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1. Introduction

Dynamics of a dissipative system is determined by a free
energy, a set of conservation laws, and the mobility leading to en-
ergy decay in time [1-4]. In the literature, when the conservation
laws are absent, models describing dissipative dynamics are often
called gradient flow models. In general, we consider thermody-
namic variable ¢(x, t) for a dissipative system in domain x € £2.
The evolution (dynamic) equation for ¢(x, t) can be formulated
based on the Onsager linear response theory as follows [5]

Bplx, £) = G (1)
t 5 - 84) s
where G is the mobility, a negative semi-definite differential or
integral operator which may depend on ¢. Here F is the free
energy, and g—F is the variational derivative of F with respect to
¢, called the chemical potential. For instance, if F = F[¢, V¢],
the chemical potential is given by g—g = % -V a% . In this
paper, we present our results using periodic boundary conditions
for simplicity. System (1) is a general gradient flow model, which

admits an intrinsic energy dissipation law

dF SF\T OF

i / (7) Godx <0, ()
dt o \8¢ 3¢

due to the negative semi-definite property of G.
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Note that the gradient flow model is specified by the triple
(¢, G, F). Many dissipative PDE models are special cases of gen-
eral gradient flow model (1). For instance, if we specify the
mobility as G = —M (with M a positive constant) and a double
well free energy F = [,[5IVo[* + 5(¢* — 1)*]dx (with ¢
a free parameter), the general gradient flow model (1) reduces
to the well-known Allen-Cahn equation with the double well
potential [6]

o6 = ~M (=26 + (6* - 9)). ()

If we specify the mobility as G = MA, we end up with the
well-known Cahn-Hilliard equation [7]

1
0p = MA(=26 + (6* = 9)). 4

There are many more examples such as the molecular beam epi-
taxy (MBE) growth models [8,9], phase field crystal models [10],
dendritic crystal growth models [11], multiphase models [12,13],
etc. For a detailed discussion, readers can refer to [3] and the
references therein.

For gradient flow models, many accurate, efficient and stable
numerical schemes have been developed, among which the ones
that preserve the energy dissipation property at the discrete level,
known as energy stable schemes, are especially appealing. If such
a numerical stability does not have any restrictions on the time
step, it is called unconditionally energy stable. For this class
of numerical schemes, a large body of works have been done
recently, for example the energy stable algorithms presented in
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the following papers [8,14-28] and the references therein. How-
ever, many of these schemes are problem-specific, depending on
the specific structures/properties of G and F. Recently, inspired
by [27,28], Yang et al. [3,29-32] proposed an energy quadra-
tization (EQ) approach for dealing with general gradient flow
models to obtain linear energy stable schemes. Shen et al. [5,33]
then further extended the EQ idea to develop the scalar auxiliary
variable (SAV) approach, where the resulting linear schemes can
be solved quickly by the fast Fourier transform (FFT). The basic
idea of both EQ and SAV is to introduce some auxiliary variables
to reformulate a gradient flow model into an equivalent form,
where the reformulated free energy is a quadratic functional.
Then linear and unconditionally energy stable schemes can be de-
veloped in a generic fashion for the reformulated system, which
in turn approximates the original gradient flow model. Due to the
generality of the EQ and SAV approaches, they have been applied
for many existing gradient flow models recently [5,9,25,26,29,34].

However, most of the existing energy stable schemes are up
to second-order accuracy in time. There is little work on devel-
oping higher order energy stable schemes. Since gradient flow
models sometimes require longtime dynamical simulations to
reach steady states, high-order accurate, efficient, energy stable
schemes sustaining long time simulations are always desirable.
Several seminal works on developing high-order energy-stable
numerical schemes have been reported lately [35-37]. In this
paper, we combine the SAV idea with the Runge-Kutta (RK)
methodology to develop arbitrarily high-order energy-stable nu-
merical schemes for general gradient flow models. Firstly, we
use the SAV technique to transform the gradient flow model
into an equivalent form with a quadratic free energy functional
along with an equivalent energy dissipation law. Secondly, we
exploit the structure-preserving Gaussian collocation method and
corresponding RK method to derive high-order scalar auxiliary
variable (HSAV) schemes, which are proven rigorously to pre-
serve a discrete energy dissipation law. Note that the newly
proposed high-order schemes overcome all the shortcomings of
the convex-splitting RK scheme in [35]. For instance, by using the
SAV technique, our approach does not have any restrictions on
specific forms of mobility G and free energy F, making it appli-
cable to any gradient flow models. Moreover, by employing the
Gaussian collocation method, our approach can reach arbitrarily
high-order accuracy in time with optimal RK stages.

Energy stable schemes in general are defined as the numerical
schemes that warrant energy decay in discrete time without
mentioning the details on how this decay is achieved. Some
energy quadratization methods (EQ(IEQ) and SAV altogether) in
fact respect the discrete energy dissipation rate with respect to
the discrete energy definition within the range of the truncation
error. It therefore captures the transient dynamics more accu-
rately by accounting for the detailed energy budget. This issue
has not been discussed before for any other types of energy
stable schemes. Most of the non-EQ based energy stable schemes
achieve energy stability by modifying the energy dissipation rate
or the discrete energy. That can alter the transient dynamics
within the range of truncation error. For long time numerical
simulation, it could inevitably introduce a large numerical error
if the error propagation is not well-controlled. In this regard, the
EQ-based energy stable schemes demonstrate a competitive edge.

The rest of this paper is organized as follows. In Section 2,
we will present the general gradient flow model and its EQ
reformulation based on the SAV approach. In Section 3, we derive
the high-order time discretization for the reformulated system
and prove its unconditional energy stability. In Section 4, we use
the Fourier pseudo-spectral method for the spatial discretization
to arrive at fully discrete schemes, which are unconditionally
energy stable as well. Several numerical examples are presented
in Section 5. In the end, we give the concluding remarks.

2. Gradient flow models and their SAV reformulation

In this section, we begin with a general gradient flow model
and apply the energy quadratization approach to arrive at an
equivalent form with a quadratic energy functional and the en-
ergy dissipation law. We implement the process using the SAV
method and name the reformulated system the SAV reformula-
tion. The SAV reformulation for the gradient flow models provides
an elegant platform for developing arbitrarily high-order uncon-
ditionally energy stable schemes, which is the major focus of this
paper.

2.1. General gradient flow models

Consider the domain §2 with enough regularity on the bound-
ary. The L? inner product and its norm are defined as Vf,g <

[*(2), (f.g) = [, fedx and |f|l; = V{f.f), respectively. For
simplicity, we illustrate the idea using a single state variable ¢.

Dynamics of ¢ is governed by a free energy or Lyapunov function
F and a negative semi-definite mobility operator G:

oF
8¢’

The generic form of the free energy F is written as

ar¢ =g (5)

1
F= 5(£¢,¢)+(g, 1), (6)

where £ is a linear, self-adjoint operator, and g is a potential
functional that might depend on ¢ and its low order spatial
derivatives. For instance, given the Ginzburg-Landau free energy
functional for the two phase immersible materials

F=/>{§W¢P+lwu—¢F}m (7)
Q &

where y is the surface tension, and ¢ is the interfacial thickness,
we recast
_n

c=—wA+m,gm=§wu—¢f S, (8)

where y, is a non-negative constant (regularization parame-
ter [9]). We assume periodic boundary conditions throughout the
study.

Gradient flow model (5) can be rewritten as

B = g(ap + g—i). 9)

Note that if £ is self-adjoint and G is negative semi-definite, we
have

(Lo, ¥) = (¢, LY), (¥,G¥) <0, V¢, ¢ €l*(R2). (10)

Therefore, the gradient flow system (9) satisfies the following
energy dissipation law

daF 5g ~ sg s
== (c¢+%,at¢) - (c¢+5¢,g(c¢+8¢)) <0. (1)

2.2. Model reformulation using the SAV approach

For simplicity, we assume g only depends on ¢, not its spatial
derivatives. We note that the SAV approach works for a more
general g. We first introduce a scalar auxiliary variable (SAV)

at) =/ (g(¢), 1) + Go, (12)

where Cp is a positive number such that (g(¢), 1) 4+ C > 0.
Then we reformulate the original gradient flow system (9) into



Y. Gong, J. Zhao and Q. Wang / Computer Physics Communications 249 (2020) 107033 3

the following equivalent PDEs

0 =(Lo + —EL_),
(s@).1)+co

%q: —£a 0 ¢
2,/(&(¢).1)+Co

)

with consistent initial condition

(8(¢li=0), 1) + Co. (14)

It is obvious that (13) along with consistent initial condition (14)
is equivalent to the original gradient flow system given in (9).
We then shift our focus to design arbitrarily high-order numerical
approximations for equivalent model (13).

In reformulated system (13), the reformulated free energy is
given by

qli=0=

1
E= (L. ¢)+ q* — Co, (15)

which is equal to free energy F of the original system (9) in the
continuous level. System (13) satisfies the reformulated energy
dissipation law

dE d /
== (z¢,¢t)+2qd—f — o+ %D
(g(¢). 1) + Co
N qg'(¢)
g(c¢+%) <o (16)

Next we will develop arbitrarily high-order unconditionally
energy stable numerical approximations to SAV reformulated
system (13)-(14).

3. High order time discretization

In this section, we derive classes of RK methods and collo-
cation methods in time for SAV reformulated system (13), re-
spectively. Then, we show that both the classes of RK methods
and collocation methods with the Gaussian quadrature nodes
preserve the corresponding energy dissipation law and thus are
unconditionally energy stable.

Applying a s-stage RK method to system (13), we obtain the
following HSAV-RK scheme.

Scheme 3.1 (s-stage HSAV-RK Method). Let b;, a; (i,j = 1,...,s)

be real numbers and let ¢; = 215‘21 a;. For given (¢", q"), the
following intermediate values are first calculated by
=" + At Z ajik;,
j=1
Q=q"+ AtZa,-jlj,
j=1
(17)

ki=g | co+ 22|
(g(@0.1)+co

I = FCD)

s ki
2 /(g((P,-),l)+C0

Then (¢"*1, ¢**1) is updated via

s
¢"+1 =¢" + At Zb,‘k,‘,

i=1

s
q”+1 =q" + At Z bil;.
i=1

(18)

The RK coefficients are usually displayed by a Butcher table

€| 11 -+ Qg

c| A : : :
- : D

b Cs | Us1 -+ g
by - b

where A € R, b e RS, and c = Al with1=(1,1,...,1)T e R
For general HSAV-RK methods, we have the following theorem
for the energy-stability.

Theorem 3.1. If the coefficients of an HSAV-RK method satisfy

b,-aij + bjaﬁ = b,‘bj, bij>0, Vi j=1,...,s, (19)

then it is unconditionally energy stable, i.e., it satisfies the following
energy dissipation law

E™! — " Aer(m o g%
@), 1) + Co
[ccpl ]) 0, (20)

+Co
where E" = 1(£¢", ¢") + (qn)2 -

Proof. Denoting ¢""! = ¢" + At Y _;_, bik; and noticing that the
operator £ is linear and self-adjoint, we have

1 1

(c n+l’ n+1 — (L n’ n

2( P ") 2( ¢, ¢")
N . Atz S

= At X;bi(ki, Lo+ =~ Z] bibj(ki, £k;). (21)

i= i,j=

Applying ¢" = ®; — At ijl aik; to the right hand side of (21),

we deduce

1 +1 +1 1 -

- n n - = "o =A b,‘ki, (pi, 22

ST @) — (24", ") = At Y bk, L) (22)

i=1

where Y7 biaji(ki, £k;) = Y7 i, biaji(ki, £k;) and bia;; + bjaj =
b;b; were used. Slmllarly, we have
"' — Ig"’

—1q
N

= 2At Zb,-l,-Qi = At 25:

i=1 i=1

bi( Qig'(P1) ,ki)~ (23)
(g(¢l)s 1) + CO
Adding (22) and (23) leads to

S
el d)
En+1 _ En — Atzbl(ﬁ¢l + ng—(i)7 kl) (24)
= (&(@), 1) + G
Qig'(#i)

Substituting k; = G | £LD; + n (24), we arrive at
(gt@0.1)+co

(20). This completes the proof. O

Applying an s-stage collocation method to system (13), we
obtain the following HSAV-Collocation scheme.
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Scheme 3.2 (s-stage HSAV Collocation Method). Let cq,...,cs be
distinct real numbers (0 < ¢; < 1). For given (¢", q"), the collocation
polynomials u(t) and v(t) are two polynomials of degree s satisfying

u(ta) = ¢", v(tn) =q", (25)

. . u(t!
du(ty) =g | cu(ty) + , (26)

) "(u(t! )
dv(ty) = g (%) Jou(ty) | (27)
2,/ (8(u6). 1) +Go
where t,’; =t, +cAtandi = 1,...,s. And then the numerical

solution is defined by ¢"*1 = u(t, + At) and ¢"+' = v(t, + At).

Theorem 1.4 on page 31 of [38] indicates that the collocation
method yields a special RK method. If the collocation points
c1,...,Cs are chosen as Gaussian quadrature nodes, i.e., the zeros

of the sth shifted Legendre polynomial 4 s (x (x—1)°), Scheme 3.2

is called the Gaussian collocation method. Based on the Gaussian
quadrature nodes, the interpolating quadrature formula has order
2s, and the Gaussian collocation method shares the same order
2s. For instance, the RK coefficients of fourth order and sixth
order HSAV schemes are given explicitly in Table 1 (see [38] for
coefficients of higher orders).

For conservative systems with quadratic invariants, the Gaus-
sian collocation methods have been proven to conserve the cor-
responding discrete quadratic invariants [38]. Here we show that
these translate into unconditionally energy stability for the SAV
reformulated system (13).

Theorem 3.2. The s-stage HSAV Gaussian collocation Scheme 3.2
is unconditionally energy stable, i.e., it satisfies the following energy
dissipation law

En+1 _ En
= Ath,-(Ell(t,i) + w6 (u(ts)) ,
i=1 (g(u(r;;)), 1) +Go

v(th)g’ (u(ty)) ]>
(g(u(t,’;)), 1) +Co

<0, (28)

where E" = 1(£¢", ¢") + (¢")? — Co and £} = t; + GAL,
(i = 1,...,s) are the Gaussian quadrature nodes, b; > 0 (i =
1,...,s) are the Gauss-Legendre quadrature weights, u(t), v(t) are
the collocation polynomials of the Gaussian collocation methods.

Q[Lu(t,i) +

Proof. Noticing ¢" = = v(ty) and "1 = u(tyiq), ¢+

= v(ty41), we have

u(tn)v qu

—_

E™ _p = (w"“ ") — (L™, ¢") + (@1 — (")

5(
1
= 7(u(tn+] Eu tn+] ) ( (tn)

+ |U(tn+1)| - |U(tn)|2
_[™T1d d
= /tn [Zdt(u(t)’ cu(t)) + a|u(t)| :|dt

- f"“[(u(t), cu(t) +2i)(t)v(t)]dt.
tn

. Lu(t,))

The integrand (il(t), Lu(t)) and v(t)v(t) are polynomial of degree
2s — 1, which is integrated without error by the s-stage Gaussian
quadrature formula. It therefore follows from the collocation
condition that

f " [(it(t), cut)) + 2iz(t)v(t)]dt
At Z [

Athi(u(rg), cu(th) + )
i=1 [(g(u(th)), 1)+ Co

u(ey)) -+ 206 )o(c})

Il

BN
~

i-
=
aunS

)

-

v(thg (u(ty))
(g(u(t,ﬁ)), 1) +Co

which leads to (28). This completes the proof. O

Remark 3.1. The proposed high-order energy stable schemes do
not depend on the specific form of mobility G and free energy F
so that they work for any gradient flow models (5).

Remark 3.2. Due to the collocation method reduces to a spe-
cial RK method, we have to solve the nonlinear system (17),
which can be implemented by using a simple fixed-point iteration
method. Please see [37] for more details. At each time step,
even though solving an HSAV scheme takes longer than solving
the SAV scheme, much larger time step size can be used for
the HSAV scheme than the low order SAV schemes to reach
the same accuracy (due to the high-order accuracy of the HSAV
scheme). Overall, for simulations reaching similar accuracy, the
HSAV scheme will take less CPU time than the low order SAV
schemes, making the HSAV scheme very competitive for long
time dynamic simulations.

4. Spatial discretization

To make the order of accuracy in space compatible with the
arbitrarily high-order in time, we employ the Fourier pseudospec-
tral method in space for Schemes 3.1 and 3.2 to arrive at fully
discrete HSAV-RK schemes and fully discrete HSAV collocation
schemes, respectively. Then, we show the fully discrete HSAV-RK
scheme with (19) and the fully discrete HSAV Gaussian colloca-
tion scheme to preserve the corresponding energy dissipation law
in the fully discrete level.

To make the paper self-explanatory, we briefly reintroduce
the following notations (see [39,40] for more details). Let Ny, N,
be two positive even integers. Domain £2 = [0, L] x [0, L,] is
uniformly partitioned with mesh size h, = Ly/Ny, h, = L, /N, and

2 = {(%;, yo)|x; = jhy, yi = khy,
0<j<N—10<k=<N,—1}.

Let Vi, = {ulu = {u;il(x;, yi) € 21} } be the space of grid functions

on £2;,. For any two vector grid functions u = (up),v = (vn)

(Um, vm € V), we define the discrete inner product and norm as
follows

Ny—1Ny—1
WV =hhy Y (un)e(vm)ie Il = (0, w)s.
m  j=0 k=0
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Table 1
RK coefficients of Gaussian collocation methods of order 4 and 6.
1_ V15 5 2_ V15 5 _ V15
13 1 13 2 36 9 15 36 30
2 6 4 4 6 1 5 + 15 2 5 V15
1y ¥3 |1, V3 1 2 36 T 2 9 36 24
2 6 14 6 4 Ly V5 | 5 L VI3 2 Vi5 5
1 1 2 36 30 9 15 36
2 2 5 4 5
18 9 18
We denote Lemma 4.1 ([41]). Denote
. S
Sy = span{X;(x)Vi(y),j=0,1,...,Ny = 1;k=0,1,...,N, — 1} [iuadiag(o, 1. e g0, Mg, _1>] ’
as the interpolation space, where X;(x) and Y,(y) are trigonometric A= when s odd,
olynomials of degree N,/2 and N, /2, given respectively by s N, N, N, s
P x v/2, [itadiag (0,1, % — 1%, ~% 41, -1)],
1 Nx/2 ' ) when s even,
j— IMux(X—X;i
)(](X) - Nix ae ! I (29) o =Xxory,
m=—Ny /2
1 Ny/2 1. we have
YY) = — M), (30) 1
Y m=—Ny/2 bm DY = Fy, AqsFy,, (32)
where

a, =
" {Z,ImIZNx/Z, "

Liml<Ng2, _[1iml < Ny/2,
2,|m| =Ny /2,

and ux = 2n /Ly, uy = 2m/L,. We define the interpolation
operator Iy : C(£2) — Sy as follows:
Nxy—1Ny—1
Ivu(x,y) =Y > upXi(x)Vily), (31)
Jj=0 k=0

where uj; = u(xj, yx). Then, we differentiate (31) and evaluate
the resulting expressions at point (x;, yx) as follows

Nxy—1 Ny—1
05102 INu(. Yi) = Y > Umy.my (DY, oy (B, Jemy
my=0my=0

where D’s‘1 and Dﬁ’z are Ny x Ny and Ny, x N, matrices, respectively,
with elements given by

X (x,)

a2 Ym(yk)
(D ) = =

s (Dgz)k,m - dy32

Define three operators ®, ® and () as follows:

Ne—1
(UO V) = UVjks (AQWjk = D Ajmlimk:
m=0
Ny—1
(B®u)j,k = Z Bk,muj,m»
m=0

where u, v € Vj. It is easy to show that these three operators
possess the following properties:

uOv=v0u A®Bu=BYAX®u, A@B@u = (AB)@u,
@=®or@.

Then we have

3y 92 Inu(x;, yi) = (D, @DY, @u)j k-

where Fy, is the discrete Fourier transform, and Fy, 1 is the discrete
inverse Fourier transform.

Lemma 4.2. For real matrix A € Ry,xn,, @ =Xxory, and u, v € V,

(A@u, v)r = (1, AT@V). (33)

Using identity (33), anti-symmetry of DJ,_; and symmetry of
D3, Ya € {x,y}, s € Z*, we obtain

<D35_1®u’ v)h - —(u, DgS_l@U)h’
(i60),~ (1051,

which implies that the Fourier pseudospectral method preserves
discrete integration-by-parts formulae. Therefore, we apply the
Fourier pseudospectral method in space to obtain the corre-
sponding discrete self-adjoint operator £, and the negative semi-
definite operator Gy, i.e.,

(Lhd)’ W)h = (¢! thp)h’ (1#7 gh’ﬁ)h =< Ov V¢7 W € Vh' (34)

Applying the Fourier pseudospectral method to Scheme 3.1,
we obtain the following fully discrete scheme.

Scheme 4.1 (Fully Discrete HSAV-RK Method). Let b;, a; (i,j =

1,...,s) be real numbers and let ¢; = Zj:l a;. For given ¢" € Vy
and q" € R, the following intermediate values are first calculated by

s
;= ¢" + At Z Cll'jkj,

j=1

S
Q=q"+ At Zaijlj,

=1

e (35)
ki =G | Lo+ 22|
(g(@.1),+o

I = g'(#i) ki

)

2,/ (g(d%-), 1)h+Co
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where &;, ki € Vi, Qi, I; € R. Then ¢™! € V, ¢! € R is updated
via

N
" = ¢" 4 At Y bik;,

i=1

s
q““ =q"+ At Z bil;.
i=1

(36)

Applying the Fourier pseudospectral method to Scheme 3.2,
we obtain the following fully discrete scheme.

Scheme 4.2 (Fully Discrete HSAV Collocation Method). Letcy, ..., Cs
be distinct real numbers (0 < ¢; < 1). For given ¢" € V, and
q" € R, u(t) is a Ny x N, matrix polynomial of degree s and v(t) is
a polynomial of degree s satisfying

u(ty) = ¢", v(ta) =q", (37)
i) = 6 | ooty + —— w86 | (38)
\/(g(u(r;;)), 1) +6
ith) = ACCY R I (39)
2\/(g(u(t,g)), 1) +6 h
where t,’; =t, +cAtandi = 1,...,s. And then the numerical

solution is defined by ¢"*! = u(t, + At) and q"t' = v(t, + At).

Analogous to the semidiscrete schemes, we have the following
theorems for the fully discrete schemes.

Theorem 4.1. If the coefficients of a fully discrete HSAV-RK method
satisfy

biaij + bjaﬁ = bibj, bi>0, V Lj=1,...,s, (40)

then it is unconditionally energy stable, i.e., it satisfies the following
energy dissipation law

s I,
E,?_H - El'; = At Zbi(ﬁhq}i + Qig—m,
i=1 (g(®i). 1), + Co
.o/ ¢
gl1|:£h¢i + &Dh <0, (41)

(g(@). 1), + Co
where El = £y, ™ + (q")? — Co.

Theorem 4.2. The fully discrete HSAV Gaussian collocation
Scheme 4.2 is unconditionally energy stable, i.e., it satisfies the
following energy dissipation law

n+1 n
E;" —Ey

:Ath,-(Lhu(t,';)Jr V(6 (u(t3)) ,
= \/

(g(ute). 1), +6o
(th)g' (u(t))
u(t,)g (u t ) ])h

\/(g(u(t};)), l)h +Go

<0, (42)

where Ef = 3(Lap", ¢")n + (q")* — Co and t}, = t, + G AL, ¢; (i =
1,...,s) are the Gaussian quadrature nodes, b; > 0(i=1,...,s)
are the Gauss-Legendre quadrature weights.

gh[ﬁhu(f,i,) +

Remark 4.1. As the proofs of Theorems 4.1 and 4.2 are similar
to their semi-discrete counterparts in Theorems 3.1 and 3.2,
we omit the details. It is worth mentioning that the proposed
schemes only satisfy the modified energy dissipation law in the
discrete form of (15), instead of the original energy in (6). How-
ever, we note that the discrete version of (15) is a high-order
approximation of (6).

Remark 4.2. In general, the energy decay often implies that the
numerical solution is bounded in the energy norm. In this regard,
the HSAV schemes possess a good nonlinear stability, which is
also known as energy stability. However, it does not necessarily
mean that the numerical solution is bounded in L*° norm. In
Ref. [42], Tang et al. proposed a class of implicit-explicit schemes
for the Allen-Cahn equation, which could preserve the maximal
principle and satisfy the discrete energy stability. Since the pro-
posed schemes in this paper are fully implicit and nonlinear, it
is very difficult to prove that our schemes satisfy the maximal
principle. How to develop high-order numerical methods that
preserve the maximum principle will be considered in our further
work.

5. Numerical results

In this section, we conduct three numerical tests to benchmark
the theoretical results. We reiterate that the newly proposed
HSAV schemes can reach arbitrarily high order accuracy in time
(with a proper choice of the Gaussian collocation points), and they
are all unconditionally energy stable. For simplicity, we only test
the 4th and 6th order scheme for the demonstration purpose.
Moreover, the CPU time is calculated with a 3.2 GHz Intel Core
i7 using Matlab R2018b on MacOS Mojave version 10.14.2.

Example 1 (Allen—-Cahn Equation). First of all, we test the proposed
numerical schemes for solving the Allen-Cahn (AC) equation [6]:

0p = —M(=e24¢ +(9* - 9)), (43)

where M is the mobility parameter and ¢ controls the interfacial
thickness. We choose the benchmark problem given in [43],
i.e. set the initial profile of ¢ as

1, x*+y? <100%,

$(x,y,0) = { -1, X2 +y2 > 1002’ (44)

which is a disk centered at the origin, and use domain 2 =
[—128, 128]. The parameters are chosen as M = ¢ = 1. It is
known that the area of the disk will shrink, following the scaling
law V = 7R3 — 27t asymptotically, where Ry is the initial radius.
Here we test the dynamics using the proposed HSAV schemes.
The numerical results are summarized in Fig. 1. We observe that
the HSAV schemes can use much larger time steps to capture
the correct volume shrinking dynamics than the low order SAV
schemes.

Example 2 (Cahn-Hilliard Equation). Next, we study the Cahn-
Hilliard equation with a Ginzburg-Landau free energy. Specifi-
cally, given Ginzburg-Landau free energy F = (—%5A¢, ¢) +
(5(1 = ¢*)%, 1) and constant mobility A, the model is proposed
as

e = AA[—szAfb + (¢ — ¢)]. (45)

If we set G = 1A, £ = —&?A + y and g(¢) = (1 — ¢*)* —
%q&z + “C,Z—O‘ where Cy is a constant such that (g,1) > 0. By
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Fig. 1. Benchmark problem for disk shrinking using the Allen-Cahn equation. This figure shows the area of a disk shrinks in time with different schemes and various
time steps. The second order SAV scheme based on the Crank-Nicolson method, the fourth and sixth order RK schemes are displayed. The high order RK methods
can produce the correct scaling rate at much large time steps than the low order CN scheme.
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Fig. 2. Time step refinement test for the SAV schemes for the Cahn-Hilliard
equation. This figure demonstrates the HSAV schemes can reach their expected
high-order accuracy. Their numerical errors are much smaller than that of the
SAV-CN scheme.

introducing the scalar auxiliary variable ¢ = /(g, 1), the Cahn-
Hilliard equation (45) can be rewritten as the reformulated form
of (13)

0o = A 240 + yod + e | o

d /
ad= (ﬁ, 0:9),
with the consistent initial condition for q: q(t = 0) = \/(g, 1)|¢=o-

First of all, we conduct a time-step refinement test to verify
the accuracy of the proposed schemes. We choose the domain
as £ = [0, 1] x [0, 1] and spatial meshes N, = N, = 256. The
parameters are chosenas A = 1073, & = 0.01, yy = 1, (o = 1. The
initial profile for ¢ is given as ¢(x, y, 0) = sin(27x) sin(27y). Both
the SAV Crank-Nicolson (SAV-CN) scheme (see [5]) and the newly
proposed HSAV Scheme 3.2 with fourth order and sixth order
collocation points are tested. The numerical errors in L> norm at
t = 1 are summarized in Fig. 2. We observe that the two HSAV
schemes reach the fourth and sixth order accuracy respectively.
In particular, the L? errors of HSAV schemes are significantly
(in several orders of magnitudes) smaller than the SAV-CN
scheme.

In addition, to assure the [? norm of the numerical error for
¢ at t = 1 smaller than 1071°, the approximate time steps are
At = 107> for the SAV-CN scheme, At = 0.004 for the HSAV
4th-order scheme, At = 0.02 for the HSAV 6th-order scheme. The
total CPU time is summarized in Table 2, where we observe the

Table 2
Total CPU time using various numerical schemes solving the CH model.

SAV-CN scheme HSAV 4th-order = HSAV 6th-order

scheme scheme
At 0.00001 0.025 0.02
CPU time (seconds) 165.32 3.00 2.62

HSAV schemes take much less CPU time than the SAV-CN scheme
to achieve the same accuracy. It indicates the HSAV schemes are
superior to the SAV-CN scheme for accurate long-time dynamic
simulations.

Next we compare the different SAV schemes for simulating
coarsening dynamics of a binary immersible fluid using the Cahn-
Hilliard equation in (45). We choose the domain as £2 = [0, 4] x
[0, 4] and meshes Ny = N, = 512. The parameters are chosen
as A = 0.1, e = 0.025, yp = 1, Cp, = 1. We use an initial profile
of ¢ as

¢(x,y,0) = 0.001rand(x, y), (47)

where rand(x, y) generates random number between —1 and 1.
The predicted energy evolution using different SAV schemes with
various time steps are summarized in Fig. 3. We observe that for
the SAV-CN scheme, it can predict the correct energy evolution
with time step At 0.00025 (where the predicted energy
evolution with time step At = 0.0005 is noticeably inaccurate).
For the fourth order HSAV scheme, it can predict accurate energy
evolution even with time step At = 0.05; and for the sixth order
HSAV scheme, it even works well with time step At = 0.1, which
is more than 10° larger than the one with the SAV-CN scheme.

Then we use the HSAV schemes to conduct the long-time
dynamic simulations of coarsening. We use the same parameters
as above, and choose the initial profile

@(x,y,0) = ¢ + 0.001rand(x, y),

where ¢y is a constant and rand(x, y) generates a random number
in the range of —1 to 1. Then we choose ¢9 = 0,0.1, 0.5. We
use the sixth order HSAV scheme with time step At = 0.1. The
simulation results are summarized in Fig. 4, where we present the
profile of ¢ at different times. We can observe the HSAV schemes
can capture the phase transition dynamics accurately even with
such a large time step time size. In particular, when ¢q is small,
i.e., the two components have similar total volume, the spinodal
decomposition takes effect. When the volume of one phase is
dominant, (for instance, ¢g = 0.5), the nucleation takes effects.
These results are in a strong agreement with reports in [44].

(48)
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Fig. 3. A comparison of energy evolution using different SAV schemes for the
Cahn-Hilliard equation with various time steps. This figure illustrates the HSAV
schemes can predict accurate solution with much larger time steps than the
SAV-CN scheme.

Next, we study the power-law coarsening dynamics. Here we
set A = 0.02, ¢ = 0.05, and domain £2 = [0, 47]? and use the
initial profile ¢(x,y,0) = 0.001rand(x, y). It is known that the
effective free energy decreases asymptotically following a power
law E(t) &~ O(t~'/3). We use the 4th, 6th order HSAV schemes
and the SAV-CN scheme to calculate it, with 2562 meshes and

Y. Gong, J. Zhao and Q. Wang / Computer Physics Communications 249 (2020) 107033

0 = 1, Co = 1. The obtained results are summarized in Fig. 5.
We observe that all the numerical schemes can capture the power
law dynamics very well when the time step is small enough,
saying when At = 103, However, the maximum time step of
capturing the correct dynamics using the HSAV scheme is much
larger than that of the SAV-CN scheme.

Example 3 (Molecular Beam Epitaxy Model). In the last example,
we consider the molecular beam epitaxy (MBE) growth model
without slop selection [8]. Given the height profile of MBE de-
noted as ¢, the evolution equation is given by
0 = —M(24% + V- (1 - [V41)V9)), (49)

with periodic boundary conditions. The free energy in the model
is given by

_ e? 2, 1 2 42
F= [ (5ta07 + Juvar - 17 )ax. (50)

with a constant mobility M.

—M, £ = &A% — yA and g(Vo) =
and introduce the scalar auxiliary variable

If we denote G C:
LIV -1y P+,
(51)

q=+/(g1),

Fig. 4. Coarsening dynamics of a binary immersible fluid modeled by the Cahn-Hilliard equation using the 6th order HSAV scheme with time step At = 0.1. Here, we
choose ¢y = 0, 0.1, 0.5, and the results at a few selected time slots are shown in (a)-(c) respectively. This figure presents the profile of ¢ at time t = 10, 50, 100, 1000.
It illustrates the HSAV scheme captures the phase separation dynamics accurately with fairly large time steps.
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Fig. 5. Energy evolution of the Cahn-Hilliard equation in phase separation dynamics with different time steps. Here the log-log scale of the energy with respect to
time is plotted. It illustrates that the higher order scheme performs better than lower order schemes in the simulations with large time steps.

and the intermediate function

V- (00 + 1= 196P)v0)

H= ; (52)
2/ f VP — 1= yoldx+ Gy
the equation can be reformulated as
0 = —M(£2 4% — yoAd + 24H ),
(53)
%q = (H, 3r¢>,
with the consistent initial condition for g, i.e. q(t = 0) =

v (gv 1)|t:0-

First of all, we would like to test the convergence rate for
our proposed schemes. Following the strategy in Example 1,
we use Cauchy sequences, where the errors are calculated as
the differences between numerical solutions with adjacent time
steps. We set M = 1, ¢ = 1 and the domain £2 = [0, 2712
We use a smooth initial condition ¢(x, y, 0) = sin(x)sin(y), and
choose yy = 1, G = 1, 256° meshes. The refinement-test
results are summarized in Fig. 6. We observe that all the schemes
reach their expected orders of convergence when the time-step
is small enough. However, the HSAV schemes have dramatically
smaller numerical errors (with several magnitudes smaller) than
the SAV-CN scheme, which highlights the advantage of the newly
proposed HSAV schemes.

Then, the proposed 4th-order and 6th-order HSAV schemes
are tested via a benchmark problem [45]. Consider the domain
2 = [0,27]? and parameters 2 = 0.1, M = 1. We pick the
initial profile

$(x,y, 0) = 0.1(sin(3x) sin(2y) + sin(5x) sin(5y)).

This is a classic example that has been studied intensively [8,9].
The effective free energy dynamics using different schemes with
various time steps are plotted in Fig. 7. We notice that even
though all schemes assure the energy dissipation properties, the
SAV-CN scheme requires a much smaller time step size (around
At = 1074) to predict accurate energy dissipation. In the mean-
while, the HSAV scheme can predict energy evolution accurately
even with time step At = 0.05, which is 500 larger than the SAV
scheme.

Besides, the total CPU time using each scheme to calculate
the MBE model till t = 15 is summarized in Table 3, where we
observe the HSAV scheme is much faster than the low order SAV
scheme, as much larger time steps can be used for HSAV scheme
while preserving the desired accuracy.
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Fig. 6. Time step refinement test for the SAV schemes for the Molecular
Beam Epitaxy model. This figure demonstrates the HSAV schemes reach their
expected order of accuracy. The numerical error of the higher order schemes is
dramatically smaller than the lower order schemes.

Table 3
Total CPU time using various numerical schemes solving the MBE model.

SAV-CN scheme HSAV 4th-order HSAV 6th-order

scheme scheme
At 0.0001 0.025 0.05
CPU time (seconds) 672.39 79.45 74.72

One simulation using fourth order HSAV scheme with time
step At = 0.025 is shown in Fig. 8, where the height profile
of ¢ at different times is shown. The patterns agree very well
with the solution computed using other numerical solvers in the
literature, while we can use an extremely larger time step than
the time-step used in the other methods.

6. Conclusion

In this paper, we combine the SAV approach with the
structure-preserving discretization strategy to propose a new
class of unconditionally energy stable methods for gradient flow
models, which we name them the HSAV schemes. The HSAV
scheme can reach arbitrarily high-order accuracy in time while
respecting the discrete energy dissipation law in terms of the
reformulated energy dissipation rate. Therefore, the schemes are
more accurate than the available second order schemes and
suitable for longtime dynamic simulations with larger time steps.
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Fig. 7. Energy evolution in crystal growth modeled by MBE model and calculated by different SAV schemes with various time steps. This figure demonstrates the
HSAV schemes can predict accurate energy dissipation dynamics with much larger time steps than the low order SAV scheme while solving the dynamical details

in the MBE model with slope selection.

(d) t=55

(e)t=8

(f) t =30

Fig. 8. The isolines of numerical solutions of the height function ¢ for the MBE model with slope selection using the 4th order HSAV scheme. The time step is

At = 0.025. Snapshots are taken at t = 0, 0.05, 2.5, 5.5, 8, 30, respectively.

Because of the enhanced accuracy, the HSAV schemes can dra-
matically improve transient dynamical simulations, giving the
schemes based on energy quadratization methodology a com-
petitive edge over the other methods in terms of simplicity,
ease-of-implementation, energy-dissipation-rate preserving, and
most importantly high order of accuracy. Some numerical bench-
marks are presented to illustrate the outstanding performance of
the proposed numerical methods. The proposed HSAV method is
rather general, applicable to any gradient flow models derived
through energy variation. Furthermore, it can also be generalized
to study thermodynamically-consistent hydrodynamic models,
where additional conservation laws appear as constraints.
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