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A B S T R A C T

Despite considerable interest in enhancing, preserving, and rehabilitating working memory (WM), efforts to elicit
sustained behavioral improvements have been met with limited success. Here, we paired WM training with
transcranial direct current stimulation (tDCS) to the frontoparietal network over four days. Active tDCS enhanced
WM performance by modulating interactions between frontoparietal theta oscillations and gamma activity, as
measured by pre- and post-training high-density electroencephalography (EEG). Increased phase-amplitude
coupling (PAC) between the prefrontal stimulation site and temporo-parietal gamma activity explained behav-
ioral improvements, and was most effective when gamma occurred near the prefrontal theta peak. These results
demonstrate for the first time that tDCS-linked WM training elicits lasting changes in behavior by optimizing the
oscillatory substrates of prefrontal control.
1. Introduction

Working memory (WM), the mental workspace in which information
is maintained and manipulated, is capacity-limited to ~4 items (Cowan,
2001). As the foundation of successful cognitive performance, it is un-
derstandable thatWM improvement is sought through training (Morrison
and Chein, 2011; von Bastian and Oberauer, 2014; Berryhill, 2017). Yet,
WM resists reliable, generalized improvement. Studies of cognitive
training are plagued with mixed results and report little to no transfer of
training gains (Morrison and Chein, 2011; Sala and Gobet, 2017; Nguyen
et al., 2019; Schwaighofer et al., 2015). Augmenting WM training with
noninvasive neurostimulation, such as transcranial direct current stim-
ulation (tDCS), has shown promise in enhancing behavioral outcomes
beyond training alone (Berryhill, 2017). Noninvasive neurostimulation
techniques such as tDCS modulate the resting potentials of underlying
neuronal populations (Nitsche and Paulus, 2001; Stagg and Nitsche,
2011; Nitsche et al., 2008) and are thought to facilitate neuroplasticity
(Filmer et al., 2014). Specifically, tDCS interacts with multiple neuro-
transmitters and neuromodulators (Stagg and Nitsche, 2011) and in-
creases the hemodynamic response within stimulated regions (Jones
et al., 2015; Muthalib et al., 2018). In addition to these physiological
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effects, recent research reports that tDCS also affects neural oscillations
(Luft et al., 2018; Reinhart et al., 2015), and enhances both functional
and resting state connectivity (Kunze et al., 2016; Mangia et al., 2014;
Park et al., 2013). However, the absence of a mechanistic account of
tDCS-linked performance gains remains a critical gap in knowledge.

Here, we used high-density electroencephalography (EEG) combined
with current modeling to investigate how four sessions of WM training
paired with frontoparietal tDCS improved young adults’ WM. Previous
analysis revealed that active tDCS strengthened the task-relevant fron-
toparietal network, as demonstrated by increased theta (4–8 Hz) con-
nectivity and alpha desynchronization compared to sham stimulation
(Jones et al., 2017). Indeed, our initial report is one of many linking
cognitive performance to coordinated theta activity across spatial scales
(Alekseichuk et al., 2017; Hsu et al., 2017; Polania et al., 2012; Reinhart
et al., 2017; Anguera et al., 2013; Solomon et al., 2017; Johnson et al.,
2017). In contrast, cross-frequency coupling between theta oscillations
and gamma (>30 Hz) activity permits information transfer across tem-
poral (and spatiotemporal) scales during cognitive tasks (Bonnefond
et al., 2017; Canolty and Knight, 2010; Helfrich and Knight, 2016).
Theta-gamma phase-amplitude coupling (PAC) increases with WM load
(Axmacher et al., 2010; Leszczynski et al., 2015), supports stimulus
Reno, NV, 89557, USA.
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Fig. 1. Participants completed four WM training sessions with active or sham
tDCS.
(A) WM training. Training took place over four sessions (Monday-Thursday)
following tDCS. Participants completed the pre- and post-training sessions
during high-density EEG collection without tDCS (Monday and Friday). Bold,
data analyzed.
(B) WM task. Five grayscale items appeared (200 ms) followed by a delay (1000
ms) and an old/new change detection recognition probe. Bold, data analyzed.
(C) TDCS protocol. Active anodal stimulation was applied continuously for 15
min and sham stimulation was applied for 20 s at the beginning and end of 15
min. Green, active; gray, sham.
(D) Electrical field changes following tDCS. 1.5 mA tDCS was applied with the
anode positioned at F4 (top) or P4 (bottom) and cathode at the contralateral
cheek. Anode position alternated over the 4 days of training.
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processing (Johnson et al., 2018; Daume et al., 2017), and carries in-
formation about perceptual and mnemonic representations (Heusser
et al., 2016; Watrous et al., 2015). These findings corroborate
theta-gamma PAC as a neurophysiological signature of WM.

Recent studies report changes in both theta-gamma PAC and WM
performance acutely following transcranial alternating current stimula-
tion (tACS; Hanslmayr et al., 2019). In addition to increasing the strength
of PAC in temporal regions (Reinhart and Nguyen, 2019), tACS-linked
WM benefits were shown to be maximal when gamma tACS was
applied at the peak of the theta wave (i.e., phase-dependent coding;
Alekseichuk et al., 2016). These findings suggest that both the strength
and timing of theta-gamma interactions might track WM performance
gains. Despite the central role of PAC in WM, only one study has inves-
tigated whether WM training might elicit sustained changes in PAC —

and it was conducted in children. That study reported increased PAC
between frontoparietal alpha-beta oscillations and left temporal gamma
activity (Barnes et al., 2016). There are no reports in adults of PAC and
behavioral improvement with cognitive training or tDCS.

In the present study, we hypothesized that augmenting WM training
with tDCS would shift both the strength and timing of theta-gamma PAC
and that changes in PAC would track an individual’s performance gains.
To test this hypothesis, we re-analyzed data from a double-blind, sham-
controlled, within-subjects training study in healthy young adults with
frontoparietal tDCS and pre- and post-training high-density EEG (Jones
et al., 2017). We chose to use this dataset given the documented WM and
frontoparietal theta connectivity benefits following training with active,
but not sham, tDCS. The task’s high trial count (n ¼ 432) and difficulty
further ensured both stable EEG data on the individual level and high
numbers of correct and incorrect trials, permitting investigation of in-
dividual subsequent memory (SM) effects. Here, we examined PAC be-
tween frontoparietal theta oscillations, frequency-tuned to individual
2

brain dynamics (Reinhart and Nguyen, 2019), and whole-brain gamma
activity. All PAC data were subjected to two-tiered statistical testing,
permitting dual assessment of the influence of (1) individual PAC on WM
(regardless of tDCS group), and (2) tDCS group (active, sham) on PAC. We
anticipated that active tDCS paired with WM training, beyond WM
training alone, would optimize PAC between the stimulated frontopar-
ietal network and gamma activity, enhancing WM.

2. Materials and methods

2.1. Participants

Twenty-four right-handed University of Nevada students (mean� SD,
age: 24.20� 3.81 years) participated. The sample size was justified based
on a power analysis which demonstrated that, for a correlation of 0.5
between individual PAC and WM performance (regardless of tDCS
group), a sample of 20 participants achieves 80% power (alpha ¼ 0.05,
two-tailed) (Faul et al., 2009). Participants were randomly assigned tDCS
group membership (females: active/sham: 5/6). Participants were
screened for use of neuroleptic, hypnotic, and seizure medications, and
reported no history of neurological disorders or brain injury. Data for one
participant from the active tDCS group were excluded due to excessive
noise in the pre-training EEG. The University of Nevada Institutional
Review Board approved all procedures. Participants provided informed
consent and were compensated $15/hour ($70 total).

2.2. WM training

Participants first completed a WM change detection task while high-
density EEG was recorded, prior to WM training or tDCS (pre-training
session; Fig. 1A). The same day (Monday), the EEG cap was removed, and
participants received tDCS before performing the WM task a second time
(offline stimulation). On days 2–4 (Tuesday-Thursday), participants
received tDCS and then completed the WM change detection task. During
the final session (Friday), participants completed the WM change
detection task during high-density EEG recording, but without tDCS
(post-training session).

Each WM change detection trial began with a central fixation point
(500 ms) followed by 5 grayscale pictures of common objects (200 ms)
drawn from a set of 20 items (ant, axe, carrot, chicken, corn, fence,
flower, football, eyeglasses, hammer, kettle, kite, leaf, pipe, scissors,
snake, squirrel, toothbrush, windmill, violin) presented in 5 of 9 pseu-
dorandom locations (3.5 � 3.5�; Fig. 1B). A blank delay (1000 ms) was
followed by a recognition probe. Participants made an old/new judgment
(3000-ms limit) indicating whether the probe item was encoded in the
same location (50% each; Snodgrass and Vanderwart, 1980). The
inter-trial interval was jittered between 1000 and 1500 ms. Participants
completed 432 trials per session. Trials were coded as correct (i.e., hits,
correct rejections) or incorrect (misses, false alarms).

2.3. Neurostimulation

2.3.1. TDCS protocol
Stimulation consisted of a single continuous direct current delivered

by a battery-driven stimulator (Eldith MagStim, GmbH, Ilmenau, Ger-
many). Current (1.5 mA, 15 min) was delivered through two 5 � 7 cm2

electrodes within saline-dampened sponges (Fig. 1C). Sham stimulation
included 20 s of ramping the stimulation up and down at the beginning
and end of the 15-min period to provide the physical sensation of stim-
ulation associated with current change. Participants and experimenters
were double-blinded to the tDCS condition. Participants completed a
post-tDCS questionnaire to report adverse symptoms; no participants
reported any nor indicated they were aware of the stimulation condition,
consistent with other research groups (Reinhart et al., 2017).

The anode location alternated by session between the right prefrontal
cortex (PFC; F4, International 10–20 System) and posterior parietal



Fig. 2. Theta-gamma interactions were
computed from the pre- and post-training
EEG.
A) Spectral decomposition. EEG data were
spatial-filtered and segmented into 1000-ms
delay trials (left), and then separately
filtered at peak theta (middle) and broad-
band gamma (right) frequencies. Theta
phase and gamma amplitude time series
were extracted using the Hilbert transform.
B) Peak theta detection. There was a peak in
the theta band in every participant, with no
differences in peak frequency between tDCS
groups (top). Post-training power spectra
were aligned to individual peak frequencies
for display (bottom). Green, active; gray,
sham; error bars and shading, SEM.
C) Computation of theta-gamma in-
teractions. Phase-amplitude distributions
were constructed separately from 50 correct
and 50 incorrect trials (top, left and middle;
100 iterations; 2 cycles shown for clarity).
The MI was obtained by measuring the
divergence of the observed distribution from
the uniform distribution. SM strength was
calculated by subtracting the incorrect MI
from the correct MI (here, 18.4–8.8 � 10�5

¼ 9.6 � 10�5). SM phase was calculated as
the phase of maximal difference when sub-
tracting the incorrect distribution from the
correct distribution (top, right; marked in
red). SM strength was validated by re-
computing the chance MI from the same 50
trials with amplitudes permuted (bottom;
1000 iterations). Red, real correct data; blue,
real incorrect data; white, same data with
permuted amplitudes.
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cortex (PPC; P4) in counterbalanced order (P4–F4–P4–F4 or
F4–P4–F4–P4). The cathode was placed on the contralateral cheek for
both montages (Jones et al., 2014, 2015, 2017; Jones, 2015; Elmer et al.,
2009; Jones and Berryhill, 2012; Stephens and Berryhill, 2016; Reinhart
andWoodman, 2015). We used this F4/P4 alternating approach based on
the results of a previous longitudinal WM training study in older adults
(Jones, 2015). In that study, although all three active tDCS montages
were linked to statistically significant training and transfer benefits as
compared to sham stimulation, the alternating F4/P4 montage elicited
the greatest numerical benefits. Thus, we sought to delineate the EEG
correlates of tDCS-linked WM training gains following a single neuro-
stimulation protocol that yields benefits in both younger and older adults
(Jones, 2015; Jones et al., 2017).

2.3.2. Current modeling
Current modeling was performed using the Realistic vOlumetric

Approach to Simulate Transcranial Electric Stimulation (ROAST) soft-
ware to map electrical field changes throughout the brain (Huang et al.,
2018). ROAST is an open-source MATLAB-based, automated pipeline
that applies SPM8 segmentation to the head and neck. Following seg-
mentation, typical isotropic electrical conductivities are assigned to the
tissues and electrodes, typical boundary conditions are assigned to the
surfaces, and simulation of current flow is achieved by solving the Lap-
lace equation (Reinhart et al., 2017):

r � ðσrVÞ¼ 0 (1)

where V is potential and σ is conductivity. Current modeling was con-
ducted for the two anode locations (F4, P4) on the MNI-152 standard head
(Grabner et al., 2006) and the cathode on the contralateral cheek (Fig. 1D).
3

2.4. High-density EEG

2.4.1. Data acquisition and preprocessing
EEG was recorded in DC mode at a sampling rate of 1000 Hz with a

vertex (Cz) reference from 256 high-impedance electrodes. Electrodes
were mounted in a HydroCel Geodesic Sensor Net amplified by a Net
Amps 300 amplifier and acquired using Net Station 4.5.5 software
(Electrical Geodesics Inc., Eugene, OR) running on a 2.7 GHz dual-core
Apple Power Mac G5. Electrode impedances were kept below 50 KΩ.

Raw EEG data were passed through a 0.5–100 Hz two-pass Butter-
worth infinite impulse response (IIR) bandpass filter and 60-Hz line noise
was removed using discrete Fourier transform. The outputs were manu-
ally inspected to reject channels displaying artifactual signal (e.g., from
poor contact), then down-sampled to 250 Hz and segmented into 3-s
trials (�1 to þ2 s from the onset of each sample array). Independent
components analysis (ICA) was performed on good channels to remove
artifacts (i.e., electrooculogram and microsaccadic movements, auricular
components, heartbeat, and residual cranial muscle activity; Hipp and
Siegel, 2013). Channels positioned over the face, ears, and neck were
discarded, and any rejected channels were replaced via interpolation of
the mean of the nearest neighboring channels (7.4 channels on average).
The remaining 194 channels were manually re-inspected blind to task
parameters to reject trials containing residual noise, and the surface
Laplacian spatial filter was applied to minimize volume conduction and
increase the robustness of the signal source (Cohen, 2015; Perrin et al.,
1989; He et al., 2018; Lai et al., 2018). All clean trials were analyzed;
mean correct þ incorrect, active pre-training: 293 þ 139 (SD: 16), active
post-training: 314 þ 118 (17), sham pre-training: 277 þ 156 (48), and
sham post-training: 286 þ 145 (42). Preprocessing routines were per-
formed using custom-built MATLAB (MathWorks, Natick, MA) scripts
with Fieldtrip software (Oostenveld et al., 2011).
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2.4.2. Oscillatory peak detection
The 500-ms baseline and 1000-ms delay data segments were zero-

padded to 10 s and multiplied with a Hanning taper, and power of
2–10 Hz (0.1-Hz resolution, 2-Hz bandwidth) was computed using a fast
Fourier transform approach (Helfrich et al., 2018). Power spectra were
averaged across trials. Delay power spectra were then log-transformed on
the pre-stimulus baseline to remove 1/f background activity and reveal
oscillatory components induced by the WM task. Individual corrected
power spectra were averaged across all channels and oscillatory peaks
were defined as the frequency of maximal prominence from the Gaussian
distribution (Haegens et al., 2014). We repeated this analysis using only
frontoparietal seed channels (described in Section 2.4.3) and note that
outputs did not differ between approaches (t (1,45) < 1.6).

2.4.3. Cross-frequency analysis
Phase-amplitude distributions were quantified from the 1000-ms

delay epochs per the modulation index (MI) method (Fig. 2; Tort et al.,
2010). First, the event-related potential (ERP) was subtracted from each
data segment separately for correct and incorrect trials to ensure that
input data signals were not contaminated by simultaneous voltage shifts
across frequencies or channels (Johnson et al., 2017, 2018; Aru et al.,
2015). The outputs were zero-padded to 10 s, and separately
bandpass-filtered at the individual peak theta frequency (2-Hz band-
width) and broadband gamma frequency (30–70 Hz) using two-pass
Butterworth IIR filters, ensuring a narrowband modulatory frequency
and sufficiently broadband amplitude frequency (Aru et al., 2015;
Dvorak and Fenton, 2014). Next, the phase time series were calculated
from the theta signal and the amplitude time series were calculated from
the gamma signal using the Hilbert transform. Phase time series were
calculated for the frontoparietal seed channels ipsilateral (F4, P4) and
contralateral (F3, P3) to anodal stimulation. Amplitude time series were
calculated for all channels. Using a bootstrapping approach, PAC was
computed between each phase seed time series and all amplitude time
series (Johnson et al., 2018; Barnes et al., 2016; Maris et al., 2011; van
der Meij et al., 2012; Friese et al., 2013).

To achieve stable, power-controlled estimates of PAC per individual,
we randomly selected 50 correct trials and 50 incorrect trials so that all
PAC calculations were performed on the same length of input data (Tort
et al., 2010). Notably, 50 s of data is well over the recommended mini-
mum of 10 s and approximates the MI obtained from all theta cycles
(Dvorak and Fenton, 2014). This step was repeated 100 times to sample
all correct and incorrect trials with equal power (i.e., 50 s of data, 100
iterations). For each set of 50 trials, the instantaneous phase values were
pooled and divided into 18 bins and the analytic amplitude envelope was
averaged and normalized per phase bin. Phase-amplitude distributions
were then averaged across all iterations. The MI (i.e., strength of
amplitude modulation) was calculated from the mean phase-amplitude
distribution as the Fisher’s Z-transformed Kullback-Leibler divergence:

MI¼ 1
2
ln
�
1þ DðP;QÞ
1� DðP;QÞ

�
(2)

where D (P,Q) is defined as:

DðP;QÞ¼
X

P � log
�
P
Q

�
(3)

where D is Kullback-Leibler divergence, P is the observed distribution,
and Q is the uniform distribution. We utilized the MI method because it
allows for the pooling of non-continuous data segments into one distri-
bution (Tort et al., 2010). This makes it well-suited to robustly estimate
PAC over short epochs provided one epoch contains multiple cycles of the
low-frequency oscillation (Aru et al., 2015).

Because we were interested in the neural mechanisms behind WM
success, PAC data were first indexed by SM, an approach borrowed from
the long-term memory literature (Paller and Wagner, 2002). To
4

determine SM strength, we subtracted the incorrect MI from the correct
MI (Fig. 2C, top left and middle). To determine phase coding of SM, we
subtracted the incorrect distribution from the correct distribution and
detected the phase of maximal difference (Fig. 2C, top right, marked in
red). This approach reveals the coupling strength and phase features
which precede a correct compared to incorrect behavioral response, with
positive values (i.e., correct > incorrect) reflecting successful WM
formation.

2.4.4. Validation against oscillatory power
Because differences in power at the modulatory frequency can

confound phase estimates and elicit spurious PAC (Aru et al., 2015;
Canolty et al., 2006; Cole and Voytek, 2017; Gerber et al., 2016; Jensen
et al., 2016), we first validated SM strength and phase data against theta
SM power data at each seed channel. The 500-ms baseline and 1000-ms
delay epochs were filtered at the individual peak theta frequency and the
amplitude time series were calculated using the Hilbert transform and
squared to produce power. Delay power time series were then corrected
on the pre-stimulus baseline (i.e., (delay – baseline mean)/baseline
mean) and averaged over the 1000-ms epoch to reveal task induced ac-
tivity (Jones et al., 2017). To determine SM power, we subtracted the
mean incorrect power from the mean correct power at each of the four
frontoparietal seed channels. The PAC SM strength and phase data were
averaged across the whole brain and correlated with SM power using
Spearman’s rank correlation (SM strength � SM power; Fig. S1) and
circular-linear correlation (SM phase � SM power; Fig. S2). Correlations
were thresholded at p < 0.05, uncorrected. Circular statistics were per-
formed using the CircStat toolbox (Berens, 2009).

2.4.5. Validation against permuted data
The SM strength effects were separately validated by comparison

against chance effects generated from the analysis of permuted time se-
ries (Fig. 2C, bottom). This procedure controls for any statistical regu-
larities between correct and incorrect trials in the original input data,
such as differences in band-limited theta or gamma activity, or in noise
contributing to spurious PAC (Axmacher et al., 2010; Tort et al., 2010;
Aru et al., 2015; Dvorak and Fenton, 2014; Canolty et al., 2006; Cole and
Voytek, 2017; Gerber et al., 2016; Jensen et al., 2016). For each phase
bin, the amplitudes were randomly permuted across pooled trials and the
MI was re-computed. This was repeated 10 times per iteration on the
same randomly selected 50 trials as the original data (1000 iterations
total) and then averaged across all iterations. This procedure shuffles the
timing of the amplitude envelope relative to the phase without altering
the phase time series or any other aspect of the original data, thereby
estimating the MI that would be expected solely by chance. If regularities
exist in the data which are not related to the temporal coordination be-
tween theta and gamma signals, then they will be present in the vali-
dation data.

2.4.6. Statistics
Group-level statistical analyses of SM strength and phase were per-

formed using non-parametric tests on the whole brain and corrected for
multiple comparisons using cluster-based permutation tests (Maris and
Oostenveld, 2007). Clusters were formed in space by thresholding cor-
relations (ρ) or chi-square ranks (χ2) at p < 0.05 using the maximum size
criterion. Permutation distributions were then generated by randomly
shuffling labels (i.e., per-subject WM performance or tDCS group; 1000
iterations) and corrected p-values were obtained by comparing the
observed data to the random permutation distributions. This is an
extremely powerful approach because it recreates any biases in the data
with each randomization and thus tests for effects without any assump-
tion over where they may occur.

Data were first submitted to correlation testing to analyze the rela-
tionship between individual PAC and post-training WM performance,
regardless of tDCS group (n ¼ 23). SM strength data were tested using
Spearman’s rank correlation, a non-linear measure that does not assume



Fig. 3. Theta-gamma PAC between the stimulated PFC and posterior sites
tracked WM training gains.
A) Superior performers showed greater PAC between theta at the PFC stimu-
lation site (F4, marked in white) and left-central gamma amplitudes (marked in
black) during WM formation. Cluster-corrected correlation between SM strength
(correct MI – incorrect MI) and task performance at the post-training session,
regardless of tDCS group. White circle, phase seed channel; black circles,
amplitude channels that showed significant effects.
B) The greater the SM effect, the better the performance. The relationship be-
tween SM strength and WM performance at the channels marked in (A). Green,
real active data; gray, real sham data; white, same data with permuted ampli-
tudes; red, fit.
C) Active tDCS altered SM strength at a subset of channels in (A). Cluster-
corrected between-groups test on SM strength at the post-training session,
same conventions as (A).
D) Active tDCS increased the SM effect, increasing performance (pre-post
interaction Cohen’s d ¼ 0.793). Mean SM strength by tDCS group at the pre- and
post-training sessions at the channels marked in (A). Overlapping correlation
and between-groups effects were specific to the post-training session. Green, real
active data; gray, real sham data; error bars, SEM; *, significant.
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normal distribution, and SM phase data were tested using circular-linear
correlation. The cluster-corrected correlationmasks (Figs. 3A, 4A, 5A and
6A) were used to index individual data for visualizing significant brain-
behavior relationships (Figs. 3B, 4B, 5B and 6B). Data were then sub-
mitted to independent-samples testing between groups to analyze the
effect of tDCS group on PAC (n ¼ 11 active, 12 sham). SM strength data
were analyzed using the Kruskal-Wallis test (i.e., non-parametric
ANOVA), a measure of independence between distributions, and SM
phase data were analyzed using the equivalent test for circular data
(cmtest.m). Circular statistics were performed using the CircStat toolbox
(Berens, 2009).

Interpretation was based on three criteria. First, to confirm that SM
strength effects were due to PAC rather than other statistical regularities
between correct and incorrect trials, we submitted the amplitude-
permuted validation data to the same correlation and between-groups
tests as the real data. Any observation of overlapping effects obtained
from submitting real versus amplitude-permuted data to the same sta-
tistical test would preclude interpretation of effects as being due to PAC.
The correlation masks obtained using real data (Figs. 3A and 4A) were
used to index individual amplitude-permuted data to emphasize the
difference in brain-behavior relationships observed using real data versus
those that would be expected by chance (Figs. 3B and 4B). Second, to
assess whether training with active tDCS improved task performance by
way of affecting PAC, we compared the masks obtained from correlation
testing (Figs. 3A, 4A, 5A and 6A; S3A and C; S4A and C) to those obtained
from between-groups testing (Figs. 3C, 4C, 5C and 6C; S3B and D; S4B
and D). Third, to confirm that tDCS group effects were due to training
with active versus sham tDCS and not any other regular variation that
may have existed between groups, we compared the masks obtained from
between-groups testing at the pre-versus post-training session. The post-
training correlation masks (Figs. 3A, 4A, 5A and 6A) were used to index
individual pre-training data to visualize training effects associated with
active versus sham tDCS (Figs. 3D, 4D, 5D and 6D).

Finally, we quantified tDCS-linked training changes using the Cohen’s
d measure of effect size (i.e., (active mean pre-post change – sham mean
pre-post change)/pooled pre-training SD; Morris, 2008). This analysis
indicates the size of the pre-post training � tDCS interactive effect on
PAC correlates of WM performance, controlling for pre-training vari-
ability. Together, these analysis steps yield a conservative approach to
test the hypothesis that augmenting training with tDCS optimizes
theta-gamma PAC, enhancing WM.

3. Results

3.1. TDCS-linked WM training improves WM

As previously described (Jones et al., 2017), four days of WM training
paired with frontoparietal tDCS improved WM performance (i.e., pro-
portion correct) significantly more than training alone (2 session (pre-,
post-training) � 2 group (active, sham tDCS) ANOVA, F (1,21) ¼ 4.35, p
¼ 0.049, partial ƞ2 ¼ 0.17, Greenhouse-Geisser corrected). The interac-
tion reflected the significant group difference at the post-training session
(mean � SD, active: 0.76 � 0.05, sham: 0.70 � 0.07; t (19.76) ¼ 2.07, p
¼ 0.05, equal variances not assumed), that was not present pre-training
(active: 0.70� 0.05, sham: 0.69� 0.09; t (17.19)¼ 0.29, p¼ 0.77). Only
the active tDCS group showed training-related task improvement (t (10)
¼ 3.12, p ¼ 0.01); the sham group did not improve (t (11) ¼ 0.85, p ¼
0.41). There was a main effect of session (F (1,21) ¼ 9.46, p ¼ 0.006,
partial ƞ2 ¼ 0.31, Greenhouse-Geisser corrected), but not of group (F (1,
21) ¼ 1.42, p ¼ 0.25). Behavioral effects were observed 24 h after the
final WM training þ tDCS session.

3.2. Frontoparietal tDCS reaches frontoparietal cortex

Current modeling confirmed that the neurostimulation applied dur-
ing WM training maximally affected targeted sites at alternating ends of
5

the frontoparietal network (Fig. 1D). Anodal stimulation of right PFC
(F4) altered the electrical field in right PFC and, to a lesser extent, in
frontopolar, orbitofrontal, ventral temporal, and left frontal regions.
Anodal stimulation of right PPC (P4) altered the electrical field in right
PPC and, to a lesser extent, in occipital and ventral temporal regions.
3.3. Theta-gamma interactions

To test the hypothesis that theta-gamma PAC tracked individual WM
training gains, we computed stable, power-controlled phase-amplitude
distributions per the MI method (Tort et al., 2010). We calculated
phase-amplitude distributions between individually-determined theta
phase time series at the frontoparietal seeds (tDCS sites: F4, P4; contra-
lateral homologues: F3, P3) and broadband gamma amplitude time series
at all channels (Johnson et al., 2018; Barnes et al., 2016; Maris et al.,
2011; van der Meij et al., 2012; Friese et al., 2013), and then extracted
the coupling strength and phase features preceding correct compared to
incorrect responses (Fig. 2). This resulted in four whole-brain PAC SM
profiles per participant, per session.

Individual peak theta frequency was equal across tDCS groups (pre-
training: mean � SD, active: 5.6 � 0.7 Hz, sham: 5.6 � 0.9 Hz; t (20.35)
¼ 0.05, p¼ 0.96; post-training: active: 5.7� 0.9 Hz, sham: 5.8� 0.9 Hz; t
(20.85) ¼ 0.33, p ¼ 0.75; Fig. 2B). To control for spurious effects, we



Fig. 4. Theta-gamma PAC from the contralateral PFC did not differ between
tDCS groups.
(A) Superior performers showed both greater PAC between theta at the
contralateral PFC site (F3, marked in white) and posterior gamma amplitudes
(marked in black) and less PAC within the contralateral PFC site during WM
formation. Cluster-corrected correlation between SM strength and task perfor-
mance at the post-training session, regardless of tDCS group. White circle, phase
seed channel; black circles, amplitude channels that showed significant effects.
(B) Bimodal SM effects for performance. The relationships between SM strength
and WM performance at the channels marked in (A). Lines were fit separately to
the channels exhibiting positive (left) and negative (right) brain-behavior re-
lationships. Green, real active data; gray, real sham data; white, same data with
permuted amplitudes; red, fit of real positive effect; blue, fit of real negative
effect.
(C) There were no effects of tDCS group. Cluster-corrected between-groups test
on SM strength at the post-training session, same conventions as (A).
(D) Mean SM strength by tDCS group at the pre- and post-training sessions at the
channels marked in (A), separated by the direction of the relationship as in (B).
Green, real active data; gray, real sham data; error bars, SEM.
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ruled out any statistical dependency between theta power and theta-
derived coupling strength and phase data at the frontoparietal seeds
(Axmacher et al., 2010; Tort et al., 2010; Aru et al., 2015; Canolty et al.,
2006). This analysis confirmed that theta power did not correlate with
coupling strength or phase outcomes (Figs. S1–S2; p > 0.05, uncorrec-
ted). Neither were there significant effects of tDCS group on theta power
(Jones et al., 2017).

To investigate the relationship between individual theta-gamma in-
teractions and behavior, across all subjects regardless of tDCS group,
whole-brain PAC SM data were first correlated with WM performance at
the post-training session. Only then did we test for differences between
active and sham tDCS groups. We attributed statistically significant ef-
fects to training þ tDCS when there was: (1) overlap in correlation and
between-groups effects post-training, and (2) no between-groups effect
pre-training. Pre-post training � tDCS interaction effect sizes were then
quantified by means of Cohen’s d to show the extent to which tDCS
induced changes in PAC with training, beyond training alone. The effects
were further validated against amplitude-permuted chance data to con-
trol for any differences afforded correct versus incorrect trials that were
not due to temporal coordination between theta oscillations and gamma
activity (Fig. 2C; Axmacher et al., 2010; Tort et al., 2010; Aru et al., 2015;
Canolty et al., 2006).

3.3.1. TDCS enhances coupling strength for WM at the stimulated PFC
We first tested whether coupling strength (i.e., SM strength ¼ correct

MI – incorrect MI; Fig. 2C) between theta oscillations at the PFC stimu-
lation site (F4) and whole-brain gamma activity correlated with WM
performance during the post-training session. Significant clusters in the
6

left-central topography reveal a positive relationship between SM strength
and WM performance (Fig. 3A; mean ρ ¼ 0.482, p ¼ 0.012). To visualize
this relationship, we averaged individuals’ SM strength data across sig-
nificant channels, plotted it against their behavior, and fit a line to the
data post hoc. Individuals with overall superior performance exhibited
greater PAC between PFC theta and posterior gamma on correct
compared to incorrect trials (i.e., SM strength > 0; Fig. 3B). There were
no significant brain-behavior relationships using chance data (mean ρ ¼
�0.002, p ¼ 1), confirming that these effects were due to temporal co-
ordination between theta oscillations at the stimulated PFC and posterior
gamma activity.

Testing of the same whole-brain SM strength data by tDCS group
returned multiple significant clusters showing predominant overlap in
left-central topography (Fig. 3C; mean χ2 ¼ 3.529, p ¼ 0.028; pre-post
interaction Cohen’s d ¼ 0.793). Between-groups effects mirrored the
brain-behavior relationships (Fig. 3D), revealing that training þ tDCS
increased PAC between PFC theta and posterior gamma preceding suc-
cessful behavioral responses, partially explaining behavioral training
gains in the active tDCS group. Critically, there were no overlapping
between-groups effects when tested using pre-training data (mean χ2 ¼
0.653, p ¼ 1) or chance data (mean χ2 ¼ 0.332, p ¼ 1). Thus, training
with active tDCS enhanced temporal coordination between PFC theta
oscillations and posterior gamma activity.

To further characterize the influence of WM training paired with tDCS
on PAC outside stimulated areas, we submitted the SM strength data
calculated from theta oscillations at the PFC seed contralateral to anodal
stimulation (F3) to the same analyses. Correlation testing of the post-
training data returned multiple significant positive and negative clus-
ters (Fig. 4A; positive mean ρ ¼ 0.383, p ¼ 0.006; negative mean ρ ¼
�0.376, p ¼ 0.048), revealing bimodal effects and opposite patterns of
WM success in better versus worse performers. Notably, superior per-
formance was linked to two patterns: (1) greater PAC between left PFC
theta and posterior gamma on correct compared to incorrect trials, and
(2) less theta-gamma PAC within left PFC (Fig. 4B; chance positive mean
ρ ¼ 0.004, negative mean ρ ¼ �0.015, p¼ 1). However, testing the same
data between groups returned no significant clusters (Fig. 4C–D; p ¼ 1),
suggesting that tDCS effects were restricted to theta oscillations in the
stimulated frontoparietal network.

Finally, we submitted the SM strength data calculated from theta
oscillations at the PPC seeds (P4, P3) to the same set of analyses. Cor-
relation testing of the post-training data at the PPC stimulation site
returned a negative cluster in the left-central topography (Fig. S3A; mean
ρ ¼ �0.477, p ¼ 0.002), indicating that decreased PAC was associated
with superior performance. However, there were no significant effects
between tDCS groups (Fig. S3B; p ¼ 0.584). Correlation testing of the
post-training data at the PPC site contralateral to anodal stimulation
returned a positive cluster over posterior regions (Fig. S3C; mean ρ ¼
0.359, p ¼ 0.008), but no significant between-groups effects (Fig. S3D; p
¼ 0.894). There were no significant PPC brain-behavior relationships
when tested using chance data (P4mean ρ¼�0.047, P3 mean ρ¼ 0.006,
p ¼ 1). These inconsistent PPC results isolate the beneficial effects of
tDCS on theta-gamma coupling strength to PFC.

In summary, at the post-training session, WM success was linked to
greater PAC between PFC theta oscillations and gamma activity in pos-
terior regions. In the same individuals, greater PAC within left PFC pre-
ceded WM failures, revealing a double dissociation. Behavioral training
gains were maximal when there was greater PAC between PFC theta and
posterior gamma and less PAC within left PFC during WM formation.
TDCS selectively enhanced this beneficial coupling between theta oscil-
lations in the stimulated PFC and temporo-parietal gamma activity.

3.3.2. TDCS enhances phase coding for WM at the stimulated PFC
We next examined the contribution of phase coding, the timing of

gamma activity to frontoparietal theta oscillations (i.e., SM phase ¼
phase of peak difference, correct distribution – incorrect distribution;
Fig. 2C, right), to WM performance during the post-training session. SM



Fig. 5. Theta-gamma phase coding between the stimulated PFC and distributed
sites tracked WM training gains.
A) Superior performers showed phase coding between theta at the PFC stimu-
lation site (F4, marked in white) and distributed gamma amplitudes (marked in
black) during WM formation. Cluster-corrected correlation between SM phase
(phase of peak difference, correct distribution – incorrect distribution) and task
performance at the post-training session, regardless of tDCS group. White circle,
phase seed channel; black circles, amplitude channels that showed significant
effects.
B) The closer gamma occurred to the falling flank, near the peak of the theta
wave, the better the performance. The relationship between SM phase and WM
performance at the channels marked in (A). A quadratic line was fit to the data
to show phase-dependent coding for behavior. Green, real active data; gray, real
sham data; red, fit.
C) Active tDCS adjusted phase coding at a subset of channels in (A). Cluster-
corrected between-groups test on SM phase at the post-training session, same
conventions as (A).
D) Active tDCS adjusted gamma toward the falling flank, near the peak of the
theta wave, increasing performance (pre-post interaction Cohen’s d ¼ 0.621).
Mean SM phase by tDCS group at the pre- and post-training sessions at the
channels marked in both (A) and (B) on a schematic theta wave (standard
cosine). Overlapping correlation and between-groups effects were specific to the
post-training session. Inset: histograms of the preferred phase for SM at the post-
training session. Green, real active data; gray, real sham data; *, significant.

Fig. 6. Theta-gamma phase coding from the contralateral PFC did not differ
between tDCS groups.
A) Superior performers showed phase coding between theta at the contralateral
PFC site (F3, marked in white) and widespread gamma amplitudes (marked in
black) during WM formation. Cluster-corrected correlation between SM phase
and task performance at the post-training session, regardless of tDCS group.
White circle, phase seed channel; black circles, amplitude channels that showed
significant effects.
B) SM effects for performance. The relationship between SM phase and WM
performance at the channels marked in (A). Green, real active data; dark gray,
real sham data; red, fit.
C) There were no overlapping correlation and between-groups effects. Cluster-
corrected between-groups test on SM phase at the post-training session, same
conventions as (A). There were no overlapping correlation and between-groups
effects.
D) Mean SM phase by tDCS group at the pre- and post-training sessions at the
channels marked in (A) on a schematic theta wave (standard cosine). Inset:
histograms of the preferred phase for SM at the post-training session. Green, real
active data; gray, real sham data.
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phase data were submitted to the same set of analyses as the SM strength
data, using the equivalent circular statistical tests (Berens, 2009), to
determine whether WM training þ tDCS also affected phase coding
specific to theta oscillations at the stimulated PFC.

Correlation testing of post-training SM phase at the PFC seed ipsi-
lateral to anodal stimulation (F4) returned multiple significant clusters
across a distributed topography (Fig. 5A; mean ρ ¼ 0.457, p ¼ 0.022).
During successful WM, gamma on the falling flank near the peak of the
PFC theta wave correlated with superior performance overall (Fig. 5B).
Testing the same whole-brain SM phase data by tDCS group returned
multiple significant clusters (Fig. 5C; mean χ2 ¼ 3.023, p ¼ 0.027; pre-
post interaction Cohen’s d ¼ 0.621). Between-groups effects mirrored
brain-behavior relationships in the left-central topography (Fig. 5D).
Training þ tDCS improved performance by tuning the timing of gamma
activity relative to PFC theta oscillations. Critically, the pre-training data
show no significant between-groups effects (p¼ 1). Thus, these between-
groups effects were due to training paired with active tDCS.

To further characterize the influence ofWM training paired with tDCS
on phase coding, we next examined SM phase data calculated from the
PFC seed contralateral to anodal stimulation (F3). Correlation testing of
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the post-training data returned multiple significant clusters across a
widespread topography (Fig. 6A; mean ρ ¼ 0.445, p ¼ 0.007). During
successful WM, gamma closer to the peak of the theta oscillation was
associated with superior performance overall (Fig. 6B). However, testing
the same data between groups returned no significant clusters (Fig. 6C–D;
p ¼ 0.592). This supports the interpretation that the effects of tDCS were
specific to theta oscillations in the stimulated frontoparietal network.

Finally, we examined SM phase data calculated from theta oscilla-
tions at the PPC seeds (P4, P3). Correlation testing of the post-training
data at the PPC stimulation site returned multiple significant clusters
(Fig. S4A; mean ρ ¼ 0.442, p ¼ 0.036). However, testing the same data
between groups identified no significant clusters (Fig. S4B; p ¼ 0.499).
Testing the post-training data at the contralateral PPC seed revealed no
significant correlations (Fig. S4C; p > 0.07) and sparse between-groups
effects (Fig. S4D). These null PPC results isolate the effects of tDCS on
phase-dependent coding to theta oscillations at the stimulated PFC.

In summary, at the post-training session, WM performance was
associated with phase-dependent coding of SM between PFC theta os-
cillations and widespread posterior gamma activity. Behavioral training
gains were maximal when gamma activity associated with successful
performance occurred on the falling flank near the peak of PFC theta
waves. TDCS selectively enhanced this beneficial phase coding between
theta oscillations at the stimulated PFC and temporo-parietal gamma
activity.
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4. Discussion

This study is the first to investigate the link between cross-frequency
coupling and behavioral outcomes following WM training or tDCS in
adults. We show that shifts in cross-frequency interactions between theta
oscillations in the frontoparietal network and gamma activity tracked
individual training gains. Specifically, superior performance was asso-
ciated with greater PAC between PFC theta oscillations and posterior
gamma activity and less PAC within left PFC during WM formation after
training. Inferior performance was associated with the opposite pattern,
revealing a double dissociation in the locus of theta-gamma interactions
between participants who did and did not benefit from training. We
further show that augmenting training with tDCS enhanced behavior by
optimizing both the strength and timing of theta-gamma interactions,
specifically between the stimulated PFC and temporo-parietal regions.

These findings fit proposals that PFC exerts top-down control over
representations stored in posterior cortical regions, supporting cognitive
performance (Friese et al., 2013). Indeed, neural oscillations are the
purported mechanism for PFC control over posterior regions (Helfrich
and Knight, 2016; de Vries et al., 2020); we provide critical evidence
directly linking such oscillatory mechanisms to individual behavioral
outcomes. We further demonstrate that behavioral change emerges from
shifting the oscillatory mechanisms of PFC control. We propose a novel
explanation of behavioral enhancement based on fine-tuning the oscil-
latory mechanisms of PFC control over posterior regions.

WM training gains, albeit modest at 5% improvement on the group
level, were exclusive to the active tDCS group (Jones et al., 2017). For
this reason, we evaluated this proposal by testing whether tDCS shifted
theta-gamma interactions in the direction associated with superior per-
formance. Behaviorally-relevant effects of tDCS were specific to the
modulation of gamma activity by theta oscillations at the stimulated PFC.
First, WM training þ tDCS selectively increased the strength of coupling
between theta oscillations at the stimulated PFC and temporo-parietal
gamma activity. Second, WM training þ tDCS selectively adjusted the
timing of temporo-parietal gamma activity toward the peak of theta os-
cillations at the stimulated PFC. Both phenomena were specific to the
stimulated PFC as no such patterns were observed at the contralateral
PFC. Third, PPC effects were sparse and inconsistent, isolating
behaviorally-relevant effects to PFC. We conclude that frontoparietal
tDCS optimized both the strength and timing of theta-gamma in-
teractions between the stimulated PFC and temporo-parietal regions,
explaining WM training gains.

These findings are consistent with the sole report of WM training and
PAC, which likewise indicated behavioral gains specific to left temporal
gamma activity in children (Barnes et al., 2016). Here, left PFC correlates
of WM performance illuminated gamma activity across widespread
parieto-occipital regions and were unaffected by right-hemisphere tDCS.
In contrast, anodal tDCS to the right frontoparietal network affected PAC
and phase coding between right-PFC theta oscillations and left
temporo-parietal gamma activity, enhancing performance. These
converging results show that tDCS-linkedWM training not only increases
coordination across spatial scales within the stimulated network (Jones
et al., 2017), but also across temporal scales selectively between the
stimulated network and left temporo-parietal regions. This interpretation
corroborates that of other reports based on co-occurring band-limited
theta and cross-frequency theta-gamma interactions (Reinhart and
Nguyen, 2019; Alekseichuk et al., 2016), permitting coordination across
both spatial and temporal scales in the service of WM.

Understanding the mechanisms by which paired training and neu-
rostimulation affects performance is critical for reliable, real-world ap-
plications. We provide insight regarding how a four-day training program
improved WM performance. As previously described (Jones et al., 2017),
the generalizability of our findings is limited by the sample size, and
selection of a single task and neurostimulation protocol. That said, a
sample of 20–30 healthy young adults is typical of EEG/MEG studies
using homogenous samples, e.g., (Daume et al., 2017; Heusser et al.,
8

2016; Friese et al., 2013), and the present study relied on individual
brain-behavior relationships based on hundreds of trials per participant
(Smith and Little, 2018). The present findings support the view that some
aspects of disordered behavior may be altered by adjusting neural os-
cillations (Salimpour and Anderson, 2019). Specifically, theta-gamma
PAC is reduced in the mildly cognitively impaired and further reduced
in those with Alzheimer’s disease compared to healthy other adults
(Goodman et al., 2018). A recent report indicated that restoring
theta-gamma PAC in temporal regions improved older adults’ WM
acutely following neurostimulation (Reinhart and Nguyen, 2019). We
demonstrate that augmenting training with neurostimulation can elicit
sustained changes in theta-gamma PAC, enhancing behavior. Future
research should investigate the durability of such changes across a range
of healthy and clinical populations.
4.1. Conclusion

Pairing frontoparietal tDCS with WM training improved behavior by
optimizing the oscillatory mechanisms of PFC control. TDCS optimized
the strength and timing of theta-gamma PAC between the stimulated PFC
and left temporo-parietal regions, thus linking behavioral gains to coor-
dination across spatiotemporal scales between the stimulated PFC and
left temporo-parietal regions. In short, it is possible to elicit lasting
changes in both brain and behavior by way of cognitive training. Here,
changes in theta-gamma interactions persisted for at least 24 h post-
training, consistent with the acute effects of directly entraining neural
oscillations (Hanslmayr et al., 2019; Reinhart and Nguyen, 2019). Future
studies are needed to investigate the durability of training-related
changes in PAC across a range of populations and the extent to which
these changes transfer to untrained tasks.
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