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A B S T R A C T

Elasto-plastic self-consistent (EPSC) polycrystal plasticity theory has been used extensively in understanding and
predicting anisotropic thermo-mechanical response and underlying microstructure evolution of polycrystalline
metals. This paper describes the first implicit formulation of the EPSC model and its implementation in implicit
finite elements. To this end, a suitably defined system of non-linear equations at the single crystal level and that
at the polycrystal level homogenizing the single crystal solutions in terms of the rotation-neutralized increments
in Cauchy stress and strain are formulated and numerically solved. The implicit EPSC model is first validated
using the original explicit EPSC model. Subsequently, the implicit EPSC model is coupled with implicit finite
elements (FE) through the use of the user material subroutine in Abaqus. To facilitate the efficient coupling, a
stress update algorithm is developed and the consistent tangent stiffness operator is analytically derived. Here,
every FE integration point embeds the implicit EPSC constitutive law taking into account microstructure evo-
lution and the directionality of deformation mechanisms acting at the single crystal level. The multi-level FE-
EPSC model is benchmarked using the single crystal data for copper and then applied to simulate drawing of a
cup from an AA6022-T4 sheet. The implementation and insights from these predictions are presented and dis-
cussed in this paper.

1. Introduction

Metallic materials undergoing shaping and forming operations ex-
perience large plastic strains as well as frequent unloading and re-
loading, which cause highly non-uniform spatial stress-strain fields
(Hosford and Caddell, 2011; Poulin et al., 2019; Roemer et al., 2019;
Wagoner et al., 2013; Zecevic et al., 2016c). It is well known that
crystallographic slip accommodates most of the plastic strains, while
inducing plastic anisotropy in the mechanical response by evolution of
crystallographic texture and dislocation structure. Additionally, intra-
and inter-granular mechanical fields develop playing an important role
in the deformation process, especially during unloading and reloading
(Bauschinger, 1886; Ghorbanpour et al., 2017; Gribbin et al., 2016;
Knezevic et al., 2013a; Pavlina et al., 2015). Upon a strain path change,
the material exhibits non-linear unloading (Wagoner et al., 2013) fol-
lowed by a reduction in yield stress from that reached at the end of pre-
loading. The phenomenon is referred to as the Bauschinger effect (BE)
(Bauschinger, 1886). The hardening rate that follows with continuation
of loading is also different from that during pre-loading (Hasegawa
et al., 1975; Zang et al., 2013). These characteristics of material be-
havior are governed by the evolution of the underlying microstructure

and crystallographic texture. Crystal plasticity constitutive theories are
designed to capture the underlying physics governing such micro-
structure evolution and the associated anisotropic stress-strain response
of polycrystalline metals.

Over the past several decades, a number of crystal plasticity based
models have been developed. For example, these include upper bound
Taylor-type models (Al-Harbi et al., 2010; Knezevic et al., 2009, 2008a,
b; Taylor, 1938; Van Houtte, 1982) and mean-field self-consistent
models (Knezevic et al., 2016b; Lebensohn and Tomé, 1993; Lebensohn
et al., 2016; Turner and Tomé, 1994; Zecevic et al., 2019a). As stand-
alone (SA) codes, these models simulate uniform deformation, while
not accounting for the heterogeneities in the mechanical fields that
develop across the sample as a consequence of complex geometry. In
contrast, crystal plasticity finite element (CPFE) and crystal plasticity
fast Fourier transform (CPFFT) models can calculate the spatially re-
solved mechanical fields over explicit grain structure in 3D (Anand,
2004; Ardeljan et al., 2014, 2017; Ardeljan and Knezevic, 2018;
Ardeljan et al., 2015, 2016b; Barrett et al., 2018; Cheng et al., 2018;
Jahedi et al., 2014; Kalidindi et al., 2006; Knezevic et al., 2014c;
Lebensohn et al., 2012; Savage et al., 2017; Zecevic et al., 2015b).
However, these spatial models are computationally intensive and are
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typically used for modeling a representative volume element of a given
material rather than a forming process (Eghtesad et al., 2018a, c;
Knezevic and Savage, 2014; Savage and Knezevic, 2015). As a com-
promise, the mean-field models have been integrated in finite elements
to operate at FE integration points facilitating complex deformation
paths (Ardeljan et al., 2016a; Kalidindi et al., 1992; Knezevic et al.,
2016a, 2013b; Segurado et al., 2012; Zecevic et al., 2016a).

One of the mean-field formulations is the elasto-plastic self-con-
sistent (EPSC) model (Turner and Tomé, 1994). It is desirable because it
accounts for granular elasticity. The model has been shown capable of
predicting residual stress fields, elastic lattice strains, non-linear un-
loading, the BE, and hardening rates along with texture and twinning
for various metals in a number of studies (Neil et al., 2010; Nugmanov
et al., 2018; Wollmershauser et al., 2012; Zecevic et al., 2015a, 2016b,
2019b). The strategy of embedding the EPSC model at the meso‑scale
level in an implicit FE analysis at the macro-level was described in
(Zecevic et al., 2017) for continuum elements and in (Zecevic and
Knezevic, 2017) for shell elements. The overall model was termed FE-
EPSC. The tangent stiffness matrix (Jacobian) required for the coupling
was derived analytically facilitating fast convergence towards stress
equilibrium.

In EPSC, the integration scheme for the rate equations is explicit.
Specifically, the single crystal stress and shearing rates as well as the
single crystal tangent stiffness are evaluated at the beginning of the
given time increment and, thus, the self-consistent homogenization for
the macroscopic tangent stiffness is performed with crystal properties
evaluated at the beginning of the time increment (Neil et al., 2010;
Turner and Tomé, 1994). Due to the explicit integration, the magni-
tudes of strain and rotation increments are limited to rather small va-
lues. The original FE-EPSC incorporating the explicit EPSC model re-
quired a sub-stepping procedure for strain increments passed from
Abaqus to ensure accuracy of simulations (Zecevic et al., 2017). Such
small values of increments can lead to a significant increase in the
computational time due to the need to solve many increments. Com-
putational efficiency is particularly a concern for the FE-EPSC im-
plementation. In any simulation of a forming operation on poly-
crystalline metals using FE-EPSC, the single crystal stress equations for
a large number of constituent grains followed by the self-consistent
homogenization need to be solved at every integration point in the FE
mesh for every trial displacement field. The time involved in the cal-
culations scales approximately linearly with the number of increments.
Thus, the main motivation for the development of the implicit EPSC
model is to enable the FE-EPSC model to facilitate the use of large strain
increments and eventually utilize strain increments provided by Abaqus
relaxing the need for any sub-stepping. In addition, the lack of con-
vergence of fixed-point iterations for calculation of polycrystal tangent
stiffness occasionally occurs in cases when the number of constituent
crystals used is small (on the order of a hundred), which is again the
case relevant for FE-EPSC, where we attempt to minimize the amount of
state variables and computational time. FE-EPSC typically runs with a
hundred or a few hundred weighted orientations at each integration
point.

To improve the efficiency of the original explicit EPSC formulation,
this paper describes an implicit formulation of the EPSC model and its
implementation in implicit finite elements. To this end, a suitably de-
fined system of non-linear equations, homogenizing the single crystal
solutions in terms of the rotation-neutralized increments in Cauchy
stress and strain, is created and solved using Newton's method. The
implicit EPSC model is first validated using the original explicit EPSC
model. Case studies demonstrate that the implicit implementation can
take large strain and rotation increments. Subsequently, the implicit
EPSC model is coupled with implicit finite elements using the user
material subroutine in Abaqus. The consistent tangent stiffness operator
is analytically derived to provide the so-called Jacobian for the FE re-
sidual iterations. To illustrate the potential of the coupled multi-level
FE-EPSC model, a sheet metal forming process of deep drawing

subjecting the material to a multi-axial deformation path is simulated.
A cup is drawn of an Al alloy AA6022-T4 sheet. In addition to drawing,
the subsequent springback unloading step is simulated. Here, granular
elasticity, intra-granular backstresses, backstress aided dislocation
glide, and inter-granular stresses are taken into account. Shell elements
are used in the simulation as sheet metal forming simulations are ty-
pically performed using shell elements because of their computational
efficiency. The FE-EPSC multi-level model developed in this work can
be used as a simulation tool for simulating forming of anisotropic me-
tals taking into account the effects of microstructure on the flow
properties.

2. Constitutive relations

In the presence of large strains and rotations, a constitutive relation
between the Jaumann rate of Cauchy stress, σ̂, and the average strain
rate, ɛ̇, for a material point is (Nagtegaal and Veldpaus, 1984; Neil
et al., 2010):

= = + −ɛσ L σ σW Wσ^ ˙ ˙ , (1)

where L is the tangent stiffness, σ is the Cauchy stress, and W is the spin
tensor. The relation holds for a material point, which could be thought
as the representative volume element (RVE) of the material i.e. a
minimum volume of the material such that the response from the vo-
lume is representative for the continuum (van Mier, 1997). The mate-
rial point can be a single crystal or a polycrystalline point. While single
crystals are usually assumed to be homogenous, polycrystalline mate-
rials are heterogeneous because they consist of single crystals, which
introduces heterogeneities in the mechanical fields. Thus, defining
constitutive relation for a polycrystalline material involves a homo-
genization of known responses of constituent single crystals. In what
follows, a brief review of generally accepted relations describing con-
stitutive response of polycrystalline metallic materials is given
(Hutchinson, 1970; Kocks et al., 1998; Lipinski and Berveiller, 1989;
Nagtegaal and Veldpaus, 1984; Neil et al., 2010; Schröder and Miehe,
1997; Turner and Tomé, 1994). In our description, “ · ” and “⊗” are
used to denote a dot product and a tensor product, respectively.

2.1. Single crystal constitutive relation

Every single crystal occupies some volume in a polycrystal. During a
deformation process, every point in this volume experiences motion.
The strain rate and spin rate kinematic quantities are calculated from
the motion. The quantities are assumed to be uniform within each
single crystal and are denoted as ɛ̇c and Wc, respectively. Since ɛ̇c and
Wc are defined as symmetric and anti-symmetric parts of velocity gra-
dient, respectively, they are expressed in the current configuration. All
relations in this section are likewise written with respect to the current
configuration.

Hooks law, in the rate form, for a crystal undergoing rigid body
rotation, in the presence of plastic strain, is:

= − −ɛ ɛ ɛtrσ C σ^ ( ˙ ˙ ) ( ˙ ),c c c pl c c c, (2)

where σ̂c is the Jaumann rate of Cauchy stress, Cc is an elastic stiffness
tensor of a single crystal, ɛ̇c is a total strain rate and ɛ̇ pl c, is a plastic
strain rate. The plastic strain rate inside a crystal is defined as:

∑=ɛ γm˙ ˙ ,pl c

s

s s,

(3)

where = ⊗ + ⊗m b n n b( )s s s s s1
2 is the symmetric Schmid tensor,

defined by bs, which is the slip system Burgers vector in the current
configuration and ns, which is the slip system normal vector in the
current configuration. γ̇ s is a shear rate on the slip system s. The sum is
over all active slip systems. Slip systems are active if they fulfill the
following conditions:
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= τσ m· ,c s
c
s (4a)

= τσ m^ · ˙ ,c s
c
s (4b)

where τc
s is the slip resistance of a slip system s. The values of slip re-

sistance per s define the single crystal yield surface. The single crystal
yield surface consists of multiple hyper-planes in stress space, corre-
sponding to individual slip systems (Knockaert et al., 2000). The first
condition means that for a slip system to be active, the stress state needs
to be on the yield surface i.e. hyper-plane in the stress space corre-
sponding to the slip system, while the second condition is the con-
sistency condition, which ensures that the stress state remains on the
yield surface. The yield surface evolves due to strain hardening. The
evolution of slip resistance is coupled with shearing rates using:

∑=
′

′ ′τ h γ˙ ˙ ,c
s

s

ss s

(5)

where ′hss is the hardening matrix. It is assumed that the evolution of
slip resistance is a known function of shear strain, ′τ γ( )c

s s . As a result,

the hardening matrix is a matrix of partial derivatives =′ ∂

∂
″

′h γ( )ss τ

γ
sc

s

s .

Specific expressions for the evolution of slip resistance and the hard-
ening matrix are described later. Following Eq. (1), the single crystal
constitutive relation is:

= ɛσ L^ ˙ .c c c (6)

In Eq. (6), Lc is the elasto-plastic instantaneous stiffness tensor (or
the tangent stiffness) and is given by (Neil et al., 2010):

⎜ ⎟∑ ⎛
⎝

∑ ⎞
⎠

= − ⊗ − ⊗ − ⊗
′

′ − ′( ) σ σXL C C m m C i i( ) ,c c c

s

s

s

ss s c c c1

(7)

with:

= + ⊗′ ′ ′X h C m m· ,ss ss c s s (8)

where i is the second rank identity tensor, and indices s and s′ span over
all active slip systems in a grain c. The tangent stiffness in the elasto-
plastic deformation regime has the same meaning as the elastic stiffness
in the elastic deformation regime, with that it applies to the rates of
stress and strain and not the total quantities, and therefore can be re-
ferred to as the property of a single crystal.

It remains to define the crystal rigid body rotation for crystal re-
orientation i.e. texture evolution. The elastic spin rate of a crystal c is:

= −W W W ,c c app pl c, , (9)

where Wc, app is a total applied spin and Wpl, c is a plastic spin. This total
applied spin is a sum of an overall applied macroscopic spin, W, and a
spin originating from the antisymmetric Eshelby tensor for crystal c, Πc,
which will be defined shortly. The plastic spin is:

∑= γW q˙ ,pl c

s

s s,

(10)

where = ⊗ − ⊗q b n n b( )s s s s s1
2 is the antisymmetric Schmid tensor.

2.2. Polycrystalline constitutive relation

The polycrystalline constitutive relation used in the present work is
that of the EPSC model (Zecevic and Knezevic, 2018). This model re-
lates the deformation of each crystal to the deformation of the poly-
crystal using the self-consistent homogenization scheme (Neil et al.,
2010; Turner and Tomé, 1994). The polycrystal is represented by a
collection of single crystals each having a specific crystal lattice or-
ientation, an ellipsoidal shape, and a volume fraction. The mechanical
fields of each crystal are determined by considering each crystal as an
elasto-plastic inclusion in the homogeneous effective medium (HEM).
The HEM has properties of the polycrystal, which is assumed to be an

RVE of a material.
Homogeneous boundary conditions are treatable by a standalone

EPSC (SA-EPSC) model. For example, we can impose strain increments
(ɛ t˙ Δ ) along the loading direction, while enforcing zero average stress
along the two lateral directions of the sample to simulate simple ten-
sion/compression. An applied deformation can consist of an applied
spin, W, like in simple shear deformation. In contrast to SA-EPSC, FE-
EPSC can handle any boundary conditions facilitated by the FE fra-
mework, as will be described later.

Following Eq. (1), the linear constitutive relation between the
Jaumann rate of Cauchy stress and the strain rate for a polycrystal is:

= ɛσ L^ ˙ (11)

where σ̂is the overall Jaumann rate, ɛ̇ is the overall strain rate, and L is
the tangent stiffness of HEM i.e. the polycrystal. The HEM tangent
stiffness is defined based on the self-consistent homogenization ap-
proach. The unknown tangent stiffness of the HEM can be determined
by enforcing:

= 〈 〉σ σ^ ^ ,c (12)

= 〈 〉ɛ ɛ˙ ˙ ,c (13)

where 〈 〉 indicate volume average over single crystal quantities, c. The
above relations result in an implicit equation for the HEM tangent
stiffness:

= 〈 〉〈 〉−L L A A ,c c c 1 (14)

with:

= + +−A L L L L( *) ( *),c c 1 (15)

= −−L L S I* ( ),c 1 (16)

where L, Lc, L* and Sc are the macroscopic tangent stiffness, the crystal
tangent stiffness, an interaction tensor, and the symmetric portion of
the Eshelby tensor, respectively.

From the Eshelby solution of a single crystal inhomogeneity inside
HEM and applied boundary conditions, an additional spin per crystal is
calculated as:

= −−Π ɛ ɛP S( ) ( ˙ ˙ ),cc c c 1 (17)

where Pc is the antisymmetric Eshelby tensor and Πc is the calculated
spin.

3. Implicit integration of the rate equations in EPSC

The rate equations presented in Section 2 describe a continuum
problem in the current configuration. Imposed strain rate, ɛ̇, and spin
rate, W, to a polycrystal are known. These constitute an applied strain
history. The objective is to find the stress history using an integration
algorithm (Simo and Taylor, 1985). The converged solution at time t is
known and the integration is performed over a time increment Δt. The
imposed deformation, ɛ̇, and the rigid body rotation, W, can be treated
separately (Abaqus, 2012). The decoupling allows separate treatment of
any imposed rigid body rotation by simply rotating all tensors with an
incremental rotation matrix, ΔR, which corresponds to W. Therefore,
the macroscopic spin is not explicitly needed for the integration pro-
cedure and, thus, is not considered to act in the rate equations pre-
sented in Section 2. The single crystal constitutive equation, Eq. (2), is
integrated to incremental form (Nagtegaal and Veldpaus, 1984). The
integration requires a choice of a fixed configuration in which variables
are expressed and integrated. Likewise, the polycrystal constitutive
equation needs to be expressed in an incremental form at a fixed con-
figuration. Once the equations are in the incremental form, in a given
configuration, the problem can be formulated as a set of non-linear
equations. As a result, the continuum model is replaced with a non-
linear incremental model (Simo and Taylor, 1985). Several steps are
specifically identified in the integration algorithm developed in the
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present work: (a) decoupling deformation and rotation, (b) integrating
the single crystal constitutive relation, and (c) solving a system of non-
linear equations for a polycrystal in an incremental form.

It is worth mentioning that the integration of a single crystal re-
sponse can be treated independently from the polycrystal homo-
genization procedure (Zeng et al., 2015). Several single crystal algo-
rithms have been proposed in literature (Anand and Kothari, 1996; Ben
Bettaieb et al., 2012; Horstemeyer et al., 2005; Knockaert et al., 2000;
Schröder and Miehe, 1997). The integration algorithm followed in the
present work was proposed as explicit in Knockaert et al. (2000), but
first introduced in Borja and Wren (1993). The algorithm was further
developed as implicit in Ben Bettaieb et al. (2012). The algorithm is
particularly suitable for the present development because it solves for
the time increment over which there is no change in active slip systems,
with the known set of active slip systems at the start of the increment.
On the other hand, other evaluated algorithms use fixed time increment
and search for the unknown set of active slip systems. This results in a
situation that a set of active slip systems is essentially enforced to be
active during the whole time increment, creating a strong constraint
which cannot always be successfully satisfied, especially if time incre-
ments are large. The solution procedure for the system of non-linear
equations at a polycrystal level follows the procedure developed for the
visco-plastic self-consistent (VPSC) model in Lebensohn and Tomé
(1993), with some adjustment.

3.1. Decoupling deformation and rotation effects at a single crystal level

Generally, a crystal is simultaneously subjected to a strain rate, ɛ̇c,
and a spin rate, Wc. Even though the macroscopic spin is not con-
sidered, there are still the plastic spin, Wpl, c, and the spin from anti-
symmetric Eshelby tensor, Πc, contributing to Wc. We distinguish three
configurations: the initial configuration for the current increment at t,
the current configuration at < < +τ t τ t t( Δ ), and the configuration at
the end of the current increment +t tΔ . Fig. 1 shows the configuration
at t and the configuration at +t tΔ for a crystal with respect to the
sample frame. We remind that the continuum rate equations presented
in Section 2 are intrinsically expressed in the current configuration, τ .

Integration of a tensor must be performed in one configuration,
since addition of tensors defined in different configurations is not
meaningful. Therefore, one configuration needs to be chosen and all
tensors should be rotated to this configuration before integration. We
choose the known configuration at t to express all tensor quantities
(Nagtegaal and Veldpaus, 1984). The rotation tensor that rotates vec-
tors from the configuration at t to the current configuration at τ is:

= τn R nΔ ( ) ¯ ,c c c (18)

where n̄c is a vector in the configuration at t, nc is a vector in the
configuration at τ and ΔRc(τ) is an incremental active rotation matrix
calculated from the spin, Wc. Next, we can rotate all essential quantities
to the configuration at t using (Nagtegaal and Veldpaus, 1984):

= =

= =

=

ɛ ɛ

τ τ τ τ

τ τ τ τ L

R τ R τ R τ R τ L

σ R σ R σ R σ R

W R W R R R

¯ Δ ( ) Δ ( ); ¯̇ Δ ( ) ^ Δ ( );
¯ Δ ( ) Δ ( ); ¯̇ Δ ( ) ˙ Δ ( ); ¯

Δ ( )Δ ( )Δ ( )Δ ( ) .

c cT c c c cT c c

c cT c c c cT c c
ijkl

pi qj rk sl pqrs (19)

Quantities expressed in the configuration at t are called the rotation-
neutralized quantities and are denoted with the bar on top of them. The
constitutive relation expressed in terms of the rotation-neutralized
quantities is:

= =ɛ tσ L σ σ¯̇ ¯ ¯̇ , with the initial condition of ¯ ( ) ¯ .c c c c
t
c (20)

If we integrate the Eq. (20), we obtain the increment in stress
(Nagtegaal and Veldpaus, 1984):

∫ ∫⎜ ⎟= = ⎛
⎝

⎞
⎠

+ +
ɛ ɛdt

t
dtσ L LΔ¯ ¯ ¯̇ 1

Δ
¯ Δ¯ ,c

t

t t c c
t

t t c cΔ Δ

(21)

where = =ɛ const¯̇ ɛc
t

Δ¯
Δ

c
. This amounts to applying the deformation de-

fined with ɛΔ c, followed by the rotation = = ++ τ t tR RΔ Δ ( Δ )t t
c c

Δ of all
tensors to configuration at +t tΔ , as shown in Fig. 1. For instance, the
stress is updated using:

= ++ + +σ R σ σ RΔ ( ¯ Δ¯ )Δ .t t
c

t t
c

t
c c

t t
c T

Δ Δ Δ (22)

3.2. Integration of the single crystal constitutive relation in its incremental
form

The incremental form of the constitutive law for a single crystal is:

= ɛσ LΔ¯ ¯ Δ¯ ,c inc c c, (23)

where ∫=
+

dtL L¯ ¯inc c
t

t

t t
c, 1

Δ

Δ
is the tangent stiffness relating the increments

in strain and Cauchy stress. We conveniently introduce the new vari-
able, L̄inc c, , for the integral of L̄c since the latter might be evaluated
multiple times within the increment. Examination of the expression for
tangent stiffness (7) and (8) shows the dependence:

= ′ ∈′ ′( ) ( )ɛA h s s A h τL L σ σ¯ ¯ , ¯ , , with , ¯ , , , ¯̇ ,c c c ss c ss s c
(24)

where A is a set of active slip systems and s and s′ go over active slip
systems belonging to A. It is important to note that the set of active slip
systems is determined based on the activation conditions (4a and b).
Note also that for all active slip systems the condition, >γ̇ 0s , must be
fulfilled.

We point out that sub-discretization of a time increment Δt is a
characteristic of our integration scheme. As a result, Δt can be reduced
to Δtsub in two ways. First, the sub-increment, Δtsub, can be specified as
an input and used throughout a simulation. This is beneficial for crys-
tals with rapidly changing rate of hardening. Second, Δt can be reduced
to Δtsub by the integration procedure. Here, the sub-increment, Δtsub, is
treated as an unknown in the integration procedure. A vector re-
presenting the current stress in stress space can exit the yield surface if a
constant increment size is used, since the stress is assumed to be on one
set of hyper-planes in stress space. Moreover, if the stress vector at time
t is within the single crystal yield surface, the response is assumed to be
elastic during the increment, regardless weather the updated stress at

+t tΔ is out of the yield surface. We develop a procedure to calculate
the time increment over which the set of hyper-planes in contact with
stress vector do not change. In other words, we calculate the portion of
the increment over which the set of active slip systems does not change,
ensuring that stress does not exit the single crystal yield surface. If sub-
discretization is not set up as the input, the rule is that the integration
algorithm updates variables from the start of the increment, t, to the
end of the increment +t tΔ . The exception is if the sub-discretization of
the time increment is triggered then tsub is initialized to t and then
updated incrementally for Δtsub until the end of the increment +t tΔ .
The sub-increment, Δtsub, is often calculated in the elasto-plastic tran-
sition and in any strain path change portion of deformation but rarely

Fig. 1. Configurations at t and +t tΔ showing decoupling of deformation, ɛ̇c,
and rotation corresponding to Wc.
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otherwise.
We formulate an implicit solution procedure for shear rates facil-

itating large time increments. Using Eqs. (2), (4b), (3) and (5) written at
the mid instant, i.e. + =t tt

m
Δ
2 , we get:

∑− = + ⊗
′

′ ′ ′( ) ( )ɛ ɛtr h γC σ m C m m¯ ¯̇ ¯ ( ¯̇ ) · ¯ ¯ · ¯ ¯ ˙ ,c c
t
c c s

s
t
ss c s s

t
s

m m m (25)

with =ɛ̇̄ ɛc
t

Δ¯
Δ

c
and =′ ′

γ̇t
s γ

t
Δ
Δ

s
. Now, Eq. (25) represents a system of non-

linear equations in terms of ′γ̇t
s
m
, since the hardening matrix, ′ht

ss
m , and the

stress, σt
c
m , depend on shear rates. Since Eq. (25) is satisfied at an instant

of time after t, the integration is implicit.
As always, the stress state at the end of the increment needs to be on

or within the single crystal yield surface. The condition is enforced with
Eq. (25) for all active slip systems. If the condition is violated for any of
the inactive slip systems, meaning they become active during the in-
crement, the increment Δt is adjusted so that only one of the inactive
slip systems satisfies (Knockaert et al., 2000):

=+ +τσ m¯ · ¯ .t t
c s

c t t
s

Δ , Δ (26)

As a result, the increment is reduced to the maximum value before
activating the additional slip system, while the stress remains on the
crystal yield surface. Eq. (26) is an additional relation to the system in
Eq. (25) formulated to calculate Δtsub (Ben Bettaieb et al., 2012;
Knockaert et al., 2000) as:

=
−
− ∑ ′

′ ′t
τ

h γ
σ m

σ m
Δ min

¯ · ¯
¯̇ · ¯ ˙

,sub
t
s

c t
s

t
c s

s t
ss

t
s

,

m m m (27)

where min takes the minimum calculated value out of all inactive slip
systems. Analogues to tm, the mid instant becomes = +t tsub m sub

t
,

Δ
2
sub .

We use the fixed point iteration scheme to solve the formulated system
of non-linear equations for shear rates, γ̇ s, and Δtsub. Note that if there is
no activation of any new slip systems within the increment then the
solution for Δtsub is Δt.

Next, L̄inc c, can be calculated. If the sub-incremental procedure is
triggered then, L̄c is evaluated at multiple instances, k, during the total
time increment, Δt. Here, the incremental tangent stiffness is a sum of
those at the instances, k:

∫ ∑= =
+

t
dt

t
tL L L¯ 1

Δ
¯ 1

Δ
¯ Δ .inc c

t t

t
c

k
t
c

sub m
k,

Δ
,

sub m
k

, (28)

Note that the incremental tangent stiffness, L̄inc c, , is evaluated with,
L̄t

c
sub m
k

,
, at < < +τ t τ t t( Δ ), and not from t. The subsequently calculated

polycrystal tangent stiffness, L̄inc, will contain information at

< < +τ t τ t t( Δ ), making the overall procedure implicit.
Finally, the incremental plastic spin is evaluated using Eq. (10) as:

∑ ∑ ∑= =t t γ tW W q¯ Δ ¯ Δ ˙ ¯ Δ .pl c

k
t
pl c

sub m
k

k s
t
s s

sub m
k, ,

, ,
sub m
k

sub m
k

, , (29)

3.3. Solution procedure for a system of non-linear equations at the
polycrystal level in an incremental form

The polycrystal incremental form of the constitutive law is obtained
by performing the self-consistent homogenization of the incremental
single crystal constitutive law solutions. This amounts to replacing the
Jaumann rate of Cauchy stress and strain rate with the rotation-neu-
tralized increment in Cauchy stress and the rotation-neutralized incre-
ment in strain, respectively. The term rotation-neutralized quantities at
the polycrystal level is used to denote that the rotation-neutralized
quantities at the single crystal level are used in deriving the macro-
scopic response. The macroscopic response is:

= ɛσ LΔ¯ ¯ Δ¯,inc (30)

where L̄inc is the HEM tangent stiffness, (Eq. (14)).
Replacing the rate form of the single crystal constitutive relation

(Eq. (6)) and the polycrystal constitutive relation (Eq. (11)) in the
homogenization procedure with their incremental forms (i.e. Eqs. (23)
and (30)), produces a system of non-linear equations. The unknown
variable in the system is the crystal strain increment ɛΔ c, since the
proposed algorithm for single crystal integration is strain driven.

Next, we suitably define a residual in terms of ɛΔ c. For an initial
guess of the ɛΔ c field, the single crystal integration can be performed to
obtain an increment in stress = ɛσ LΔ¯ ¯ Δ¯int

c inc c c, and the tangent stiffness
L̄inc c, . This is depicted in Fig. 2a, where a crystal is shown in-
dependently, outside of the matrix, under the strain increment ɛΔ c. The
calculated stress increment, σΔ int

c , defines the traction acting on the
surface of the ellipsoid. Based on the calculated tangent stiffness, L̄inc c, ,
the overall stiffness of polycrystal, L̄inc, can be calculated using
Eq. (14). Next, we consider the matrix having the tangent stiffness of
the HEM, L̄inc, from which the crystal c was removed to apply the strain
increment, ɛΔ c, to it (Fig. 2b). Now, the matrix has a cavity undergoing
the increment in strain, ɛΔ c, which is needed to fit the inhomogeneity
back in it. The matrix has a certain displacement increment applied at
its boundary giving rise to the strain and stress increments. The traction
on the surface of the cavity, needed to produce the strain increment,

ɛΔ c, can be calculated from the interaction equation:

= − −ɛ ɛσ σ LΔ¯ Δ¯ ¯ *(Δ¯ Δ¯),ext
c c (31)

Fig. 2. Schematic showing the definition of the residual in terms of: (a) internal and (b) external stress increment.
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where σΔ ext
c is the external stress increment. In order to satisfy the

equilibrium when the inclusion is placed back inside the matrix, the
external and internal tractions must to be in balance, leading to:

= − = − − −ɛ ɛ ɛ ɛr σ σ σ L L(Δ¯ ) Δ¯ Δ¯ Δ¯ ¯ *(Δ¯ Δ¯) ¯ Δ¯ .c
ext
c

int
c c inc c c, (32)

The residual indicates how well the interaction equation is satisfied.
As mentioned earlier, the definition of the residual along with the so-
lution procedure were inspired by the algorithm present in VPSC
(Lebensohn and Tomé, 1993). In VPSC, the fixed point iterations are
used for the evaluation of crystal stress deviator. For each iteration, an
appropriate interaction equation, analogues to Eq. (32), is solved in
order to produce a new guess for crystal stress.

Finally, Newton's method is used to obtain the solution ɛΔ c by
minimizing the residual. The Jacobian needed for Newton's method is
defined as:

= ∂
∂

≅ − −ɛ
ɛ

J r L L(Δ¯ )
Δ¯

¯ * ¯ .c
c

c
inc c,

(33)

To test for convergence, the volume average of residuals for all
grains is calculated and compared against the tolerance, i.e.:

〈 〉
∥ ∥

<
ɛr

σ
10 (Δ¯ )

Δ¯
0.005.

k c

tavg (34)

with:

∥ ∥ =
∑ ∥ ∥= t

t
σ

σ
Δ¯

Δ¯ Δ
tavg

i
n i i

1
inc

(35)

where ninc is the number of time increments applied by the time t i.e.
= ∑ =t tΔi

n i
1

inc and k≥ 0 is the smallest integer fulfilling the condition
< ∥ ∥ ∥ ∥ <σ σ0.1 Δ¯ /(10 Δ¯ ) 10tavg

k . If convergence is not achieved within
predefined number of iterations the full Newton step is sequentially
decreased with factors of 0.5, 0.2 and 0.1. If the condition (34) is still
not satisfied after decreasing the Newton step, the applied increment in
strain is applied within 4 steps, while the exponent k in the convergence
criteria (34) is not reevaluated. The same procedure is used if one of the
sub-increments is not converging. The cutting of strain increment and
normalization of residual are inspired by the procedures used in
Abaqus (2012). Once the criterion in Eq. (34) is fulfilled for the total
imposed strain increment or all sub-increments, crystal spin, tW̄ Δc , can
be updated and the corresponding rotation matrices, +RΔ t t

c
Δ , can be

calculated. The plastic spin was calculated during integration of the
single crystal constitutive law in Section 3.1 (Eq. (28)). Since the
macroscopic spin is not present, the only remaining spin is coming from
the deviation of the single crystal strain rate from the applied macro-
scopic strain rate, due to treatment of single crystals as ellipsoidal in-
clusions in an infinite medium. This contribution to the total crystal
spin is described by Eq. (17). The total incremental elastic spin is:

= −Πt t tW W¯ Δ ¯ Δ ¯ Δc c pl c, (36)

The incremental rotation matrix for single crystal, +RΔ t t
c

Δ , is cal-
culated from incremental spin defined with Eq. (36). With +RΔ t t

c
Δ all

variables are rotated to the configuration at the end of the increment,
+t tΔ .

4. Convergence and accuracy

The purpose of the integration algorithm is to calculate increment in
stress. The numerical approximations in integration of rate equations
introduce deviation of the calculated stress from the exact value. The
difference between the approximated and the exact value of the stress is
the global error. The global error is bounded by the truncation error.
The truncation error depends on the sub-increment size in numerical
integration procedure (Suli and Mayers, 2003). However, since we are
dealing with non-smooth functions, originating from conditions con-
trolling the set of active slip systems, the error will be a discontinues
function of the sub-increment size. Furthermore, the dominant

contribution to the error can be the distance between discontinuity and
nearest point at which functions are evaluated. For this reason we will
distinguish between the 1st step in which slip systems are being acti-
vated during elasto-plastic transition and the 2nd step during which the
set of active slip systems does not change. The 2nd step is considerably
smaller to ensure no activation of inactive slip systems. The sub-in-
crements are calculated using:

= =ɛ ɛ h h
n

Δ¯ Δ¯ with 1 ,sub
(37)

where ɛΔ sub is the sub-increment, h is the sub-increment size, and n is
the number of sub-steps. With decreasing h the approximated stress
increment converges to the exact value at certain rate, referred to as the
order of accuracy. A formal order of accuracy quantity is derived from
the truncation error (Suli and Mayers, 2003). The explicit and implicit
integration methods are expected to have the order of accuracy equal to
unity. Here we will evaluate the order of accuracy based on the norm of
absolute global error (Veluri et al., 2012):

= ∥ − ∥= + +e C h O hσ σ¯ ¯ ( )h exact
h

p p 1 (38)

where e is the norm of absolute global error, σh is the numerical solu-
tion with sub-step size h, σexact is the exact solution, p is the order of
accuracy, Ch is a scalar constant and +O h( )p 1 are the higher order terms.

Before performing the integration we need to specify the single
crystal hardening law by defining the hardening matrix, ′hss , used in
Eq. (5). A simple hardening law involving three fitting parameters is
implemented in both codes:

∑= + − −
′

′ ′τ τ L Q bγ(1 exp( )),c
s

s

ss s
0

(39)

where =Q 40 and =b 10 are fitting parameters and =τ 16MPa0 is the
initial slip resistance. Only self-hardening is allowed by setting the
strength interaction matrix to =L 1ss and =′L 0ss . Since an expression
for the evolution of slip resistance in function of shear strain on slip
system is adopted, elements of the hardening matrix are partial deri-
vatives of slip resistance with respect to the shear strain on the slip
system: = = −′ ∂

∂
′ ′

′h L bQ bγexp( )ss τ

γ
ss sc

s

s . The modeling framework and

integration algorithm are general and can handle any hardening law.
The material is Cu. The elastic constants of Cu are =C 170GPa11 ,

=C 124GPa12 and =C 75GPa44 (Anand and Kothari, 1996). The slip
family 〈 〉{111} 110 , active in face centered cubic (FCC) materials, was
considered. 10 orientations shown in Fig. 3a were used as the initial
texture. The following two strain increments have been applied:

= ⎡

⎣
⎢ −

−

⎤

⎦
⎥ɛΔ¯

0.03 0 0
0 0.015 0
0 0 0.015

,1
(40a)

= ⎡

⎣
⎢ −

−

⎤

⎦
⎥ɛΔ¯

0.004 0 0
0 0.002 0
0 0 0.002

.2
(40b)

With very fine sub-increment size the global error should vanish and
both explicit and implicit procedure results should converge to the
exact value, σexact

1 . For this purpose we use 10,000 sub-steps in explicit
and implicit integration and apply ɛΔ 1. The norm of difference between
evaluated stress by explicit and implicit procedures is 0.03313MPa.
Some possible contributions to this difference are identified next. The
solution procedure in the explicit and implicit EPSC is different. In the
implicit EPSC the strain increments of single crystals are varied until
the residual defined in terms of the single crystal stress increments is
below prescribed tolerance. On the other hand, in explicit EPSC the
homogenized tangent stiffness is varied using the fixed point iterations,
until difference between the new guess and the previous guess for the
homogenized tangent stiffness is lower than the prescribed tolerance.
Due to differences in the solution procedures, the calculated single
crystal variables and the homogenized tangent stiffness are not the
same between the explicit and implicit integration schemes, even when
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the tolerances are decreased to very small values for very fine incre-
ments. Another source of the difference is the intrinsic sub-in-
crementation of the single crystal response within the implicit code
upon activating an additional slip system, preventing the stress from
exiting the single crystal yield surface. In the standard EPSC there is no
such scheme, and exit of stress out of the single crystal yield surface is
inevitable when slip systems are first activated. The problem can be
circumvented by using a large number of sub-steps, which was done
here. Since we are interested in convergence of implicit method de-

veloped here, we will set =σ σ¯ ¯exact
1 1

imp
1

,100,00, .
We calculate error using Eq. (38) for several sub-step sizes for ex-

plicit and implicit integration algorithm under the applied ɛΔ 1. The
results are plotted in Fig 3b. The points are calculated errors from the
explicit and implicit codes for corresponding step sizes, while the lines
have slopes of the first order procedure i.e. p=1, and serve as a guide
for identifying the order of accuracy. Due to switch conditions for
checking the set of active slip systems, the rate of calculated error
change with the sub-step size is not constant. The error for the implicit
procedure at the same step size is around two orders of magnitude
lower than the explicit procedure.

Next, we use identical state after application of ɛΔ 1 in both explicit
and implicit model and apply ɛΔ 2. We evaluate σexact

2 using 10,000 sub-
steps in the implicit procedure. The norm of difference between explicit
and implicit solutions with 10,000 sub-steps is 0.0009154MPa. Fig. 3c
shows evaluated norm of error in function of sub-step size for both
explicit and implicit codes. Again, the evaluated order of accuracy is
unity for both explicit and implicit models. Since we are dealing with
very small errors because of the small increment in strain and no

activation of inactive slip systems, the tolerances in both explicit and
implicit models are tightened to very low values. The error for the
explicit model remains constant after reaching 0.001MPa. This is be-
cause the explicit model is not converging to σexact

2 , but to the explicit
solution for 10,000 sub-steps which is roughly 0.001MPa from the
adopted σexact

2 .
Results in this section are obtained by running the calculations using

double precision i.e. 16 significant digits. In general, besides the trun-
cation error, the roundoff error contributes to the global error
(Greenbaum and Chartier, 2012). Next, we evaluate the roundoff error
of the implicit algorithm. To this end, we run the simulation with 128
sub-steps using 8, 16 and 32 significant digits representing the floating
point numbers. After application of first strain increment, norm of the
difference between stresses obtained with 8 and 32 significant digits is
0.24 E−1, while the same norm calculated with 16 and 32 significant
digits is 0.751 E−2. For all three precisions, the 2nd strain increment is
applied from the same initial state as in analysis of the truncation error.
The norm of the difference between stresses calculated with 8 and 32
significant digits is 0.353 E−3, while the same norm with 16 and 32
significant digits is 0.516 E−11. Note that all cases had the same tol-
erances, which had to be slightly loosened in order to achieve con-
vergence in cases where 8 significant digits were used in calculations.
As is evident, the calculations with different number of significant digits
yield similar results further proving the numerical stability of the de-
veloped algorithms.

Fig. 3. (a) {002} pole figure showing the initial set of crystal orientations. Calculated norm of the absolute global error, defined with Eq. (51), in function of sub-step
size: (a) after applying the first strain increment ɛΔ 1 and (b) after applying the second strain increment ɛΔ 2 for both explicit and implicit integration procedures.
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5. Coupling of the implicit EPSC model with implicit finite
elements

The coupling is performed with Abaqus through a user material
subroutine (UMAT). It is important to note that Abaqus relies on the
current configuration to express all tensors and vectors. The current
configuration is formed by applying the rigid body rotation to the
known configuration at t (Abaqus, 2012). In the description that fol-
lows, we will use the subscript FE to denote variables used in the
communication with the FE software.

The constitutive relation within finite elements is used to calculate
stress at the end of the increment, +σFE

t tΔ , based on the guessed total
strain increment, ΔɛFE, which results from the applied boundary con-
ditions over the FE model. The incremental rotation matrix, ΔRFE, is
also provided in UMAT by Abaqus to update the configuration. The
algorithm for stress update inside UMAT is as follows:

(1) All tensors in EPSC including crystal orientations are rotated to the
configuration at +t tΔ with ΔRFE incremental rotation matrix for
consistency with variables from Abaqus, since Abaqus rotates them
to +t tΔ before passing them to UMAT. With respect to the imposed
macroscopic rotation the configuration is +t tΔ . However, the
single crystal rotation due to the applied strain increment from
Abaqus is unknown beforehand. Therefore, all crystal quantities
will be kept at t with respect to the single crystal rotation.

(2) Total strain at a material point at the end of the time increment is:

= ++ɛ ɛ ɛΔ .FE
t t

FE
t

FE
Δ (41)

where +ɛFE
t tΔ , ɛFE

t and ΔɛFE are the total strain at the end of the time
increment, the strain at the beginning of the increment, and the
strain increment, respectively. The total strain at the end of the time
increment corresponds to the total strain accommodated by the
HEMmaterial point at the end of the time increment, while the total
stress returned to the Abaqus corresponds to the stress in the HEM.
Therefore, the following conditions are valid:

= + = = ++ +
+ +ɛ ɛ ɛ ɛ ɛ ɛR RΔ Δ (¯ Δ¯ )ΔFE

t t
FE
t

FE
c t t

t t
c c t c

t t
c TΔ , Δ

Δ
,

Δ (42a)

= = ++ +
+ +σ σ R σ σ RΔ ( ¯ Δ¯ )ΔFE

t t c t t
t t
c c t c

t t
c TΔ , Δ

Δ
,

Δ (42b)

In Eq. (42a) the strain at the beginning of the time increment, ɛ c t, ,
and the total strain from the FE software, +ɛFE

t tΔ , are known. The crystal
strain increment, ɛΔ c, stress increment, σΔ c, and incremental rotation
matrix, +RΔ t t

c
Δ , are calculated by performing the numerical integration

described in Section 3 under the imposed strain increment, ɛΔ . Note
that the single crystal strain increment, ɛΔ c, can be expressed in terms
of the applied polycrystalline strain increment, ɛΔ , using the localiza-
tion tensor, Āc, defined with Eq. (15), as: =ɛ ɛAΔ¯ ¯ Δ¯c c . Also, the incre-
mental rotation matrix, +RΔ t t

c
Δ , is calculated from the total incremental

spin, tW̄ Δc , defined with Eq. (36), where tW̄ Δc is dependent on the
imposed strain increment ɛΔ . In presence of crystal rotations, the im-
posed strain increment, ɛΔ , satisfying the Eq. (42a), is not equal to ΔɛFE.
This is clearly seen by looking at the first strain increment ΔɛFE. Im-
posing the increment ΔɛFE in the integration procedure enforces
Eq. (13) in the incremental form: = 〈 〉ɛ ɛΔ Δ¯FE

c . Once the update due to
crystal rotation is performed the equality no longer holds:

≠ 〈 〉+ +ɛ ɛR RΔ Δ Δ¯ ΔFE t t
c c

t t
c T

Δ Δ . However, if an appropriate strain incre-
ment ɛΔ is applied instead of ΔɛFE the condition

= 〈 〉+ +ɛ ɛR A RΔ Δ ¯ Δ¯ΔFE t t
c

t t
c T

Δ
c

Δ can be satisfied. Similar analysis can be
performed for any subsequent increment. Therefore, Eq. (42a) re-
presents a set of 6 non-linear equations in terms of the unknown im-
posed strain increment, ɛΔ . Solving Eq. (42a) for ɛΔ involves an
iterative procedure, in which for each iteration a new guess for ɛΔ is
made. For each guess for ɛΔ , the integration procedure (Section 3) is
performed. Since the integration procedure is where majority of time is
spent in UMAT, the simulation time is increased significantly with each
new guess for ɛΔ . To avoid the expensive iterations, the Eq. (42a) is

rewritten, neglecting the effect of crystal rotations within current in-
crement i.e. +RΔ t t

c
Δ is set to identity:

+ = 〈 〉 + 〈 〉ɛ ɛ ɛ ɛΔ ¯ Δ¯ .FE
t

FE
c t c, (43)

Using Eq. (13), enforced by the homogenization procedure in the
incremental form, allows for a straight forward calculation of the im-
posed strain increment from Eq. (43):

= + − 〈 〉ɛ ɛ ɛ ɛΔ¯ Δ ¯ .FE
t

FE
c t, (44)

(3) Numerical integration described in Section 3 is performed with
imposed strain increment defined with Eq. (44). The integration can
be performed with the calculated increment in strain from Eq. (44),
or any sub-increments of ɛΔ , if the macroscopic sub-incrementation
is chosen.

(4) Using the same approach for Eq. (42b) as for Eq. (42a) allows the
calculation of stress at the end of the time increment:

= 〈 〉 + 〈 〉 = 〈 〉 ++σ σ σ σ σ¯ Δ¯ ¯ Δ¯FE
t t c t c t c tΔ , , , (45)

(5) All tensors referring to crystal frames are rotated for the crystal
incremental rotation matrix, +RΔ t t

c
Δ , calculated from spin acting

over increment in time Δt using Eq. (36). In other words, the con-
figuration with respect to single crystal rotation is updated to +t tΔ
at the very end of the procedure.

In addition to the stress update procedure, the Jacobian, ∂
∂ ɛ

σΔ
Δ

FE
FE
,

needs to be calculated in order to obtain a new guess for the incre-
mental displacement field in the non-linear implicit FE analysis. The
derivative is:

∂
∂

=
∂ −

∂
= ∂

∂
= ∂

∂
=

+

ɛ ɛ ɛ
ɛ

ɛ
σ σ σ σ L LΔ

Δ
( )

Δ
Δ¯
Δ¯

( ¯ Δ¯)
Δ¯

¯FE

FE

FE
t t

FE
t

FE

inc
inc

Δ

(46)

The bars denote that all quantities, including the Jacobian, are
evaluated consistently with Eqs. (44) and (45) in the configuration at t
with respect to the single crystal rotation. It should be noted that the
analytical evaluation of the Jacobian presented here is much more
elegant than that presented in the original FE-EPSC implementation
(Zecevic et al., 2017) because the rotation and deformation effects are
decomposed and single crystal rotation during the current time incre-
ment is filtered when the stress at the end of the time increment is
updated with Eq. (45). In Zecevic et al. (2017) several sub-steps were
used and the configuration was updated after each sub-step, resulting in
complicated dependence of the increment in stress on the applied strain
increment. It should be noted that the developed stress update proce-
dure and the Jacobian calculation are independent on the integration
algorithm and can be used both with the original explicit and with the
newly developed implicit integration. The difference between the im-
plicit integration vs. the explicit integration is only present in step 3 of
the stress update procedure.

As will be shown later, the sub-steps are not necessary in the im-
plicit implementation because it can handle large increments. The in-
crements driven by Abaqus can be used, while the original explicit EPSC
implementation in implicit finite elements relied on a sub-stepping al-
gorithm. It was possible to use increments driven by Abaqus in the
original implementation but the calculations were inaccurate, which is
the intrinsic limitation of any explicit solution procedure. Therefore, in
the current study, we have simplified the Jacobian, ensured the accu-
rate solution with large increments with no need for sub-stepping of
those passed by Abaqus, and as a result gained the computational ef-
ficiency.

6. Simulations using FE-EPSC

In this section, the multi-level FE-EPSC model incorporating the
implicit EPSC is benchmarked using the single crystal data for Cu and
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then applied to simulate drawing of a cup from an aluminum alloy
AA6022-T4 sheet.

6.1. Benchmark case study: single crystals

Single crystal tension simulations without hardening performed in
Anand and Kothari (1996) are used to validate the single crystal in-
tegration algorithm and texture update algorithm. One brick continuum
finite element with 8 nodes and 8 integration points in three-dimen-
sional space (labeled as C3D8 in Abaqus convention) is used. The model
is set consistent with the simulation setup presented in Anand and
Kothari (1996). The slip systems belonging to 〈 〉{111} 110 family are
allowed to activate. The entries of the hardening matrix are set to
sufficiently small values, =′h 0.01ss . The results of simulations for three
different crystal orientations are shown in Fig. 4. As expected, the or-
ientations [001] and [1̄11] are stable, while [2̄36] is not stable but
evolves. The results show good match between the approach presented
here and the one used in Anand and Kothari (1996). Some differences in
the rate of crystal reorientation and stress level are seen for the tension
of [2̄36] orientation. We attribute the mismatch to the difference in the
formulation used here and that used in Anand and Kothari (1996). The
major source of mismatch is the assumed update of plastic deformation
gradient given with relation (41) in Anand and Kothari (1996):

∑= ⎛

⎝
⎜ + ⊗ ⎞

⎠
⎟+ γ sign τF I b n FΔ ( ) ,t t

p

s

s
t
s

t
s

t
s

t
p

Δ
(47)

where Fp is plastic deformation gradient. Enforcing small time incre-
ments, we can assume Δγs≪ 1 and ≈′γ γΔ Δ 0s s . Expanding the rela-
tion for n number of steps and disregarding higher order terms in Δγs:

∑ ∑= + ⊗γ sign τF I b nΔ ( ) .n
p

i s i
s

i
s

i
s

i
s

(48)

The actual plastic deformation gradient after n steps is:

∑ ∑= + ⊗γ sign τF I b nΔ ( ) .n
p

i s i
s

i
s

n
s

n
s

(49)

Incremental update of plastic deformation gradient does not ac-
count for the contribution coming from the rotation of crystal with
accumulated shear strain on slip systems. To verify that this effect is
indeed the source of the difference we compare the results of tension of
[2̄36] orientation from Anand and Kothari (1996) with two modeling
approaches within implicit EPSC model. The first approach relies on the
strain increment correction procedure in Section 4. The method corrects
the applied strain increment from Abaqus with a “strain increment”
originating from an additional single crystal rotation of the total strain
in the crystal. The additional rotation is present due to the plastic spin.
The model predicts slightly higher stress and more rapid reorientation
of single crystal orientation as can be seen in Fig. 4c. The second
modeling approach neglects the effect of plastic spin on rotation of total
strain tensor and simply applies the total strain increment from Abaqus.
The comparison with the first modeling method and the result from
Anand and Kothari (1996) is shown in Fig. 4c. Both the stress strain
response and the crystal reorientation are closer to those presented in
Anand and Kothari (1996).

6.2. Application case study: deep drawing of AA6022-T4

In this section the implicit integration procedure is used in con-
junction with an advanced dislocation density-based hardening law
considering the kinematic backstress effects. The hardening model has
been calibrated in Zecevic and Knezevic (2018) to predict anisotropic
mechanical response during monotonic loading as well as linear and
non-linear unloading, the Bauschinger effect and hardening rates upon
the load reversal for AA6022-T4. Most generically, the model accounts
for the development of intra-granular backstresses, backstress aided
dislocation glide, thermally activated storage of dislocations, elastic
anisotropy, inter-granular stresses, and crystallographic slip. The law is
summarized in the Appendix A.

The hardening law is further adjusted here to achieve match with
several cyclic stress strain curves (Fig. 6). Tables 1 and 2 show the es-
tablished material parameters. Using these new parameters, the com-
parison between measured and calculated results for the monotonic
tension in RD, 45°, and TD, and corresponding r-values is shown in
Fig. 5. The anisotropy in the simulated flow curves, seen in Fig. 5a, is
attributed to an accurate latent hardening description with the ex-
perimentally evaluated strength interaction matrix, L, (Kocks and
Brown, 1966). It should be noted that the r-values, shown in Fig. 5b, are
predictions. These predictions are found to be not very sensitive to the
hardening law fitting parameters. The backstress fitting parameters and
the reversible dislocations parameters, described in Appendix A, are fit
by comparing the simulated and the measured cyclic response in RD,
shown in Fig. 6. The model slightly over-predicts the amount of

Fig. 4. Comparison of the predicted crystal lattice reorientation and true stress-
true strain response under simple tension for three single crystals. The loading
axis relative to the crystal frame is indicated for each single crystal.

Table 1
Constitutive parameters for the evolution of slip resistance for 〈 〉{111} 110 slip mode in AA6022-T4. Note that coplanar slip systems have the interaction term of 1,
while non-coplanar slip systems have the interaction term of 1.4 in latent hardening matrix.

′Lcoplanar
ss

−
′Lnon coplanar

ss gss ′gss τ0[MPa] −k m[ ]1 1 g D[MPa] q p

1.0 1.4 1 1 58 0.65×108 0.0294 100 4 0.3
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permanent softening i.e. the drop in the stress level during the com-
pression in comparison to the initial tension. A possible cause of the
discrepancy between the simulated and measured cyclic curves is the
over-predicted inter-granular residual stress. The EPSC formulation is
closer to the Taylor iso-strain than to the Sachs isostress homogeniza-
tion assumption (Zecevic and Knezevic, 2018). The inter-granular re-
sidual stresses are large in the Taylor homogenization, while the Sachs
homogenization does not predict the appearance of inter-granular re-
sidual stresses. The inter-granular residual stresses are known to in-
fluence the cyclic behavior of materials (Li et al., 2014; Wu et al., 2005;
Zecevic and Knezevic, 2015). The comparisons in Fig. 6 confirm that
the non-linearity of unloading increases with the amount of pre-strain
and that the backstresses have a dominant effect in capturing non-linear
unloading while both the backstresses and inter-granular stresses
govern the BE. Moreover, the inclusion of reversible dislocation motion
is the key for capturing hardening rates during reverse loading. It is
worth pointing out that the same calculation results can be obtained
using the standard explicit EPSC model.

The simulation results in Figs. 5 and 6 are shown for 219 orienta-
tions representing the ODF reconstructed from an EBSD scan. Since the
run time of any EPSC simulation is proportional to the number of
crystals used, the ODF is represented with a minimum number of or-
ientations that still give representative mechanical response of the
material based on the procedure described in Eghtesad et al. (2018b)
and Knezevic and Landry (2015).

Fig. 7 shows the deep drawing simulation set up and the blank mesh
(Zecevic and Knezevic, 2017). The set up consists of a die, a blank
holder, and a punch. The friction coefficient is set to 0.1. The punch, the
die, and the blank holder are modeled as analytical rigid surfaces. The

blank thickness is 1.2 mm, which is modeled with 5 integration points
through the thickness. During the simulation blank holder is held fixed
at 1.2mm from the die, while the punch is displaced downwards in
order to draw the cup. After drawing, the contact between the drawn
cup, punch, die and blank holder is removed in order to simulate
springback. Only one quarter of the cup was modeled due to the or-
thotropic texture (Fig. 5a). The blank mesh size was determined based
on a mesh-sensitivity study. Three mesh sizes were tested: coarse (25
S3R and 975 S4R shell elements), medium (50 S3R and 3900 S4R shell
elements) and fine (100 S3R and 15,600 S4R shell elements). The
medium mesh is shown in Fig 7b. J2 material behavior i.e. the von
Mises yield surface, was used for mesh sensitivity study. The yield stress
in function of the equivalent plastic strain was entered in a tabular form
to reproduce the simple tension true stress-true strain curve in the RD.
The medium mesh is used for testing the implicit EPSC UMAT im-
plementation since it provides sufficient accuracy for this purpose.

6.2.1. Effect of increment size on speed and accuracy
In order to determine an appropriate UMAT increment size the

drawing simulation was first run with a J2 material behavior i.e. the von
Mises yield surface. The objective was to maximize the time increment,
while preserving the accuracy of the simulation. The total equivalent
strain at the material point was 0.48, split into 130 strain increments.
The strain history in the form of three strain components has been
extracted during the drawing step from the highlighted element in
Fig 7b. Fig. 8a shows the recorded strain history. The strain history is
imposed along with zero stress 13, 23, and 33 components to generate
the stress history by both explicit and implicit integration procedures.
Similar to Eq. (38), we define a norm of a relative global error in terms
of total stress at each increment:

= ∥ − ∥
∥ ∥

e σ σ
σ

¯ ¯
¯

,inc
h exact

exact
inc (50)

where σh is the numerically evaluated stress with a sub-increment size h
at the end of the increment inc and σexact is the exact value of stress at
the end of the increment inc. In Section 5 we used the implicit solution

Table 2
Parameters for the evolution of slip system kinematic backstress in AA6022-T4.

τbs
sat[MPa] ν γb A

5 560 0.001 1

Fig. 5. (a) Measured texture of AA6022-T4 sheet. Comparison between measured and simulated mechanical response of AA6022-T4: (b) monotonic true stress-true
strain curves along the three loading directions as indicated in the legend, (c) evolution of r-ratio along the same three loading directions as in (b).
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with 10,000 sub-steps as σexact , since we were interested in convergence
of the implicit procedure and we were dealing with very small errors.
Here we use a similar approach and set σexact to be the implicit solution
with 100 sub-steps for each increment coming from Abaqus with no
sub-stepping for the integration at the single crystal level. The calcu-
lated stress history is shown in Fig 8b. To validate the calculated σexact,
we evaluate the stress history with explicit model with 500 sub-steps,
see Fig 8b. The relative error defined with Eq. (50) for explicit model
with 500 sub-steps is shown in Fig 8c. Interestingly, the difference is
smaller if latent hardening and backstress are not considered (Fig. 8d).
Here, the difference between stress histories calculated by the explicit
and implicit algorithms is below 0.2%, as seen from Fig 8d. The cor-
responding norm of imposed strain increment components is approxi-
mately 10−5 for the explicit and 5× 10−5 for the implicit procedure.
As noted, the consideration of latent hardening and backstress in the
model amplify the difference between the explicit and implicit EPSC.
The difference starts to develop upon the strain path change. The in-
troduction of the latent hardening values larger than the self-hardening
into EPSC is coupled with numerical singularities (Anand and Kothari,
1996; Hill, 1966; Mánik and Holmedal, 2014; Peirce et al., 1982). To
overcome the numerical issues several procedures were developed in
Zecevic and Knezevic (2018). Close to singular matrices have large

condition numbers and amplify differences in vector of knowns be-
tween the explicit and implicit EPSC models. The fitted backstress
parameters from Table 2 produce a rapid increase of backstress, making
the equations governing the evolution of backstress in rate form stiff.
Even with very large number of steps overshoot can occur for some
crystals. Disabling the backstress and latent hardening and comparing
stress histories from the explicit and implicit EPSC models shows sig-
nificantly lower mismatch (Fig 8d). The parameters for the dislocation
based hardening law without latent hardening have been established in
Zecevic and Knezevic (2018) and are reported in Table 3.

To study tradeoffs between computational time and accuracy in
terms of the sub-step size, the number of sub-steps was varied and the
results were compared against the same “accurate” stress history as
used for Fig. 8. In the explicit integration procedure the number of
increments was decreased from 500 to 250, 100, 50 and 10 and the
obtained stress histories were compared against the stress history pro-
duced with 500 increments. For the implicit integration procedure, the
number of sub-steps was decreased to 10 and then to 2 and finally to 1
per imposed increment in strain from Abaqus, while no sub-stepping
was used for the integration at the single crystal level. Additionally, a
case with 2 sub-steps in the integration of the single crystal response
and no sub-stepping per strain increment from Abaqus was tested. The

Fig. 6. Comparison of measured and calculated
true stress-true strain response for alloy
AA6022-T4 along RD during: (a) one strain
cycle to four pre-strain levels as indicated in
the legend followed by tension until failure, (b)
multiple strain cycles with a constant strain
range of 0.04 and increasing mean strain in
increments of 0.01 from 0 for the 1st cycle to
0.09 for the 10th cycle, (c) multiple strain cy-
cles with a constant strain range of 0.02 and
increasing mean strain in increments of 0.02
from 0.01 for the 1st cycle to 0.15 for the 8th
cycle, and (d) multiple strain cycles with a
constant strain range of 0.04 and increasing
mean strain in increments of 0.02 from 0.0 for
the 1st cycle to 0.1 for the 6th cycle ending
with compression until failure.

Fig. 7. Simulation setup: (a) deep drawing geometry
and (b) FE quarter model of the initial blank con-
taining 3950 shell elements. 79 elements are along the
diameter and 50 elements are along the circumference
of the blank. One element is highlighted in red to in-
dicate the location of extracted strain history used in
the next section.
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generated stress histories from these varying number of sub-steps were
compared with the “accurate” stress history generated with 100 sub-
steps in every imposed strain increment.

In Section 5 we have shown that for the same global error the ex-
plicit procedure has a smaller sub-increment size than the implicit
procedure, see Fig 3b and c. The reduced number of steps for the same
accuracy in the implicit integration, compared to the explicit integra-
tion procedure, should be reflected in the computational time of si-
mulations. The computational time comparison is shown in Fig 9a for
several practical choices for sub-increment size. The plotted results are
calculated as averages of three runs. The average error is calculated
from the norm of relative global error as:

∑=
=ninc

eAverage error [%] 1

inc

ninc
inc

1 (51)

where =ninc 130 is the total number of increments. Increasing the
number of sub-steps in the integration procedure results in the increase
of the computational time and the decrease of the average error for both
codes, as expected. The comparison of computational times between the
explicit and implicit code shows that for the same level of accuracy, the
implicit code is faster. The ratio of the computational times between the
explicit and implicit codes is plotted In Fig 9b. As is evident, the implicit
code is at least 3.5 times faster than the explicit code for the same ac-
curacy for the ideal case of no sub-stepping in the implicit formulation.

As mentioned above, the objective in FE-EPSC simulations is to
utilize increments driven by Abaqus meaning without introduction of
any sub-stepping, although it is an option to specify in the model. The
objective is also to use minimum number of sub-steps for the

Fig. 8. (a) Imposed strain history. (b) The stress histories generated by the explicit and implicit integration algorithms with sufficient number of sub-steps and (c) the
difference between them. (d) The difference like in (c) without considering the latent hardening and backstress effects.

Table 3
Constitutive parameters for the evolution of slip resistance for 〈 〉{111} 110 slip
mode in AA6022-T4 without the consideration of latent hardening and slip
system interaction in terms of evolution of dislocation densities. Note that there
is only self hardening, meaning that the diagonal of the latent hardening matrix
is set to 1, while all other terms are set to 0.

Lss ′Lss gss ′gss τ0[MPa] −k m[ ]1 1 g D[MPa] q

1 0 1 0 60 3.0× 108 0.1176 100 8

Fig. 9. (a) Computational time involved in the explicit and implicit integration
procedures as a function of number of sub-steps. The number next to the ex-
plicit model points refers to the number of sub-steps in dividing the Abaqus
strain increment, while the numbers next to the implicit model points refer to
the number of sub-steps in dividing the Abaqus strain increment and the
number of sub-steps used in the single crystal integration procedure, respec-
tively. (b) Speed up of the implicit code relative to the explicit code for the same
average error, calculated as the ratio of the explicit to the implicit computa-
tional times shown in (a).
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integration at the single crystal level, while retaining desired accuracy
and reducing computational time required by explicit integration al-
gorithm. In addition to user specified number of sub-steps in integration
at single crystal level, intrinsic sub-incrementation due to activation of
an additional slip system can occur. The results presented above show
that the objectives of the developed implicit integration algorithm are
well accomplished. For the cup drawing simulation we applied 2 sub-

steps for the division of total strain increment from Abaqus and used no
sub-stepping for the single crystal integration procedure because this
combination provides the best tradeoff between speed and accuracy.

6.2.2. Simulation results
The deformed mesh with contours of von Mises stress for the im-

plicit EPSC UMAT is shown in Fig 10. Texture evolution introduces

Fig. 10. Deformed mesh with contours of von Mises stress (a) after forming and (b) after springback. (c) Deformed mesh after springback.
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anisotropy in the mechanical response, which governs the shape evo-
lution of the drawn cup (Fig 10a). After forming, the springback is si-
mulated by fixing the node in the center of the formed cup and main-
taining applied symmetries in the RD-ND and TD-ND planes. To
suppress the occurrence of geometrical instabilities during springback
step, artificial damping available in Abaqus is utilized (Zecevic and
Knezevic, 2017; Abaqus, 2012). The resulting contours of von Mises
residual stress are shown in Fig 10b. The shape of the cup after
springback is compared with the shape of the cup after forming in terms
of the nodal positions along RD direction and along the circumference
of the cup edge in RD-TD plane in Fig 11a and b, respectively. In
closing, it is worth mentioning that the overall computational time
involved in the simulation using FE-EPSC was 25.5 h. The job was run
on a workstation with dual socket Intel® Xeon® CPU E5-2695 v4 @
2.1GHz using 35 CPUs. The model is regarded as accurate but also as
computationally intensive.

7. Conclusions

This work has developed an implicit integration algorithm for the
EPSC polycrystal plasticity model. The rate forms of single crystal and
polycrystal constitutive equations are replaced with corresponding in-
cremental forms. An implicit integration algorithm at a single crystal
level is used to derive the incremental form of the single crystal con-
stitutive equation. In doing so, a system of non-linear equations is de-
fined and conveniently solved using the fixed point method. With the
developed solution procedure for single crystals, a suitable set of non-
linear equations is derived from the self-consistent homogenization in

incremental form and solved for single crystal strain increments using
the Newton's method. The implicit EPSC model is validated first using
the original explicit EPSC model. Next, the implicit EPSC is im-
plemented into a stress update algorithm within UMAT subroutine to
facilitate the coupling with Abaqus. The implicit EPSC is capable of
applying the total strain increment from Abaqus. Here, every material
point in the FE mesh is a polycrystal that deforms by anisotropic elas-
ticity and crystallographic slip allowing for the heterogeneous de-
formation prediction that can occur across a sample as a result of work-
piece geometry and material elastic and plastic anisotropy. The cou-
pling is validated against the data from Anand and Kothari (1996) for
tension of single crystal Cu. Finally, a finite element simulation of cup
drawing of AA6022-T4 with shell elements is performed to illustrate the
potential and efficiency of the developed implicit multi-level frame-
work. The evolution of texture, anisotropic hardening, BE, and non-
linear unloading were all taken into account in this simulation. The
dimensional changes of the cup along with the non-uniform residual
stress-strain distribution after drawing in the clamped condition as well
as in the free state were predicted.
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Appendix A

In the notation used here, indices s+ and s- refer to arbitrarily chosen positive and negative directions of slip systems, respectively. Both positive
and negative directions are included in index s. The hardening law for the evolution of slip resistance is based on dislocation densities and is
temperature and strain rate sensitive (Beyerlein and Tomé, 2008; Jahedi et al., 2015; Knezevic et al., 2014a, 2012, 2014b; Knezevic et al., 2015).
Here we summarize the formulation of dislocation based hardening law developed for prediction of anisotropy in mechanical response of aluminum
alloy AA6022-T4 (Zecevic and Knezevic, 2018). Reader is referred to (Zecevic and Knezevic, 2018) for detailed description of the hardening law.

The slip resistance is defined as:

= + +τ τ τ τ ,c
s α

forest
s

debris
α

0 (A1)

where τ α
0 is an initial slip resistance, τforest

s is a contribution to slip resistance from statistically stored dislocations, τdebris
α is a is a contribution to slip

resistance from dislocations stored as debris. The forest contribution to slip resistance is:

∑=
′

′ ′τ b χμ L ρforest
s α α

s

ss
tot
s

(A2)

Fig. 11. Prediction of shape: (a) the y-z profile of the drawn cup and (b) the circumference of the drown cup edge in x-z plane.
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where = −b 2.86 10 mα 10 is the Burgers vector for aluminum, =χ 0.9 is an interaction constant, ρtot
s is the total forest dislocation density for sth slip

system belonging to α slip mode (s∈ α) and ′Lss is a strength interaction matrix (Franciosi and Zaoui, 1982; Khadyko et al., 2016). From single crystal
experiments (Kocks and Brown, 1966) the entries of strength interaction matrix have been evaluated to be 1 for coplanar slip systems and 1.4 for all
other interactions. However, such strength interaction coefficients lead to the loss of ellipticity of the single crystal and macroscopic tangent
modulus. A diagonalization procedure of hardening matrix is developed in Zecevic and Knezevic (2018) to treat the problem.

The debris contribution to slip resistance is:

= ⎛

⎝
⎜

⎞

⎠
⎟τ k μ b ρ log

b ρ
1

debris
α

deb
α α

deb α
deb (A3)

where =k 0.086deb is a material independent constant and ρdeb is the debris dislocation density (Madec et al., 2003).
The total dislocation density is:

= + +
+ −

ρ ρ ρ ρ ,tot
s

for
s

rev
s

rev
s

(A4)

where ρfor
s is the forward dislocation density and

+
ρrev

s and
−

ρrev
s are the reversible dislocation densities associated with the s+ and s−directions,

respectively. Appropriate evolution laws are adopted for evolution of dislocation densities with shear strain and shearing direction (Khadyko et al.,
2016; Kitayama et al., 2013; Kocks and Mecking, 1981):

(If >+dγ 0s )

∑
∂

∂
= − −

′

′ ′ρ

γ
p k g ρ k ε T ρ(1 ) ( ˙, ) ,for
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s
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s

1 2
(A5a)

∑
∂
∂

= −
′

′ ′
+

+ρ
γ

pk g ρ k ε T ρ( ˙, ) ,rev
s

s
α

s

ss
tot
s α

rev
s

1 2
(A6a)

∑
∂
∂

= − ⎛

⎝
⎜

⎞

⎠
⎟

′

′ ′
− −

ρ
γ

k g ρ
ρ
ρ

,rev
s

s
α

s

ss
tot
s rev

s

s

m

1
0 (A7a)

(If >−dγ 0s )
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with the following initial conditions:

= = = = = =− + −
ρ γ m ρ γ ρ γ( 0) 10 , ( 0) 0 and ( 0) 0,for

s s
rev
s s

rev
s s11 2

(A8)

where k α
1 is a coefficient controlling the rate of generation of statistically stored dislocations, k α

2 is a rate-sensitive coefficient for dynamic recovery
(Beyerlein and Tomé, 2008), p is a reversibility parameter having a value between 0 and 1, and ′gss is an interaction matrix, m is a parameter
accounting for the rate of dislocation recombination having value of 0.5 (Wen et al., 2015) and ρ s

0 is the total dislocation density at the moment of
shear reversal on the sth slip system (Kitayama et al., 2013). Entries of the interaction matrix, ′gss , describe the influence of dislocation density on the
slip system s’ on the accumulation of forest dislocations on the slip system s (Khadyko et al., 2016; Kocks et al., 1991; Teodosiu and Raphanel, 1991).

The rate-sensitive coefficient for dynamic recovery, k α
2 , is:

⎜ ⎟⎜ ⎟= ⎛
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2
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where, kB is the Boltzmann constant, =ε̇ 100
7 is a reference strain rate, gα is an effective activation enthalpy and Dα is a drag stress. The debris

dislocation density is evolved with:

∂
∂

=
ρ
γ

q b ρ k ε T ρ( ˙, ) ,deb
s

α α
deb

α
tot
s

2 (A10)

where qα is a dislocation recovery rate constant governing the amount of dislocations that get stored as debris, instead of being annihilated. Initial
debris dislocation density is set to 0.1 −m 2.

In addition to dislocation-based evolution of slip resistance, a backstress on each slip system is introduced. The backstress was first implemented
in EPSC in Wollmershauser et al. (2012). Here we use the same approach, while utilizing different backstress evolution laws. The present backstress
evolution laws and the backstress implementation in EPSC are discussed in detail in Zecevic and Knezevic (2018), while here we only provide a brief
description.

The backstress is introduced to EPSC by altering the loading conditions (4a) and (4b):

− =τ τσ m· ,c s
bs
s

c
s (A11)
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− =τ τσ m^ · ˙ ˙ ,c s
bs
s

c
s (A12)

where τbs
s is a backstress on a slip system. Analogues to Eq. (5), the backstress is assumed to evolve with shear rates:

∑=
′

′ ′τ h γ˙ ˙ ,bs
s

s
bs
ss s

(A13)

where ′hbs
ss is a backstress matrix. With introduction of the backstress the single crystal tangent stiffness retains the same form defined with Eq. (7),

while the matrix ′X ss ,entering the tangent stiffness, becomes:

= + + ⊗′ ′ ′ ′X h h C m m· .ss ss
bs
ss c s s (A14)

Before defining the backstress matrix, ′hbs
ss , evolution laws for the backstress on a slip system, τbs

s , are introduced:

∑= = +
′
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where σbs
c is a backstress tensor formed by superimposing slip system sources of backstress, ′τbs sys

s
, , and the sum over s′ spans over all slip systems and

s′≠ s.
The slip system source of backstress is evolved with:
(if >+dγ 0s and >

+
τ 0bs sys

s
, )

= − −
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τ1
bs sys
s

bs sys
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, , (A20)

where τbs
sat is a saturation value for backstresses, A is a parameter for asymmetric evolution of backstress on a slip system in two different directions s

+ and s-, γb and ν are material parameters. The shear strain γs is recorded from the point of local load reversal.
Since the slip resistance and the backstress are defined as functions of shear strain, the hardening matrix, ′hss , and the backstress matrix, ′hbs

ss , can
be defined as:

=
∂
∂
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; .ss c
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s bs
ss bs
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The expressions for ′hss and ′hbs
ss are provided in Zecevic and Knezevic (2018).

Introduction of realistic strength interaction coefficients, ′Lss , results in non-positive definiteness of hardening matrix, ′hss (Zecevic and
Knezevic, 2018), meaning that the necessary condition for determination of shear rates on active slip systems is not fulfilled (Hill, 1966). Therefore,
issues in the solution procedure show up both at the single crystal and polycrystal level. To treat the major issue, which is loss of ellipticity of the
polycrystal tangent stiffness, a diagonalization procedure is proposed in Zecevic and Knezevic (2018). The procedure involves correction of hard-
ening matrix, ′hss , before evaluating the single crystal tangent stiffness with Eqs. (7) and (A14). It is assumed that the single crystal problem is
solved, i.e. shear rates on active slip systems are known. The corrected hardening matrix, hd

ss, is diagonal, ensuring positive definiteness:

∑=
′

′ ′h
γ

h γ1
Δ

Δd
ss

s
s

ss s

(A22)

where ′γΔ s are calculated increments in shear strain on active slip systems, while indices s and s′ go over active slip systems.
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