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a b s t r a c t

In this paper, we construct a new class of predictor–corrector time-stepping schemes
for the Cahn–Hilliard equation, which are linear, second-order accurate in time, uncon-
ditionally energy stable, and uniquely solvable. Then, we present the stability and error
estimates of the semi-discrete numerical schemes for solving the Cahn–Hilliard equation
with general nonlinear bulk potentials. The semi-discrete scheme is further discretized
using the compact central finite difference method. Several numerical examples are
shown to verify the theoretical results. In particular, the numerical simulations show that
the predictor–corrector schemes reach the second-order convergence rate at relatively
larger time-step sizes than the classical linear schemes. The numerical strategies and
theoretical tools developed in this article could be readily applied to study other
phase-field models or models that can be cast as gradient flow problems.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

During the past few decades, phase-field models, especially the Cahn–Hilliard (C.H.) equation, have been widely studied
due to their wide application in image analysis, material science, engineering fluid mechanics, and life science [1–5]. Many
numerical methods have been developed to investigate the dynamics of the C.H. equation [6–10]. The C.H. equation is
derived from an energy variational approach, i.e., a H−1 gradient flow given the explicit expression of the free energy
functional, which could be highly nonlinear and depend on high-order spatial derivatives. To solve the C.H. equation more
efficiently, we face two major obstacles. First of all, the nonlinear terms shall be discretized properly. If the nonlinear terms
are treated directly explicitly, it will lead to stiff time-step constraints. Many works are focusing on eliminating/weakening
such restrictions. See [11–17] and the references therein. Secondly, the energy dissipation properties should be conserved
in the discrete level, because the intrinsic property of the C.H. equation is its energy dissipation. Numerical methods that
preserve such property are known as energy stable schemes.

One widely used method to design energy stable numerical schemes is the so-called convex splitting approach, which
was introduced by [18,19] and popularized by [15,20–22]. In the convex splitting method, the nonlinear terms in the free
energy are split into a summation of convex and concave parts, while the convex portion is discretized implicitly, and
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the concave part is treated explicitly. The schemes derived from the convex splitting approach are unconditional energy
stable and uniquely solvable, but one needs to solve a nonlinear system for each time-marching step.

Another popular approach is the linear stabilization method [11,16,23–27]. The main idea is to discretize the nonlinear
term explicitly and then add an artificial stabilization term. It results in linear schemes, which could be solved very
efficiently by using the Fast Fourier Transformation (FFT), see [28,29]. While for this method, all prior analytical
developments are conditional in the sense that either one makes a Lipschitz assumption on the nonlinearity, or one
assumes certain a priori L∞ bounds on the numerical solution. In [30,31], these technical restrictions have removed, and
an unconditional stability theory of large time-stepping semi-implicit numerical schemes has been established for general
phase-field models.

Recently, Guillén-González and Tierra [32] introduced a linear scheme by using a Lagrange multiplier idea [33] to
approximate the C.H. equation with double-well bulk free energy, where an equation related to the auxiliary variable
q(x, t) needs to be solved together with the mixed formulation of the C.H. equation for updating the unknown function
φ. A similar approach was proposed in [34] to solve the nonlinear epitaxial growth model without slope selection, where
the discrete equations related to the auxiliary variable q(x, t) are solved only for updating the modified energies. Its
advantages include that it is a linear scheme and unconditionally stable. Unfortunately, this method does not work for
other free energies. Yang et al. [27,35–37] made the appropriate improvements based on the Lagrange multiplier method
and proposed a new approach, which they named Invariant Energy Quadratization (IEQ) method. This method has been
successfully applied to solve thermodynamic and hydrodynamic models. Later, inspired by the IEQ method, Shen et al.
propose the scalar auxiliary variable (SAV) approach [38,39]. The critical idea of the IEQ method is that an auxiliary
variable is introduced to transform the original PDE system into an equivalent PDE system, where the nonlinear free
energy functional for the original system is transformed into a quadratic form for the new system. Afterward, by utilizing
the semi-implicit strategies, some energy stable numerical schemes can be obtained generally for gradient flow models
and hydrodynamic models.

Unfortunately, due to the stiffness of nonlinear terms in the Cahn–Hilliard equation, even though many of these
schemes are shown to be unconditionally energy stable, large time marching step will inevitably introduce truncation
errors, contaminating the numerical solutions for long time dynamics simulations, i.e., the semi-implicit method, though
stable with large time-step sizes, usually requires small time-step for the sake of accuracy. In order to improve the
accuracy of the IEQ method even with large time-step sizes, a new predictor–corrector IEQ approach is proposed to solve
the C.H. equation. The essence of the predictor–corrector method is to reduce the extrapolation error of the nonlinear
potential and improve numerical accuracy. The predictor–corrector schemes are efficient, as only linear systems need to
be solved for each time marching step. Rigorous proofs for energy stability, unique solvability, and error estimates are
obtained. Some numerical examples are presented to support our theoretical results, showing that this new approach can
reach the order of accuracy with large time-marching step sizes.

The rest of the paper is structured in the following way. In Section 2, we introduce the C.H. equation and reformulate
it into an equivalent form using the energy quadratization technique. In Section 3, we propose a class of predictor–
corrector numerical schemes to solve the C.H. equation, and we will analyze the unconditional energy stability, unique
solvability, and convergence of the newly proposed schemes. In Section 4, several numerical experiments are per-
formed to demonstrate the effectiveness of the predictor–corrector methods. The conclusion of this article is given in
Section 5.

2. The Cahn–Hilliard equation and its equivalent form after energy quadratization

2.1. The Cahn–Hilliard equation

In this work, we study the following free energy

E(φ) =

∫
Ω

(1
2
|∇φ|

2
+ F (φ)

)
dx, (1)

where x ∈ Ω ⊆ Rd(d = 2, 3), φ(x, t) is a scalar function, F (φ) is the bulk energy functional (which could be nonlinear).
Using energy variational method for the total energy Eq. (1) in H−1(Ω) [40], one can get the following widely-braced

C.H. equation{
φt = ∆w,

w = δE/δφ = −∆φ + f (φ), (2)

subject to the initial and boundary conditions

φ|t=0= φ0, (3)

(i) φ,w are periodic ; or (ii) ∂nφ
⏐⏐
∂Ω

= ∂nw
⏐⏐
∂Ω

= 0. (4)
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Here w =
δE
δφ

is the chemical potential, and we use the notation f (φ) = F ′(φ). Taking the L2 inner product of Eq. (2) with
−w, and φt , we get the energy dissipation law of the C.H. equation as

dE(φ)
dt

= −

∫
Ω

|∇w|
2dx. (5)

Numerical schemes that preserve the energy dissipation law Eq. (5) in the discrete level are called energy-stable.
If such energy-dissipation-law preserving property does not depend on time-step, the numerical scheme is named
unconditionally energy-stable.

2.2. Energy quadratization

Next, we introduce an equivalent reformulation of Eq. (2) using the IEQ method [41]. Denote the auxiliary variable
function

q(φ) =

√
F (φ) −

γ

2
φ2 + B, (6)

with γ > 0 the regularized (stabilized) parameter [42], and B a constant such that q(φ) is well-defined. Also, we introduce
the notation

g(φ) = 2
∂

∂φ
q(φ) =

f (φ) − γφ√
F (φ) −

γ

2 φ
2 + B

. (7)

Then, we rewrite Eq. (2) as follows⎧⎨⎩φt = ∆w,

w = −∆φ + γφ + g(φ)q(φ),
qt =

1
2g(φ)φt ,

(8)

subject to the initial and boundary conditions

φ|t=0 = φ0, q|t=0 =

√
F (φ0) −

γ

2
φ2
0 + B, (9)

(i) φ,w are periodic ; or (ii) ∂nφ
⏐⏐
∂Ω

= ∂nw
⏐⏐
∂Ω

= 0. (10)

Note that the transformed equations (8)–(10) are equivalent to the C.H. equations (2)–(4). In addition, the transformed
equations (8)–(10) still satisfy the same energy dissipation law as Eqs. (2)–(4). In fact, by taking the L2 inner product of
Eq. (8) with w, φt , 2q, respectively, we find

d
dt

E(φ, q) = −

∫
Ω

|∇w|
2dx, (11)

where

E(φ, q) =

∫
Ω

(1
2
|∇φ|

2
+
γ

2
φ2

+ q2 − B
)
dx. (12)

The energy (12) is equivalent to the original energy (1) in time continuous case, by noticing (6).
In the next section, we will develop a class of predictor–corrector schemes for the equivalent system (8)–(10), which

in turn solves Eqs. (2)–(4). Then we present several theoretical results.

3. Time discretization schemes

We introduce some notations that will be used in the rest of this article. The norms in Sobolev space are defined by
Hs and ∥ · ∥s (s = 0,±1, . . .), respectively. In particular, the L2(Ω) inner product is denoted by (·, ·) with its norm ∥ · ∥.
We also define the following Sobolev spaces:

Hper (Ω) = {φ is periodic, φ ∈ H1(Ω) and
∫
Ω

φdx = 0},

and introduce the notations

(•)n+
1
2 =

1
2
(•)n +

1
2
(•)n+1, (•)

n+ 1
2

=
3
2
(•)n −

1
2
(•)n−1. (13)

3.1. Second order linear schemes

Let N be a positive integer, tn = nδt, n = 0, 1, . . . ,N be mesh points, and δt = T/N be the uniform time-step, with T
the final time. The reformulated equations (8)–(10) could be solved via the following second-order schemes.
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Scheme 3.1 (Crank–Nicolson (CN) Scheme). Given φn−1, wn−1, qn−1 and φn, wn, qn, we can obtain φn+1, wn+1, qn+1 via⎧⎪⎪⎪⎨⎪⎪⎪⎩
φn+1

−φn

δt = ∆wn+ 1
2 ,

wn+ 1
2 = −∆φn+ 1

2 + γφn+ 1
2 + g(φ

n+ 1
2 )qn+

1
2 ,

qn+1
−qn
δt =

1
2g(φ

n+ 1
2 ) φ

n+1
−φn

δt ,

(14)

with g(φ) defined in Eq. (7), subject to the boundary conditions

(i) φn+1, wn+1 are periodic ; or (ii) ∂nφn+1
⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (15)

Scheme 3.2 (Backward Differentiation Formula (BDF) Scheme). Given φn−1, wn−1, qn−1 and φn, wn, qn, we can obtain
φn+1, wn+1, qn+1 via⎧⎪⎪⎨⎪⎪⎩

3φn+1
−4φn+φn−1

2δt = ∆wn+1,

wn+1
= −∆φn+1

+ γφn+1
+ g(φ

n+1
)qn+1,

3qn+1
−4qn+qn−1

2δt =
1
2g(φ

n+1
) 3φ

n+1
−4φn+φn−1

2δt ,

(16)

with g(φ) defined in Eq. (7), subject to the boundary conditions

(i) φn+1, wn+1 are periodic ; or (ii) ∂nφn+1
⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (17)

Scheme 3.3 (Leapfrog (LF) Scheme). Given φn−1, wn−1, qn−1 and φn, wn, qn, we can obtain φn+1, wn+1, qn+1 via⎧⎪⎪⎨⎪⎪⎩
φn+1

−φn−1

2δt = ∆wn+ 1
2 ,

wn+ 1
2 = −∆

φn+1
+φn−1

2 + γ
φn+1

+φn−1

2 + g(φn) q
n+1

+qn−1

2 ,

qn+1
−qn−1

2δt =
1
2g(φ

n) φ
n+1

−φn−1

2δt ,

(18)

with g(φ) defined in Eq. (7), subject to the boundary conditions

(i) φn+1, wn+1 are periodic ; or (ii) ∂nφn+1
⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (19)

Schemes 3.1–3.3 have been widely used. Furthermore, they could be easily verified to be unconditionally energy stable
and uniquely solvable [41].

3.2. Second order predictor–corrector linear schemes

However, Schemes 3.1–3.3 are not accurate with large time-step sizes due to their explicit treatment of nonlinear term
g . In a long time dynamic simulation, the numerical value of q could eventually deviate away from its original definition
in Eq. (6). This could pollute the numerical solutions. Thus, we propose to improve the accuracy of these linear schemes
by a predictor–corrector approach.

In the rest of this section, we present the predictor–corrector time discretization schemes first. Afterward, we will
show the energy stability, unique solvability, and error estimate. The main idea of the predictor–corrector schemes is as
follows.

Scheme 3.4 (Predictor–corrector CN Scheme). Given φn−1, wn−1, qn−1 and φn, wn, qn, we can obtain φn+1, wn+1, qn+1 via the
following two steps:

• Step 1: Prediction: predict φn+1
∗

via some efficient and accurate numerical schemes.
• Step 2: Correction: obtain (φn+1, wn+1, qn+1) via⎧⎪⎪⎨⎪⎪⎩

φn+1
−φn

δt = ∆wn+ 1
2 ,

wn+ 1
2 = −∆φn+ 1

2 + γφn+ 1
2 + g( φ

n+1
∗ +φn

2 )qn+
1
2 ,

qn+1
−qn
δt =

1
2g(

φn+1
∗ +φn

2 ) φ
n+1

−φn

δt ,

(20)

subject to the boundary conditions

(i) φn+1, wn+1 are periodic ; or (ii) ∂nφn+1
⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (21)

In a similar manner, we can propose a second-order predictor–corrector scheme based on the backward differentiation
formula and leapfrog formula.
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Scheme 3.5 (Predictor–corrector BDF2 Scheme). Given φn−1, wn−1, qn−1 and φn, wn, qn, we can obtain φn+1, wn+1, qn+1 via
the following two steps:

• Step 1: Prediction: predict φn+1
∗

via some efficient and accurate numerical schemes.
• Step 2: Correction: obtain (φn+1, wn+1, qn+1) via⎧⎪⎪⎨⎪⎪⎩

3φn+1
−4φn+φn−1

2δt = ∆wn+1,

wn+1
= −∆φn+1

+ γφn+1
+ g(φn+1

∗
)qn+1,

3qn+1
−4qn+qn−1

2δt =
1
2g(φ

n+1
∗

) 3φ
n+1

−4φn+φn−1

δt ,

(22)

subject to the boundary conditions

(i) φn+1, wn+1 are periodic ; or (ii) ∂nφn+1
⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (23)

Scheme 3.6 (Predictor–corrector LF Scheme). Given φn−1, wn−1, qn−1 and φn, wn, qn, we can obtain φn+1, wn+1, qn+1 via the
following two steps:

• Step 1: Prediction: predict φn
∗
via some efficient and accurate numerical schemes.

• Step 2: Correction: obtain (φn+1, wn+1, qn+1) via⎧⎪⎪⎨⎪⎪⎩
φn+1

−φn−1

2δt = ∆wn+ 1
2 ,

wn+ 1
2 = −∆

φn+1
+φn−1

2 + γ
φn+1

+φn−1

2 + g(φn
∗
) q

n+1
+qn−1

2 ,

qn+1
−qn−1

2δt =
1
2g(φ

n
∗
) φ

n+1
−φn−1

2δt ,

(24)

subject to the boundary conditions

(i) φn+1, wn+1 are periodic ; or (ii) ∂nφn+1
⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (25)

Note that the prediction and correction steps in the schemes above are fully decoupled. For each prediction time-step,
many prediction strategies could be constructed, so long as the predicted value φn+1

∗
is second-order consistent in time.

For instance, here are a couple of choices for the prediction step.

• Case 1: set

φn+1
∗

= 2φn
− φn−1. (26)

• Case 2: for i = 0, 1, . . . ,M − 1, calculate⎧⎪⎪⎪⎨⎪⎪⎪⎩
φn+1
i+1 −φn

δt = ∆wn+ 1
2 ,

wn+ 1
2 = −∆φ

n+ 1
2

i+1 + γφ
n+ 1

2
i+1 + g( φ

n+1
i +φn

2 )q
n+ 1

2
i+1 ,

qn+1
i+1 −qn

δt =
1
2g(

φn+1
i +φn

2 ) φ
n+1

−φn

δt ,

(27)

where φn+1
0 = 2φn

− φn−1, subject to the boundary conditions

(i) φn+1
i+1 , w

n+1 are periodic ; or (ii) ∂nφn+1
i+1

⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (28)

Then set φn+1
∗

= φn+1
M .

• Case 3: for i = 0, 1, . . . ,M − 1, calculate⎧⎪⎪⎨⎪⎪⎩
3φn+1

i+1 −4φn+φn−1

2δt = ∆wn+1,

wn+1
= −∆φn+1

i+1 + γφn+1
i+1 + g(φn+1

i )qn+1
i+1 ,

3qn+1
i+1 −4qn+qn−1

2δt =
1
2g(φ

n+1
i )

3φn+1
i+1 −4φn+φn−1

2δt ,

(29)

where φn+1
0 = 2φn

− φn−1, subject to the boundary conditions

(i) φn+1
i+1 , w

n+1 are periodic ; or (ii) ∂nφn+1
i+1

⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (30)

Then set φn+1
∗

= φn+1
M .
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• Case 4: for i = 0, 1, . . . ,M − 1, calculate⎧⎪⎪⎪⎨⎪⎪⎪⎩
φn+1
i+1 −φn

δt = ∆wn+ 1
2 ,

wn+ 1
2 = −∆φ

n+ 1
2

i+1 + γφ
n+ 1

2
i+1 + g( φ

n+1
i +φn

2 )q
n+ 1

2
i ,

qn+1
i+1 =

√
F (φn+1

i+1 ) −
γ

2 (φ
n+1
i+1 )2 + B,

(31)

where φn+1
0 = 2φn

− φn−1 and q
n+ 1

2
0 = qn+

1
2 , subject to the boundary conditions

(i) φn+1
i+1 , w

n+1 are periodic ; or (ii) ∂nφn+1
i+1

⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (32)

Then set φn+1
∗

= φn+1
M .

Remark 3.1. We propose three ways to predict φn+1
∗

, all of which are commonly used. In fact, given a sufficient precision
of φn+1

∗
, we can also calculate φn+1 via correction step. There is no doubt that ‘‘Case 2’’, ‘‘Case 3’’ and ‘‘Case 4’’ are better

than ‘‘Case 1’’ because φn+1
∗

is close to the exact solution, but ‘‘Case 2’’, ‘‘Case 3’’ and ‘‘Case 4’’ need more calculation costs.
In addition, ‘‘Case 2’’, ‘‘Case 3’’ and ‘‘Case 4’’ are similar in theoretical analysis, and ‘‘Case 2’’ performs slightly better in
numerical simulation. In the last numerical examples, we select ‘‘Case 2’’ as the prediction step to obtain φn+1

∗
.

Remark 3.2. We note that, in gradient flow (especially phase-field) models, an adaptive time-step strategy will be in favor
to capture the different time scales during the dynamics, as well as being computationally efficient. However, the broadly
used time-adaptive strategies [43,44] could be readily utilized in our proposed schemes to speed up the calculations.

3.3. Some theoretical results

As Schemes 3.5 and 3.6 are all similar to Scheme 3.4 we mainly focus on the predictor–corrector CN Scheme 3.4 with
the CN predictor, which is summarized as follows.

Scheme 3.7 (Fixed-point Predictor–corrector CN Scheme). Given φn−1, wn−1, qn−1 and φn, wn, qn, we can obtain φn+1, wn+1,
qn+1 via the following two steps:

• Step 1: Prediction: while ∥φn+1
i+1 − φn+1

i ∥ > ε0 and i < N, for i = 0 to N − 1, calculate⎧⎪⎪⎪⎨⎪⎪⎪⎩
φn+1
i+1 −φn

δt = ∆wn+ 1
2 ,

wn+ 1
2 = −∆φ

n+ 1
2

i+1 + γφ
n+ 1

2
i+1 + g( φ

n+1
i +φn

2 )q
n+ 1

2
i+1 ,

qn+1
i+1 −qn

δt =
1
2g(

φn+1
i +φn

2 ) φ
n+1

−φn

δt ,

(33)

with φn+1
0 = 2φn

− φn−1, subject to the boundary conditions

(i) φn+1
i+1 , w

n+1 are periodic ; or (ii) ∂nφn+1
i+1

⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (34)

If the loop ends at i + 1 = M ≤ N, set φn+1
∗

= φn+1
M .

• Step 2: Correction: obtain (φn+1, wn+1, qn+1) via⎧⎪⎪⎨⎪⎪⎩
φn+1

−φn

δt = ∆wn+ 1
2 ,

wn+ 1
2 = −∆φn+ 1

2 + γφn+ 1
2 + g( φ

n+1
∗ +φn

2 )qn+
1
2 ,

qn+1
−qn
δt =

1
2g(

φn+1
∗ +φn

2 ) φ
n+1

−φn

δt ,

(35)

subject to the boundary conditions

(i) φn+1, wn+1 are periodic ; or (ii) ∂nφn+1
⏐⏐
∂Ω

= ∂nw
n+1

⏐⏐
∂Ω

= 0. (36)

For Scheme 3.7, we have the following energy stability result.

Theorem 3.3 (Unconditionally Energy Stability). The time discrete Scheme 3.7 is unconditionally energy stable. And it follows
the energy dissipation law as

E(φn+1, qn+1) + δt∥∇(−∆φn+ 1
2 + γφn+ 1

2 + g(
φn+1

∗
+ φn

2
)qn+

1
2 )∥2

= E(φn, qn), (37)

where E(φn+1, qn+1) =
1
2∥∇φ

n+1
∥
2
+

γ

2 ∥φn+1
∥
2
+ ∥qn+1

∥
2
− B|Ω|. In particular,

E(φn+1, qn+1) ≤ E(φn, qn).
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Proof. Computing the L2 inner product of the first equation in Eq. (33) with 2δtwn+ 1
2 and using integrating by parts, we

get

2(φn+1
− φn, wn+ 1

2 ) = −2δt∥∇wn+ 1
2 ∥

2.

Taking the L2 inner product of the second equation in Eq. (33) with 2(φn+1
− φn) to arrive at

2(wn+ 1
2 , φn+1

− φn) = ∥∇φn+1
∥
2
− ∥∇φn

∥
2
+ γ (∥φn+1

∥
2
− ∥φn

∥
2) + 2

(
g(
φn+1
i + φn

2
)qn+

1
2 , φn+1

− φn
)
.

Computing the L2 inner product of the third equation in Eq. (33) with 2(qn+1
+ qn)δt , we obtain

2∥qn+1
∥
2
− 2∥qn∥2

=

(
g(
φn+1
i + φn

2
)(φn+1

− φn), qn+1
+ qn

)
.

Summing the equations above up, we derive

∥∇φn+1
∥
2
− ∥∇φn

∥
2
+ γ (∥φn+1

∥
2
− ∥φn

∥
2) + 2∥qn+1

∥
2
− 2∥qn∥2

= −2δt∥∇wn+ 1
2 ∥

2,

i.e.

E(φn+1, qn+1) + δt∥∇(−∆φn+ 1
2 + γφn+ 1

2 + g(
φn+1

∗
+ φn

2
)qn+

1
2 )∥2

= E(φn, qn).

That is Eq. (37). □

In a similar proving strategy, we can obtain the following corollary.

Corollary 3.1. For the prediction step Eq. (33), it holds

E(φn+1
i+1 , q

n+1
i+1 ) ≤ E(φn, qn), ∀i = 0, 1, . . . ,M − 1, (38)

where E(φn+1
i+1 , q

n+1
i+1 ) =

1
2∥∇φ

n+1
i+1 ∥

2
+

γ

2 ∥φn+1
i+1 ∥

2
+ ∥qn+1

i+1 ∥
2
− B|Ω|.

The detailed proof is omitted for simplicity. In addition to the unconditional energy stability, the unique solvability
could also be shown as follows.

Theorem 3.4 (Unique Solvability). The predictor–corrector Scheme 3.7 is uniquely solvable.

Proof. First, from the third equation of Eq. (35), we find

qn+1
= qn +

1
2
g(
φn+1

∗
+ φn

2
)(φn+1

− φn). (39)

Then, we can rewrite Eq. (35) as follows{
φn+1

−
1
2δt∆w

n+1
= Q1,

P(φn+1) − wn+1
= Q2,

(40)

where⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q1 = φn

+
1
2δt∆w

n,

Q2 = ∆φn
− γφn

+ g( φ
n+1
∗ +φn

2 )( 12g(
φn+1

∗ +φn

2 )φn
− 2qn) + wn,

P(φ) = −∆φ + γφ +
1
2g

2( φ
n+1
∗ +φn

2 )φ.

(41)

Thus, we can solve (φn+1, wn+1) directly from Eq. (40). Once we get φn+1, the qn+1 is automatically obtained in Eq. (39).
Moreover, when ϕ satisfies the boundary condition Eq. (10), we have

(P(φ), ϕ) = (∇φ,∇ϕ) + γ (φ,ψ) +
1
2

(
g2(
φn+1

∗
+ φn

2
)φ, ϕ

)
= (ϕ, P(φ)). (42)

Then, the linear operator P(φ) is self-adjoint. Furthermore, if
∫
Ω
φdx = 0, we have

(P(φ), φ) = ∥∇φ∥
2
+ γ ∥φ∥

2
+

1
2
∥g(

φn+1
∗

+ φn

2
)φ∥

2
≥ CΩ∥φ∥

2
1. (43)
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Thus the operator P(φ) is positive define. Computing the L2 inner product of the first equation in Eq. (35) with 1, we
obtain∫

Ω

φn+1dx =

∫
Ω

φndx = · · · =

∫
Ω

φ0dx.

Set vφ =
1

|Ω|

∫
Ω
φ0dx, vw =

1
|Ω|

∫
Ω
wn+1dx, and denote

φ̂n+1
= φn+1

− vφ, ŵn+1
= wn+1

− vw.

From Eq. (40), we find (̂φ, ŵ) ∈ (Hper ,Hper ) is the solution of the following equations{
(φ,µ) +

1
2δt(∇w,µ) = (Q3, µ), µ ∈ Hper (Ω),

(P(φ), ψ) − (w,ψ) = (Q4, ψ), ψ ∈ Hper (Ω).
(44)

We denote the above system (44) as

(LX, Y ) = (F, Y ), (45)

where X = (w, φ), Y = (µ,ψ), F = (Q3,Q4) with X, Y ∈ (Hper ,Hper ), we can obtain that

(LX, Y ) ≤ C(∥φ∥1 + ∥w∥1)(∥ψ∥1 + ∥µ∥1). (46)

Thus, the bilinear form (LX, Y ) is bounded. In addition, we have

(LX, X) =
δt
2

∥∇w∥ + (P(φ), φ) ≥ C(∥w∥
2
1 + ∥φ∥

2
1), (47)

using the Poincaré inequality. Then the bilinear form (LX, Y ) is positive definite, it is easy to show that exists a unique
solution (w, φ) ∈ (Hper ,Hper ) for Eq. (45) by using Lax–Milgram theorem. Thus, linear Scheme 3.7 admits a unique
solution. □

3.4. Error estimate for the time-discrete scheme

In this part, we present the error estimate of the time-discrete predictor–corrector Scheme 3.7. Scheme 3.4 with other
predictors could be analyzed in a similar manner. In particular, if we choose the extrapolation predictor equation (26),
Scheme 3.4 reduces to the Crank–Nicolson IEQ Scheme 3.1. In other words, our proof strategies also work for linear IEQ
Schemes 3.1–3.3.

To this end we will prove ∥φn+1
∥L∞ is uniformly bounded. First, let us denote the error functions

eni,φ = φ(tn) − φn
i , enφ = φ(tn) − φn, eni,q = q(tn) − qni , enq = q(tn) − qn.

and the truncation error functions

rn1 :=
φ(tn+1) − φ(tn)

δt
− φt (tn+ 1

2
), rn2 :=

φ(tn+1) + φ(tn)
2

− φ(tn+ 1
2
),

rn3 :=
q(tn+1) − q(tn)

δt
− qt (tn+ 1

2
), rn4 :=

q(tn+1) + q(tn)
2

− q(tn+ 1
2
),

rn5 :=
w(tn+1) + w(tn)

2
− w(tn+ 1

2
).

By using Taylor series expansion, we find

∥rn1∥ ≤ Cδt2, ∥rn2∥ ≤ Cδt2, ∥rn3∥ ≤ Cδt2, ∥rn4∥ ≤ Cδt2, ∥rn5∥ ≤ Cδt2. (48)

The next three lemmas [36] will help us to handle the bound of nonlinear terms.

Lemma 3.5. Given that (a) F (x) ∈ C2(−∞,+∞); (b) there exists a constant A, such that F (x)− γ

2 x
2 > −A, ∀x ∈ (−∞,+∞);

(c) there exists a positive constant C1 such that

max
n≤k

{
∥φ(tn)∥L∞ , ∥φ

n
∥L∞ , ∥φ

n+1
i ∥L∞

}
≤ C1, (49)

it holds

max
n≤k

{
∥F1(χn)∥L∞ , ∥f1(χn)∥L∞ , ∥f ′

1(χ
n)∥L∞ , ∥

√
F1(χn) + B∥L∞

}
≤ C2, (50)

where χn
= ε1φ(tn) + ε2φ

n
+ ε3φ

n+1
i , ε1, ε2, ε3 ∈ [0, 1], F1(x) = F (x) −

γ

2 x
2, f1 = F ′

1. Moreover, we have

∥g(φ(tn)) − g(φn)∥ ≤ C3∥φ(tn) − φn
∥, (51)

where C3 are constants which are dependent on C1, C2, A, B.
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Proof. The inequality (50) is obtained by combining assumptions (a) and (c). By using the Lagrange mean value theorem,
we find

|g(φ(tn)) − g(φn)| =

⏐⏐⏐ f1(φ(tn))
√
F1(φ(tn)) + B

−
f1(φn)

√
F1(φn) + B

⏐⏐⏐
=

⏐⏐⏐ f1(φ(tn))√F1(φn) + B − f1(φn)
√
F1(φ(tn)) + B

√
F1(φ(tn)) + B

√
F1(φn) + B

⏐⏐⏐
≤

⏐⏐⏐ f1(φ(tn))
(
√
F1(φn) + B −

√
F1(φ(tn)) + B

)
√
F1(φ(tn)) + B

√
F1(φn) + B

⏐⏐⏐
+

⏐⏐⏐√F1(φ(tn)) + B
(
f1(φ(tn)) − f1(φn)

)
√
F1(φ(tn)) + B

√
F1(φn) + B

⏐⏐⏐
≤C |φ(tn) − φn

|.

This concludes the proof. □

Lemma 3.6. Given that (a) F (x) ∈ C3(−∞,+∞); (b) there is a constant A, such that F (x) −
γ

2 x
2 > −A, ∀x ∈ (−∞,+∞);

(c) there exists a positive constant C4 such that

max
n≤k

{
∥φ(tn)∥L∞ , ∥φ

n
∥L∞ , ∥φ

n+1
i ∥L∞

}
≤ C4.

The following inequalities hold

max
n≤k

{
∥F1(χn)∥L∞ , ∥f1(χn)∥L∞ , ∥f ′

1(χ
n)∥L∞ ,∥f ′′

1 (χ
n)∥L∞ , ∥

√
F1(χn) + B∥L∞

}
≤ C5,

∥∇g(φ(tn)) − ∇g(φn)∥ ≤C6∥φ(tn) − φn
∥1.

The proof is similar to Lemma 3.5. We thus omit it here for simplicity.

Lemma 3.7. Denote {un
}
N−1
n=0 to be sequences of function on Ω . It holds

|un+1
| ≤

n∑
m=0

|um+1
+ um

| + |u0
|.

Proof. To prove it, we utilize the mathematical induction. For n = 0, it is easy to see that |u1
| ≤ |u1

+ u0
| + |u0

|. If
n = k − 1, suppose that |uk

| ≤
∑k−1

m=0 |um+1
+ um

| + |u0
|. When n = k, we can obtain

|uk+1
| − |u0

| = |uk+1
| − |uk

| + |uk
| − |u0

|

≤

k−1∑
m=0

|um+1
+ um

| + |uk+1
| − |uk

| ≤

k∑
m=0

|um+1
+ um

|.

This completes the proof. □

We also need to make the following regularity assumptions.

φ ∈ L∞(0, T ;H2(Ω)) ∩ L∞(0, T ;W 1,∞(Ω)), φt ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ; L∞Ω),

q ∈ L∞(0, T ;W 1,∞(Ω)), qtt , φtt ∈ L2(0, T ; L2(Ω)), w ∈ L∞(0, T ;H2(Ω)). (52)

Here, we define ν as

ν = max
0≤t≤T

∥φ(t)∥L∞ + 1. (53)

We will show that ∥φn
∥ and ∥φn+1

i+1 ∥L∞ are uniformly bounded in the following lemma.

Lemma 3.8 (Uniform L∞ Bound). Given that F (x) −
γ

2 x
2 > −A for all x ∈ (−∞,+∞), F (x) ∈ C3(−∞,+∞) and the system

(8)–(10) has a unique solution, which satisfies the assumptions (52), there is a positive constant τ , when δt < τ , the solution
of Eqs. (33)–(35) is bounded as follows

∥φn+1
∥L∞ ≤ ν, ∥φn+1

i+1 ∥L∞ ≤ ν n = 0, 1, . . . , K = T/δt, 0 ≤ i ≤ M − 1. (54)
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Proof. We present the proof using mathematical induction. When n = 0, it is easy to verify ∥φ0
∥L∞ ≤ ν. For i = 0,

subtracting Eq. (33) from Eq. (8) gives

(
e11,φ − e0φ
δt

, ϕ) = −(∇e
1
2
w ,∇ϕ) + (r01 −∆r05 , ϕ), (55)

(e
1
2
w , θ ) = (r05 +∆rn2 − γ r02 , θ ) + γ (

e11,φ + e0φ
2

, θ ) + (∇
e11,φ + e0φ

2
,∇θ ) + (g(φ(t 1

2
))q(φ(t 1

2
)) − g(φ0)q

1
2
1 , θ ), (56)

(
e11,q − e0q
δt

, ψ) = (r03 , ψ) +
1
2
(g(φ(t 1

2
))φt (t 1

2
) − g(φ0)

φ1
1 − φ0

δt
, ψ). (57)

By taking ϕ = δte11,φ, 2δte
1
2
w in Eq. (55), we derive

∥e11,φ∥
2

= − δt(∇e
1
2
w ,∇e11,φ) + δt(r01 −∆r05 , e

1
1,φ),

2(e11,φ, e
1
2
w ) = − 2δt∥∇e

1
2
w∥

2
+ 2δt(r01 −∆r05 , e

1
2
w ).

By taking θ = 2e11,φ, 2δte
1
2
w in Eq. (56), we find

2(e
1
2
w , e11,φ) =2(r05 +∆rn2 − γ r02 , e

1
1,φ) + γ ∥e11,φ∥

2
+ ∥∇e11,φ∥

2
+ 2(g(φ(t 1

2
))q(φ(t 1

2
)) − g(φ0)q

1
2
1 , e

1
1,φ),

2δt∥e
1
2
w∥

2
=2δt(r05 +∆rn2 − γ r02 , e

1
2
w ) + γ δt(e11,φ, e

1
2
w ) + δt(∇e11,φ,∇e

1
2
w )

+ 2δt(g(φ(t 1
2
))q(φ(t 1

2
)) − g(φ0)q

1
2
1 , e

1
2
w ).

By taking ψ = 2δte11,q in Eq. (57), that is

2∥e11,q∥
2

= 2δt(r03 , e
1
1,q) + δt(g(φ(t 1

2
))φt (t 1

2
) − g(φ0)

φ1
1 − φ0

δt
, e11,q).

Summing above equations up, we get

∥e11,φ∥
2
1 + γ ∥e11,φ∥

2
+ 2∥e11,q∥

2
+ 2δt∥e

1
2
w∥

2
1

=δt(r01 −∆r05 , e
1
1,φ) + 2δt(r01 −∆r05 , e

1
2
w ) − 2(r05 +∆rn2 − γ r02 , e

1
1,φ)

+ 2δt(r05 +∆rn2 − γ r02 , e
1
2
w ) + 2δt(r03 , e

1
1,q)

− 2(g(φ(t 1
2
))q(φ(t 1

2
)) − g(φ0)q

1
2
1 , e

1
1,φ) + 2δt(g(φ(t 1

2
))q(φ(t 1

2
)) − g(φ0)q

1
2
1 , e

1
2
w )

+ δt(g(φ(t 1
2
))φt (t 1

2
) − g(φ0)

φ1
1 − φ0

δt
, e11,q).

By using Cauchy–Schwarz and Young’s inequality, we obtain

δt(r01 −∆r05 , e
1
1,φ) ≤Cδt6 + γ ∥e11,φ∥

2,

2δt(r01 −∆r05 , e
1
2
w ) ≤Cδt5 +

δt
3

∥e
1
2
w∥

2,

2δt(r05 +∆rn2 − γ r02 , e
1
2
w ) ≤Cδt5 +

δt
3

∥e
1
2
w∥

2,

2δt(r03 , e
1
1,q) ≤Cδt5 + δt∥e11,q∥

2,

−2(r05 +∆rn2 − γ r02 , e
1
1,φ) = − 2δt(r05 +∆rn2 − γ r02 , r

0
1 −∆r05 +∆e

1
2
w ) ≤ Cδt5 +

δt
2

∥∇e
1
2
w∥

2.

For the nonlinear term, we find that

− 2(g(φ(t 1
2
))q(φ(t 1

2
)) − g

1
2
0 q

1
2
1 , e

1
1,φ) + δt(g(φ(t 1

2
))φt (t 1

2
) − g(φ0)

φ1
1 − φ0

δt
, e11,q)

= − 2δt(q(φ(t 1
2
))(g(φ(t 1

2
)) − g(φ0)) + g(φ0)(−r04 +

e11,q
2

),
e11,φ − e0φ
δt

)

+ δt(φt (t 1
2
)(g(φ(t 1

2
)) − g(φ0)) + g(φ0)(−r01 +

e11,φ − e0φ
δt

), e11,q)

= − 2δt(q(φ(t 1
2
))(g(φ(t 1

2
)) − g(φ0)) − g(φ0)r04 , r

0
1 −∆r05 +∆e

1
2
w )
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+ δt(φt (t 1
2
)(g(φ(t 1

2
)) − g(φ0)) − g(φ0)r01 , e

1
1,q)

≤Cδt(δt2 + ∥e11,q∥
2) +

δt
2

∥∇e
1
2
w∥

2,

and

2δt(g(φ(t 1
2
))q(φ(t 1

2
)) − g(φ0)q

1
2
1 , e

1
2
w ) ≤ Cδt(δt2 + ∥e11,q∥

2) +
δt
3

∥e
1
2
w∥

2.

Combining the above equations together, we get

∥e11,φ∥
2
1 + 2∥e11,q∥ + δt∥e

1
2
w∥

2
1 ≤ Cδt3 + C7δt∥e11,q∥

2.

When C7δt ≤ 1, we immediately obtain ∥e11,φ∥
2
1 + ∥e11,q∥ + δt∥e

1
2
w∥

2
1 ≤ Cδt3.

Let n = 0, i = 0 in Eq. (33), we find

∥∆φ
1
2
1 ∥

2
≤3

(
∥w

1
2 ∥

2
+ C∥g(φ0)∥2

L∞ |q
1
2
1 |

2

+ γ ∥φ
1
2
1 ∥

2
)

≤C
(
∥w(t1)∥2

+ ∥w(t0)∥2
+ ∥e1w∥

2
+ ∥e11,q∥

2
+ ∥q(t1)∥2

+ ∥q(t0)∥2
+ ∥φ(t1)∥2

+ ∥φ(t0)∥2
+ ∥e11,φ∥

2
)

≤C .

Therefore, we derive ∥∆e11,φ∥
2

≤ 2∥∆φ1
1∥

2
+ 2∥∆φ(t1)∥2

≤ C . Then

∥φ1
1∥L∞ ≤ ∥e11,φ∥L∞ + ∥φ(t1)∥L∞ ≤ C∥e11,φ∥

1
2
1 ∥e11,φ∥

1
2
2 + ∥φ(t1)∥L∞ ≤ C8δt

3
4 + ∥φ(t1)∥L∞ .

When C8δt
3
4 ≤ 1, we have

∥φ1
1∥L∞ ≤ 1 + ∥φ(t1)∥L∞ ≤ ν. (58)

Suppose i = j ≥ 1, ∥φ1
j ∥L∞ ≤ ν holds, next we will show ∥φ1

j+1∥L∞ ≤ ν is still valid. Subtracting Eq. (33) from Eq. (8) at
t 1
2
by applying Cauchy–Schwarz, Young’s inequality and Lemmas 3.5–3.6, we obtain

∥e1j+1,φ∥
2
1 + 2∥e1j+1,q∥

2
+ δt∥e

1
2
w∥

2
1 ≤ Cδt5 + C9δt∥e1j,φ∥

2
1 + C10δt∥e1j+1,q∥

2. (59)

If C10δt ≤ 1, we arrive at

∥e1j+1,φ∥
2
1 + ∥e1j+1,q∥

2
+ δt∥e

1
2
w∥

2
1 ≤ Cδt5 + C9δt∥e1j,φ∥

2
1. (60)

By using a simple recursion formula, we derive

∥e1j+1,φ∥
2
1 + ∥e1j+1,q∥

2
+ δt∥e

1
2
w∥

2
1 ≤ dj∥e11,φ∥

2
1 + Cδt5

(1 − dj

1 − d

)
, (61)

where d = C9δt , if d < 1/2, we have

∥e1j+1,φ∥
2
1 + ∥e1j+1,q∥

2
+ δt∥e

1
2
w∥

2
1 ≤ Cδt3. (62)

From Eq. (33), we find

∥∆φ
1
2
j+1∥

2
≤3

(
∥w

1
2 ∥

2
+ CΩ∥g(φ

1
2
j )∥2

L∞ |q
1
2
j+1|

2

+ γ ∥φ
1
2
j+1∥

2
)

≤C
(
∥w(t1)∥2

+ ∥w(t0)∥2
+ ∥e1w∥

2
+ ∥e1j+1,q∥

2
+ ∥q(t1)∥2

+ ∥q(t0)∥2

+ ∥φ(t1)∥2
+ ∥φ(t0)∥2

+ ∥e1j+1,φ∥
2
)

≤C .

Therefore ∥∆e1j+1,φ∥
2

≤ 2∥∆φ1
j+1∥

2
+ 2∥∆φ(t1)∥2

≤ C . Then, we derive that

∥φ1
j+1∥L∞ ≤ ∥e1j+1,φ∥L∞ + ∥φ(t1)∥L∞ ≤ C∥e1j+1∥

1
2
1 ∥e1j+1∥

1
2
2 + ∥φ(t1)∥L∞ ≤ C11δt

3
4 + ∥φ(t1)∥L∞ .

When C11δt
3
4 ≤ 1, we derive

∥φ1
j+1∥L∞ ≤ ν. (63)
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Suppose ∥φk
∥L∞ ≤ ν, and ∥φk+1

i+1 ∥L∞ ≤ ν,∀0 ≤ i ≤ M − 1. Next, we will prove that ∥φk+1
∥L∞ ≤ ν, ∥φk+2

i+1 ∥L∞ ≤ ν is
still valid. First, for i = 0, subtracting Eq. (33) from Eq. (8) at tn+ 1

2
, and taking the inner product with ϕ, θ , ψ , respectively,

(
en+1
1,φ − enφ
δt

, ϕ) = − (∇e
n+ 1

2
w ,∇ϕ) + (rn1 −∆rn5 , ϕ), (64)

(e
n+ 1

2
w , θ ) =(rn5 +∆rn2 − γ rn2 , θ ) + γ (

en+1
1,φ + enφ

2
, θ ) + (∇

en+1
1,φ + enφ

2
,∇θ )

+

(
g(φ(tn+ 1

2
))q(φ(tn+ 1

2
)) − g(

φn+1
0 + φn

2
)q

n+ 1
2

1 , θ

)
, (65)

(
en+1
1,q − enq
δt

, ψ) =(rn3 , ψ) +
1
2

(
g(φ(tn+ 1

2
))φt (tn+ 1

2
) − g(

φn+1
0 + φn

2
)
φn+1
1 − φn

δt
, ψ

)
. (66)

Taking ϕ = δt(en+1
1,φ + enφ), 2δte

n+ 1
2

w in Eq. (64), θ = 2(en+1
1,φ − enφ), 2δte

n+ 1
2

w in Eq. (65), ψ = 2δt(en+1
1,q + enq) in Eq. (66).

Following the previous proof, we arrive at

∥en+1
1,φ ∥

2
1 − ∥enφ∥

2
1 + γ (∥en+1

1,φ ∥
2
− ∥enφ∥

2) + 2δt∥e
n+ 1

2
w ∥

2
1 + 2(∥en+1

1,q ∥
2
− ∥enq∥

2)

=δt(rn1 −∆rn5 , e
n+1
1,φ + enφ) + 2δt(rn1 −∆rn5 , e

n+ 1
2

w ) + 2δt(rn3 , e
n+1
1,q + enq)

− 2(rn5 +∆rn2 − γ rn2 , e
n+1
1,φ − enφ) + 2δt(rn5 +∆rn2 − γ rn2 , e

n+ 1
2

w )

− 2
(
g(φ(tn+ 1

2
))q(φ(tn+ 1

2
)) − g(

φn+1
0 + φn

2
)q

n+ 1
2

1 , en+1
1,φ − enφ

)
+ 2(g(φ(tn+ 1

2
))q(φ(tn+ 1

2
)) − g(

φn+1
0 + φn

2
)q

n+ 1
2

1 , e
n+ 1

2
w )

+ δt(g(φ(tn+ 1
2
))φt (tn+ 1

2
) − g(

φn+1
0 + φn

2
)
φn+1
1 − φn

δt
, en+1

1,q + enq). (67)

Applying again the Cauchy–Schwarz, Young’s inequality and Lemmas 3.5–3.6, we obtain that

∥en+1
1,φ ∥

2
1 − ∥enφ∥

2
1 − γ ∥enφ∥

2
+ 2∥en+1

1,q ∥
2
− 2∥enq∥

2
+ δt∥e

n+ 1
2

w ∥
2
1

≤C12δt∥en+1
1,q ∥

2
+ Cδt(δt4 + ∥enφ∥

2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2).

Given C12δt ≤ 1, we can get

∥en+1
1,φ ∥

2
1 ≤ ∥enφ∥

2
1 + γ ∥enφ∥

2
+ 2∥enq∥

2
+ Cδt(δt4 + ∥enφ∥

2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2). (68)

Subtracting Eq. (33) from Eq. (8) at tn+ 1
2
, we can derive

∥en+1
i+1,φ∥

2
1 − ∥enφ∥

2
1 − γ ∥enφ∥

2
+ 2∥en+1

i+1,q∥
2
− 2∥enq∥

2
+ δt∥e

n+ 1
2

w ∥
2
1

≤C13δt∥en+1
i+1,q∥

2
+ Cδt(δt4 + ∥en+1

i,φ ∥
2
1 + ∥enφ∥

2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2).

When C13δt ≤ 1, we arrive at

∥en+1
i+1,φ∥

2
1 ≤ C14δt∥en+1

i,φ ∥
2
1 + C(δt5 + ∥enφ∥

2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2).

It is easy to see that

∥en+1
i+1,φ∥

2
1 ≤ hi

∥en+1
1,φ ∥

2
1 + C(δt5 + ∥enφ∥

2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2)
1 − hi

1 − h
.

where h = C14δt , when h < 1/2, then we get

∥en+1
i+1,φ∥

2
1 ≤ ∥en+1

1,φ ∥
2
1 + C(δt5 + ∥enφ∥

2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2), i − 1 ≤ M. (69)

Similarly, subtracting Eq. (35) from Eq. (8), and combining with (68)–(69), we arrive at

∥en+1
φ ∥

2
1 − ∥enφ∥

2
1 + γ (∥en+1

φ ∥
2
− ∥enφ∥

2) + 2(∥en+1
q ∥

2
− ∥enq∥

2) + δt∥e
n+ 1

2
w ∥

2
1

≤Cδt5 + Cδt(∥en+1
∗,φ ∥

2
1 + ∥enφ∥

2
1 + ∥en+1

q ∥
2)

≤Cδt5 + Cδt(∥en+1
q ∥

2
+ ∥enφ∥

2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2).

Summing up the equation above for n = 0, . . . , k, we find

∥ek+1
φ ∥

2
1 + ∥ek+1

q ∥
2
+ δt

k∑
n=1

∥e
n+ 1

2
w ∥

2
≤ C

k∑
n=0

(∥enφ∥
2
1 + ∥en+1

q ∥
2).
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Applying Gronwall’s lemma, we derive

∥ek+1
φ ∥

2
1 + ∥ek+1

q ∥
2
+ δt

k∑
n=1

∥e
n+ 1

2
w ∥

2
1 ≤ Cδt4.

Combining with Eqs. (35) and (8), and we find that

∥∆e
n+ 1

2
φ ∥

2
≤C

(
∥∆rn2∥

2
+ ∥rn2∥

2
+ ∥rn5∥

2
+ ∥e

n+ 1
2

φ ∥
2
+ ∥e

n+ 1
2

w ∥
2

+ ∥g(φ(tn+ 1
2
))q(tn+ 1

2
) − g(

φn+1
∗

+ φn

2
)qn+

1
2 ∥

2
)

≤Cδt4.

From Lemma 3.7, we find

∥∆ek+1
φ ∥ ≤ Cδt. (70)

On the other hand, it holds that

∥φk+1
∥L∞ ≤∥ek+1

φ ∥L∞ + ∥φ(tk+1)∥L∞

≤C∥ek+1
φ ∥

1
2
1 ∥ek+1

φ ∥

1
2
2 + ∥φ(tk+1)∥L∞

≤C15δt
3
2 + ∥φ(tk+1)∥L∞ .

Given C15δt
3
2 ≤ 1, we derive

∥φk+1
∥L∞ ≤ 1 + ∥φ(tk+1)∥L∞ ≤ ν.

Next we will prove ∥φk+2
i+1 ∥L∞ ≤ ν, 0 ≤ i ≤ M −1. Subtracting Eq. (33) from Eq. (8) at tk+ 3

2
, i = 0. Similarly, we can derive

∥ek+2
1,φ ∥

2
1 + ∥ek+2

1,q ∥
2
+ δt∥e

k+ 3
2

w ∥
2
1 ≤ Cδt4. (71)

Subtracting Eq. (33) from Eq. (8) at tk+ 3
2
, i = 0, we obtain

∥∆e
k+ 3

2
1,φ ∥

2
≤C

(
∥∆rk+1

2 ∥
2
+ ∥rk+1

2 ∥
2
+ ∥rk+1

5 ∥
2
+ ∥e

k+ 3
2

1,φ ∥
2
+ ∥e

k+ 3
2

w ∥
2

+ ∥g(φ(tk+ 3
2
))q(tk+ 3

2
) − g(

φk+2
0 + φk+1

2
)q

k+ 3
2

1 ∥
2
)

≤ Cδt
9
4 .

Combining with (70), we derive ∥∆ek+2
1,φ ∥ ≤ Cδt. Thus

∥φk+2
1 ∥L∞ ≤∥ek+2

1,φ ∥L∞ + ∥φ(tk+2)∥L∞

≤C∥ek+2
1,φ ∥

1
2
1 ∥ek+2

1,φ ∥

1
2
2 + ∥φ(tk+2)∥L∞ ≤ C16δt

3
2 + ∥φ(tk+2)∥L∞ .

Given C16δt
3
2 ≤ 1, we derive

∥φk+2
1 ∥L∞ ≤ 1 + ∥φ(tk+2)∥L∞ ≤ ν. (72)

Supposing ∥φk+2
i ∥L∞ ≤ ν, we will prove ∥φk+2

i+1 ∥L∞ ≤ ν still holds. Similarly, we have

∥ek+2
i+1,φ∥

2
1 − ∥ek+1

φ ∥
2
1 − γ ∥ek+1

φ ∥
2
+ 2∥ek+2

i+1,q∥
2
− 2∥ek+1

q ∥
2
+ δt∥e
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2

w ∥
2
1
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i+1,q∥

2
+ Cδt(δt4 + ∥ek+2

i,φ ∥
2
1 + ∥ek+1

φ ∥
2
1 + ∥ek+1

q ∥
2).

Given C17δt ≤ 1, we can obtain

∥ek+2
i+1,φ∥

2
1 + ∥ek+2

i+1,q∥
2
+ δt∥e

k+ 3
2

w ∥
2
1 ≤ C18δt∥ek+2

i,φ ∥
2
+ Cδt4.

That is

∥ek+2
i+1,φ∥

2
1 + ∥ek+2

i+1,q∥
2
+ δt∥e

k+ 3
2

w ∥
2
1 ≤ li∥ek+2

1,φ ∥
2
1 + Cδt4

1 − li

1 − l
,

where l = C18δt . When l < 1/2, we get

∥ek+2
i+1,φ∥

2
1 + ∥ek+2

i+1,q∥
2
+ δt∥e

k+ 3
2

w ∥
2
1 ≤ Cδt4.
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Thus, we find

∥∆ek+2
i+1,φ +∆ek+1

φ ∥
2

≤C
(
∥∆rk+1

2 ∥
2
+ ∥rk+1

2 ∥
2
+ ∥rk+1

5 ∥
2
+ ∥e

k+ 3
2

i+1,φ∥
2
+ ∥e

k+ 3
2

w ∥
2

+ 2∥g(φ(tk+ 3
2
))q(tk+ 3

2
) − g(

φk+2
i + φk+1

2
)q

k+ 3
2

i+1 ∥
2
)

≤ Cδt
9
4 .

Then, we derive ∥∆ek+2
i+1,φ∥ ≤ Cδt. Furthermore

∥φk+2
i+1,φ∥L∞ ≤∥ek+2

i+1,φ∥L∞ + ∥φ(tk+2)∥L∞

≤CΩ∥ek+2
i+1,φ∥

1
2
1 ∥ek+2

i+1,φ∥
1
2
2 + ∥φ(tk+2)∥L∞ ≤ C19δt

3
2 + ∥φ(tk+2)∥L∞ .

Given C19δt
3
2 ≤ 1, we derive ∥φk+2

i+1 ∥L∞ ≤ 1 + ∥φ(tk+2)∥L∞ ≤ ν. This concludes the proof. □

Remark 3.9. Our algorithm can also be extended to other schemes with various predictors. For a given predictor
algorithm, we only need the infinite norm of predictor φn+1

∗
is uniformly bounded, which is usually true. Then we can

prove that the numerical solution φn+1 from the corrected step also satisfies the infinite norm uniformly bounded.

Theorem 3.10 (Error Estimate). Scheme 3.7 is second-order convergent in time. In particular, under the assumption of
Lemma 3.8, we have

∥φ(tk+1) − φk+1
∥1 + ∥q(φ(tk+1)) − q(φk+1)∥ + δt

k∑
n=0

∥w(tn+ 1
2
) − wn+ 1

2 ∥1 ≤ Cδt2. (73)

Proof. Subtracting Eq. (33) from Eq. (8) at tn+ 1
2
, and taking the L2 inner product with ϕ, θ , ψ , respectively,

(
en+1
i+1,φ − enφ
δt

, ϕ) = − (∇e
n+ 1

2
w ,∇ϕ) + (rn1 −∆rn5 , ϕ), (74)

(e
n+ 1

2
w , θ ) =(rn5 +∆rn2 − γ rn2 , θ ) + γ (

en+1
i+1,φ + enφ

2
, θ ) + (∇

en+1
i+1,φ + enφ

2
,∇θ )

+

(
g(φ(tn+ 1

2
))q(φ(tn+ 1

2
)) − g(
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i + φn

2
)q

n+ 1
2

i+1 , θ

)
, (75)

(
en+1
i+1,q − enq
δt

, ψ) =(rn3 , ψ) +
1
2

(
g(φ(tn+ 1

2
))φt (tn+ 1

2
) − g(

φn+1
i + φn

2
)
φn+1
i+1 − φn

δt
, ψ

)
. (76)

Taking ϕ = δt(en+1
i+1,φ + enφ), 2δte

n+ 1
2

w in Eq. (74), θ = 2(en+1
i+1,φ − enφ), 2δte

n+ 1
2

w in Eq. (75), ψ = 2δt(en+1
i+1,q + enq) in Eq. (76).

Following the previous proof, we arrive at
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2
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2
)q
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2
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2
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2
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Using Cauchy–Schwarz, Young’s inequality, and Lemma 3.8, we get that

∥en+1
i+1,φ∥
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1 − ∥enφ∥

2
1 − γ ∥enφ∥

2
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2
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2
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i+1,q∥

2
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2
1 + ∥enφ∥

2
1 + ∥enq∥

2).

When C20δt ≤ 1, we obtain that
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i+1,φ∥

2
1 ≤ C21δt∥en+1

i,φ ∥
2
1 + C(δt5 + ∥enφ∥
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2).
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That is

∥en+1
i+1,φ∥

2
1 ≤ z i∥en+1

1,φ ∥
2
1 + C(δt5 + ∥enφ∥

2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2)
(1 − z i

1 − z

)
,

with z = C21δt , when z < 1/2, we have

∥en+1
i+1,φ∥

2
1 ≤ ∥en+1

1,φ ∥
2
1 + C(δt5 + ∥enφ∥

2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2).

Similarly, subtracting Eq. (35) from Eq. (8), and noticing (68), we arrive at

∥en+1
φ ∥

2
1 − ∥enφ∥

2
1 + γ (∥en+1

φ ∥
2
− ∥enφ∥

2) + 2(∥en+1
q ∥
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2) + δt∥e
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2
w ∥
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1

≤Cδt5 + Cδt(∥en+1
1,φ ∥

2
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2
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2)

≤Cδt5 + Cδt(∥en+1
q ∥

2
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2
1 + ∥en−1

φ ∥
2
1 + ∥enq∥

2).

Summing up above equation for n = 0, . . . , k, we find

∥ek+1
φ ∥

2
1 + ∥ek+1

q ∥
2
+ δt

k∑
n=1

∥e
n+ 1

2
w ∥

2
≤ C

k∑
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(∥enφ∥
2
1 + ∥en+1

q ∥
2).

Applying Gronwall’s lemma, we have

∥ek+1
φ ∥

2
1 + ∥ek+1

q ∥
2
+ δt

k∑
n=1

∥e
n+ 1

2
w ∥

2
1 ≤ Cδt4.

Then, we get the desired result. □

4. Numerical examples

In this section, we present some numerical experiments to verify our theoretical results. In all the numerical examples
below, we set the numerical stopping criterion as N = 10 and ε0 = 10−12.

4.1. Spatial discretization

For the spatial discretization, we choose the standard second-order compact central finite difference method. Mainly
consider a rectangular domain Ω = [0 Lx] × [0 Ly]. We discretize it with uniform meshes. Interested readers can refer
to [45–47] for details.

4.2. Temporal and spatial convergence test

Consider the C.H. equation{
∂tφ = λ∆w,

w = −ε2∆φ + φ3
− φ,

subject to the boundary conditions

(i) φ,w are periodic ; or (ii) ∂nφ
⏐⏐
∂Ω

= ∂nw
⏐⏐
∂Ω

= 0. (78)

This is derived by choosing the free energy E =
∫
Ω
ε2

2 |∇φ|
2

+
1
4 (φ

2
− 1)2dx and taking the H−1 gradient flow with

mobility λ. We can reformulate it with IEQ method by introducing the auxiliary variable q and the function g(φ) are
derived as

q =
1
2
(φ2

− 1 − γ ), g(φ) = 2φ. (79)

Consider the square domain [0 1] × [0 1] with 512 × 512 uniform meshes. The initial profile for φ is chosen as

φ(x, t = 0) = 0.45 cos(4πx) cos(4πy). (80)

The model parameters are chosen as ε = 10−2, λ = 10−2 and γ = 1.
Scheme 3.1 is tested first. First of all, we present the time convergence test. For simplicity, we only show the results for

the case with periodic boundary conditions. The convergence rates are summarized in the left part of Table 1, where we
observe second-order convergence when the time-step is small enough, which is consistent with our theoretical results.
Then we test the predictor–corrector C.N. Scheme 3.7 with the same initial values and parameters as above. The result
is summarized in the right part of Table 1, where we observe robust second-order convergence in time, even with large
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Table 1
The L2 numerical errors of φ at t = 0.5 are computed by linear CN Scheme 3.1 and the
predictor–corrector CN Scheme 3.4 using various temporal resolutions.
δt Linear CN Scheme 3.1 Predictor–corrector CN Scheme 3.7

L2− Error Order L2− Error Order

0.2 6.5620 0.4236
0.1 2.5722 1.351 0.1070 1.984
0.05 0.7780 1.725 0.0267 2.003
0.025 0.2085 1.900 0.0067 2.001
0.0125 0.0534 1.963 0.0017 2.001
0.00625 0.0135 1.989 0.0004 2.004
0.003125 0.0033 2.010 0.0001 2.016

Table 2
Spatial mesh refinement test for φ at t = 0.5. The results are calculated using
predictor–corrector CN Scheme 3.7.
N Error Order

L∞ L2 L∞ L2

64 – – – –
192 6.5018 2.6455 – –
320 0.2818 0.1375 1.9553 2.4341
448 0.0746 0.0372 2.0096 2.0501
576 0.0303 0.0153 2.0048 2.0218
704 0.0153 0.0077 2.0029 2.0124

time-step sizes. By comparing the results in Table 1, we observe that the predictor–corrector schemes reach the optimal
second-order convergence rate faster than the linear IEQ schemes.

Next, we conduct the mesh refinement test using predictor–corrector C.N. Scheme 3.7. We use the same model,
parameters, and other settings as above. To avoid the temporal errors affecting the spatial convergence results, we use
a small time-step δt = 10−4, along with various N2 spatial meshes, where we choose N = 64, 192, 320, 448, 576 and
704. The errors are calculated as the difference between numerical solutions by adjacent meshes at the coarse 642 mesh
points. The results are summarized in Table 2. It is shown that the numerical schemes have second-order accuracy in
space in both L2 norms and L∞ norm.

4.3. Coarsening dynamics

In this section, we further test predictor–corrector Scheme 3.7 on the coarsening dynamics. We use the same model
as above, and choose the domain as [0 2π ] × [0 2π ] with 512 × 512 uniform meshes. The initial profile

φ(x, t = 0) = 10−3rand(−1, 1) (81)

is used, and the model parameters are γ = 1, λ = 0.1 and ε = 0.05.
In the first case, we pick the periodic boundary condition. We test both IEQ CN Scheme 3.1 and the fixed-point

predictor–corrector CN Scheme 3.7 with different time-step sizes. The results are summarized in Fig. 1. When the time-
step is large (saying δt = 0.1), even though Scheme 3.1 preserves the energy dissipating property, its numerical predicted
energy is already largely deviated from the correct energy, as shown in Fig. 1. When the time-step size is small enough
(saying δt = 0.01), IEQ CN Scheme 3.1 predicts accurate results. On the contrary, for fixed-point predictor–corrector
C.N. Scheme 3.7, its numerical prediction is already accurate enough even with large time-step δt = 0.1, i.e., the
predictor–corrector scheme provides better numerical accuracy at large time-step size.

To better compare these two schemes, the L2 norm on the difference between numerical solution q and Eq. (79)
(the original definition of q) are summarized in Fig. 2. Notice, due to the numerical discretization for the equation of
q, numerical truncation errors are introduced inevitably. We observe, when the time-step is large, Scheme 3.1 introduces
large errors, deviating q from its original definition (79). On the other hand, for the predictor–corrector Scheme 3.7, it
predicts dramatically accurate results, that is the errors between q and (79) are negligible.

From the comparisons above, we observe predictor–corrector Scheme 3.7 predicts accurate numerical results. In
addition, using Scheme 3.7, with 5122 meshes and time-step size δt = 10−2, we simulate the long-time coarsening
dynamics, where the results are summarized in Fig. 3. We observe the two phases evolve and separate with time passing
by. Eventually, it reaches a steady state, where a trip pattern is formed by noticing the periodic boundary condition. The
numerical solver captures the phase separation properly, i.e., it demonstrates the effectiveness of the newly proposed
predictor–corrector schemes.
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Fig. 1. Comparisons of the calculated energies using different numerical schemes with various time-step sizes. In this figure, the numerical energies
using linear CN Scheme 3.1 and predictor–corrector CN Scheme 3.7 with different time-step sizes are summarized together.

Fig. 2. Numerical error between q and its original definition in (79). This figure shows that large time-step size would introduce numerical error
for q, so that it deviates from its original definition in Eq. (79). But the predictor–corrector scheme provides more accurate results.

In addition, we study the coarsening dynamics with the same model parameters as above, but with Neumann boundary
condition. We use predictor–corrector Scheme 3.7, along with 5122 meshes and time-step δt = 10−2. The simulation
results are summarized in Fig. 4. We notice that when we use the physical boundary condition, it resolve different
dynamics (due to the interaction with boundaries). Mainly, we observe dramatically different coarsening dynamics with
different boundary conditions, and the dynamics evolve slower than the case with periodic boundary condition, as it
does not reach the equilibrium state at t = 10 000, but the case with periodic boundary condition already reaches the
equilibrium state at t = 5000 as shown in Fig. 3.

4.4. Coarsening dynamics of the Cahn–Hilliard equation with the Flory–Huggins bulk potential

Notice that, in the proposed numerical schemes and error estimates, the explicit expression of the bulk potential is
not specified. Thus, the proposed numerical methodology applies to a wide class of problems. To demonstrate it, we
use the proposed numerical scheme to solve the Cahn–Hilliard equation with the Flory–Huggins bulk potential in this
section.

This Flory–Huggins bulk potential is derived from studying the polymer solutions, which takes account of the
differences of molecular sizes in the solvent and solute. The expression of the Flory–Huggins bulk free energy functional
is derived as

F (φ) =
1
N1
φ lnφ +

1
N2

(1 − φ) ln(1 − φ) + χφ(1 − φ), (82)
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Fig. 3. Coarsening dynamics using the C.H. equation with the periodic boundary condition. The profile of φ at time slots t = 0, 5, 10, 50,
100, 500, 1000, 5000 are shown.

where N1 and N2 are the molecular sizes for the two phases, and χ is a mixing parameter. Consider the C.H. equation{
∂tφ = λ∆w,

w = −ε2∆φ +

(
1
N1
φ lnφ +

1
N2

(1 − φ) ln(1 − φ) + χφ(1 − φ)
)
,

with periodic boundary condition.
Following the energy quadratization idea in previous sections, we introduce the auxiliary variable q and function g as

follows

q =

√
F −

1
2
γφ2 + B, g(φ) = 2

∂q
∂φ

=

∂F
∂φ

− γφ√
F −

1
2γφ

2 + B
. (83)

We remark that, during numerical calculation, there might exist singularity due to the logarithm function in g . We can
regularize g as

g(φ) =
∂q
∂φ

=

∂ F̂
∂φ

− γφ√
F̂ −

1
2γφ

2 + B
, (84)

where the regularized F̂ is defined by

F̂ (φ) =

⎧⎪⎪⎨⎪⎪⎩
1
N1
φ lnφ +

1
N2

[
(1−φ)2

2σ + (1 − φ) ln σ −
σ
2

]
+ χφ(1 − φ), if φ ≥ 1 − σ ,

1
N1
φ lnφ +

1
N2

(1 − φ) ln(1 − φ) + χφ(1 − φ), if σ ≤ φ ≤ 1 − σ ,

1
N1

[
φ2

2σ + φ ln σ −
σ
2

]
+

1
N2

(1 − φ) ln(1 − φ) + χφ(1 − φ), if φ ≤ σ .

(85)
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Fig. 4. Coarsening dynamics using the C.H. equation with Neumann boundary condition. The profile of φ at time slots t = 0, 5, 10, 25,
100, 1000, 5000, 10 000, 26 800 are shown.

Consider the initial profile φ(x, t = 0) = 0.3 + 0.001rand(−1, 1) and domain [0 20] × [0 20]. We use the model
parameters χ = 2.5, N1 = N2 = 1, λ = 1, ε = 0.05, γ = 1, σ = 10−3 and B = 10.

In this case, we consider the periodic boundary condition. We use predictor–corrector Scheme 3.7, along with 5122

meshes and time-step δt = 10−3. The coarsening dynamics with the Flory–Huggins bulk potential are summarized in
Fig. 5. We observe phase transitions with a huge quantity of small droplets emerging, which is dramatically different
from the coarsening dynamics predicted by the Cahn–Hilliard equation with the double-well potential.

5. Conclusion

The C.H. equation, one of the most important equations in phase-field models, has been widely used to study a variety
of applications in the fields of biology, engineering, material science, soft matter physics, and many others. One of the
existing critical numerical issues is to develop unconditionally energy stable numerical approximation, such that large
time-step is durable. In this article, we construct a class of predictor–corrector schemes, improving the accuracy of the
schemes derived from the energy quadratization approach. Rigorous results on convergence and error estimates are
obtained, showing the second-order convergence of our proposed predictor–corrector schemes. In particular, as the linear
IEQ schemes are special cases of our general predictor–corrector schemes, our theoretical results also apply directly to
linear IEQ schemes. Besides, due to the generality of the theoretical and numerical strategy, the results in this paper
could be readily used to propose unconditionally energy stable numerical approximations for other phase-field models or
gradient flow models, and conduct rigorous convergence and error estimate as well. These topics will be pursued in our
later research.
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