending, which leads to a variation from top to bottom

hanging from axial tension to axial compression. If the beam is assumed

o be long, the non-zero shear deformation between top and bottom of

t is small. Fig. 2 shows a set of pole figures obtained by EPSC calcu-

ations ( Fig. 2 a and b for tension and compression, respectively) and

ased on the interpolation methodologies involving GSH ( Fig. 2 c) and

uaternions ( Fig. 2 d). The EPSC calculations use the undeformed ODF

hown in Fig. 2 e as input [43] . In this case study, the GSH procedure is

estricted to linear between tension and compression. The texture inter-

olated for the strain free state between the given strain level in tension

nd compression is expected to resemble the initial texture ( Fig. 2 e),

ince the face-centered cubic Al alloy exhibit approximately symmetric

ension vs. compression behavior. The comparison between pole figures

n Fig 2 e and those obtained using the interpolation procedures in Fig. 2 c

nd d can be used to evaluate the accuracy. 

Interpolation using quaternions is always performed between two

rientations, in this case one predicted for tension and one predicted for

ompression to the same magnitude of plastic strain that originated from

he same undeformed initial crystal orientation. This approach satisfies

wo constraints of the quaternion procedure: (1) the texture predicted

n tension is represented by the same number of discrete orientations as

he texture predicted in compression and (2) pairing between the orien-

ations from the discrete sets is ensured because the same initial crystal

rientation evolves in both tension and compression. The interpolated

DF between those evolved in tension and compression corresponds to

he initial ODF. Thus, the average of a given ODF evolved a strain step

nto tension and the same given ODF evolved the same strain amount

nto compression is the original given ODF. This is only true for the ini-

ial texture (ODF) that is symmetric with respect to the loading axes

mirror symmetry on the plane defined by the loading axis) and under

lip deformation, as is the case here. To verify the GSH method, we per-

orm the same interpolation. As is evident from comparing the triplet

f pole figures in Fig. 2 e with the three triplets of Fig. 2 c, the linear in-

erpolation of the expansion coefficients loses accuracy with increasing

train, while the strain-free texture interpolated using the quaternion
ethodology ( Fig. 2 d) agrees well with the actual initial texture. As

xplained earlier, the GSH interpolation operates on the entire distri-

ution rather than individual crystal orientations. Furthermore, the use

f simulated crystal orientations allowed to assign pairs of quaternions.

owever, such assignment would not be possible for textures experi-

entally determined at the same deformation levels. Nevertheless, the

ase study facilitates evaluation of the accuracy of the GSH method for

ubsequent interpolation of ODFs that do not contain the same number

f discrete orientations and that do not evolve from one to another. The

SH procedure interpolates ODFs as probability distributions, which are

epresented using the expansion coefficients. Thus, accuracy of the in-

erpolation of the coefficients is the key to the accuracy of the overall

DF interpolation. 

The accuracy of the interpolation schemes is quantified using the

DI . Table 1 shows the TDI of the interpolated textures between com-

ression and tension textures at strain levels of 0.1, 0.2, and 0.3 as com-

ared to the initial undeformed texture. This shows rate at which each

cheme deteriorates. Two textures with a TDI < 0.05 are considered to

e in good agreement, and TDI < 0.03 represents excellent agreement.

he quaternion method produces good results at strain levels up to 0.3,

hile the GSH interpolation method loses accuracy after 𝜀 = 0.2. 

Fig. 3 shows for selected coefficients 𝐹 

𝜇𝑣 

𝑙 
that inherent non-linearity

f the GSH expansion coefficients develops with strain. Satisfactory ac-

uracy of the GSH procedure can be achieved even for the strain level of

.3 by taking into account the non-linearity of the expansion coefficients

y making them continuous functions using quadratic regression analy-

is in 1D. The global regression was performed using data points at 𝜀 of

 0.2 and ± 0.4 as input for interpolation output at 𝜀 of 0 and ± 0.3. This

s shown in Fig. 4 . Note that the bottom row textures in Fig. 4 a–c are all
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Fig. 3. One-dimensional evolution path with true strain for three selected expansion coefficients 𝐹 𝑢𝑣 
𝑙 

during simple tension and simple compression along RD of 

cubic-triclinic texture of AA6022-T4. Input for the interpolation consists of four textures generated using EPSC. The star symbols represent accurate solutions and 

are also determined using EPSC. 

Fig. 4. Pole figures comparing textures 

obtained using EPSC simulations from 

Fig. 2 (top row) to those based on the 

continuous expansion coefficient interpola- 

tion (bottom row): (a) texture after simple 

tension to the strain level indicated in the 

figure, (b) top - initial (undeformed) texture 

and bottom – interpolated texture, and (c) 

texture after compression to the strain level 

indicated in the figure. The continuous 

expansion coefficients used to calculate the 

bottom row pole figures are obtained using 

the quadratic regression analysis with data at 𝜀 of ± 0.2 and ± 0.4 ( Fig. 3 ). The pole figure frame and the intensity bar showing the multiples of random distribution 

are the same as those in Fig. 2 . 

Fig. 5. Single crystal elastic [38] and thermal expansion [39] constants for 𝛼-U as a function of temperature. 

Table 2 

TDI calculated for quadratic regression textures at strain levels of 

± 0.3 and the initial undeformed texture. 

𝜀 = − 0.3 Undeformed texture 𝜀 = 0.3 

Quadratic regression 0.0300 0.0291 0.0177 
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ontinuously interpolated consistent with Fig. 3 . Table 2 shows the TDI

alculated for each texture, all textures show excellent agreement. 

.2. Application case study: formed 𝛼-uranium hemisphere 

The texture in a clock-rolled plate of 𝛼-U is spatially non-uniform,

hich leads to anisotropic stiffness and thermal expansion properties.

hermal expansion in particular, shows a strong dependence on texture

aking it highly relevant for the interpolation study. If such a plate
s subjected to a temperature change there would be thermal residual

tresses generated. Moreover, if the plate is formed at temperature into a

emisphere, the geometrical constraints imposed by the forming die will

ot allow the hemisphere to distort freely, and thus the internal residual

tresses will be enhanced. Finally, the shape will be non-hemispherical

pon removal of the die. In order to predict these distortions and resid-

al stresses using a finite element model the initial spatially varying

rientation distribution is needed as input. Fig. 5 shows temperature-

ependent single crystal properties of 𝛼-U that will be used for calcu-

ating the homogenized crystallographic texture sensitive bulk elastic

tiffness tensor and thermal expansion tensor properties using the self-

onsistent approach [16,44] . Since the preferred orientation of the crys-

als making up the polycrystalline aggregate governs elastic stiffness and

hermal expansion, in particular of the highly anisotropic 𝛼-U, texture

haracterization allows for an estimate of these properties in bulk poloy-

rystals based on the known single crystal properties [45–47] and the
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Fig. 6. Schematic of half the arcs as cut from the hemisphere with the polar angles (along arcs) and azimuth (Az) angle (along equator of hemisphere). Measured 

pole figures are shown for several polar angles along RD (Az = 0°) and TD (Az = 90°). The indicated frame pertains only to pole figures, the pole figure axes are 

parallel to the azimuthal, polar, and radial directions. The intensity bar showing the multiples of random distribution is the same as in Fig. 2 . 
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patial orientation distributions. Measurement of these orientation dis-

ributions is described next. 

.2.1. Experimental 

Spatially resolved texture characterization of a depleted 𝛼-U

emisphere was performed using neutron diffraction. The texture

easurements were conducted on arc-shaped samples cut from equa-

or to pole of the hemisphere ( Fig. 6 ). The experimental setup consisted

f custom made sample holders allowing the arcs to be mounted to the

tandard sample holders of the robotic sample changer [48] of the High

ressure/Preferred Orientation (HIPPO) beam line [49,50] at the pulsed

eutron spallation source at LANSCE [51] , which is a neutron time-of-

ight diffractometer for bulk microstructural characterization of ma-

erials at ambient and non-ambient (temperature, pressure, load etc.)

onditions [49–51] . Owing to the 45 detector panels, covering ∼25%

f the sphere around the sample [52] each sample orientation provides

5 inverse pole figures in a neutron time-of-flight measurement with

onstant detector locations. The arc samples were measured at angles of

 45°, 22.5°, and 45° around the vertical axis. The arcs were rotated and

ranslated to complete the measurement along each arc. The samples

ere held by a robotic sample changer [48] with pre-programmed an-

les ensuring that the neutron beam impinged on the arcs in the radial

irection when the sample was rotated to 0° vertical rotation angle. This

rocedure ensures that the reference coordinate system (radial/normal

irection, azimuthal and polar directions) was the same for each probed

ample volume. A 2 mm cadmium slit, a strong thermal neutron ab-

orber, was installed in front of the samples to limit the illuminated

olume to a 2 mm radial slice of the arc. The count time was 20 min

at full proton accelerator current, slightly longer typically), leading to

bout one hour of beam time per probed volume on an arc (i.e. po-

ar increment) or about 9 h total per arc with measurements occurring

t 10° polar increments along the arcs. A total of 121 texture measure-

ents were made on arcs representing half of the hemisphere. Rolled Cu

heet, with a known orthorhombic texture symmetry was glued to the

rcs and the texture of this phase was analyzed simultaneously. In case

f a misorientation of the arc with respect to the reference coordinate

ystem, the symmetry of the texture of the rolled Cu sheet would have

een destroyed. This phase thus provided a check of the orientation of

ach slice of the uranium arc. 
Data analysis consisted of simultaneous Rietveld refinements against

ll collected histograms (three times 44 histograms, one detector defec-

ive) with procedures described in detail in [53,54] . No texture sym-

etry was imposed. The ODF was represented by the E-WIMV method

55] with a 7.5° resolution. The measuring coordinate system is such

hat the pole figures would have the radial outer surface at the top

ertically, the radially inner surface at the bottom vertically, and the

zimuthal circumference at constant polar angle left/right horizontally.

he center of the pole figures is therefore the polar circumference. Later,

ole figures are rotated for presentation in their local frame to have

heir radial direction at the center, polar direction horizontally, and az-

muthal direction vertically (spherical coordinate system). 

Fig. 6 shows a schematic of the arcs as cut from the hemisphere

long with 𝛼-U pole figures for two arcs in 10° polar increments. The

ole figures at the north pole of the hemisphere, measured from a piece

ut from that location, are at the top. The pole figures are contoured in

ultiples of random distribution (mrd), i.e. a pole density of 5 indicates

 five times higher pole density than for a sample with random crystal

rientations. As is evident, the 𝛼-U pole figures show a strong preferred

rientation of (002) poles ( c -axes) towards the radial direction of the

rc segment. At the north pole, the (020) poles ( b -axes) are preferably

riented along the prior RD of the rolled plate that was formed into

he hemisphere [56–58] . The b -axes are preferably oriented along the

olar circumference and the (200) poles ( a -axes) are preferably oriented

long the azimuthal direction. It can be seen that the b -axes tend to

lign along the major tensile direction during the forming operation. The

quator of the hemisphere was effectively subjected in tension along the

olar circumference during the forming operation, which in turn means

hat going from the north pole along the prior RD axis shows a small

evelopment of the (020) pole density, but going from the north pole to

he equator along other than the RD axis shows a significant variation of

he (020) pole density. This disparity in texture variation along different

olar circumferential directions is what would generate internal stresses

nd distortions during a temperature change of the hemisphere. Due

o the axisymmetric forming process, the pole figures at the equator

re approaching a single component orientation, where the c -axes are

referentially along the radial direction, the b -axes are preferentially

long the polar circumference, and the a -axes are preferentially along

he azimuthal circumference. 
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Fig. 7. Projected {020} poles measured by neu- 

tron diffraction on a hemisphere made of de- 

pleted 𝛼-U plotted in measured frame defined 

by azimuthal direction ( 𝜃), polar direction ( 𝜙), 

and radial direction ( r ). The dashed lines pass 

through pole figures shown in Fig. 6 . The inten- 

sity bar showing the multiples of random distri- 

bution is the same as in Fig. 2 . 
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The {020} pole figures for all measured textures are plotted in Fig. 7 .

he objective of clock-rolling is to produce an axi-symmetric texture

ith regard to the plate ND. However, process variations always result

n some texture asymmetry, and this is usually most obvious in the pres-

nce of an {020} peak somewhere about the periphery of the pole figure

ND normal). The {020} peak is a convenient texture reference and we

se a common convention of orienting the position of the {020} peak

s the RD of the plate. The {020} pole reveals a clear peak alignment

ith the polar circumference showing significant texture evolution due

o forming. 

.2.2. Calculations 

The developed GSH texture interpolation procedure is applied to the

easured data presented in the previous section. The data collected

n 10° polar and 15° azimuthal increments represents a coarse (sparse)

rid requiring a substantial refinement to facilitate initializing a finite

lement model of the hemispherical part for crystal mechanics-based

hermo-mechanical simulations. Data was only measured for half of the

emisphere. We assume orthotropic sample symmetry and rotate the

ata 180° around the ND two-fold symmetry axis for each measured

oint. At the equator of the hemisphere, we assume no symmetry. 

Fig. 8 a shows calculated normal components of the thermal expan-

ion tensor at 25 °C for all measured textures, i.e. on the discrete grid of

he texture measurement. The predicted shear components of the ther-

al expansion tensor are orders of magnitude smaller than the normal

omponents and omitted here. The crystal values are homogenized using

he self-consistent approach in EPSC and are shown in the local spher-

cal frame. Fig. 8 a reveals the texture effects of the thermal expansion

alues. Similarly, Fig. 8 b depicts the values for three shear components

f the elastic stiffness tensor at 25 °C calculated using EPSC. These were

hosen due to their strong texture dependence. 

Fig. 9 shows several projections of the texture hull for 𝛼-U. Since the

nterpolation is performed between measured texture data, considera-

ion of the entire texture hull is not necessary. Consequently, the 𝛼-U

emisphere sub-space in the hull is delineated based on the measured

ata. Since the 𝛼-U hemisphere contains a small sub section of all phys-

cally realizable textures, the corresponding sub-space is smaller. 

Orientation distributions can be used in the upper bound homoge-

ization theory to obtain predictions of bounds for the effective proper-

ies. These rigorous first-order bounds using the orientation distribu-

ion are readily available, especially for the diagonal components of

he elastic stiffness and thermal expansion tensors. The upper bound

or these components is evaluated as the volume average over single
rystals [59–62] . To verify that the linear interpolation between two

extures corresponds to the linear interpolation in these properties, we

qually weighted textures in Fig. 10 a and c to get b and calculate the

roperties. The average texture in Fig. 10 b is obtained by averaging the

xpansion coefficients of the pole cap and RD Pol 30 textures. The av-

rage expansion coefficients are used to construct the averaged texture.

he volume average calculated properties for the three textures are pro-

ided in Table 3 and are regarded as the upper bound. The upper bound

roperties for texture in Fig. 10 b can be alternatively calculated as the

verage between the values for textures in Fig. 10 a and c. The small per-

ent difference between the values based on the averaged texture and

hose based on averaging the values validates the GSH texture interpola-

ion methodology in the linear expansion space. However, our objective

s to use more accurate estimates of the effective properties than up-

er bound. We rely on the EPSC model for the calculation of effective

roperties. With the texture information, we can additionally calculate

he reorientation of the grains and the change in the elastic coefficients

hroughout a forming simulation. 

Pole figures showing the results of spatial 1D texture interpolation

ased on the linear method and the regression analysis along RD in 2.5°

ncrements are shown in Fig. 11 . Pole figures corresponding to input

extures are boxed in on the left. The nearest 20 neighbors are used as

nput textures for the regression method. Qualitatively, the peaks in the

nterpolated/regressed textures appear to be correct. 

Fig. 12 shows values for the selected components of thermal expan-

ion and elastic stiffness tensors in the local frame computed for the

zimuthal, radial, and polar direction using EPSC for the textures in

ig. 11 i.e. as a function of polar angle from the pole cap (0°) to the

quator (90°) along Az = 0. As is evident, significant changes in the val-

es occur that can only be computed with knowledge of the bulk tex-

ure and the single crystal properties. The plot includes values based

he measured orientation distributions and two interpolation methods.

he linear interpolation of ODFs results in a linear distribution of ther-

al expansion and elastic stiffness coefficients between measured data

oints. The regression method provides similar values to the linear in-

erpolation method for polar angles greater than 10° with the addition

f curvature between points. For polar angles less than 10°, the pole cap

alues are smoothed out due to weighting by the surrounding points.

lthough the pole figure intensities in Fig. 7 seem to be continuous func-

ions of position on the hemisphere (the texture changes smoothly), the

exture at the pole cap is a discontinuity causing some deviations for the

OESS analysis. This is due to the fact that as the pole cap is approached,

here is a numerical singularity where textures having polar circumfer-
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Fig. 8. Predicted (a) thermal expansion coefficients and (b) elastic stiffness tensor components at 25 °C for each measured texture. 

Fig. 9. A texture hull for orthorhombic- 

triclinic ODFs in the first three dimensions 

of the expansion space containing the sub 

hull made up of the 𝛼-U hemisphere tex- 

tures. 
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Fig. 10. Global sample frame pole figures showing (a) the measured pole cap texture, (b) the linearly interpolated texture half way between (a) and (c), and (c) the 

measured texture at a polar angle of Pol = 30° along the RD axis (Az = 0°). The intensity bar and the pole figure frame are the same as in Fig. 2 . 

Table 3 

Selected upper bound (i.e. the volume weighted average over crystal values) thermal expansion and elastic stiffness 

tensor components evaluated for the pole cap texture ( Fig. 10 a), RD Pol30 ( Fig. 10 c) texture, and the averaged 

texture ( Fig. 10 b). The coefficient average is obtained by averaging the values for the pole cap and RD Pol30 

textures to determine the percent difference between the coefficient average and the ODF average results. 

𝛼̄𝜃𝜃 [x10 6 K − 1 ] 𝛼̄𝜙𝜙 [x10 6 K − 1 ] 𝛼̄𝑟𝑟 [x10 6 K − 1 ] 𝐶̄ 𝜙𝜙𝑟𝑟 [GPa] 𝐶̄ 𝜃𝜃𝑟𝑟 [GPa] 𝐶̄ 𝜃𝜃𝜙𝜙 [GPa] 

Pole cap 12.6474 11.6624 16.8247 56.93 59.15 59.15 

RD Pol30 14.1903 10.2823 16.6619 56.89 55.56 63.14 

Texture average 13.4188 10.9723 16.7433 56.90 57.41 61.11 

Coefficient average 13.4343 10.9544 16.7458 56.91 57.36 61.15 

% difference 0. 12 0. 16 0. 015 0.01 0.1 0.06 

Fig. 11. {020} pole figures along RD in 2.5°

increments. Linearly interpolated textures are 

on the left and quadratic loess regressed tex- 

tures are on the right. Pole figures correspond- 

ing to input textures are boxed in on the left. 

The nearest 20 neighbors (in all directions) are 

used as input textures for quadratic regression 

on the right. The intensity bar showing the mul- 

tiples of random distribution is the same as in 

Fig. 2 . 
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f  
nce directions originally aligned with the RD evolve much faster. Dur-

ng the forming process there is a combined bending and tension stress

tate along the polar circumference of the hemisphere. There is also a

tate of compression along the azimuthal circumference. These states of

echanical fields drive the texture evolution. Works like [63,64] , have

hown the strong dependence of texture evolution on the compression

irection for 𝛼-U. As a result, the textures near the pole cap vary substan-

ially with the probing direction, while the pole cap texture is invariant

xperiencing only rigid motion. It is this difference in texture evolution

hat leads to the numerical singularity that is seen at the pole cap caus-

ng oscillations in the LOESS smoothing. It is important to note that the

egression method does not necessarily produce the same texture as a

easured texture at the measurement position whereas an interpolated

exture necessarily does. 

Fig. 13 shows pole figures comparing results obtained based on the

OESS regression and bilinear interpolation methods with experimen-

al measurements. The coordinates for each pole figure are specified by

he values of Az and Pol in the figure. Input textures for the bilinear

nterpolation scheme are distinguished with boxes. The particular sec-

ion of the hemisphere depicting the comparisons was chosen due to the

arge texture gradient observed. Interpolation/regression is most accu-

ate where gradients are small making this the most difficult section for

alidation. Note that interpolation along the edges of measured points

educes to 1D linear interpolation for bilinear and barycenric interpo-

ation, while 3 ∗ ∗ and 4 are the only interpolated textures influenced by
he data in 2D. All of the textures labeled 3 in Fig 13 were produced

sing bilinear interpolation, but the same results would be obtained

f barycentric interpolation were used. Input textures for the quadratic

OESS regression includes the 20 nearest neighbors excluding the five

xperimentally measured textures for a fair comparison and validation.

hese five excluded textures are denoted by 1 ∗ . Considering these tex-

ures in the analysis would improve the results. As explained earlier, the

egression method does not always produce the same measured textures

t the coordinates of measured textures. For this reason we also show

he resulting regressed textures for four of the input textures, which are

enoted by 1. The TDI of each of the resulting textures as compared

o the experimental data is shown in Table 4 . For the input textures

he TDI for bilinear and barycentric interpolation is 0, while there is a

mall difference for the LOESS regression textures. At the data points ex-

luded from the interpolation and regression the average TDI is 0.00684

nd 0.00694, respectively. The negligibly small TDI confirms excellent

greement. 

Finally, thermal expansion coefficients at room temperature based

n textures interpolated to a uniform 1°x1° grid over the hemisphere

re shown in Fig. 14 . This level of refinement is similar to what would

e seen on a finite element mesh for the same part. For Fig. 14 a, tex-

ure for each material point is obtained by interpolating the measured

ata using barycentric weighting at the irregular grid of texture data

or 𝜙 < 30 ∘ and bilinear weighting at the regular grid of texture data

or 𝜙≥ 30 ∘. For Fig. 14 b, textures for each material point obtained by
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Fig. 12. Predicted coefficients of thermal expansion (CTE) and selected components of elastic stiffness tensor at room temperature for textures in Fig. 11 . The circles, 

stars and lines are plotted using experimentally measured textures, linearly interpolated textures, and regressed textures, respectively. 

Fig. 13. {020} pole figures showing the 

comparison between 1) measured and cal- 

culated by 2) quadratic loess regression, 3) 

two-dimensional bilinear interpolation, and 4) 

barycentric interpolation. The coordinates for 

each pole figure are specified by the values of 

Az and Pol. Input textures for the quadratic 

loess regression include the 20 nearest neigh- 

bors excluding 1 ∗ textures. Input textures for 

the bilinear interpolation scheme are 1 and are 

boxed in. The intensity bar is the same as in 

Fig. 2 . 

Table 4 

TDI calculated for each interpolation technique as compare to the measured texture. 

Az90 Az90 Az90 Az105 Az105 Az105 Az120 Az120 Az120 

Pol40 Pol50 Pol60 Pol40 Pol50 Pol60 Pol40 Pol50 Pol60 

Barycentric 0 0.0079 0 0.0066 0.0084 0.0055 0 0.0058 0 

Bilinear 0 0.0079 0 0.0066 0.0084 0.0055 0 0.0058 0 

Loess 0.0029 0.0082 0.0028 0.0062 0.0087 0.0054 0.0041 0.0062 0.0029 
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uadratic LOESS regression. The coefficients of thermal expansion are

alculated using the self-consistent method available in EPSC. As is ev-

dent, both methods produce reasonably smooth continuous distribu-

ions between measured data points. However, the LOESS regression

as smoother contours while the bilinear interpolation matches the mea-

ured data exactly. 

. Discussion 

This work explores several interpolation methods between experi-

ental datasets of orientation distributions taking advantage of the lin-

ar expansion space of GSH to enable crystal mechanics-based finite el-

ment thermo-mechanical simulations. The procedure is first validated

gainst an established procedure involving quaternions and then applied

o a case study of 𝛼-U. The interpolation procedure involving quater-

ions is convenient for interpolating between ODFs having the same

umber of discrete orientations that evolved from one to another. Ad-
antageously, the new GSH procedure developed here is a probability

istribution interpolation technique. Comprehensive texture data form-

ng orientation distributions at experimental grid points is collected by

eutron diffraction and presented for a hemispherical, 𝛼-U part. Data re-

nement by interpolation is necessary to initialize a finite element mesh

f the same part. 

The detailed analysis revealed that filtering out rigid rotations should

e done before performing interpolation/regression to minimize differ-

nces between textures and that the quadratic LOESS regression method

s the most appropriate of the explored methods for refining data in 1D

nd 2D. The added benefit of LOESS regression is ‘outlier’ detection and

ata smoothing from large deviations. The fact that LOESS regression

oes not necessarily match the measured data exactly is a benefit of the

echnique, as the regression can be considered to lie within the experi-

ental uncertainty/error. While regression analysis is often successful,

t is possible that it will generate a target point that is outside of the tex-

ure hull that is physically inadmissible. This could happen if the amount
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Fig. 14. Predicted thermal expansion coefficients at room temperature based on textures at each material point after a) interpolation using barycentric weighting 

at the irregular grid of texture data for 𝜙 < 30 ∘ and bilinear weighting at the regular grid of texture data for 𝜙≥ 30 ∘ and b) loess regression weighting. 
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f measured data is insufficient or if the data contains many outliers. In

his case the linear interpolation method should be used, as it will al-

ays produce a target point that is in the hull as physically possible. The

inear/bilinear/barycentric weighting always match the measured data,

ven if the measured data contains outliers. In this study, all regressions

roduced coefficients lie within the texture hull. 

. Conclusions 

This paper develops a robust procedure for the interpolation of ori-

ntation distributions aimed at initializing FE models embedding ODF

ensitive and crystal mechanics-based constitutive models. The proce-

ure is based on representing ODFs using GSH functions into the linear

xpansion space of the weighting coefficients. At the core of the proce-

ure is weighting of the expansion coefficients of ODFs within the linear

xpansion space of GSH. Several approaches including the linear, bilin-

ar, regression and barycentric weighting are explored to perform the

nterpolation. It is found that the quadratic LOESS regression method is

he most appropriate for weighting and simultaneous smoothing of suf-

ciently large experimental data sets. While linear/bilinear/barycentric

nterpolation also successfully refine measured data, this method is rec-

mmended for small sets of experimental data, where the regression

ay be statistically insignificant. Upon establishing the expansion coef-

cients of the interpolated ODF, a linear programing problem is solved

ithin the expansion space to construct the interpolated ODF. The pro-

edure is applied to interpolate a comprehensive data set obtained by

eutron diffraction for a hemispherical part made of depleted 𝛼-U. It

s shown that the procedure is robust and can be used for initializ-

ng finite element models. Significant changes in the torsional com-

onents for thermal expansion and elastic stiffness are revealed by

lotting these properties over the hemispherical part of 𝛼-U meaning

hat the predicted distortion with temperature of the part are strongly

nisotropic. Heating/cooling simulations of parts made of 𝛼-U can now

e carried out more accurately because material properties based on
exture and single crystal constants are available at each FE integration

oint. 
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