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Abstract
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models. It is shown that, unlike what occurs in the exterior regions, the spectrum is not thermal.
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I. INTRODUCTION

Among the many spectacular celestial objects that populate our Universe, black holes
(BHs) are perhaps the most intriguing. The presence of a causal horizon prevents any direct
observation of the interior. According to theoretical studies based on general relativity,
the interior is a place where peculiar physical effects occur, which cannot be confirmed
by astronomical observations. The situation has positively changed in recent times with
the advent of so-called “analog BHs” [1, 2]. These are condensed matter systems that are
realizable in the laboratory, which mimic some of the essential features of gravitational BHs.
A typical example is a Bose-Einstein condensate (BEC) fluid (see e.g. [3]) whose flow becomes
supersonic [4-6]. The supersonic region, trapping sound waves inside it, is the analog of the
BH interior. The sonic surface where the speed of the flow equals the local speed of sound,
plays the role of the horizon. This sonic horizon however has no causal significance at all:
there is nothing to prevent one from directly observing the interior region. Indeed the first
experimental observations of the analog of Hawking radiation [7] in BECs by Steinhauer
et al. [8, 9] were made by performing simultaneous measurements of the density outside
and inside the sonic horizon. A peak was observed in the resulting in-out density-density
correlation function that was predicted in [10, 11] and which is the “smoking gun” signaling
the presence of Hawking radiation. In the same spirit, one can imagine that other processes
that are predicted to take place in the interior of a BH can be experimentally verified by
looking at appropriate analog models.

With this as motivation, in this paper we discuss the unusual features of scattering by
a potential inside the horizon of a stationary BEC analog BH and its consequences. The
calculations are done in the analog spacetime using quantum field theory in curved space
techniques. These are the same types of calculations that one would do to explore similar
effects in the interior of a real black hole.

In quantum mechanics in the presence of a potential, an incident flux is split into a
transmitted and a reflected part (see Fig.1). Reflection (R) and transmission (7") coefficients
satisfy the unitary relation |R|? + |T'|*> = 1, which is the conservation of probability. Note
that the previous relation implies that |R|* and |T)? < 1.

Inside the horizon of a BH both the transmitted and the “would be reflected” part of the

field are forced to propagate in the same direction, namely toward the center of the black
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FIG. 1: Illustration of a plane wave incident onto a potential from the right, which then is partially
transmitted to the left and also partially reflected back to the right of the barrier.
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FIG. 2: Illustration of a plane wave incident onto a potential from the right in the interior of a BH,
which then is partially transmitted to the left and also partially reflected; however, the reflected
portion is also moving to the left of the barrier, since in the interior the wave is forced to travel
further into the BH.

hole (see Fig. 2). The scattering is “anomalous” and R and 7" no longer satisfy the previous
unitary relation. Instead they satisfy |T'|*> — |R|* = 1 which implies particle creation since
|T|? > 1. Another way to think about this is that, while the outside region of a nonrotating
black hole is static, the interior can be thought of as a dynamical cosmology in which particle
creation occurs.

We shall deal with both massless and massive quantum fields. For the latter case there
is usually a mass gap, namely F > m where F is the conserved (Killing) energy and m is
the mass of the particle. Inside a BH the former inequality no longer holds, and E can take
any value, even negative ones.

In Sec. II a brief review is given of the setup for BEC analog black holes. In Sec.
I1I particle production is investigated in the case of massless phonons with a double delta
function potential. In Sec. IV particle production is investigated for massive phonons when
the effective potential is zero and the mass term in the mode equation is approximated by
two step functions. Section V contains a discussion of our results and comparisons with

some previous work.



II. THE SETTING

Under the hydrodynamic approximation the phase fluctuation operator gg in a BEC sat-

isfies a covariant version of d‘Alembert’s wave equation (see for instance [2])
O¢=0, (2.1)

where [J = @H@” is evaluated on a fictitious curved spacetime metric, called the acoustic

metric, which in our case we write as follows:

n

ds* = [—*(2)dT? + (dz + vodT)? + dy? + d=*] , (2.2)

e
where n is the density of the condensate (here assumed to be constant), m, is the mass of a
single atom of the BEC, and ¢(x) is the sound speed. The flow is assumed to be stationary
and one dimensional along the x axis with the velocity v = —v,2 constant and directed from
right to left.

For a typical profile used in BEC analog models ¢(z) becomes constant in both asymptotic
regions (x — 400) so that lim, . ¢(x) = ¢, and lim,_, ., c(x) = ¢ with ¢, > vy and ¢; <
vg. Thus the asymptotic regions are homogeneous and the profile monotonically decreases
from right to left. The profile ¢(z) is chosen so that the horizon c¢(x) = vy is at z = 0. In
the region = < 0, where ¢(x) < vy the metric describes the interior region of the acoustic
BH while for > 0, where c¢(z) > vy, the metric describes the exterior region of the
acoustic BH. We call the exterior the r region and the interior the [ region. Performing
a dimensional reduction along the transverse direction and passing from the Gullstrand-

Painlevé coordinates (T, x) to the Schwarzschild-like ones (¢,z*) via the transformation

Vo

t=T— | dt———— d * = dp———— . 2.
/ - T / Ce(w)? — 2 (23)

the wave equation (2.1) can be reduced to

[—0? + 0% — K2 (P — ) + Viglo®P =0, (2.4)
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FIG. 3: z* is plotted as a function of x in the interior and exterior regions of the BH. The values
of x where * = 0 in the [ and r regions are labeled as x; and x, respectively. The horizon occurs
at x = 0.

where the effective potential is given by

A= | 1d%c v3 1 (de\’ 5ug [ dc ?
Ver = — [5@(“9)‘@(@)*@(@) ’ (2:5)

The coefficient k? is related to the transverse momentum and ¢ is the dimensionally

reduced field operator (see the Appendix of Ref. [12] for details). The last two terms in Eq.
(2.4), the masslike term and Vg, cause scattering of the modes. Note that both of these
terms vanish at the horizon. There the modes are effectively massless and propagate freely.
The second coordinate transformation in Eq. (2.3) maps the (0, +00) interval in z in the r
region to (—oo,+00) in z* while in [ the interval (—o0,0) in z is mapped to (400, —00) in
x* as seen in Fig 3. According to the standard procedure of quantum field theory in curved
spacetime, the field operator ngS(Q) is expanded in terms of a complete set of basis functions
{fo, [}, which are solutions of the classical counterpart of the operator equation (2.4) with

the result
o? = / dw (agf, +alf:) . (2.6)
0

The creation and annihilation operators a,, and a satisfy the usual commutation relations.



The modes f,, are normalized using the conserved scalar product

(for fo) = —i / a5 1,9, £ lgs ()] | (2.7)

with d¥# = n*dY, where ¥ is a Cauchy surface, n* a future directed unit vector perpendic-

ular to X, and gy, the determinant of the induced metric. Writing

fo = ety (2%) (2.8)
and substituting into (2.4) gives
PXe L (2 2@~ ) 4 Vi) v = 0 2.9
drr2 W T (= v5) + Ver) xo = 0. (2.9)

In this paper we consider two toy models for the terms in Eq. (2.9) responsible for the
scattering which have the advantage of being exactly solvable while, despite their crudeness,

encoding all of the basic features of the process we wish to discuss.

III. DIRAC DELTA FUNCTION POTENTIALS

In the first toy model, the transverse excitations are neglected (i.e., k; = 0), and Vg
is approximated by two Dirac delta functions, one in region r and one in region [. For

simplicity we choose them at z* = 0 in 7 and at =} = 0( see Fig. 3) in [ leading to *

Vio(z*), x<0,
Ve = (3.1)
Vio(z*), x>0.

The Penrose diagram for the BH metric given in Eq. (2.2) is shown in Fig. 4, where the

modes representing our in basis are schematically indicated.

! For typical flows discussed in the literature which mimic the experimental setup in Refs. [8, 9] the effective
potential in the interior is dominated by a negative peak. Thus, while our analytic results are valid for

arbitrary values of V;, when plotting the results we restrict our attention to the case V; < 0.



FIG. 4: Penrose diagram with the in mode basis schematically illustrated in the [ and r regions.

The asymptotic behaviors of these modes are

) e—iwte—iwx* 6—7va
= = (3.2)
dTw drw
on past null infinity I";
) e—iwteiwx* e—iwu
= = (3.3)
VaTw VaTw
on the portion of the past horizon in region r, H” ; and
) eiwtefiwx* eiwu
"y = (3.4)

VAamTw - Varw

on the portion of the past horizon in region I, H. . These are positive norm modes on I” or

H_ which together form a Cauchy surface for the spacetime. These modes are associated



FIG. 5: Penrose diagram illustrating the scattering of an ™ f; mode in the [ and r regions.
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FIG. 6: Illustration of a plane wave incident onto a potential from the right, which then is partially
transmitted to the left and also partially reflected back to the right of the barrier.

with annihilation operators in the expansion of the field ¢® in Eq. (2.6).

In Egs. (3.2)-(34), u =t — z* and v = t 4+ z* are the Eddington-Finkelstein retarded and
advanced null coordinates, respectively. Note the + sign in the exponent of Eq. (3.4). The
conserved (Killing) energy associated with it is negative and corresponds to excitations called

“partners.” We need to find the explicit forms of the modes throughout the spacetime.
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FIG. 7: Tllustration of a plane wave incident onto a negative potential from the right. As this is in
the interior of the BH both the transmitted and reflected portions of the mode are forced to travel
further into the BH.

Let us begin with the f7 mode whose evolution is represented schematically in Fig. 5.
The incoming v mode of the form Eq. (3.2) coming from [” is partially transmitted (77)
toward the horizon as a v mode and partially reflected (R}) back to infinity I% as a u mode
by the delta function potential located at x} = 0 (see Fig. 6). The transmitted part crosses
the horizon, enters the black hole and is split by the second delta function potential, located
inside the black hole at z; = 0 (see Fig. 7), into a transmitted (T%) v mode and a “reflected”
(RY) uw mode, with both traveling inside along the flow toward left future infinity (I'). Thus

in the r region

) e—iwt - -
in er __ —iwz r_iwr * *
fI—\/4_[e + Rje™"] x>z =0,
W
e_lwt r —iwz* * *
= —Tje , <z =0, (3.5)

Varw "

and in the /¢ region

efzwt

infr — Tre—iwx* l’* < l’* =0
I \/m I ) 14 )
e—iwt - -
= [T{e ™™ + Rie™™ ], 2" >a7=0. (3.6)
4w

The transmission and reflection coefficients are found by matching these solutions across
the delta function potentials. In general for a potential of the form V = AJ(z*) we require

that x(x*) satisfies

xl_ = xl, (3.7a)
Xy =X ==Ax[_, (3.7b)



*

where x| = lim,«_,o+ x and X’ represents the derivative with respect to z*. The results for

X are
24w
Ty = 57— | (3.8a)
7 -1
. 1
Ry = 55— (3.8b)
-1
Vi
Rl = % I 5 (38C)
Vi
T = (1—— |17 . :
= (1-50 )7 (3.80)
These satisfy the relations
Ry + 17 =1, (3.92)
Ty* = [Ry P + R = 1. (3.9b)

The negative sign in front of the R} term in (3.9b) comes from the fact that the reflected
modes Rye ™" inside the BH have a negative norm [see Eq. (2.7)].

The asymptotic form of the ™f7 mode as x — +00 is

] efiwt - -
mf[r — [e—zwm 4 R§€zwm ] (310&)
4w

and

[Tje ™" + Rhe™"] (3.10D)

for r — —o0.
Following the same procedure for the ™f7, modes coming out from the part of the past

horizon in the r region (see Fig. 8), we have

2iw
Ve
Ry = 24— (3.11b)
=9

satisfying |R%,|? +|T%|? = 1. Similarly, the ingoing R}, part gets scattered by the ¢ function

10
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FIG. 8: Tllustration of a plane wave incident onto a potential from the left, which then is partially
transmitted to the right and also partially reflected back to the left of the barrier. The reflected
portion then travels into the interior of the BH where it encounters the potential in the interior.

There the “reflected” and “transmitted” portions travel away from the potential to the left; see

Fig. 9.

RlH Incident

Th

FIG. 9: Scattering inside the horizon of the mode fi-

potential inside the horizon (as shown in Fig. 9) with the result

Vi .
Ty = (1—%) '

Vi
Ry, = ——R;
H = 94 1Y

again with |T%|> — |Rl|> + |T%|? = 1, leading to the asymptotic form

—iwt

Jir = Varw

ro_iwx*
Tye ;

for x — 400 and
67'iwt

= [

I —iwx* I iwx™
Rhe + ThHe™™ ] |

for x = —o0.

(3.12a)

(3.12b)

(3.13a)

(3.13b)

Finally, for the modes “fl, coming from the part of the past horizon in region [ (see Fig.

11
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FIG. 10: Scattering of the mode i"f}{.

10) the effective transmission and reflection coefficients are, respectively,

T, = 1—-—, (3.14a)

R, = (3.14b)

satisfying |T%|? — |R|? = 1. The asymptotic (z — —oo ) form of L is

euut

"y = = [The =" + Rye'| (3.15)

Having defined the in basis, the field operator gg(Q) can be expanded as
60 = [[dw [rar("f7) + Pan("fi)+ Pan("fh) + e (3.16)

where the a’s are the annihilation operators for the respective modes.
Alternatively one can construct another basis called the out basis formed by modes having

the asymptotic form

outpr __ eiwa: — 3.17a
Ju 4w 4w ( )
for ¢ — 400 and ' '
outfl — e’Mt e—iwx* — e (317b)
Y VArw Virw '
—iwt —iwv
outfl = S = (3.17¢)

for + — —o0. These modes are represented in the Penrose diagram in Fig.11.

Proceeding in the same manner we can construct the °“‘f modes throughout the spacetime



FIG. 11: Penrose diagram illustrating the modes forming the out basis.

and then obtain the following expressions of the field operator:

o = / e [, (Uf7) + P (L) + Gy (Uf7) + e ] (3.18)

where the °“*a’s are annihilation operators. The in and out bases are related by a Bogoliubov
transformation. Looking at the asymptotic form of the in modes Eqgs. (3.10a), (3.10b),
(3.13a), (3.13b) and (3.15), one can rewrite the modes on I, as follows:

lnf}’ — R; 0utf5 +T1l OUtf'Ll; + Rl[ omf‘]c’[l:k7 (319&)
znf}:[ — T}; outf5+T]lr{ OUtfll,‘i‘Riq out i*’ (319b)
= Ry U+ Th (3.19¢)

Note that there is no contribution to ™f!, from the *“*f” modes. Using the scattering S-matrix

13



formalism we can write the relation between the two basis as

mf}“ outf;
infr | = ST out fl (3.20a)
znfll;v< outfl*

where
S’U‘TH/UT S'Uly'ur Sulyvr
sT=1g

Up,Ur Svl yUr Sul yUr

0 Svl sUl Sul YUl

(3.20b)

is the transpose of the scattering matrix S.
The notation used is borrowed from Ref. [13] and is quite intuitive. For example S, .,

indicates an incoming v mode from r leading to an outgoing v mode in r. The corresponding

Bogoliubov transformation for the annihilation operators of the two bases is

out AT AT

Qy, ar
out Al — in AT

a, =51 gy (3.21&)
out 51T in ;U

a,, A

where

Sur,vr Sur,'u,r 0
S - S'Ul,'Ur S’Ul,ur Svl,ul (321b)
Sul yUr Sul,ur Sul,ul

For the two delta functions potential the S-matrix elements can be found by inspection of

Egs. (3.19a) - (3.19¢) resulting in

Supwr =B o Supur =Thp (3.22a)
Sowr =Tt 5 Svur = Thy (3.22b)
Suwe = Ry s Supu, = RYy (3.22¢)
Sun = R s Su =Th - (3.22d)

14



We are interested in the numbers of outgoing particles in the various channels, namely

out ~t out
<r a’ur Ay

> ’ lOUth outdv> ’ and <?Uth OUtdu>_ (323)

vl w

To perform this calculation we have first to specify the quantum state of the @(2) operator
in which the expectation values in Eq. (3.23) have to be taken. The in modes used in the

expression of the field operator gﬁ(?) have a temporal part e*™?. These are the eigenfunctions

of the Killing vector % associated with the stationarity of the metric and are positive or

negative (Killing) energy modes with respect to Schwarzschild time ¢. The quantum state

[

associated with this expansion is annihilated by all the "*a operators and is called the

Boulware vacuum [14], i.e.,

ingr |B) =0,
i”d’”H |B) =0,
ingl |BY = 0 (3.24)

for all values of w. This is the most “natural” quantum state one can define on the extended
manifold described by the Penrose diagram of Fig 4. Physically |B) describes a state in
which there are no incoming particles either from past right infinity I” or from the past
horizon H_. Although natural, this does not correctly describe the quantum state of the
field ¢@ if the BH is formed by a dynamic gravitational collapse. The collapse in fact
induces the conversion of quantum vacuum fluctuations to real on shell particles, the so-
called Hawking radiation [7]. The state which correctly describes this process, at least at
late times, is called the Unruh vacuum |U) [15]. The difference between the two states can
be schematically summarized as follows. For the Unruh vacuum the modes coming out from
the past horizon are chosen to be positive and negative frequency, not with respect to the
Schwarzschild time ¢, but with respect to Kruskal time. Thus instead of the mode ™f” and

ingl

., the modes are chosen as

K e—inU
- , 3.25
fH \/M ( a)
U=x° (3.25b)
K

15



where the — and + refer to the r and [ regions respectively, and « is the surface gravity of

the BH horizon, which for our metric is

(3.26)

The modes coming from past null infinity for the Unruh vacuum are chosen as ™fr. The

field can then be expanded in terms of a complete set of these modes:
60 = [ dunc (@ 11+l 5+ [ [ (o) i (). )
The Unruh state is therefore defined as

ay, [UY =0,
nah|\UY =0, (3.28)

for every w and wg. The relation between the two sets of operators is given by the following

Bogoliubov transformations

mar r ~ rx At
ag —/dwk [aw;(wawk + wKwawK:| )

ngt, = / dewy, [afwaw + L*Kwaj%] (3.29)

where the Bogoliubov coefficients are given by (see e.g. [16])

Vo = G\ e ) T\ =7

1 w . _iw
ok = 5 E(_WK) .

1 w iw

1 . _iw

= — —_— K F
2k \ wi (i)

1 w 1w —w
l . iw
= —/—(iwr) T | — | . .

WKW 91k wK(l ©) ( K ) (3.30)

WKW

r1
7~ N 7N
MBS
N— —

Using the Bogoliubov transformations, Eqgs. (3.21a) and (3.29), we obtain

= Ul 20 |0) = [ dore S |3, (331)

16



o~

— t A~ ~ 2
nv = <U|0u ! OUt Qy |U> /d(A)K |:|S'Ul1ur| ’/BIJKUJ| + S’:l Up wKwS:;l,ul ;Kw

2
+SUMLL wKwSUz,Ur wKw |Svl,uz| ‘ clqu}] ) (332)

E <U|Out i OUth‘U> /dwK |:‘Sul7u’l“2 |aZ:JKw| +SZZ Ur wKwSUhUl WR W
x 2
+Sul,ur wKwSul,ul WRW + ’SUhull ‘ﬂclqu| ] + ‘Sul,vT| . (333)
One can see the combined effect of the near horizon mixing (the a and ) encoded in

the Bogoliubov transformation (3.29), which engenders Hawking thermal radiation, and the

scattering caused by the potential (the S-matrix element). After some calculations we obtain

, 402 1 (3.34a)
n, = . a
U 4(,(}2 _|_ V]% 627:/.) . 1 )
1 2iw — V, |
l l fux®}
_ g Ve | o, 3.34b
Mo = g2 i — v, T T S (3.340)
1 | e V.V S| V2
l w r Vi . l
= 5 2iw —V, . 3.34
(e i rrera e Gl () = A (3.34c)

Note that we have omitted factors of 6(0) that arise from the normalization of plane waves.
If wave packets are used then such factors can be set equal to 1.

One can verify that n” +n! = n!. Thus the number of positive energy excitations created
equals the number of negative ones as energy conservation requires.

One notices immediately the striking difference between the emission in the exterior region

compared to that of the interior region. In the exterior region the scattering is the standard

hk

ks modulated

one, n,, describes, as expected, a thermal emission at the temperature Ty =
by the graybody factor % which regulates the infrared divergence associated with the
Planckian distribution. The graybody factor goes to one for w > V,.. In the interior region
the scattering is anomalous resulting in additional particle production. The distribution of
the particles is infrared divergent - i.e, the spectrum is dominated by soft phonons - and it
is not thermal. For the model we consider both n!, and n! decay as a power law.

The high-frequency behavior of n!, is shown in Fig. 12 for the cases —V; = V,/10 and
V; =V, = 0. The more rapid, exponential, falloff in the latter case is clearly apparent. The

17
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FIG. 12: Plots for w > k with —=V; = V,./10 = £/100 (blue curve, upper) and V; =V, = 0 (red

curve, lower). The quantity C' w nl, where C is a scaling factor whose value is chosen for each

curve so that C' w n!, =1 for w = 1071

low-frequency behaviors of n”. and n, for various values of V,, > 0 and V; < 0 are shown in
Fig. 13. For both low and high frequencies the qualitative behaviors of nf for the same cases
are identical to those of n!. In addition to the infrared divergence mentioned above, the plots
of n!, in Fig. 13 show another nontrivial feature, a peak, that arises in the quantity wnl. (
It also occurs for wn!.) The peak appears to be most pronounced when |V;| > V, ~ x/(27).
In this regime, the position, in w, of the peak is proportional to V,. so it moves to the right
on a plot of wn!, versus w as V, increases. For V, > k/(27) it disappears because it becomes
lost in the power law decay that occurs at high frequencies. In contrast, as V, gets smaller
and moves to the left on the plot, the height of the peak decreases relative to its base. For
small values of w the height of the base is given by the value of wn!, in the limit that w — 0.
If for fixed V., |V}| decreases, but is still larger than V;., then the height of the peak also
decreases. However, its location stays about the same. When V, = |Vj| the peak no longer
exists. This can be shown analytically by looking at the derivative of wnl:
d(wné) V.2 </€ (1 — e%Tw) + 27rwe%>
dw 4kw? (e + 1)2
VB (2 - sinh (%)

2Kkw? (e% + 1)2

, (3.35)

which is less than zero for all w > 0. Thus there is no peak like the one seen in Fig. 13

in the V, < |Vj| case. The same can also be shown for n’, but the expressions are more

18
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FIG. 13:  Plots are shown of wn! and wn!, for —V; = V,/10 = /100 (blue, dashed curve),
-V, = V;/100 = £/100 (green, dotted curve) and —V; = 3V;./200 = /100 (orange, solid curve).
Left: C is a scaling factor whose value is chosen for each curve so that C w n!, =1 at the peak of
that curve. Right: C'is a scaling parameter whose value is chosen for each curve so that C' w ”L =1
at w = 107°. An unexpected peak in C' w n!, exists in all three cases but is only clearly visible in
two.

complicated.

This peak is also present in other, more realistic, configurations for the effective potential.
This will be shown elsewhere.

We make a final remark concerning the Boulware vacuum | B). This state is characterized
by being a vacuum state at infinity I’ (no incoming and no outgoing particles for x — +00),
that is singular at Hy. Indeed the number of particles created in the r region is

NI = (B|?"al o4, |B) =0 . (3.36)

This is not true in the BH interior region because of the particle production that occurs

there resulting in

_ out AT outA 2 L 2 ‘/l2
Ny = (B a] 4, |B) = 1Sul = R = 15 (3.37)
and
N, = (B[]" al, "““u|B> = |Sul,ur|2+ISul,w|2
l 1|2 r V2
= }RI\ + |Ry| = [|R 2+ T °] = 4—w2. (3.38)

19



Inside the BH, | B) is no longer an out vacuum state. Instead there is a net flux of particles

(of positive and negative energy) directed toward x — —oo with N! = N..

IV. THE MASSIVE MODEL

The second toy model we want to investigate is the one introduced in Ref [12], where in

the field equation (2.4) Vg is neglected and the mass term k? (¢* — v?) is approximated as

two step functions (see Fig. 14 ):

e

-200 -100 0 100 200
x/€

FIG. 14: Plot from Ref. [12] of the coefficient of m?(dot-dashed curve) and the approximation to
that coefficient(solid curve). This result is based on the sound speed profile used in Refs. [11, 16].

m20(z* —z.), x>0,
k3 (¢ —vg) — ( ’ (4.1)
—miO(z* —zf), <0,

with m2 = m? (2 — v3) and m? = m? (v — ¢?). Again ¢, and ¢; are the asymptotic values of

c(z) as  — +oo and x — —oo0, respectively. The — sign in front of m? comes from the fact
that inside the BH, ¢* < vZ. We also choose zf, = 0 = zf, for simplicity. The field equation

(2.4) simplifies to

(02 + 0% —m?0(z")]p? =0, z>0, (4.2a)
02 + &% +m20(z")]p? =0, <0, (4.2b)
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Ty

Incident

FIG. 15: Illustration of a plane wave incident from x = 400, which then is partially transmitted
and partially reflected back.

Since the construction of the in basis for this model has been performed in Ref. [12], here
we briefly sketch the basic features. The asymptotic form of the incoming v modes that
originate at x = +o00 is

ingr _ 1 it o —ikra® (4.3)

VAarTw

with k, = \/w? —m2. These are massive modes and they exist only if w > m, i.e., there is,

as usual, a mass gap.

On H~ the modes are massless so

myer — e—ZUJU 4.48,

= Vi (4

infl, — e (4.4b)
dTw

The forms of these modes throughout the spacetime can be found by enforcing continuity of
the spatial part y of the modes and their derivatives at the boundaries of the step functions

with the result

inger e kT — Wik —ikyx*
fr = Ny {kr—i—wekr + et } ,  forz— 400, (4.5a)

. e_th vV klkT kl — W ikjz* kl + w ik
iner _ R Y f — — 4.5b
Ji «/47rklk:r+w{ o ¢ T ¢ , forz——oo,  (45b)

where k; = \/m Note that unlike k,., k; is real for any value of w and k; > my.
These modes can be illustrated schematically in the same way as the previous toy model of
Sec. ITI. The scattering of these modes in the exterior is illustrated in Fig. 15, while Fig. 16
illustrates the interior scattering.

The R} part is the coefficient of the first exponential in Eq. (4.5a), while T? and R! are

21



R}

Tl Incident

FIG. 16: Illustration of a plane wave incident onto the negative step function potential from the
right. As this is in the interior of the BH both the transmitted and reflected portions of the mode
are forced to travel further into the BH.

Ry

Incident

FIG. 17: Illustration of a plane wave incident onto a step function potential from the left, which
then is partially transmitted to the right and also partially reflected back to the left of the barrier.
There, the reflected portion then travels into the interior of the BH where it encounters the step
function potential where the anomalous scattering occurs. The reflected and transmitted portions
travel away from the potential to the left; see Fig. 16.

the coefficients of the first and second exponentials, respectively, in Eq. (4.5b).

For the “f%, modes one finds

et 2y/kw ik
Vark, k +w

. e_iwt kl w — l{:T k:l + w .kl * k:l — W .kl *
iner i —IRIT = et f — . 4.6b
fi ——47Tk’l ("wkr—l-w) [ o e + o e or x = —oo . (4.6b)

Schematically the exterior scattering is described in Fig. 17, and the inner one is similar to

= for  — +o0, (4.6a)

the one represented in Fig. 16.

The T}, term is the coefficient of the first exponential in Eq. (4.6a), while T}, and R}, are
the coefficients of the first and second exponential, respectively, in Eq. (4.6b). Note that for
w < m, the ™fI mode coming from H" is completely reflected at zf,.. This is the boomerang

effect as seen in Ref [17].
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The final set of modes in this basis are the "f!, modes which are

twt ) )
ingel € kl kl —ikyx* kl ikjx*
= —\/— | —— + — for x — —o0 . 4.7
fH vV 4m k?l |: 2]{31 ¢ 2]{31 ¢ g ( )

Schematically this is the same as seen in Fig. 16. T}q is the coefficient of the first exponential
in Eq. (4.7) and RY; is the coefficient of the second one.
The out basis is constructed by using a similar procedure to that described in the previous

section. Starting from the asymptotic forms of the modes

1

out er __ e—iwteikra:* ’ 4.8a
fi= o (4.50)
as r — +o00, and
outpl 1 zwtefikla:* (4 Sb)
“ \/ 471']6[ ’ '
outpl __ 1 71wt€71klaz (48(3)

v \/471'/{7[ ’

for ¥ — —oo. Using Eqs. (4.5a) - (4.7) we can express the in modes in terms of the out

modes as
ingr _ W outfr i\/f: [kz;];lw outfl 4 kIQ;le outleb*‘| ’ (4.92)
gy = /2 e R e S
Note that there is no contribution to ™fY, = 0 from the °“f” modes. From these the

Bogoliubov transformations between the in and out creation and annihilation operators

can be found as in the previous section. After some calculations we obtain the following
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expressions for the number of outgoing created particles in the Unruh state:

4k, w 1
v r O(w —m, 4.10
nu (W+kr)2 G%Tw o 1 ((.U m ) ’ ( a)
1 w— S|
— k L k; — Tl — 4.10b
nv 4]{[{.&1 ( l +w)w + kr _'_ ( l w)e 6277Tw . 1 7 ( )
1| ne w—k S| ke [k —w\?
I e "4 (K I —m,).(4.1
n,, oo er (k —w) +kr+<l+w) =T, (kl—i—w O(w —m,).(4.10c)

Note that we have omitted factors of (0) that arise from the normalization of plane waves.
If wave packets are used, then such factors can be set equal to 1. One can verify that
n! +nl = n!, above the threshold w > m,, while for 0 < w < m, we have nl = n!.

We find that, unlike the exterior region, the emission inside is not thermal. Furthermore,
n!, and n! are finite in the infrared w — 0 limit (see also Ref. [18]). In the asymptotic
interior region x — —oo, the dispersion relation for the massive modes is w? — k* = —m?
so there is no threshold for the conserved energy, and one can have phonons whose energy
is below my; even a zero frequency mode with |k| = m; exists. There is a threshold in
momentum |k| > m; for the outgoing x — —oo particles. These features are a consequence
of the switching roles between t and z* inside the BH as we have discussed previously. Note,
however, that, unlike the energy, the momentum is not conserved along the trajectory of the
created particle. Finally, the energy of the (u,l) particles is negative. All of these unusual
features exist only inside the BH. The deviation from a thermal spectrum is easily seen in
Fig. 18. Note that the spectrum in the exterior is truncated for modes where w < mp.

For completeness we can also work out the numbers of created particles in the Boulware

state |B):

NI =0 (4.11a)

Nl — Nl: (kl—W)2

4.11b
v ok (4.11D)

One can see that, just as in the massless case, |B) is no longer an out vacuum state in the
interior of the BH. Moreover, unlike what happens in the Unruh state, the number of created

particles diverges as w — 0.
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FIG. 18: Plots for m = 4 x 1072, Left: Plot of n! vs w. Note that for w < m,, n! = 0 because

u
no modes reach future null infinity in the r region. Thus there is a discontinuity in n;, at w = m,.

Right: Plot of n!, vs w which shows the nonthermal nature of the interior particle number, as the
low w behavior is shown to approach a constant and for large w it decays as a power law. The
qualitative behavior of né is very similar to nz; thus it is not shown.

V. CONCLUSIONS

We have investigated scattering in the exterior of the acoustic horizon of a BEC analog
BH and anomalous scattering or particle production in its interior in a simple model with
massless phonons and a different one for massive phonons. We have considered both the
Unruh and Boulware states. The latter is the natural vacuum state for a static star while
the former gives a good approximation in the exterior region to the late time radiation
produced by the black hole. As expected we find for the region outside the horizon that the
spectrum at infinity is thermal modulo the graybody factor for the Unruh state and there
are no particles for the Boulware state. In the massive case we find that, as expected, the
emitted thermal radiation in the exterior is gapped.

In the interior anomalous scattering produces additional particle production for both
massless and massive phonons and this destroys the thermal nature of the spectrum for
the Unruh state. At small frequencies the emission is dominated by soft phonons but only
in the massless case. At high frequencies one finds that, for the models considered, the
particle number falls off like an inverse power of the frequency rather than exponentially.
Not surprisingly particle production also occurs for the Boulware state in the interior. Thus
the Boulware state remains a vacuum state in the exterior, but can only be considered to

be an initial vacuum state in the interior.
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For massless phonons an unexpected peak was found in the quantities wn!, and wn! when
they are plotted as functions of w, with n/ and n! the number of right-moving and left-
moving particles found at future null infinity in the interior. This peak represents a clear
deviation from a thermal spectrum. It occurs for a limited range of the factors V,. and V; in
the two delta function potential (3.1).

The presence of particle creation even for the Boulware state inside a BH can be under-
stood by the fact that the Killing vector %, of which the Boulware modes are eigenfunctions,
is spacelike inside the horizon. The symmetry associated with it is homogeneity rather than
stationarity. This is clearly seen by the switch in these roles of the coordinates ¢t and z* inside
the BH; z* is timelike and t is spacelike, so a potential depending on z* is a time-dependent
potential which, as such, causes particle creation.

Particle production associated with anomalous scattering induced by curvature and con-
sequent deviation from a thermal distribution of the Hawking radiation was first noticed by
Corley and Jacobson [19] in a different context in the region exterior to the event horizon.
Specifically, they introduced an ad hoc modification of the two-dimensional wave equation
for the modes propagating in a BH metric which results in a nonlinear dispersion relation,
subluminal in their case, i.e. w —vk = £,/k? — ]Z—g Then they analyzed the influence of the
induced anomalous scattering on the spectrum of the particles radiated by the BH in the
region exterior to the horizon. The fact that the anomalous scattering occurs outside the
horizon is a peculiar effect of the dispersion relation they chose. In a genuine general rela-
tivity framework, like the one we use, anomalous scattering and related particle production
can occur only inside the horizon; outside the horizon, scattering is always the standard one
giving just a graybody factor with no extra particle production.

Deviation of the Hawking radiation from a thermal distribution in the context of BEC
analog BHs, where the modification of the relativistic dispersion relation is superluminal,
ie. w—vk==+,/k>+ Z—g, was first analyzed numerically by Macher and Parentani [5].

Our results are in the context of quantum field theory in curved space; as such, they
involve a strictly linear dispersion relation for which there are no superluminal or subluminal
modes. The connection to actual analog BHs is that our results should be valid for long-
wavelength phonons for which the mode equation is approximately the same as that for a
massless minimally coupled scalar field in the analog spacetime [16]. The connection of our

results to real black holes is that, in the interior (where the Killing vector is spacelike), the
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spacetime is dynamic and there is also an effective potential, this time due to the spacetime
curvature, and so nonthermal particle production should also occur.

The advantage of analog gravity is that, unlike what happens in the gravitational context,
one has direct experimental access to the region inside the horizon, and so the spectrum of
the phonons emitted there will be observable. Our results predict that this spectrum will
be completely different from the one emitted outside the horizon. In particular, it will not

be thermal.
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