Journal of Computational and Applied Mathematics 372 (2020) 112719

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

L))

Check for
updates

Error analysis of full-discrete invariant energy quadratization
schemes for the Cahn-Hilliard type equation

Jun Zhang*", Jia Zhao “*, Yuezheng Gong ¢

2 Guizhou Key Laboratory of Big Data Statistics Analysis, Guizhou University of Finance and

Economics, Guiyang, Guizhou, 550025, China

b Computational Mathematics Research Center, Guizhou University of Finance and Economics, Guiyang, Guizhou 550025, China
¢ Department of Mathematics and Statistics, Utah State University, Logan, UT, 84322, USA

d College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

ARTICLE INFO ABSTRACT

Article history: In this paper, we present the error analysis for a fully discrete scheme of the Cahn-
Rece?ved 7 Febr_ualy 2019 Hilliard type equation, along with numerical verifications. The numerical schedule is
Received in revised form 9 July 2019 developed by first transforming the Cahn-Hilliard type equation into an equivalent form

using the invariant energy quadratization (IEQ) technique. Then the equivalent form is

Iézﬁvr:/?lr-ldi;l'iard equation discretized by using the linear-implicit Crank-Nicolson method for the time variable and
Invariant energy quadratization the Fourier pseudo-spectral method for the spatial variables. The resulted full-discrete
Unconditionally energy stable scheme is linear and unconditionally energy stable, which makes it easy to implement.
Error estimate By constructing an appropriate interpolation equation, the uniform boundedness of the

numerical solution is obtained theoretically. Then, we prove that the numerical solutions
converge with the order O((§t)> + h™), where 8t is the temporal step and h is the
spatial step with m the regularity of the exact solution. Several numerical examples
are presented to confirm the theoretical results and demonstrate the effectiveness of
the presented linear scheme. The numerical strategies and analytical tools in this paper
could be readily applied to study other phase field models or gradient flow problems.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

The Cahn-Hilliard (CH) equation was originally proposed by Cahn and Hilliard [ 1] to describe the process of coarsening
dynamics and phase separation. Nowadays, the CH model has emerged as a classical mathematical physics model in
various applications, including multiphase fluid flows, polymer physics, soft matter (cf. [2-7]). Thus, it is imperative to
propose some accurate and efficient numerical methods to solve the CH equation. An important feature of the equation
is that it satisfies an energy dissipation law. It is natural to develop efficient numerical methods that preserve the energy
dissipation law in the discrete level. Such numerical schemes are known as energy-stable schemes or structure-preserving
schemes. If the scheme does not have any time step restriction to preserve the energy-dissipation property, the schemes
are called unconditionally energy stable. The difficulty of developing such schemes lies in the discretization of nonlinear
terms in the CH equation. Also, if we treat all the nonlinear terms implicitly, it will generate a nonlinear system for each
time step, and the computational is very large. But, if we treat all the nonlinear terms explicitly, it will lead to serious
time step constraints and the scheme does not satisfy the energy dissipation property in most cases.
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Over the past few decades, many researchers are committed to developing energy-stable schemes to solve the CH
equation. In general, it is an active field for developing energy stable schemes for thermodynamically consistent models At
present, the commonly used methods include the convex splitting approach [8-14], the stabilized approach [15-21], and
many others [22-31]. The advantage of the convex splitting approach is that it is unconditional energy stable and uniquely
solvable, by splitting the nonlinear terms into convex and concave parts and treating them differently. But, some nonlinear
systems will be produced, which makes the calculation quite tricky, especially for long-term numerical simulation. The
stabilized approach is simple and easy to apply, and only the constant-coefficient equations need to be solved for each time
step. In the stabilized approach, the nonlinear function is treated full-explicitly. To obtain energy stability results, one has
to add a stable term to balance the influence of explicit terms. However, this method is conditionally energy stable, and it
has a restriction potential functionals. To weaken this restriction, Li, Qiao, and Tang [32,33] constructed a new stabilization
method, but it is still conditionally stable. Based on the Lagrange multiplier method [22,34], Yang et al. [35-40] proposed
the IEQ method. The key idea of this method is to transform the original nonlinear potential function into a quadratic
form by introducing two new variables. The advantages of this method are linear and unconditionally stable. Meanwhile,
this method can be extended to higher-order methods [41]. It is necessary to assume that the double-well potential F(x)
is bounded from below, besides, due to the special construction of quadratic functions, it involves solving complicated
variable coefficient equations. Shen et al. [31] made appropriate modifications to quadratic functions and proposed the
scalar auxiliary variable (SAV) approach, which is also linear, and unconditional energy stable. Besides, this method has
the advantage that only the constant-coefficient equations need to be solved.

Rigorous error estimates have been carried out for the SAV approach [42], and the first-order semi-discrete IEQ
approach [38]. Unfortunately, results on the error estimate of the fully discrete and second-order IEQ schemes for solving
the Cahn-Hilliard type equations are still missing. The nonlinear quadratic term introduced by the IEQ method brings
considerable trouble to error analysis of the full-discrete scheme. In this article, we propose a fully discrete linear scheme
for the CH type equation, where we use the Crank-Nicolson method for time discretization and the Fourier pseudo-
spectral method for the spatial discretization. Rigorous convergence analysis is provided for this full-discrete scheme.
Specifically, through our special construction, the projection of the exact solution on Fourier space satisfies an optimal
regularity requirement. Then, under appropriate assumptions, we prove that the numerical method leads to second-order
accuracy in the time direction and spectral accuracy in the space direction. Afterward, some numerical examples are
conducted to support the theoretical claims.

The rest of the article is structured as follows. In Section 2, we present the fully discrete scheme. Then, we prove that
the fully discrete scheme is unconditionally energy stable and unique solvable in Section 3. Afterward, in Section 4, we
present our proofs showing that the fully discrete scheme is second order convergent in time and spectral convergent in
space. In Section 5, several numerical experiments are performed to verify our theoretical results. The conclusion of this
article is given in the last section.

2. Full discrete numerical scheme

In this paper, we consider the following general energy functional

1
0) = [ (51908 + F(@)ax. ()
fo)
where F'(¢) = f(¢) is the nonlinear potential. Then, we can get the following Cahn-Hilliard type equation as
o = Aw,
{w = —A¢ +F(@). @)

2.1. Model reformulation using the invariant energy quadratization technique

To solve the Cahn-Hilliard type equation (2), we need to reformulate it into an equivalent form using the invariant
energy quadratization technique. In details, we denote

d _
a0 = [F$) - L2 1B, g0y =2 g = LDV 3)
2 ¢ F(¢)— 5% +B

where B be a constant such that q(¢) is well-defined. Then, we rewrite Eq. (2) as follows

¢ = Aw,
w=—A¢+yd+g(d)q, (4)
4 = 38(P)r.

subject to the consistent initial and boundary conditions

Blco= o, qlio= F(¢o)—§¢3+3, (5)

¢, w are periodic. (6)
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It could be easily verified that the transformed model (4) is equivalent to the original CH model (2), and they obey the
same energy dissipation law. Actually, by taking the L? inner product of (4) with w, ¢, 2q, respectively, we have

*E¢ q) / |Vw|*dx, (7)
where
1 Y
E(¢,q) = / IVl + 2 ¢* + d’dx — BI@2|. (8)
2
Note that the energy E(¢, q) is equivalent to E(¢) by acknowledging (3).
2.2. The fully discrete scheme

Before we present the fully discrete scheme, we introduce some notations that will be used frequently in the rest of
this paper. Given f(x, y) € L?(£2) with £ = (0, L)?, its Fourier transform is denoted as

Z f e L 1(/x+ky (9)

jik=—

where the inverse transform is given as
-~ 1 27 s
fik= 1 f Fx,y)e” T dxdy. (10)
2

The truncated series is the projection onto the space SV of trigonometric polynomials in x, y of degree up to N, given by

Prfx.y) = Z T E ), (11)

j.k=—N

To obtain a pseudospectral approximation at a given set of points, an interpolation operator Zy is introduced. The Fourier
interpolation of the function is defined by

(Tnf )%, y) = Z (e T 0, (12)

Jj.k=—N

where (_’ﬁ\])j’k are computed based on the interpolation condition f(x;, yx) = (Znf)(Xi, yx) on the (2N + 1) x (2N + 1)

equidistant points. In practice, one may compute the collocation coefficients (ﬁ,)j_k via FFT. The convergence of the
derivatives of the projection and interpolation is given by

18 (%, y) — 3"Pnf (%, )ll2 <CH*'|f e, for 0 <1<k, (13)
d
18 (%, y) — 8'Znf (%, Y)ll2 <CH*'|f llye, for 0 <I<k k> 3 (14)

Note that C is a general constant in this paper (that is independent of temporal and spatial steps), but representing
different values in different places. Given any real grid functions f and g (over the numerical grid), we introduce the
following discrete L> norm and inner product

WE=6.0). 6.8 =(5-7) Zﬁkg,k, (15)

and the following property holds
(f, DYg) = —(Dnf, Dng), (16)

where Dy denotes the discrete differentiation operator.
With all the notations above, we now present the following full-discrete scheme

Pl —gn D? w14

5t N 2 ’
10 1 pn 1 pn 1 | gn
wtleut 2 67eg 4 970N | g geya (17)
qn+1iqn 1 % ¢n+1_¢n

5t ig(d) ) 5t

where ¢* = 2¢" — 1¢"1, n > 1, with ¢* = ¢° for n = 0, and g is defined in (3).
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2.3. Stability and uniqueness for the full-discrete scheme
First of all, we have the following energy stability results for the full-discrete scheme (17).

Lemma 2.1. The full-discrete scheme (17) is unconditionally energy stable. And it follows the energy dissipation law as

wn+1 + wh

E(¢"™*", q""") + 8t || Du( I3 = E(¢", q"), (18)

and in particular E(¢"1, ¢"t1) < E(¢™, q"), with

1 1
E(¢", q") = 5||DN¢"||§ + 5y||¢”||§ + llg"3 — BI2].

Proof. Taking the L? inner product of the first equation in (17) with §t(w"*! 4+ w"), and using integration by parts, we
obtain

wn+l + wh
2
Taking the L? inner product of the second equation in (17) with 2(¢™*! — ¢™), we obtain

(w1 w", 9741 = @) =IDNe™ 1 Z — IDNg"I3 + v (8™ E — 16713)

(71 =" w4 wr )= —26¢Du( I3 (19)

+ (gl g™+ 0" - 7). (20)
Computing the L? inner product of the third equation in (17) with 28t(g"*' + ¢"), we obtain
20" 13— 219"13 = 20" 9" = ¢"). 4" + 7). 1)

Summing above equation up and dividing both sides by 2, we have
1 1 1 w4 "
S IDN@™ I3 = S1DNg" 15 + 57 CIe" 115 = 19"13) + 11913 — 2114”13 = =8t lDy(————)I3-

Then we derive (18). This completes the proof.
Theorem 2.2. The full-discrete scheme (17) is uniquely solvable.
Proof. First, from the third equation of (17), we find

1
' =q"+ Eg(¢>*)(¢"“ —¢"). (22)
Then, we can rewrite (17) as follows
¢n+1 _ %Dlz\lwlhq — ‘,;_-17
P(¢n+1) _ wn+1 — 52,

where
& =¢" + $Dyuw",

£ =Dio" — y¢" + 2(¢*)(38(¢*)¢" — 24") + w", (24)
P(¢p) = —Di¢ +v$ + 58(¢*Vo.

In other words, (23) could be written as

n+1 _DZ 1 *)2 -1
L e 3]

Thus, we can solve (¢"*!, w"*1) directly from the linear algebra equation (25). To show there exists a unique solution for
(25), we only need to should £X = 0 only has solution X = 0, with £ the stiffness matrix.
Notice the facts, when ¢ satisfies the periodic boundary condition, we have

1
(P(¢), @) = (Dno, Dng) + v (9. ¢) + 5((g*)2¢, @) = (¢, P(g)). (26)

Then, the linear operator P(¢) is symmetric. Furthermore, we find

1
(P(®), ) = IDNG I3 + v I¢115 + - 8678115 (27)
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Thus the operator P(¢) is positive. Taking the inner product of the first equation in (17) with 1, we derive

@) = (" 1) == (¢°, 1). (28)
Set vy = ﬁ@o, 1), vy = ﬁ(wn“, 1), and denote
anﬂ — ¢n+1 — vy, ol = 1 — Vs (29)

Combining with (23), we know that (¢"*1, @"+1) is the solution of the following equations

{(P(¢), ¥) — (w, ¥) = (&3, ¥),
(@, 9) + & (Dyw, Dyg) = (€4, 9).

We denote the above system as follows
(X, Y) =(F.,Y), (31)
with X = [¢p, w]", Y = [, ¥1T, F = [&3, &]". Thus, we find
3t
(X, X) = —-IDvwll3 + (P(¢), $) (32)

Apparently, when £X = 0, it holds (£X, X) = 0, then we can deduce that X = 0. Thus the linear system (31) is uniquely
solvable. O

3. Convergence analysis

We denote @y as the projection of ¢ into SV, i.e.

Dn(-, t) = Png(-, L), Wi(, t) =Pyw(-,t), Qn(-, t) =Pnq(- t). (33)
It is easy to find that

Dty = g = Puh, Ly = Py =Py (34)

at at at at at at

We rewrite Eq. (4) as follows

0Py = AWy + 174,

Wy = —ADy + y Dy + g(Pn)Qn + T2, (35)
0:Qnv = %g(¢N)at¢N + 13,

where
r1 = (0, Py — 0r¢) — (AWy — Aw),

rp=Wy—w)—(—APy + A¢) + y(—Pn + &) + (&(¢)q — &(Pn)Qn). (36)
r3 = (3;Qu — 9:9) — 3((PN)D Py — &($)0; ).

We observe that

10:(@n — P)ll2 =NZn(3 (PN — P12 < 10:(Pn — @)l 2 + 110:(Znd — D)l 12, (37)
19:(Qv — @ll2 =I1Zn(3:(Qn — @)z < 118:(Qn — @l 2 + 113:(Zng — @)l 2 (38)
Thus, we arrive at
18:(@n — @)ll2 < Ch™ |3 llym, 18:(Qn — @)ll2 < Ch™ || qllgm. (39)
Using the similar arguments, we have
|AWN — w)|l2 <Ch™||w||yme2, Wy — w]2 < Ch™||w]lgm, (40)
IA(@N — @)ll2 <Ch"[|Pllym+2, 1PN — Pll2 < Ch™ || B]lpm. (41)
For the nonlinear term we find
lg(é)g — g(Dn)Qnllz < N1qlliellg(@) — g(DPn)ll2 + I18(Pn)llre llg — Qull2- (42)
Note that
Qv — qll;2 <Ch"™|Iqllxm, (43)
lg(®n) — g(P)lz <ClIg' (@)= lIPn — Pll;2 < CllPn — @l 2, (44)

Ig()0:q — (Pn)0:Qull iz <N19cqll= lIg(#) — &(Dn )2 + Ig(Dn)lloe [18:q — 9 Qull 2 (45)



6 J. Zhang, J. Zhao and Y. Gong / Journal of Computational and Applied Mathematics 372 (2020) 112719

Then, we can derive the following results

lg(@)a — g(Pn)Qull2 =I1Zn(g(#)g — &(Pn)Q)I 12

<lig(¢)q — g(@n)Qnllz + Ig(P)g — In(g(¢))Il 2
+ lg(@n)Qv — Zn(g(Dn)QW)I 2

<Ch"(lI$llm + If (@)I1m). (46)
Ig(#)3:¢ — g(Pn)0c P2 =I1Zn(g(P)0:d — (P )3 Pn) 2

<llg(#)3:¢ — g(Pn)3:Pnll 2 + 18(#)3:p — In(g(P): )2
+ 1g(@n)3: Py — In(g(PN)3: D)l 12
<Ch"(llpllm + 10epllm + 1g(P)Bcpllpm). (47)

Combining the equations above, we derive at

Irill, < Ch™, i=1,2,3. (48)

Theorem 3.1. Suppose (@n, Wy, Qu) as the approximation solution constructed by (33), denote (&, W, Q) be its discrete
interpolation, then we arrive at

1
pnt+1_gpn 2 W"+1+W” n+§
8t - DN 2 + Rl ’

n+1 n n+1 n n+1 n 1 n+1 n n+l
Wit W =_D12\1<¢ +o )"H/q) 0" | g(pnt) Qe | 2 (49)
1
Qn+17Qn 1 n+1 ph+1_gpn n+§
st = 28PN ) T TRy Y

1
where ®" = &(t,), W" = W(t,), Q" = Q(ty), and R} (i = 1,2, 3) satisfies

K 1
2
IRy = (86 D IRETIZ) < (@07 + ™, (50)

k=0

Proof. Let us introduce the notations as follows

n+d _¢"+1 — PN n+4

El n , E > = 0:®n(t,, 1)

E;H% ﬂDﬁ(M)’ 15”+2 = AWp(t,, 1),

g :M, N Wi(ty ).

EZ+% :Di’(w)’ EZ:% = A®n(t,, 1), 1)
E;H% =M, E;:% = ¢N(tn+%)’

Eg+% g((bwz)w Eg:% =g(¢N(tn+%))QN(fn+%)a

Gl ExY = 00Qu(ty, ).

g (@”*%)W, By ? = g(@ulty, ) D Da(t, ).

In turn, application of discrete summation in £2 leads to

IE1 — InEtellpo, 12 <C(5t)2||¢’N||H3(o,T;L2) = C(5t)2||¢||H3(o,T;L2)» (52)
IE2 — ZnEzellpo.1:i2) <C8t W w2012 < C8EY wll2(0.7: 129 (53)
IEs — ZnEsellzo 1.2y <C(8) 1 Wiyll2(0,1.12) < COEV w20 12120 (54)
lEs — InEsellpo 12 <C(8ty I Pn 20,712y = c(se) P 1l12(0,7;H2)5 (55)

(6t) (56)

lEs — ZnEsell2(0. 1.2y <C(St 2||¢N||H2(Q,T;L2) = C(at)2”¢”H2(O,T;L2)-
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. +1 o+l . .
For the nonlinear Eg 2, Ege 2 we have the following estimate

1 1 n+1 n 1 n+1 n
7 -t %) | oo h %

2 Hm
EChm(llf(‘PN)HLoo(o,T;Hm) + ”‘DN”L"C(O,T;H’")>« (57)
Note that
(e HESEE - )
=CEeR (1@ llewiora=) + 19n o) ) 1Qllsz 2 (58)
Then, we obtain the following
IEs — Zn(Ese)ll(o,1.i2) < C((8t)* + h™). (59)

Similarly, we can obtain that
1E7 — InEzell20.:2) < C((St)2||QI\I”H3(O,T;L2 = C((St)2”q“H3(O,T;L2)' (60)
For the last two nonlinear terms, we arrive at

n+l nel OGN — o
|57 - (a2,

1 (pn-H —_n
<Ch™ H o\ IN N
- &( N ) St H™
§Chm(IIf(¢N)||L00(o,T;Hm+2) + ||¢N||Lw(o,T;Hm+2)> 1 @n 10, 7;Hm)5 (61)
and
n+l ¢n+1 — ¢n
[z (et =25~ )
=C(8eP (I @wliiora) + 19w 1)) 19w o rso) (62)
That is
IEs — Zn(Ese)ll (o .2y < C((8E)° + h™). (63)

Combining the estimates above, the consistency analysis (50) is completed. O

Lemma 3.2. Given (a) 3B such that F(x) — %xz +B > 0, Vx € (—o0, +00); (b) F(x) € C?(—o0, 00); (c) there exists a positive
constant Cy such that

max{ 19", 19"} = Go. (64)
It holds

max{ IFs Gl WGl WGl 1RGO+ Bl | < G, (65)
with Fi(x) = F(x) — %xz,ﬁ =F}, x"=e®"+(1—¢)p", ¢ € [0, 1]. Moreover, we have

Ig(®™) — g(@")ll2 < G| @™ — ¢"[. (66)

here G, is a constant which dependent on Co, Cy, B.

Proof. Follow assumption (c), we know that x" is uniformly bounded, combine with assumption (b), we can obtain (65).
By using the similar arguments in (44), we arrive at (66). O

Lemma 3.3. Given (a) 3B such that F(x) — %xz +B > 0, Vx € (—o0, +00); (b) F(x) € C3(—o00, +00); (c) there exists a
positive constant Cs such that

max | @" 1=, 19"~ | < G
n<k
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The following inequalities hold

maXngk{HFl(X")lle, F1Cx oo, IO e s I O llies s IIV/F(x™ +B)||L°O} < (s,
IDng(@") — Dng(é™)ll2 < Gs(IDn(DP™ — @)z + 127 — ¢ |l2),
where Cs is only dependent on C4, C3, B.

Lemma 3.4. Denote {u" }"“ be sequences of function on 2, then we have

k
[ Y TS S T
n=0

Some regularity assumption

¢ € L¥(0, T; HX(2)) N L0, T; WH>(£2)), 3¢, 8rq € L*(0, T; H'(£2)) N L®(0, T; L(£2)),
q € L®(0, T; Wh(2)), 97q, 87, 97q, 8¢ € L*(0, T; L*(2)), w € L*(0, T; H*(£2)).

In order to prove the error estimate, we define v, such that

v = max ||®(t)|~ + 1.
0<t<T

(67)

Lemma 3.5. Suppose 3B such that F(x) — %xz +B > 0 foral x € (—o0, +00), F(x) € C3(—o0, +00) and the exact
solution satisfied some regularity assumptions (68), and there is a given constant 1o and ho, when §t < 19, h < hy, for any

k=0,1,...,[T/dt], we have the following results

k
¢* |l < v.

(69)

Proof. We present the proof using mathematical induction. When n = 0, it is easy to verify that ||¢°|;« < v. Suppose

" [le < v for n < k holds. Next we will show [|¢**||; < v still valid. First we define the error function
e¢_<15"—¢ =W"—w", eq:Q”—q”.
Subtracting (17) from (49) yields

where

Qn+1 + Qn qn+1 + qn
n+ *
= (gomH == —gl¢")T——).

1 (pn-H — PN ¢n+1 d)n
=(s(0mH———— —g(@)——").
St
We note a W2 bound for the constructed solution
PN Ml 1wy < C, de. [[@"e < C, V"1 < C.

Taking a discrete inner product with the first equation in (71) with error function 28t(e™! +€" ) gives

([ 2.2 42 = oIV @ + I + 200{R} 2 47,
Taking a discrete inner product with the second equation of (71) by the error function 2("2,+1 - e¢ 28t(~"+l
(“““ +e. et —?3,) =|IDNE}IZ — IIDNES 115 + v (IS5 — 1185 15)
+ 2< S+l _ >+2<R +3 s *é'n>
+1
+ €¢)
2
1
+ 25t<x,“e?u“ +E’;> + 25t<RZ+2 g +“e”;>.

3t||~n+1+’éz}||§ =28t< DZ( Sn+1 +’éﬂ>+y3t<?;+]+’ég,gnw+l+?;>

(70)

(72)

(73)

(74)

(75)

e ) gives
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Taking a discrete inner product with the third equation of (71) by the error function 28t(é’5+1 +EE) gives

1
20813 — 2003 = s &+ + @) + 20¢(R) 2 @ + €

Note that
QTH—] + Qn 1 en+] + e
X = f(g(dﬁ"“) —8(¢")) + g(¢*)%,
and
<pn+l —Pn 1 en+1 — el
V= ——(g(®""2) — g(¢") + 8(¢") 2.
ot ot
The inner product associated by the truncation error can be handled in a straightforward way:
+1 +1
2R"2 ) <cIR 23 + f||“"+l +2 13,
1 ’é‘h-H e
—2<R;+2,Eﬂﬂ —“e71> —— 5r< R Dﬁ% +R, )

scsr(nR I+ T 4 IR ) + T IDNEL + 2

2R 7 4 7) <IRST I + i + 2
Using similar techniques, we find
(~DR@ + @), e + 7 ) <CIDWE +EIE + f||DN(e”;+1 +2)I2,
(e 4 e 42 <cie + @2 + f||““+‘ AR,
2<X+R"+2 CARRCHE (||~"+1 S+ IR I3 + 11 +at)
||““+l +e113.
For the nonlinear term, we find

—2<X ’é";l)+1 —E’;)-l—&(y,?;“ +’E‘Z>

== 2(%@@"*%) —g(¢) +g<¢*)eg+]27+eg,“eg+1 %)
+ St(#(g(cb“%) —8(¢") +g(¢*)ez’§+;7t_€‘;’,“eg“ +)
=- 28t<w(g(¢”+%> ~ 8(¢"). D} (%) LR
+ St(u(g@“%) gl & +)

scat(uR'I*%n% B IZ + & Z + (56)° + IDNERI3 + IDNES 13 + 2 +212)
+IDE IR
Combining with (75)-(85), we arrive at
IDNELH 13 — 1D I3 + ¥ (I 13 — 112 13)
+ 203 — 3 + —(HDN(é"w“ O+ I+ 12)
<C8e((36)" + 1) + ot (IR 13 + 12513 + DN 13 + 1DnE) 13

+ € + €115 + (36)* + DN @ + )15 + 1)+ +?ei,’;||§).

(79)

(85)
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Summing up forn =1, ..., k, we have
k k
~ 3t ~ ~
B 1 2 3 (IDn@ +EIE + I8+ 13) < B!+ Cl(oe? + h™? + Cor Y B,
n=1 n=1
with
E" = |DNELII3 + v I 113 + 2I[E0113.
For the first step, it is easy to verify that
E' < C((8¢)% + h™).
Applying discrete Gronwall inequality gives
k
~ ot
B+ 5 (IDWGE + I3 + 757 +2515) = C((6t) +h™)
n=1
From second equation in (71), we find
n+d
1D + I3 < (IR + 813 + IS+ 13 + 1213 + 18713 ).
From Lemma 3.4, along with (88) and (89), we find that
k
D& 2 < > IDRET + @)l < C(8t + 8t~ 'A™).
n=0
Moreover, we have the following
9" o <IES lioe + 105|100
1 1
<Cllef™ |12, el 11 2, + 1105100
<C((5t)° + Sth™ + 8t 1h™)7 + || &K 100
If C((8t)° + 8th™ + 8t=Th*™)2 < 1, we have

¢ e < 14 @10 <v. O

Theorem 3.6. Under the assumption of Lemma 3.5, we have

l(tir1) — ¢l + la(@(tir1)) — a(@* Ml

< C((8t)* + h™).

k
+5tn2:; H(w(tnﬂ)‘*'w(fn))—(w"“ +um) y

Proof. Because |¢"|;~ < v, V0 < n < [T/4t], by the same way in Lemma 3.5, we obtained that

k
B 3 (ID@ + I3+ B 4B 18) = 6t + MY
n=0
Using the fact that
lp(te) — ¢ 2 <llp(te) — DXz + D% — ¢¥]l 2,
IV$(te) — Dng*llz <IVe(ti) — VO |2 + [VE* — Dyd¥||2 + [Dy@* — Dyl 2,
Ve — Dyd¥||2 <IVOX — In(VOY) 12 + IZn(VP¥) — Dy ®¥| 2.

This is completes the proof.

4. Numerical examples

(94)

In this section, we present some numerical examples to verify our theoretical results. Notice the proof in the previous

section does not rely on the specific bulk potential, so long as it is regular enough.

In the numerical example, we consider the double-well bulk potential F(¢) = %(q&z — 1) Thus, the effective free

energy is given as

g2 1
E= [ (=|Vo]* + —(¢* — 1)?)dx,
[ (G196 + 307 = 17)ix

(95)
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Table 1

The I? and L*® numerical errors for ¢ at time t = 0.1. They are computed by the scheme (17) using various temporal

resolutions.
8t 12— Error for ¢ Order L*°— Error for ¢ Order
0.1 5.382847673102089 0.064224660088156
0.05 3.011560406627883 0.84 0.043544456316727 0.56
0.025 1.485377707482468 1.02 0.024932830783236 0.80
0.0125 0.601548874665940 1.30 0.010949875468669 1.19
0.00625 0.191121667198677 1.65 0.003540887587754 1.63
0.003125 0.052354457904304 1.86 0.000968884572137 1.87
0.0015625 0.013549031245968 1.95 0.000250402613180 1.95
0.00078125 0.003435558619516 1.98 0.000063452340170 1.98
0.000390625 0.000864284575129 1.99 0.000015958073598 1.99
0.0001953125 0.000216700141005 1.99 0.000004000594657 2.00

Table 2

The L? and L* numerical errors for q at time t = 0.1. They are computed by the scheme (17) using various temporal

resolutions.
8t L?— Error for q Order L*°— Error for q Order
0.1 3.182110885713837 0.030974618534329
0.05 1.431447443475112 1.15 0.018703864596920 0.73
0.025 0.586297237571693 1.29 0.009601528492512 0.96
0.0125 0.214385966336326 1.45 0.003937457227315 1.29
0.00625 0.065947460396376 1.70 0.001235000255575 1.67
0.003125 0.017949882223041 1.88 0.000335977369325 1.89
0.0015625 0.004637362290417 1.95 0.000086822780569 1.95
0.00078125 0.001175114043622 1.98 0.000021996188564 1.98
0.000390625 0.000295539519731 1.99 0.000005531083182 1.99
0.0001953125 0.000074089697926 2.00 0.000001386479378 2.00

and the corresponding Cahn-Hilliard equation reads as

o) = LA,
{ut= —2Ad + ¢* — ¢, (96)

with periodic boundary condition, where A is the mobility parameter, and ¢ is a parameter that controls the interfacial
thickness.

4.1. Temporal and spacial convergence tests

First of all, we test the temporal and spacial convergence rates. We fix the domain as £2 = [0 1]%. And the parameters

are chosen as A = 0.01 and ¢ = 0.01. Introducing the auxiliary variable q¢ = %(qﬁz — 1), we can reformulate the
Cahn-Hilliard equation and utilize the proposed scheme thereafter.
For the temporal convergence test, we fix the meshes as Ny = N, = 256 and initial profile ¢(x,y,t = 0) =

sin(27x) sin(2wy). Since the analytical solution is not known, we pick the numerical solution with §t = 10 as the
benchmark solution. The error for ¢ in both L?(£2) and L*(£2) using different time steps is summarized in Table 1. We
observe when the time step is small enough (saying §t < 0.0015), the numerical solution of ¢ reaches approximately
second-order convergence in time, which shows strong agreement with our theoretical results.

Also, the numerical errors for the auxiliary variable g using different time steps are summarized in Table 2, which
indicates that it reaches second-order accuracy in time as well.

Then we want to verify the spectral convergence rate in space. To avoid the temporal error affecting our study,
we choose fixed, but refined, time step size 8t = 107%, and we use the numerical solution with spatial resolution
Ny = N, = 1024 as the ‘accurate’ solution. The L? and L numerical errors for ¢ with different meshes 82, 162, 322, 642
and 1282 are calculated. The numerical results are summarized in Table 3. We observe it reaches spectral convergence in
space.

Besides, the numerical errors for the auxiliary variable q using various spatial resolutions are summarized in Table 4.
We also observe that the numerical solution of q reaches spectral convergence in space as well.

Then, the CPU time with various temporal and spatial steps to calculate ¢(x,y) at t = 10 are summarized
in Table 5, indicating the effectiveness of the IEQ method in temporal discretization and Fourier pseudo-spectral in spatial
discretization.
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Table 3
The L? and L*° numerical errors for ¢ are computed using various spacial resolutions. Here we use fixed time step
8t = 107, and the error is calculated at time t = 0.1.

8x [2— Error for ¢ Order L*°— Error for ¢ Order

% 0.047992863063144 0.072344970776219

% 0.007574170567587 2.85 0.009651137322507 2.69

% 0.000221462396449 4.82 0.000352470327596 4.80

é 0.000000962747435 8.04 0.000001425897338 8.05

1‘% 0.000000000094892 13.60 0.000000000115794 13.80
Table 4

The I and L* numerical errors for g are computed using various spacial resolutions. Here we use fixed time step
8t = 1075, and the error is calculated at time t = 0.1.

8x 12— Error for q Order L*°— Error for q Order
% 0.049062780958258 0.081703112179204
% 0.007737225232038 2.84 0.010277382332508 2.99
%2 0.000240957717925 4.80 0.000377147382304 4.80
& 0.000001038592048 8.03 0.000001546686298 8.05
% 0.000000000097732 13.62 0.000000000125793 13.50
Table 5
CPU time using various temporal and spatial steps to calculate ¢ to t = 10.
Meshes v.s. Time steps 0.01 0.005 0.0025 0.00125 0.000625
8 0.08085 0.126686 0.210256 0.339946 0.603604
16 0.243403 0.376907 0.538998 0.837921 1.284166
32 0.951075 1.246361 1.79219 2.736988 3.903051
64 3.905562 5.353976 8.2012 12.400856 19.462978
128 9.979772 13.442369 20.191874 31.157279 50.515492

4.2. Coarsening dynamics

Next, we conduct several other numerical tests on using the fully discrete scheme to study long-time predictions of
coarsening dynamics.

In the first example, we study the coarsening dynamics following the same setting as [43], where we use the initial
profile ¢o(x,y) = 0.05sin(x)sin(y), set A = 1, ¢ = 0.1, and pick the domain £2 = [0 2x]?. Also, a fine spacial mesh
Ny = N, = 256 and temporal step size §t = 1072 is used to capture the evolution dynamics accurately. The profile of ¢
at different time slots are summarized in Fig. 1, where it agrees qualitatively well with the simulation in [43] using the
same parameters and initial conditions.

The energy evolution with time is plotted in Fig. 2, where we observe it decreases in time, i.e., it verifies that the
scheme is energy stable (thus it agrees well with our theoretical result). Also, this energy prediction agrees well with the
simulation results in [43].

Next, to verify the accuracy of our numerical schemes quantitatively, we use the proposed full discrete scheme to
investigate the benchmark problem of coarsening dynamics following the same setting as [44]. In details, we choose the
domain £2 = [0 4m]? and parameters A = 0.02, ¢ = 0.05. In the simulation, we pick spatial meshes N, = Ny = 256 and
the time step 8t = 10~3. The coarsening dynamics are summarized in Fig. 3.

It is known in [44] that the free energy of this benchmark problem decays following a power law E(t) = O(t‘% )- the
free energy evolution with time using the proposed full discrete scheme are summarized in Fig. 4. From the numerical
results, we observe that the slope is approximate —%, i.e., it agrees well with the report in [44].

5. Conclusion

In this paper, we present rigorous error analysis of a full discrete linear scheme for solving the Cahn-Hilliard type
equation, which is also shown to be energy stable and uniquely solvable. In specific, we use the IEQ technique to transform
the CH type equation, the Crank-Nicolson finite difference method for temporal discretization and Fourier pseudo-spectral
method for spatial discretization. The resulted full discrete scheme is proved to be second-order convergent in time
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(a)t=0 (c)t=6
. . ].
s -0.5
: IO.
-0. 0.5
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N
(d) t =10 () t =50 (f) t = 100

Fig. 1. The isolines of numerical solutions of the function ¢ for the Cahn-Hilliard equation using the full discrete scheme (17). The time step
is 8t = 0.001. Snapshots are taken at t = 0, 2,6, 10, 50, 100, respectively. The predicted coarsening dynamics agrees well with the report in

literature [43].

10

Energy

0 20 40 60 80 100
Time

Fig. 2. Energy evolution of coarsening predicted by the Cahn-Hilliard equation.

and spectral convergent in space, making it an effective scheme for simulating long-time dynamics using the Cahn-
Hilliard model. Numerical tests in several situations are presented, verifying our theoretical results, demonstrating the
effectiveness of the proposed full discrete scheme as well.
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(d) t = 100 = (f) t = 900

Fig. 3. The isolines of numerical solutions of the ¢ for the Cahn-Hilliard equation using the full discrete scheme. The time step is §t = 0.001.
Snapshots are taken at t = 0, 10, 20, 100, 400, 900, respectively.
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Fig. 4. Free energy evolution of the coarsening dynamics predicted by the Cahn-Hilliard equation. The x-axis and y-axis are in the log, scale. It
indicates the free energy decays following a power law of —%, i.e. E(t) =~ O(t’% ). This result agrees well with the report in literature [44].
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