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I. INTRODUCTION

Among the many spectacular celestial objects that populate our Universe, black holes

(BHs) are perhaps the most intriguing. The presence of a causal horizon prevents any direct

observation of the interior. According to theoretical studies based on general relativity,

the interior is a place where peculiar physical effects occur, which cannot be confirmed

by astronomical observations. The situation has positively changed in recent times with

the advent of so-called “analog BHs” [1, 2]. These are condensed matter systems that are

realizable in the laboratory, which mimic some of the essential features of gravitational BHs.

A typical example is a Bose-Einstein condensate (BEC) fluid (see e.g. [3]) whose flow becomes

supersonic [4–6]. The supersonic region, trapping sound waves inside it, is the analog of the

BH interior. The sonic surface where the speed of the flow equals the local speed of sound,

plays the role of the horizon. This sonic horizon however has no causal significance at all:

there is nothing to prevent one from directly observing the interior region. Indeed the first

experimental observations of the analog of Hawking radiation [7] in BECs by Steinhauer

et al. [8, 9] were made by performing simultaneous measurements of the density outside

and inside the sonic horizon. A peak was observed in the resulting in-out density-density

correlation function that was predicted in [10, 11] and which is the “smoking gun” signaling

the presence of Hawking radiation. In the same spirit, one can imagine that other processes

that are predicted to take place in the interior of a BH can be experimentally verified by

looking at appropriate analog models.

With this as motivation, in this paper we discuss the unusual features of scattering by

a potential inside the horizon of a stationary BEC analog BH and its consequences. The

calculations are done in the analog spacetime using quantum field theory in curved space

techniques. These are the same types of calculations that one would do to explore similar

effects in the interior of a real black hole.

In quantum mechanics in the presence of a potential, an incident flux is split into a

transmitted and a reflected part (see Fig.1). Reflection (R) and transmission (T ) coefficients

satisfy the unitary relation |R|2 + |T |2 = 1, which is the conservation of probability. Note

that the previous relation implies that |R|2 and |T |2 ≤ 1.

Inside the horizon of a BH both the transmitted and the “would be reflected” part of the

field are forced to propagate in the same direction, namely toward the center of the black
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FIG. 1: Illustration of a plane wave incident onto a potential from the right, which then is partially

transmitted to the left and also partially reflected back to the right of the barrier.
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FIG. 2: Illustration of a plane wave incident onto a potential from the right in the interior of a BH,

which then is partially transmitted to the left and also partially reflected; however, the reflected

portion is also moving to the left of the barrier, since in the interior the wave is forced to travel

further into the BH.

hole (see Fig. 2). The scattering is “anomalous” and R and T no longer satisfy the previous

unitary relation. Instead they satisfy |T |2 − |R|2 = 1 which implies particle creation since

|T |2 ≥ 1. Another way to think about this is that, while the outside region of a nonrotating

black hole is static, the interior can be thought of as a dynamical cosmology in which particle

creation occurs.

We shall deal with both massless and massive quantum fields. For the latter case there

is usually a mass gap, namely E ≥ m where E is the conserved (Killing) energy and m is

the mass of the particle. Inside a BH the former inequality no longer holds, and E can take

any value, even negative ones.

In Sec. II a brief review is given of the setup for BEC analog black holes. In Sec.

III particle production is investigated in the case of massless phonons with a double delta

function potential. In Sec. IV particle production is investigated for massive phonons when

the effective potential is zero and the mass term in the mode equation is approximated by

two step functions. Section V contains a discussion of our results and comparisons with

some previous work.
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II. THE SETTING

Under the hydrodynamic approximation the phase fluctuation operator φ̂ in a BEC sat-

isfies a covariant version of d‘Alembert’s wave equation (see for instance [2])

�̂ φ̂ = 0 , (2.1)

where �̂ = ∇̂µ∇̂ν is evaluated on a fictitious curved spacetime metric, called the acoustic

metric, which in our case we write as follows:

ds2 =
n

mac

[
−c2(x)dT 2 + (dx+ v0dT )2 + dy2 + dz2

]
, (2.2)

where n is the density of the condensate (here assumed to be constant), ma is the mass of a

single atom of the BEC, and c(x) is the sound speed. The flow is assumed to be stationary

and one dimensional along the x axis with the velocity ~v = −vox̂ constant and directed from

right to left.

For a typical profile used in BEC analog models c(x) becomes constant in both asymptotic

regions (x→ ±∞) so that limx→+∞ c(x) = cr and limx→−∞ c(x) = cl with cr > v0 and cl <

v0. Thus the asymptotic regions are homogeneous and the profile monotonically decreases

from right to left. The profile c(x) is chosen so that the horizon c(x) = v0 is at x = 0. In

the region x < 0, where c(x) < v0 the metric describes the interior region of the acoustic

BH while for x > 0, where c(x) > v0, the metric describes the exterior region of the

acoustic BH. We call the exterior the r region and the interior the l region. Performing

a dimensional reduction along the transverse direction and passing from the Gullstrand-

Painlevé coordinates (T, x) to the Schwarzschild-like ones (t, x∗) via the transformation

t = T −
∫
dx

v0

c(x)2 − v2
0

and x∗ =

∫
dx

c(x)

c(x)2 − v2
0

. (2.3)

the wave equation (2.1) can be reduced to

[−∂2
t + ∂2

x∗ − k2
⊥(c2 − v2

0) + Veff]φ̂(2) = 0 , (2.4)

4



FIG. 3: x∗ is plotted as a function of x in the interior and exterior regions of the BH. The values

of x where x∗ = 0 in the l and r regions are labeled as xl and xr respectively. The horizon occurs

at x = 0.

where the effective potential is given by

Veff ≡
c2 − v2

0

c

[
1

2

d2c

dx2

(
1− v2

0

c2

)
− 1

4c

(
dc

dx

)2

+
5v2

0

4c3

(
dc

dx

)2
]
. (2.5)

The coefficient k2
⊥ is related to the transverse momentum and φ̂(2) is the dimensionally

reduced field operator (see the Appendix of Ref. [12] for details). The last two terms in Eq.

(2.4), the masslike term and Veff, cause scattering of the modes. Note that both of these

terms vanish at the horizon. There the modes are effectively massless and propagate freely.

The second coordinate transformation in Eq. (2.3) maps the (0,+∞) interval in x in the r

region to (−∞,+∞) in x∗ while in l the interval (−∞, 0) in x is mapped to (+∞,−∞) in

x∗ as seen in Fig 3. According to the standard procedure of quantum field theory in curved

spacetime, the field operator φ̂(2) is expanded in terms of a complete set of basis functions

{fω, f ∗ω}, which are solutions of the classical counterpart of the operator equation (2.4) with

the result

φ̂(2) =

∫ ∞
0

dω
(
âωfω + â†ωf

∗
ω

)
. (2.6)

The creation and annihilation operators âω and â†ω satisfy the usual commutation relations.
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The modes fω are normalized using the conserved scalar product

(fω, fω′) = −i
∫
dΣµfω

←→
∂µ f

∗
ω′ [gΣ(x)]1/2 , (2.7)

with dΣµ = nµdΣ, where Σ is a Cauchy surface, nµ a future directed unit vector perpendic-

ular to Σ, and gΣ the determinant of the induced metric. Writing

fω = e±iωtχω(x∗) (2.8)

and substituting into (2.4) gives

d2χω
dx∗ 2

+
(
ω2 − k2

⊥(c2 − v2
0) + Veff

)
χω = 0 . (2.9)

In this paper we consider two toy models for the terms in Eq. (2.9) responsible for the

scattering which have the advantage of being exactly solvable while, despite their crudeness,

encoding all of the basic features of the process we wish to discuss.

III. DIRAC DELTA FUNCTION POTENTIALS

In the first toy model, the transverse excitations are neglected (i.e., k⊥ = 0), and Veff

is approximated by two Dirac delta functions, one in region r and one in region l. For

simplicity we choose them at x∗r = 0 in r and at x∗l = 0( see Fig. 3) in l leading to 1

Veff =

 Vl δ(x
∗) , x < 0 ,

Vr δ(x
∗) , x > 0 .

(3.1)

The Penrose diagram for the BH metric given in Eq. (2.2) is shown in Fig. 4, where the

modes representing our in basis are schematically indicated.

1 For typical flows discussed in the literature which mimic the experimental setup in Refs. [8, 9] the effective

potential in the interior is dominated by a negative peak. Thus, while our analytic results are valid for

arbitrary values of Vl, when plotting the results we restrict our attention to the case Vl < 0.
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FIG. 4: Penrose diagram with the in mode basis schematically illustrated in the l and r regions.

The asymptotic behaviors of these modes are

inf rI =
e−iωte−iωx

∗

√
4πω

=
e−iωv√

4πω
(3.2)

on past null infinity Ir−;

inf rH =
e−iωteiωx

∗

√
4πω

=
e−iωu√

4πω
(3.3)

on the portion of the past horizon in region r, Hr
−; and

inf lH =
eiωte−iωx

∗

√
4πω

=
eiωu√
4πω

(3.4)

on the portion of the past horizon in region l, H l
−. These are positive norm modes on Ir− or

H− which together form a Cauchy surface for the spacetime. These modes are associated
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FIG. 5: Penrose diagram illustrating the scattering of an inf rI mode in the l and r regions.

Incident

T r
I

Rr
I

FIG. 6: Illustration of a plane wave incident onto a potential from the right, which then is partially

transmitted to the left and also partially reflected back to the right of the barrier.

with annihilation operators in the expansion of the field φ̂(2) in Eq. (2.6).

In Eqs. (3.2)-(3.4), u = t − x∗ and v = t + x∗ are the Eddington-Finkelstein retarded and

advanced null coordinates, respectively. Note the + sign in the exponent of Eq. (3.4). The

conserved (Killing) energy associated with it is negative and corresponds to excitations called

“partners.” We need to find the explicit forms of the modes throughout the spacetime.
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FIG. 7: Illustration of a plane wave incident onto a negative potential from the right. As this is in

the interior of the BH both the transmitted and reflected portions of the mode are forced to travel

further into the BH.

Let us begin with the inf rI mode whose evolution is represented schematically in Fig. 5.

The incoming v mode of the form Eq. (3.2) coming from Ir− is partially transmitted (T rI )

toward the horizon as a v mode and partially reflected (Rr
I) back to infinity Ir+ as a u mode

by the delta function potential located at x∗r = 0 (see Fig. 6). The transmitted part crosses

the horizon, enters the black hole and is split by the second delta function potential, located

inside the black hole at x∗l = 0 (see Fig. 7), into a transmitted (T lI) v mode and a “reflected”

(Rl
I) u mode, with both traveling inside along the flow toward left future infinity (I l+). Thus

in the r region

inf rI =
e−iωt√

4πω

[
e−iωx

∗
+Rr

Ie
iωx∗
]
, x∗ > x∗r = 0 ,

=
e−iωt√

4πω
T rI e

−iωx∗ , x∗ < x∗r = 0 , (3.5)

and in the ` region

inf rI =
e−iωt√

4πω
T rI e

−iωx∗ , x∗ < x∗` = 0 ,

=
e−iωt√

4πω

[
T `I e

−iωx∗ +R`
Ie
iωx∗
]
, x∗ > x∗l = 0 . (3.6)

The transmission and reflection coefficients are found by matching these solutions across

the delta function potentials. In general for a potential of the form V = λδ(x∗) we require

that χ(x∗) satisfies

χ|− = χ|+ (3.7a)

χ′|+ − χ′|− = −λ χ|− , (3.7b)
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where χ|± = limx∗→0± χ and χ′ represents the derivative with respect to x∗. The results for

χrI are

T rI =
2iω
Vr

2iω
Vr
− 1

, (3.8a)

Rr
I =

1
2iω
Vr
− 1

, (3.8b)

Rl
I =

Vl
2iω

T rI , (3.8c)

T lI =

(
1− Vl

2iω

)
T rI . (3.8d)

These satisfy the relations

|Rr
I |2 + |T rI |2 = 1, (3.9a)

|T lI |2 − |Rl
I |2 + |Rr

I |2 = 1 . (3.9b)

The negative sign in front of the Rl
I term in (3.9b) comes from the fact that the reflected

modes Rl
Ie
−iωu inside the BH have a negative norm [see Eq. (2.7)].

The asymptotic form of the inf rI mode as x→ +∞ is

inf rI =
e−iωt√

4πω

[
e−iωx

∗
+Rr

Ie
iωx∗
]

(3.10a)

and

inf lI =
e−iωt√

4πω

[
T lIe

−iωx∗ +Rl
Ie
iωx∗
]

(3.10b)

for x→ −∞.

Following the same procedure for the inf rH modes coming out from the part of the past

horizon in the r region (see Fig. 8), we have

T rH =
1

1− Vr
2iω

, (3.11a)

Rr
H =

Vr
2iω

1− Vr
2iω

, (3.11b)

satisfying |Rr
H |2 + |T rH |2 = 1. Similarly, the ingoing Rr

H part gets scattered by the δ function

10



Incident

Rr
H

T r
H

FIG. 8: Illustration of a plane wave incident onto a potential from the left, which then is partially

transmitted to the right and also partially reflected back to the left of the barrier. The reflected

portion then travels into the interior of the BH where it encounters the potential in the interior.

There the “reflected” and “transmitted” portions travel away from the potential to the left; see

Fig. 9.

Incident

T l
H

Rl
H

FIG. 9: Scattering inside the horizon of the mode inf rH .

potential inside the horizon (as shown in Fig. 9) with the result

T lH =

(
1− Vl

2iω

)
Rr
H , (3.12a)

Rl
H =

Vl
2iω

Rr
H , (3.12b)

again with |T lH |2 − |Rl
H |2 + |T rH |2 = 1, leading to the asymptotic form

inf rH =
e−iωt√

4πω
T rHe

iωx∗ , (3.13a)

for x→ +∞ and

inf rH =
e−iωt√

4πω

[
Rl
He
−iωx∗ + T lHe

iωx∗
]
, (3.13b)

for x→ −∞.

Finally, for the modes inf lH coming from the part of the past horizon in region l (see Fig.

11



IncidentT̃ l
H
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FIG. 10: Scattering of the mode inf lH .

10) the effective transmission and reflection coefficients are, respectively,

T̃ lH = 1− Vl
2iω

, (3.14a)

R̃l
H =

Vl
2iω

, (3.14b)

satisfying |T̃ lH |2 − |R̃l
H |2 = 1. The asymptotic (x→ −∞ ) form of inf lH is

inf lH =
eiωt√
4πω

[
T̃ lHe

−iωx∗ + R̃l
He

iωx∗
]
. (3.15)

Having defined the in basis, the field operator φ̂(2) can be expanded as

φ̂(2) =

∫
dω
[
in
r âI(

inf rI ) + in
r âH(inf rH) + in

l âH(inf lH) + h.c.
]

(3.16)

where the â’s are the annihilation operators for the respective modes.

Alternatively one can construct another basis called the out basis formed by modes having

the asymptotic form

outf ru =
e−iωt√

4πω
eiωx

∗
=

e−iωu√
4πω

(3.17a)

for x→ +∞ and

outf lu =
eiωt√
4πω

e−iωx
∗

=
eiωu√
4πω

, (3.17b)

outf lv =
e−iωt√

4πω
e−iωx

∗
=

e−iωv√
4πω

(3.17c)

for x→ −∞. These modes are represented in the Penrose diagram in Fig.11.

Proceeding in the same manner we can construct the outf modes throughout the spacetime
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FIG. 11: Penrose diagram illustrating the modes forming the out basis.

and then obtain the following expressions of the field operator:

φ̂(2) =

∫
dω
[
out
r âu (outf ru) + out

l âu (outf lu) + out
r âv (outf rv ) + h.c.

]
(3.18)

where the outâ’s are annihilation operators. The in and out bases are related by a Bogoliubov

transformation. Looking at the asymptotic form of the in modes Eqs. (3.10a), (3.10b),

(3.13a), (3.13b) and (3.15), one can rewrite the modes on I+ as follows:

inf rI = Rr
I
outf ru + T lI

outf lv +Rl
I
outf l∗u , (3.19a)

inf rH = T rH
outf ru + T lH

outf lv +Rl
H

outf l∗u , (3.19b)

inf lH = R̃l
H

outf l∗v + T̃ lH
outf lu. (3.19c)

Note that there is no contribution to inf lH from the outf ru modes. Using the scattering S-matrix
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formalism we can write the relation between the two basis as
inf rI
inf rH
inf l∗H

 = ST


outf ru
outf lv
outf l∗u

 (3.20a)

where

ST =


Sur,vr Svl,vr Sul,vr

Sur,ur Svl,ur Sul,ur

0 Svl,ul Sul,ul

 (3.20b)

is the transpose of the scattering matrix S.

The notation used is borrowed from Ref. [13] and is quite intuitive. For example Sur,vr

indicates an incoming v mode from r leading to an outgoing u mode in r. The corresponding

Bogoliubov transformation for the annihilation operators of the two bases is
outâru
outâlv
outâl†u

 = S


inârI
inârH
inâl†H

 (3.21a)

where

S =


Sur,vr Sur,ur 0

Svl,vr Svl,ur Svl,ul

Sul,vr Sul,ur Sul,ul

 (3.21b)

For the two delta functions potential the S-matrix elements can be found by inspection of

Eqs. (3.19a) - (3.19c) resulting in

Sur,vr = Rr
I , Sur,ur = T rH , (3.22a)

Svl,vr = T lI , Svl,ur = T lH , (3.22b)

Sul,vr = Rl
I , Sul,ur = Rl

H , (3.22c)

Svl,ul = R̃l∗
H , Sul,ul = T̃ l∗H . (3.22d)
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We are interested in the numbers of outgoing particles in the various channels, namely

〈
out
r â†u

out
r âu

〉
,
〈
out
l â†v

out
l âv

〉
, and

〈
out
l â†u

out
l âu

〉
. (3.23)

To perform this calculation we have first to specify the quantum state of the φ̂(2) operator

in which the expectation values in Eq. (3.23) have to be taken. The in modes used in the

expression of the field operator φ̂(2) have a temporal part e±iωt. These are the eigenfunctions

of the Killing vector ∂
∂t

associated with the stationarity of the metric and are positive or

negative (Killing) energy modes with respect to Schwarzschild time t. The quantum state

associated with this expansion is annihilated by all the inâ operators and is called the

Boulware vacuum [14], i.e.,

inârI |B〉 = 0 ,

inârH |B〉 = 0 ,

inâlH |B〉 = 0 (3.24)

for all values of ω. This is the most “natural” quantum state one can define on the extended

manifold described by the Penrose diagram of Fig 4. Physically |B〉 describes a state in

which there are no incoming particles either from past right infinity Ir− or from the past

horizon H−. Although natural, this does not correctly describe the quantum state of the

field φ̂(2) if the BH is formed by a dynamic gravitational collapse. The collapse in fact

induces the conversion of quantum vacuum fluctuations to real on shell particles, the so-

called Hawking radiation [7]. The state which correctly describes this process, at least at

late times, is called the Unruh vacuum |U〉 [15]. The difference between the two states can

be schematically summarized as follows. For the Unruh vacuum the modes coming out from

the past horizon are chosen to be positive and negative frequency, not with respect to the

Schwarzschild time t, but with respect to Kruskal time. Thus instead of the mode inf ru and

inf lu, the modes are chosen as

fKH =
e−iωKU√

4πωK
, (3.25a)

U = ∓e
−κu

κ
(3.25b)
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where the − and + refer to the r and l regions respectively, and κ is the surface gravity of

the BH horizon, which for our metric is

κ =
1

2c

d

dx

(
c2 − v2

)∣∣∣∣
x=0

. (3.26)

The modes coming from past null infinity for the Unruh vacuum are chosen as inf rI . The

field can then be expanded in terms of a complete set of these modes:

φ̂(2) =

∫
dωK

[
(âωK fKH + â†ωK fK∗H

)
+

∫
dω
[
inârI (inf rI ) + inâr†I (inf r∗I )

]
. (3.27)

The Unruh state is therefore defined as

âωK |U〉 = 0 ,

inârI |U〉 = 0 , (3.28)

for every ω and ωK . The relation between the two sets of operators is given by the following

Bogoliubov transformations

inârH =

∫
dωk

[
αrωKωâωK + βr∗ωKωâ

†
ωK

]
,

inâlH =

∫
dωk

[
αlωKωâωK + βl∗ωKωâ

†
ωK

]
, (3.29)

where the Bogoliubov coefficients are given by (see e.g. [16])

αrωKω =
1

2πκ

√
ω

ωK
(−iωK)

iω
κ Γ

(
−iω
κ

)
,

βrωKω =
1

2πκ

√
ω

ωK
(−iωK)−

iω
κ Γ

(
iω

κ

)
,

αlωKω =
1

2πκ

√
ω

ωK
(iωK)−

iω
κ Γ

(
iω

κ

)
,

βlωKω =
1

2πκ

√
ω

ωK
(iωK)

iω
κ Γ

(
−iω
κ

)
. (3.30)

Using the Bogoliubov transformations, Eqs. (3.21a) and (3.29), we obtain

nru ≡ 〈U |
out
r â†u

out
r âu |U〉 =

∫
dωK |Sur,ur |

2
∣∣βrωKω∣∣2 , (3.31)
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nlv ≡ 〈U |
out
l â†v

out
l âv |U〉 =

∫
dωK

[
|Svl,ur |

2
∣∣βrωKω∣∣2 + S∗vl,urβ

r
ωKω

S∗vl,ulα
l∗
ωKω

+Svl,ulα
l
ωKω

Svl,urβ
r∗
ωKω

+ |Svl,ul |
2
∣∣αlωKω∣∣2] , (3.32)

nlu ≡ 〈U |
out
l â†u

out
l âu |U〉 =

∫
dωK

[
|Sul,ur |

2
∣∣αrωKω∣∣2 + S∗ul,urα

r∗
ωKω

Sul,ulβ
l
ωKω

+Sul,urα
r
ωKω

S∗ul,ulβ
l∗
ωKω

+ |Sul,ul |
∣∣βlωKω∣∣2]+ |Sul,vr |

2 . (3.33)

One can see the combined effect of the near horizon mixing (the α and β) encoded in

the Bogoliubov transformation (3.29), which engenders Hawking thermal radiation, and the

scattering caused by the potential (the S-matrix element). After some calculations we obtain

nru =
4ω2

4ω2 + V 2
R

1

e
2πω
κ − 1

, (3.34a)

nlv =
1

4ω2

∣∣∣∣Vr 2iω − Vl
2iω − Vr

− Vle
πω
κ

∣∣∣∣2 1

e
2πω
κ − 1

, (3.34b)

nlu =
1

4ω2

∣∣∣∣eπωκ VrVl
2iω + Vr

+ (2iω − Vl)
∣∣∣∣2 1

e
2πω
κ − 1

+
V 2
l

4ω2 + V 2
r

. (3.34c)

Note that we have omitted factors of δ(0) that arise from the normalization of plane waves.

If wave packets are used then such factors can be set equal to 1.

One can verify that nru+nlv = nlu. Thus the number of positive energy excitations created

equals the number of negative ones as energy conservation requires.

One notices immediately the striking difference between the emission in the exterior region

compared to that of the interior region. In the exterior region the scattering is the standard

one, nru describes, as expected, a thermal emission at the temperature TH = ~κ
2πkB

modulated

by the graybody factor 4ω2

4ω2+V 2
r

which regulates the infrared divergence associated with the

Planckian distribution. The graybody factor goes to one for ω � Vr. In the interior region

the scattering is anomalous resulting in additional particle production. The distribution of

the particles is infrared divergent - i.e, the spectrum is dominated by soft phonons - and it

is not thermal. For the model we consider both nlu and nlv decay as a power law.

The high-frequency behavior of nlu is shown in Fig. 12 for the cases −Vl = Vr/10 and

Vl = Vr = 0. The more rapid, exponential, falloff in the latter case is clearly apparent. The
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FIG. 12: Plots for ω � κ with −Vl = Vr/10 = κ/100 (blue curve, upper) and Vl = Vr = 0 (red

curve, lower). The quantity C ω nlu, where C is a scaling factor whose value is chosen for each

curve so that C ω nlu = 1 for ω = 10−1.

low-frequency behaviors of nru and nlu for various values of Vr > 0 and Vl < 0 are shown in

Fig. 13. For both low and high frequencies the qualitative behaviors of n`v for the same cases

are identical to those of nlu. In addition to the infrared divergence mentioned above, the plots

of nlu in Fig. 13 show another nontrivial feature, a peak, that arises in the quantity ωnlu. (

It also occurs for ωnlv.) The peak appears to be most pronounced when |Vl| � Vr ∼ κ/(2π).

In this regime, the position, in ω, of the peak is proportional to Vr so it moves to the right

on a plot of ωnlu versus ω as Vr increases. For Vr � κ/(2π) it disappears because it becomes

lost in the power law decay that occurs at high frequencies. In contrast, as Vr gets smaller

and moves to the left on the plot, the height of the peak decreases relative to its base. For

small values of ω the height of the base is given by the value of ωnlu in the limit that ω → 0.

If for fixed Vr, |Vl| decreases, but is still larger than Vr, then the height of the peak also

decreases. However, its location stays about the same. When Vr = |Vl| the peak no longer

exists. This can be shown analytically by looking at the derivative of ωnlv:

d(ωnlv)

dω
=

Vr
2
(
κ
(

1− e 2πω
κ

)
+ 2πωe

πω
κ

)
4κω2

(
e
πω
κ + 1

)2

=
Vr

2κe
πω
2κ

(
πω
κ
− sinh

(
πω
κ

))
2κω2

(
e
πω
κ + 1

)2 , (3.35)

which is less than zero for all ω > 0. Thus there is no peak like the one seen in Fig. 13

in the Vr < |Vl| case. The same can also be shown for n`u, but the expressions are more
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FIG. 13: Plots are shown of ωnru and ωnlu for −Vl = Vr/10 = κ/100 (blue, dashed curve),

−Vl = Vr/100 = κ/100 (green, dotted curve) and −Vl = 3Vr/200 = κ/100 (orange, solid curve).

Left: C is a scaling factor whose value is chosen for each curve so that C ω nru = 1 at the peak of

that curve. Right: C is a scaling parameter whose value is chosen for each curve so that C ω nlu = 1

at ω = 10−5. An unexpected peak in C ω nlu exists in all three cases but is only clearly visible in

two.

complicated.

This peak is also present in other, more realistic, configurations for the effective potential.

This will be shown elsewhere.

We make a final remark concerning the Boulware vacuum |B〉. This state is characterized

by being a vacuum state at infinity Ir± (no incoming and no outgoing particles for x→ +∞),

that is singular at H±. Indeed the number of particles created in the r region is

N r
u ≡ 〈B|

out
r â†u

out
r âu |B〉 = 0 . (3.36)

This is not true in the BH interior region because of the particle production that occurs

there resulting in

N l
v ≡ 〈B|

out
l â†v

out
l âv |B〉 = |Svl,ul |

2 =
∣∣∣R̃l∗

H

∣∣∣2 =
V 2
l

4ω2
(3.37)

and

N l
u ≡ 〈B|

out
l â†u

out
l âu |B〉 = |Sul,ur |

2 + |Sul,vr |
2

=
∣∣Rl

I

∣∣2 +
∣∣Rl

H

∣∣2 =
V 2
l

4ω2

[
|Rr

H |
2 + |T rH |

2] =
V 2
l

4ω2
. (3.38)
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Inside the BH, |B〉 is no longer an out vacuum state. Instead there is a net flux of particles

(of positive and negative energy) directed toward x→ −∞ with N l
v = N l

u.

IV. THE MASSIVE MODEL

The second toy model we want to investigate is the one introduced in Ref [12], where in

the field equation (2.4) Veff is neglected and the mass term k2
⊥(c2 − v2

0) is approximated as

two step functions (see Fig. 14 ):

FIG. 14: Plot from Ref. [12] of the coefficient of m2(dot-dashed curve) and the approximation to

that coefficient(solid curve). This result is based on the sound speed profile used in Refs. [11, 16].

k2
⊥(c2 − v2

0)→

 m2
rΘ(x∗ − x∗0r) , x > 0 ,

−m2
l Θ(x∗ − x∗0l) , x < 0 ,

(4.1)

with m2
r = m2 (c2

r − v2
0) and m2

l = m2 (v2
0 − c2

l ). Again cr and cl are the asymptotic values of

c(x) as x→ +∞ and x→ −∞, respectively. The − sign in front of m2
l comes from the fact

that inside the BH, c2 < v2
0. We also choose x∗0l = 0 = x∗0r for simplicity. The field equation

(2.4) simplifies to

[−∂2
t + ∂2

x∗ −m2
rΘ(x∗)]φ̂(2) = 0 , x > 0 , (4.2a)

[−∂2
t + ∂2

x∗ +m2
l Θ(x∗)]φ̂(2) = 0 , x < 0 , (4.2b)
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Incident
T r
I

Rr
I

FIG. 15: Illustration of a plane wave incident from x = +∞, which then is partially transmitted

and partially reflected back.

Since the construction of the in basis for this model has been performed in Ref. [12], here

we briefly sketch the basic features. The asymptotic form of the incoming v modes that

originate at x = +∞ is

inf rI =
1√
4πω

e−iωte−ikrx
∗

(4.3)

with kr ≡
√
ω2 −m2

r. These are massive modes and they exist only if ω > mr i.e., there is,

as usual, a mass gap.

On H− the modes are massless so

inf rH =
1√
4πω

e−iωu (4.4a)

inf lH =
1√
4πω

eiωu . (4.4b)

The forms of these modes throughout the spacetime can be found by enforcing continuity of

the spatial part χ of the modes and their derivatives at the boundaries of the step functions

with the result

inf rI =
e−iωt√

4πω

[
kr − ω
kr + ω

eikrx
∗

+ e−ikrx
∗
]
, for x→ +∞ , (4.5a)

inf rI =
e−iωt√
4πkl

√
klkr

kr + ω

[
kl − ω

2kl
eiklx

∗
+
kl + ω

2kl
e−iklx

∗
]
, for x→ −∞ , (4.5b)

where kl ≡
√
ω2 +m2

l . Note that unlike kr, kl is real for any value of ω and kl ≥ ml.

These modes can be illustrated schematically in the same way as the previous toy model of

Sec. III. The scattering of these modes in the exterior is illustrated in Fig. 15, while Fig. 16

illustrates the interior scattering.

The Rr
I part is the coefficient of the first exponential in Eq. (4.5a), while T lI and Rl

I are
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IncidentT l
I

Rl
I

FIG. 16: Illustration of a plane wave incident onto the negative step function potential from the

right. As this is in the interior of the BH both the transmitted and reflected portions of the mode

are forced to travel further into the BH.

Incident

Rr
H

T r
H

FIG. 17: Illustration of a plane wave incident onto a step function potential from the left, which

then is partially transmitted to the right and also partially reflected back to the left of the barrier.

There, the reflected portion then travels into the interior of the BH where it encounters the step

function potential where the anomalous scattering occurs. The reflected and transmitted portions

travel away from the potential to the left; see Fig. 16.

the coefficients of the first and second exponentials, respectively, in Eq. (4.5b).

For the inf rH modes one finds

inf rH =
e−iωt√
4πkr

2
√
krω

kr + ω
eikrx

∗
for x→ +∞ , (4.6a)

inf rH =
e−iωt√
4πkl

(√
kl
ω

ω − kr
kr + ω

)[
kl + ω

2kl
e−iklx

∗
+
kl − ω

2kl
eiklx

∗
]

for x→ −∞ . (4.6b)

Schematically the exterior scattering is described in Fig. 17, and the inner one is similar to

the one represented in Fig. 16.

The T rH term is the coefficient of the first exponential in Eq. (4.6a), while T lH and Rl
H are

the coefficients of the first and second exponential, respectively, in Eq. (4.6b). Note that for

ω < mr the inf rH mode coming from Hr
− is completely reflected at x∗0r. This is the boomerang

effect as seen in Ref [17].
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The final set of modes in this basis are the inf lH modes which are

inf lH =
eiωt√
4πkl

√
kl
ω

[
kl + ω

2kl
e−iklx

∗
+
kl − ω

2kl
eiklx

∗
]

for x→ −∞ . (4.7)

Schematically this is the same as seen in Fig. 16. T̃ lH is the coefficient of the first exponential

in Eq. (4.7) and R̃l
H is the coefficient of the second one.

The out basis is constructed by using a similar procedure to that described in the previous

section. Starting from the asymptotic forms of the modes

outf ru =
1√

4πkr
e−iωteikrx

∗
, (4.8a)

as x→ +∞, and

outf lu =
1√
4πkl

eiωte−iklx
∗
, (4.8b)

outf lv =
1√
4πkl

e−iωte−iklx
∗
, (4.8c)

for x → −∞. Using Eqs. (4.5a) - (4.7) we can express the in modes in terms of the out

modes as

inf rI =
kr − ω
kr + ω

outf ru +
2
√
klkr

kr + ω

[
kl + ω

2kl
outf lv +

kl − ω
2kl

outf l∗u

]
, (4.9a)

inf rH =
2
√
krω

kr + ω
outf ru +

(√
kl
ω

ω − kr
kr + ω

)[
kl + ω

2kl
outf lv +

kl − ω
2kl

outf l∗u

]
, (4.9b)

inf lH =

√
kl
ω

[
kl − ω

2kl
outf l∗v +

kl + ω

2kl
outf lu

]
. (4.9c)

Note that there is no contribution to inf lH = 0 from the outf ru modes. From these the

Bogoliubov transformations between the in and out creation and annihilation operators

can be found as in the previous section. After some calculations we obtain the following
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expressions for the number of outgoing created particles in the Unruh state:

nru =
4krω

(ω + kr)2

1

e
2πω
κ − 1

Θ(ω −mr) , (4.10a)

nlv =
1

4klω

∣∣∣∣(kl + ω)
ω − kr
ω + kr

+ (kl − ω)e
πω
κ

∣∣∣∣2 1

e
2πω
κ − 1

, (4.10b)

nlu =
1

4klω

∣∣∣∣eπωκ (kl − ω)
ω − kr
ω + kr

+ (kl + ω)

∣∣∣∣2 1

e
2πω
κ − 1

+
kr
kl

(
kl − ω
kl + ω

)2

Θ(ω −mr).(4.10c)

Note that we have omitted factors of δ(0) that arise from the normalization of plane waves.

If wave packets are used, then such factors can be set equal to 1. One can verify that

nru + nlv = nlu above the threshold ω > mr, while for 0 < ω < mr we have nlv = nlu.

We find that, unlike the exterior region, the emission inside is not thermal. Furthermore,

nlu and nlv are finite in the infrared ω → 0 limit (see also Ref. [18]). In the asymptotic

interior region x → −∞, the dispersion relation for the massive modes is ω2 − k2 = −m2
l

so there is no threshold for the conserved energy, and one can have phonons whose energy

is below ml; even a zero frequency mode with |k| = ml exists. There is a threshold in

momentum |k| > ml for the outgoing x→ −∞ particles. These features are a consequence

of the switching roles between t and x∗ inside the BH as we have discussed previously. Note,

however, that, unlike the energy, the momentum is not conserved along the trajectory of the

created particle. Finally, the energy of the (u, l) particles is negative. All of these unusual

features exist only inside the BH. The deviation from a thermal spectrum is easily seen in

Fig. 18. Note that the spectrum in the exterior is truncated for modes where ω < mR.

For completeness we can also work out the numbers of created particles in the Boulware

state |B〉:

N r
u = 0 (4.11a)

N l
u = N l

v =
(kl − ω)2

4ωkl
. (4.11b)

One can see that, just as in the massless case, |B〉 is no longer an out vacuum state in the

interior of the BH. Moreover, unlike what happens in the Unruh state, the number of created

particles diverges as ω → 0.
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FIG. 18: Plots for m = 4× 10−2. Left: Plot of nru vs ω. Note that for ω < mr, n
r
u = 0 because

no modes reach future null infinity in the r region. Thus there is a discontinuity in nru at ω = mr.

Right: Plot of nlu vs ω which shows the nonthermal nature of the interior particle number, as the

low ω behavior is shown to approach a constant and for large ω it decays as a power law. The

qualitative behavior of nlv is very similar to nlu; thus it is not shown.

V. CONCLUSIONS

We have investigated scattering in the exterior of the acoustic horizon of a BEC analog

BH and anomalous scattering or particle production in its interior in a simple model with

massless phonons and a different one for massive phonons. We have considered both the

Unruh and Boulware states. The latter is the natural vacuum state for a static star while

the former gives a good approximation in the exterior region to the late time radiation

produced by the black hole. As expected we find for the region outside the horizon that the

spectrum at infinity is thermal modulo the graybody factor for the Unruh state and there

are no particles for the Boulware state. In the massive case we find that, as expected, the

emitted thermal radiation in the exterior is gapped.

In the interior anomalous scattering produces additional particle production for both

massless and massive phonons and this destroys the thermal nature of the spectrum for

the Unruh state. At small frequencies the emission is dominated by soft phonons but only

in the massless case. At high frequencies one finds that, for the models considered, the

particle number falls off like an inverse power of the frequency rather than exponentially.

Not surprisingly particle production also occurs for the Boulware state in the interior. Thus

the Boulware state remains a vacuum state in the exterior, but can only be considered to

be an initial vacuum state in the interior.
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For massless phonons an unexpected peak was found in the quantities ωn`u and ωn`v when

they are plotted as functions of ω, with n`u and n`v the number of right-moving and left-

moving particles found at future null infinity in the interior. This peak represents a clear

deviation from a thermal spectrum. It occurs for a limited range of the factors Vr and V` in

the two delta function potential (3.1).

The presence of particle creation even for the Boulware state inside a BH can be under-

stood by the fact that the Killing vector ∂
∂t

, of which the Boulware modes are eigenfunctions,

is spacelike inside the horizon. The symmetry associated with it is homogeneity rather than

stationarity. This is clearly seen by the switch in these roles of the coordinates t and x∗ inside

the BH; x∗ is timelike and t is spacelike, so a potential depending on x∗ is a time-dependent

potential which, as such, causes particle creation.

Particle production associated with anomalous scattering induced by curvature and con-

sequent deviation from a thermal distribution of the Hawking radiation was first noticed by

Corley and Jacobson [19] in a different context in the region exterior to the event horizon.

Specifically, they introduced an ad hoc modification of the two-dimensional wave equation

for the modes propagating in a BH metric which results in a nonlinear dispersion relation,

subluminal in their case, i.e. ω− vk = ±
√
k2 − k4

k20
. Then they analyzed the influence of the

induced anomalous scattering on the spectrum of the particles radiated by the BH in the

region exterior to the horizon. The fact that the anomalous scattering occurs outside the

horizon is a peculiar effect of the dispersion relation they chose. In a genuine general rela-

tivity framework, like the one we use, anomalous scattering and related particle production

can occur only inside the horizon; outside the horizon, scattering is always the standard one

giving just a graybody factor with no extra particle production.

Deviation of the Hawking radiation from a thermal distribution in the context of BEC

analog BHs, where the modification of the relativistic dispersion relation is superluminal,

i.e. ω − vk = ±
√
k2 + k4

k20
, was first analyzed numerically by Macher and Parentani [5].

Our results are in the context of quantum field theory in curved space; as such, they

involve a strictly linear dispersion relation for which there are no superluminal or subluminal

modes. The connection to actual analog BHs is that our results should be valid for long-

wavelength phonons for which the mode equation is approximately the same as that for a

massless minimally coupled scalar field in the analog spacetime [16]. The connection of our

results to real black holes is that, in the interior (where the Killing vector is spacelike), the
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spacetime is dynamic and there is also an effective potential, this time due to the spacetime

curvature, and so nonthermal particle production should also occur.

The advantage of analog gravity is that, unlike what happens in the gravitational context,

one has direct experimental access to the region inside the horizon, and so the spectrum of

the phonons emitted there will be observable. Our results predict that this spectrum will

be completely different from the one emitted outside the horizon. In particular, it will not

be thermal.
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