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which causes dislocations to deflect around a particle or form Orowan 
loops [23]. This type of strengthening is highly dependent on particle 
size and particle dispersion, which have an inverse and direct correla
tion, respectively, to material strength [24]. Incoherent phases observed 
in different IN718 alloys include the intermetallic δ, η, and Laves phases 
as well as various carbide phases such as MC and M23C6 (M ¼metal, C ¼
carbon) [1]. These incoherent phases can help refine grain size, but 
when exceedingly coarse and acicular they will be detrimental to me
chanical performance by offering less dispersion hardening and, if 
located at grain boundaries, will impede grain boundary sliding, which 
reduces ductility but may improve creep resistance [1,25,26]. Second
ary phases with coherent or semi-coherent particle-matrix interfaces 
provide the greatest contribution to hardening in718. These are the 
ordered cubic γ0 (L12) and body-centered tetragonal (bct) γ’’ (D022) 
phases with primary compositions of Ni3(Al,Ti,Nb) and Ni3(Nb,Ti), 
respectively [1,26,27]. Elemental compositions are listed for all phases 
in Table 1 [1,28–33]. Like all precipitates, γ0 and γ’’ form during heating 
of the super-saturated fcc γ phase, where increased solute mobility al
lows for localized elemental segregation. The γ’’ phase, however, is 
metastable at room temperature and can transform from bct into an 
orthorhombic δ phase (Ni3(Nb,Ti)) during periods of prolonged heating 
or exposure to sufficiently high temperatures [34]. The high coherency 
strain energy resulting from misfit lattice parameters/crystal structures 
in addition to the creation of antiphase boundaries (APBs) in γ0 and γ’’ 
precipitates when sheared by dislocations, provide a large increase in 
slip resistance given the nanoscopic particle size and fine dispersion of 
these phases [24]. Moreover, the γ’’ phase has a coherent disc-like 
morphology with f100g habit plane and is associated with greater 
strengthening than γ0 due to the greater coherency strain created from 
the elongated c-axis of the γ’’ unit cell and greater APB energy [31,35]. 
Because strengthening in cast or wrought IN718 is highly dependent on 
secondary phase content/morphology and precipitation is affected by 
solute concentrations, solidification rate, and heat treatments, AM 
IN718 can have vastly different microstructures and phase composi
tions. The effect of AM and precipitate size on the strength of IN718 has 
been studied [36–38]; however, the complete phase composition of AM 
IN718 with differentiated γ, γ0, γ’’, δ, and carbide phases, has never been 
quantified. Due to size and crystallographic texture, there is inherent 
difficulty in the quantitative characterization of these secondary phases 
using characterization techniques such as electron microscopy and X-ray 
diffraction. Moreover, these characterization techniques focus on phase 
identification, confirming presence and morphology, but not on 

determining statistically significant volume fractions [39]. As a result of 
the inherent difficulties, there is significant scatter over the literature in 
reported phase data with no single report on a complete characterization 
of phase fractions in alloy IN718. Alternatively, the low neutron atten
uation by most elements makes it possible to probe up to several cm3 of 
material during neutron diffraction, which is impossible with X-rays or 
electrons. The technique allows for the analyses of bulk microstructural 
characteristics, which are especially important given the inhomoge
neous microstructures in718, especially manufactured by AM. 

In this study, a neutron diffraction-based procedure is developed that 
uses microstructural measurements made via scanning electron micro
scopy to ensure robust Rietveld analyses of IN718 diffraction data 
enabling the evaluation of γ, γ0, γ’’, δ, and MC volume fractions. Ad
vantages of neutron diffraction include the large neutron scattering 
cross-sections of Fe (11.22 b coherent elastic scattering cross-section), Ni 
(13.3 b) and Nb (6.253 b) atoms, which boosts signal/noise for most 
secondary phases, which have high at-% Ni and/or Nb. Moreover, the 
differences in neutron scattering cross-sections between Nb, Ti, and Al 
make it possible for elemental refinement within ordered phases when 
performing Rietveld refinements on neutron diffraction data [40]. This 
allows for more accurate refinements, which would be difficult to ach
ieve with X-ray diffraction datasets due to the relatively similar photon 
scattering cross-sections between Ni, Nb, Ti, and Al [41]. Consequently, 
it is demonstrated that the developed methodology in conjunction with 
precipitate characterization via scanning electron microscopy facilitates 
the phase fraction determination of all primary phases present in the 
alloy with high accuracy. 

Neutron diffraction measurements are taken for IN718 samples in 
the AMS 5663 standard heat treatment condition created by AM, hot- 
isostatic pressed (HIP) following AM, and wrought. The purpose is to 
study the effect of AM and HIP on the phase composition of IN718, in 
comparison to wrought IN718, and establish relationships between 
phase fractions and mechanical behavior of the alloy. The collection of 
high-intensity neutron diffraction data specifically allows for accurate 
crystallographic texture, crystallite/grain size, and lattice parameter 
gradient (microstrain) measurements of secondary phases. This enables 
the quantification of material phase composition by implementing a 
series of Rietveld refinements. Scanning electron microscopy (SEM) is 
performed to estimate precipitate sizes, energy dispersive spectroscopy 
(EDS) is performed to obtain semi-quantitative elemental analyses on 
various precipitates, and image thresholding is performed on micro
graphs of samples that underwent cathodic dissolution to create sec
ondary electron (SE) contrast between phases. These are performed to 
either provide compositional information for phase models during the 
Rietveld analysis of neutron diffraction data, or to support the volume 
fraction determinations from the diffraction data. Although trans
mission electron microscopy would have been more appropriate for 
phase/precipitate identification, the EDS data collected is found to be 
sufficient. The study determines a variation in the volume fractions of δ 
and γ’’ in the AM material as compared to the AM þ HIP and wrought 
materials. Moreover, all γ0 and MC volume fractions were relatively 
similar despite the differences in MC morphology, distribution, and 
elemental composition. The quantitative data acquired in the present 
work can be used in polycrystal plasticity modelling [42–46], which can 
provide further insight into the deformation micro-mechanics for 
microstructural design of the alloy IN718 [47]. 

Table 1 
Phases in Inconel-718. Primary composition indicates major elemental 
constituents.   

Phase Crystal 
System 

Space 
Group 

Primary 
Composition 

Solid Solution Matrix γ Cubic Fm-3m Ni,Cr,Fe – 
Based 

Intermetallic γ0 Cubic Pm-3m Ni3(Ti,Al,Nb) 
γ00 Tetragonal I4/ 

mmm 
Ni3(Nb,Ti) 

δ Orthorhombic Pmmn Ni3(Nb,Ti) 
Topographically Close- 

Packed (Intermetallic) 
η Hexagonal P63/ 

mmc 
Ni3(Ti,Al) 

Laves Hexagonal P63/ 
mmc 

(Ni,Cr, 
Fe)2(Nb,Ti) 

Carbide MC Cubic Fm-3m (Nb,Ti) (C,N) 
M23C6 Cubic Fm-3m (Cr,Fe)23C6  

Table 2 
Elemental composition for IN718 powder as received by supplier.   

Ni Cr Fe Nb Mo Ti Mn Si Cu Al C S P B 

wt-% 55.5 18.2 14.9 5.5 3.3 1.15 0.35 0.35 0.3 0.3 0.08 0.015 0.015 0.006 
at-% 54.9 20.3 15.5 3.4 2.0 1.39 0.37 0.72 0.3 0.7 0.39 0.027 0.028 0.032  
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