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Background: Schizophrenia and autism share many behavioral and neurological similarities, including altered
white matter tract structure. However, because schizophrenia and autism are rarely compared directly, it is
difficult to establish whether white matter abnormalities are disorder-specific or are common across these dis-
orders that share some symptomatology.

Methods: In the current study, we compared white matter water diffusion using tensor imaging in 25 adults with

TBSS autism, 15 adults with schizophrenia, all with IQ scores above 88, and 19 neurotypical adults.

Results: Although the three groups evinced no statistically significant differences in measures of fractional
anisotropy (FA), the schizophrenia group showed significantly greater mean diffusivity (MD; Cohen’s d > 0.77),
due to greater radial diffusivity (RD; Cohen’s d > 0.92), compared to both the autism and control groups. This
effect was evident across the brain rather than specific to a particular tract.

Conclusions: The greater MD and RD in schizophrenia appears to be diagnosis-specific. The altered diffusion may
reflect subtle abnormalities in myelination, which could be a potential mechanism underlying the widespread

behavioral deficits associated with schizophrenia.

1. Introduction

Schizophrenia and autism are both characterized by problems with
social and communication abilities and by sensory abnormalities (Eack
et al., 2017; Ciaramidaro et al., 2018; Mance Calisir et al., 2018; Noel
et al., 2018). Half of the individuals with autism satisfy the criteria for
schizophrenia reflecting the similarities across the two profiles (Kon-
stantareas and Hewitt, 2001; Ghaziuddin et al., 1992). The overlap in
these disorders extends to the neuropsychological profiles, which are
nearly identical when the groups are matched on IQ scores (Eack et al.,
2013). Recent research has shown that 3.6%-12.8% of individuals with
autism develop schizophrenia as adults (see review (Chisholm et al.,
2015)). Despite these similarities and overlaps, the disorders have a very
different age of onset and are further distinguished by the absence of
psychosis in autism. As a result, these two conditions have been

demarcated as separate conditions since the DSM-IL.

In addition to the behavioral similarities, brain imaging studies in
schizophrenia and autism highlight several abnormalities that are
common across the two conditions (Chisholm et al., 2015). One
meta-analysis showed reduced grey matter volume in right
limbic-striato-thalamic circuitry in both conditions (Cheung et al.,
2010), while a separate review paper reported reduced fractional
anisotropy (FA), one possible measure of white matter structure derived
from diffusion tensor imaging, indicating impairments in the white
matter structure in both conditions (Mueller et al., 2012), although in
both studies, there were more dissociations among the conditions than
similarities. A third study of functional imaging reported under-activity
in emotion-related neural circuits in both schizophrenia and autism (see
review by Sugranyes et al., 2011;Abdi and Sharma, 2004).

Most of the studies alluded to above investigated each disorder
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separately rather than directly comparing the two disorders. A few
functional imaging studies have directly compared individuals with
schizophrenia and autism and have typically found abnormal func-
tioning, for example, under-activation of fMRI responses in the social
cognitive network (Pinkham et al., 2008), but often the direction of the
abnormal functioning differs. One such study examining fMRI responses
during social situations reported increased connectivity between right
posterior superior temporal sulcus and ventral medial prefrontal cortex
in schizophrenia but decreased connectivity in autism (Ciaramidaro
et al., 2015). Another study found reduced signal to noise ratios in all
sensory modalities (visual, auditory, and somatosensory) in the schizo-
phrenia and autism groups compared to age- and gender-matched con-
trols (Haigh et al., 2016). However, the cause of the reduced SNR
differed between schizophrenia and autism: adults with schizophrenia
tended to under-respond to the sensory stimulation, whereas the adults
with autism exhibited more variable responses from one trial to the next
(intra-trial inconsistency).

Both schizophrenia and autism have long been associated with ab-
normalities in white matter tracts (as mentioned above). However, it
should be noted that, in autism, the majority of the studies showing
abnormal diffusion properties indicating weaker white matter structure
in autism were conducted in children (Cheon et al., 2011; Weinstein
et al., 2011; Billeci et al., 2012; Ameis et al., 2013; Abdel Razek et al,
2014; Cheung et al., 2009; Pryweller et al., 2014; Lazar et al., 2014;
Kirkovski et al., 2015; Noriuchi et al., 2010; Shukla et al., 2011a), with a
minority focusing on adults (Shukla et al., 2011b; Jou et al., 2015;
Gibbard et al., 2013; Roine et al., 2015; Libero et al., 2015). Of those that
did focus on adults with autism, there was no clear indication as to the
specific mechanism underlying the deficit. Some showed widespread
abnormalities (Roine et al., 2015; Libero et al., 2015), or specific deficits
in tracts such as in the forceps minor (Gibbard et al., 2013), or in
anterior thalamic radiation and cingulum (Haigh et al., 2019). Other
studies have found no significant differences in diffusion properties
between adults with autism and neurotypical individuals (Roine et al.,
2015; Libero et al., 2015), highlighting the debate as to where and how
severe white matter alterations are in autism.

On the other hand, diffusion studies in schizophrenia have been
conducted in adults, as the first episode of psychosis that diagnostically
defines the onset of schizophrenia typically occurs in late adolescence
and early adulthood. Early-onset schizophrenia that occurs during
childhood and adolescence may have a different etiology to schizo-
phrenia that occurs in adulthood (for a review, see Tamnes and Agartz,
2016). Measures of diffusion appear to be impacted even before the
first-episode (for a review see Samartzis et al., 2013), suggesting that
changes in diffusion could be a risk marker for schizophrenia. However,
there is also a disagreement as to whether atypical diffusion in those
with chronic schizophrenia is present across the brain (Asami et al.,
2014; Fujino et al., 2014; Nakamura et al., 2012; Nakamura et al., 2012;
Roalf et al., 2013; Roalf et al., 2015; Sasamoto et al., 2014; Scheel et al.,
2013) or is restricted to certain tracts (Kochunov et al., 2014; Levitt
et al., 2012; Kelly et al., 2018 (FA but not MD) Nazeri et al., 2013;
Ohtani et al., 2014; Prasad et al., 2015; Wagner et al., 2015).

A couple of studies have directly examined the structural correlates
of autism compared to schizophrenia. One study showed autism-specific
differences in grey matter volume (compared to schizophrenia) in the
insula and amygdala that correlated with symptoms (Radeloff et al.,
2014). A second study also found differences between autism and
schizophrenia in grey matter volume specific to prefrontal cortex and
anterior cingulate, and found similar reductions in fractional anisotropy
measures of white matter, particularly in the left inferior fasciculus
compared to neurotypical controls (Katz et al., 2016). A third study
found increased metabolic rate in white matter in schizophrenia but
more so in autism in a variety of regions of interest across the brain
(Mitelman et al., 2018), emphasizing abnormal white matter structures
as potential biomarkers.

One point to consider is that all of the studies of altered diffusion
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discussed above focused on fractional anisotropy (FA) which has been
suggested to reflect a variety of factors that contribute to tract structure
(Beaulieu, 2002): the higher the FA, the more intact the tract. However,
water diffusion can also be measured by mean diffusivity, which reflects
the microstructure of white matter tracts: the lower the MD, the greater
hindrance of water diffusion, indicative of more robust microstructure
(Winklewski et al., 2018). Several studies report increased MD in
chronic schizophrenia compared to neurotypical controls (Narr et al.,
2009; Lee et al., 2009; only MD Ardekani et al., 2011; Leroux et al.,
2014; Knochel et al., 2012; Spalletta et al., 2015; Spoletini et al., 2011),
whereas this result is less common in adults with autism (Gibbard et al.,
2013; Itahashi et al., 2015). In autism, there is some evidence that MD
normalizes by adulthood (for example, Kleinhans et al., 2012), sug-
gesting differences in the developmental trajectory and, thus, MD may
be a dissociable marker between adults with autism or schizophrenia.

We focused on differences in measures of diffusion, to indicate dif-
ferences in white matter tract structure, between individuals with
schizophrenia, individuals with autism, and neurotypical controls.
Specifically, we used Diffusion Tensor Imaging (DTI) to measure frac-
tional anisotropy (FA) and mean diffusivity (MD) across the brain using
Tract-Based Spatial Statistics (TBSS). We focused on adults with
schizophrenia or autism with IQ scores in the normal range, as both
conditions persist throughout their lifetime, but have different devel-
opmental trajectories — the onset of schizophrenia typically occurs in
late adolescence to early adulthood, whereas autism is generally diag-
nosed in early childhood. Therefore, we were able to match all partici-
pants on age and ensure that they were stable on their medication. We
predict that schizophrenia and autism will exhibit different abnormal-
ities in diffusion that will be specific to their diagnosis. Deficits specific
to one condition might highlight structural biomarkers that are unique
and diagnostically relevant. However, if white matter tract abnormal-
ities are common across schizophrenia and autism, then this could
highlight a possible transdiagnostic mechanism that might be related to
their shared behavioral characteristics.

2. Methods and materials
2.1. Participants

Fifteen individuals with schizophrenia (10 males; mean age 25,
range 19-33 years), 25 individuals with Autism Spectrum Disorder
(ASD) (21 males; mean age 29, range 19-42 years), and 19 neurotypical
controls were compared (14 males; mean age 26, range 21-40 years).

The individuals in the schizophrenia group were either diagnosed
with schizophrenia or schizoaffective disorder (diagnosed using the
Structured Clinical Interview for DSM-IV (First et al., 2002) and symp-
toms were measured using the Brief Psychiatric Rating Scale (BPRS;
Lukoff et al., 1986, by an expert diagnostician). Thirteen of the in-
dividuals with schizophrenia were taking antipsychotics (see Table 1 for
demographic and diagnostic information), and all had IQ above 88.
There is a potential link between larger doses of antipsychotic medica-
tion and greater reductions in white matter volume (Emsley et al., 2017)
and so, here, we conducted an exploratory correlation on the relation-
ship between medication dosage and diffusion measures.

The individuals in the autism group all met DSM-IV criteria for
autism and had IQ scores above 88. Clinical diagnosis was confirmed
with the Autism Diagnostic Observation Schedule (ADOS) (Lord et al.,
1989) and Autism Diagnostic Interview (ADI) (Le Couteur et al., 1989;
Lord et al., 1994) assessments carried out by expert clinicians at the
Center For Excellence in Autism Research at the University of Pittsburgh
(see Table 2 for demographic and diagnostic information). A study
comparing the DSM-IV and the DSM-V criteria showed that the partic-
ipants who met the criteria for autism under the DSM-IV also met the
criteria for autism under the DSM-V (Mazefsky et al., 2013). One indi-
vidual with autism was taking an antipsychotic medication, and 5 were
taking medication for depression.
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Table 1
Demographic and medication information for the individuals with autism.
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Participant Gender Age (years) ADOS ADOS comm ADOS stereotypical ADI ADI comm ADI stereotypical Full scale IQ
social social

1 M 35

2 M 20 4 3 3 11 10 6 129

3 M 21 8 4 2 21 17 6 123

4 M 23 6 4 1 21 18 8 123

5 F 19 7 5 3 27 20 6 107

6 M 41 6 4 2 24 18 10 96

7 M 19 7 3 3 22 15 5 96

8 M 20 8 5 1 27 22 5 124

9 M 33 5 3 3 26 18 12 131

10 M 27 6 2 3 20 16 7 104

11 F 31 10 6 3 15 9 6 121

12 F 31 7 2 4 10 8 6 123

13 M 44 9 4 3 24 19 5 108

14 M 32 9 4 0 18 18 9 92

15 M 36 8 2 1 20 11 3 125

16 M 39 7 4 1 21 16 8 116

17 M 24 13 6 3 10 16 3 118

18 M 22 11 5 3 20 15 3 107

19 M 30 13 5 3 20 13 3 134

20 M 30 19 13 5 121

21 M 27 9 4 3 20 17 7 100

22 M 29 6 3 1 15 12 2 116

23 M 31 7 4 2 25 9 8 117

24 M 30 10 6 2 23 17 6 128

Mean/Count F=3; 28.92 8.00 4.00 2.27 19.96 15.09 6.04 115.61

SD M=21 7.03 2.35 1.23 1.03 4.97 3.81 2.44 12.07
Table 2 bandwidth = 1860 Hz/voxel, FOV = 200 mm, and matrix size = 96 x 96.

able

Demographic and medication information for the individuals with schizo-

phrenia. BPRS=Brief Psychiatric Rating Scale; CPZ = chlorpromazine
equivalents.
Participant Gender Age BPRS Medication CPZ Full-
(years) Score (mg/day) Scale IQ
1 F 24 28 93.3 96
2 M 33 47 75.0 94
3 M 34 30 200.0 95
4 F 31 28 33.3 96
5 M 23 32 266.7 100
6 M 24 36 0.0 102
7 M 19 23 100.0 117
8 M 25 29 50.0 102
9 F 30 33 507.1 112
10 M 25 33 968.1 97
11 M 22 28 33.3 129
12 F 19 33 783.3 101
13 M 28 29 0.0 113
14 F 24 44 100.0 89
15 M 26 18 100.0 109
Mean/ F=5; 25.80 31.40 220.67 103.47
Count M=10
SD 4.59 7.22 297.33 10.61

Groups did not differ from each other on age or gender. However, the ASD group
had higher IQ than the schizophrenia group (£(32.8) =3.26, p =.003). IQ was
not collected for the control group, although all of the control participants were
students at Carnegie Mellon University. All participants gave informed consent
to take part in the 90-min study and were paid $75 for their time. The Institu-
tional Review Boards at Carnegie Mellon University (CMU) and the University of
Pittsburgh approved the experimental procedures, which were in compliance
with the safety guidelines for MRI research.

2.2. DTI data acquisition

A 3T Siemens MRI scanner at the Carnegie Mellon University Sci-
entific Imaging and Brain Research Center was used to acquire diffusion
data. A diffusion-weighted, single-shot, spin-echo, echo-planar imaging
sequence was used with TR = 5300 ms, TE =95 ms,

There were 50 2.4-mm thick slices (no slice gap) with no diffusion-
weighting (b=0s/mm?, 8 repetitions equally spaced during acquisi-
tion), and with diffusion-weighting gradients applied in 128 orthogonal
directions (b = 2000 s/mm?). The diffusion data took 24 min to acquire.
A gradient echo field map was also collected for correction of distortions
in the diffusion-weighted images. The acquisition of this field map used
an EPI sequence with TR =550 ms, TE1 =5ms, TE2 = 7.46 ms, band-
width = 300 Hz/Voxel, FOV = 230 mm, matrix size =128 x 128, and
slices were acquired in the same planes as the diffusion data.

2.3. Data processing and analysis

Diffusion-weighted data were preprocessed with a scripted pipeline
calling tools from the FMRIB Software Library (Jenkinson et al., 2012;
http://www.fmrib.ox.ac.uk/fsl). The images with no diffusion weight-
ing (b =0) were motion-corrected and averaged to serve as an initial
reference for further processing. The gradient echo field map images
were used to correct for geometric distortions in these images and in the
diffusion weighted images using the prelude and fugue tools. All images
were then corrected for motion and eddy currents using the eddy_correct
tool. The vectors specifying the diffusion-weighted gradient directions
were then rotated to compensate from head motion prior to fitting the
diffusion tensor model with the dtifit tool.

Participant movement in the scanner was calculated as a z-score of
Euclidean distance for each individual and then compared across
groups. There were no significant overall nor pairwise differences in
absolute head motion (F(2,55) =1.33, p=.273), or normalized brain
volume (F(2,55)=1.77, p=.181) across the ASD group, the schizo-
phrenia group, or the neurotypical controls. Voxelwise statistical anal-
ysis of the fractional anisotropy (FA) and mean diffusivity (MD) data
were carried out using TBSS (Tract-Based Spatial Statistics, Smith et al.,
2006), part of FSL (Smith et al., 2004), using the following approach.

First, FA images were created by fitting a tensor model to raw
diffusion data using FMRIB’s Diffusion Toolbox (FDT), and second, by
extracting the brain using the Brain Extracted Toolbox (BET; Smith,
2002). All FA data were then aligned into a common space using the
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nonlinear registration tool FNIRT (Andersson et al., 2007a, 2007b),
which uses a b-spline representation of the registration warp field
(Rueckert et al., 1999). Next, the mean FA image was created and
thinned to create a mean FA skeleton which represents the centers of all
tracts common to all participants regardless of group identity (threshold
at 0.2). Each aligned FA data was then projected onto this skeleton and
the resulting data entered voxelwise cross-subject statistics. Finally, the
randomise method was used to compare schizophrenia, ASD, and neu-
rotypical groups (Winkler et al., 2014) using 500 permutations to
compute the null distribution. Familywise corrected Threshold-Free
Cluster Enhancement p-values (TFCE; corrected by using the null dis-
tribution of the max voxelwise test statistic across the image; Smith and
Nichols, 2009) were used to identify clusters where there was a signif-
icant difference in FA between the experimental groups. MD data were
similarly registered into a common nonlinear space and projected onto
the mean FA skeleton. A random permutation testing method was used,
using the randomise tool included in FSL. The permutation test was used
to compare schizophrenia, ASD, and control groups, and the multiple
comparison corrected p-values (corrected using Threshold-Free Cluster
Enhancement) were used examine the significance of any
between-group differences.

The mean FA, MD, axial (L1 direction), and radial (averaged L2 and
L3 directions) diffusion were calculated for each participant across the
whole white matter skeleton (see Fig. 1). Results were the same when
median was used as the summary statistic. Group effects were analyzed
using one-way ANOVAs and independent-samples t-tests were used for
post-hoc comparisons.

3. Results

3.1. Comparing measures of fractional anisotropy (FA) and mean

diffusivity (MD)

We compared the schizophrenia, autism and control groups on
measures of diffusion to indicate white matter structure across the brain.
First, we focused on FA as a measure of efficient diffusion along tracts
and found that there was no statistically significant difference between
the three groups (F(2,55) = 1.47, p = .074). However, when we focused
on MD, which provides a measure of the white matter microstructure,
individuals with schizophrenia exhibited greater MD (F(2,55) = 3.29,
p=.045), compared to ASD individuals (¢(26) =3.37, p=.002), and
neurotypical controls (£(20) = 2.48, p =.022), and there was no differ-
ence between ASD and controls (t(39) =0.45, p=.658; Fig. 2). The
mean diffusivity measures were calculated using the mean of the axial
(AD) and radial (RD) diffusion directions. Therefore, to uncover the
source of the group differences, we compared groups on AD and RD, and
found that whereas individuals with schizophrenia show greater diffu-
sivity in the radial direction (F(2,55) = 4.01, p =.024; Fig. 3), there was
no group difference in the axial direction (F(2,55)=2.73, p=.074).
Despite there being no significant difference between groups on age or

Sagittal

Coronal
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gender, we included age and gender as covariates to ensure that there
were no unexpected effects on MD. There was no significant main effect
of age (F(1,52)=0.10, p=.752) or gender (F(2,52)=0.03, p=.971),
and the effect of group still held (F(2,52) = 3.12, p =.053).

Due to the smaller sample size in the schizophrenia group, two
additional analyses were conducted. First, Cohen’s d effect sizes were
calculated for all group comparisons and for FA, MD, AD, and RD
measures of diffusion (Table 3). The effects sizes for the increased MD,
AD, and RD in schizophrenia compared to autism and control groups
were by far the largest (despite the group comparisons only trending to
be statistically significant in the axial). However, the effect sizes
comparing autism to schizophrenia and control groups on FA were in the
medium range (>0.2), suggesting that there may be decreased FA in
autism, but the smaller sample sizes for the schizophrenia and control
groups may have prevented this effect from reaching significance.

Second, a subset of 15 individuals with autism and 15 control par-
ticipants who still matched the schizophrenia group on age and gender
were selected and the analyses recalculated. The results were the same.
There was no significant difference between the groups on FA (F
(2,42) =1.50, p=.235), but there was for MD (F(2420=3.43,
p=.042), and in the radial direction (F(2,42) =4.02, p =.025), with a
trend toward significance in the axial direction (F(2,42)=2.89,
p=.067).

3.2. Including measures of head motion and brain volume

Despite the fact that there were no group differences in measures of
head motion and brain volume, it is possible that these physiological
measures were indirectly related to the group differences in MD.
Therefore, we used an ANCOVA to show that when normalized brain
volume was accounted for, there was still a significant group difference
in MD (F(2,52) = 3.15, p = .051), no significant effect of brain volume (F
(1,52) =0.01, p=.916), and no significant interaction between group
and brain volume (F(2,52) = 0.34, p =.713). However, when head mo-
tion was accounted for in an ANCOVA, there was still a significant effect
of group (F(2,52) = 6.09, p=.004), but there was also a significant ef-
fect of absolute head motion on MD (F(1,52) = 47.09, p < .001). Despite
this, there was no significant interaction between group identity and
head motion (F(2,55)=1.36, p=.265). Together, this suggests that
head motion does not account for the differences in mean diffusivity
between groups (as the interaction is not significant) but does highlight
the importance of accounting for head motion in DTI analyses.

For FA, even when accounting for head motion and brain volume,
there was no significant difference between groups (head motion: F
(2,52)=2.29, p=.112; brain volume: F(2,52)=1.54, p=.225).
Therefore, there is no evidence in this sample that there are significant
differences in FA measures of white matter structure between schizo-
phrenia, autism and controls.

Fig. 1. The white matter skeleton common across all individuals with schizophrenia, autism, and neurotypical controls. The skeleton was inflated for illustration.
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Coronal

Sagittal

Schizophrenia > Controls

Schizophrenia > Autism

Coronal

Schizophrenia > Controls

Schizophrenia > Autism

Table 3

Effect sizes (Cohen’s d) comparing group differences on fractional anisotropy
(FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD).
Group comparisons are the effect size of (1) the autism group (ASD) having
increased diffusion compared to controls (HC), (2) the schizophrenia group (Sz)
having increased diffusion compared to the autism group, and (3) the schizo-
phrenia group having increased diffusion compared to controls. Negative effect

sizes denote the effect in the opposite direction. Significant comparisons are in
bold.

Group Fractional Mean Axial Radial

Comparison Anisotropy Diffusivity Diffusivity Diffusivity
(FA) (MD) (AD) (RD)

ASD > HC —0.47 —0.14 —0.21 —-0.03

Sz > ASD 0.34 0.89 0.82 0.93

Sz >HC -0.19 0.77 0.61 0.92

3.3. Correlations with symptom measures

Finally, measures of MD were correlated with symptom scores in the
schizophrenia and ASD groups separately. In the schizophrenia group,
there was no significant correlation between MD and Brief Psychotic
Rating Score (BPRS; r(13) =0.10, p =.721) but there was a significant
correlation with amount of antipsychotic medication (r(13)=-0.60,
p =.018), suggesting that those on higher dosage had reduced MD. This
appears to be primarily driven by two individuals who were on high
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Fig. 2. White matter tracts with greater mean diffu-
sivity in schizophrenia compared to controls (top row
in blue) and compared to individuals with autism
(bottom row in red), shown in sagittal, coronal, and
axial slices across the brain. Differences in TFCE-
selected clusters significant at p <.05 by permuta-
tion testing and, corrected for multiple comparisons.
Significant clusters were inflated for illustration. (For
interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of
this article.)

Axial Fig. 3. White matter tracts with greater radial diffu-

sivity in schizophrenia compared to controls (top row
in blue) and compared to individuals with autism
(bottom row in red), shown in sagittal, coronal, and
axial slices across the brain. Differences in TFCE-
selected clusters significant at p <.05 by permuta-
tion testing and, corrected for multiple comparisons.
Significant clusters were inflated for illustration. (For
interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of
this article.)

levels of medication. The higher dosage may have helped improve MD
over time, but there is no evidence here that this is the case. In the ASD
group, the only correlation that was significant was between MD and
ADOS measures of communication (r(22) =-0.48, p =.024), suggesting
that poorer communicative behaviors were associated with less MD,
which is in the opposite direction to our hypothesis. Correlations were
not significant for ADOS social or stereotypical behavior scores, or with
any ADI scores. There were no significant correlations with IQ in either
the ASD or the schizophrenia group.

4. Discussion

In this study, we investigated measures of diffusion to investigate
white matter tract structure in adults with schizophrenia and in adults
with autism compared to age- and gender-matched controls. IQ was not
measured in the controls. There were no significant group differences in
fractional anisotropy (FA) across the brain, but the adults with schizo-
phrenia did show greater mean diffusivity (MD). Specific deficits in MD
but not FA (despite normal brain volume) have been suggested to reflect
abnormal myelination (Song et al., 2005; Winklewski et al., 2018),
which could impact the efficiency of the tracts when transferring in-
formation across the brain. The abnormal diffusion was specific to
schizophrenia and was not evident in the autism group. One other study
is known to have previously focused on diffusion measures in autism and
schizophrenia and found FA reductions in autism and schizophrenia



S.M. Haigh et al.

groups compared to controls, but this reduction was specific to left
fronto-occipital inferior fasciculus (Katz et al., 2016). The current study
found reductions in MD that appear to be specific to schizophrenia.

A review of the literature reveals several studies reporting increased
MD in schizophrenia compared to controls (Narr et al., 2009; Lee et al.,
2009; only MD Ardekani et al., 2011; Leroux et al., 2014; Knochel et al.,
2012; Spalletta et al., 2015; both Spalletta et al., 2015). There were
relatively few studies reporting a MD difference in adults with autism
versus controls (Gibbard et al., 2013; Itahashi et al., 2015), perhaps
consistent with the claim that greater MD may be a specific abnormality
in schizophrenia.

Interestingly, the greater MD in schizophrenia was due to signifi-
cantly greater radial diffusivity, and slightly greater axial diffusivity.
However, when these measures were normalized to calculate FA, the
overall diffusion from the white matter tracts were unimpaired.
Increased radial diffusivity (perpendicular to the length of the tract) has
been associated with demyelination (Song et al., 2005; Winklewski
et al., 2018), although this conclusion will need to be verified with in
vivo studies as measures of radial diffusivity alone can be misleading
when inferring myelination (Wheeler-Kingshott and Cercignani, 2009;
Jones and Cercignani, 2010; see Jones et al., 2013, for a review of the
difficulties in interpreting structural properties from DTI measures).
This finding of greater radial diffusivity in schizophrenia has been re-
ported previously (Scheel et al., 2013), and evidence of demyelination
has been found in structural MRI scans focusing on myelin water frac-
tions (Flynn et al., 2003).

Impaired myelination impacts the transfer of information across the
brain (Fields, 2008), and reduced processing speed has been shown to be
related to impaired diffusion properties in schizophrenia (Wright et al.,
2015). However, both schizophrenia and autism are associated with
slower processing speeds (Eack et al., 2013), and yet the individuals
with autism in this study did not evince with the same white matter
abnormalities as schizophrenia. Furthermore, we have shown in another
study that FA is not associated with processing speed in adults with
autism (Haigh et al., 2019). Therefore, the functional impairments in
schizophrenia and autism may be differentially impacted by structural
abnormalities.

There were no significant correlations between MD and symptom
measures in autism or in schizophrenia, except in the autism group
where worse MD correlated with better scores on ADOS social
communication. However, this correlation is in the opposite direction to
what would be predicted and will need to be replicated before any
conclusions can be drawn. Future studies should correlate MD with the
same measure of social communication across both groups to gain better
insight into the functional impact of increased MD.

The lack of significant differences between groups in FA is somewhat
surprising, considering the wealth of studies showing reduced FA in both
schizophrenia and in autism compared to neurotypical individuals. This
is in direct contrast to Katz et al., 2016 who reported that both autism
and schizophrenia exhibited reduced FA that was specific to the left
fronto-occipital inferior fasciculus compared to neurotypical in-
dividuals. The current study did not show any significant FA reductions
along any part of the white matter skeleton. There is a possibility that
this lack of significant effect may have been due to smaller sample sizes
in the schizophrenia group, although the additional analyses equating
the groups on sample size resulted in the same effects of greater MD in
schizophrenia (but of course reduced statistical power). Effect sizes
showed that there was a medium effect in the direction of weaker FA in
autism compared to the neurotypical control group, but also compared
to the adults with schizophrenia. However, the effect sizes comparing
MD in schizophrenia to autism and control groups were much larger,
suggesting that weaker FA in autism may not be as fundamental to
distinguishing between schizophrenia and autism as the MD differences.

The main limitation of this study is the somewhat smaller sample size
for the schizophrenia group, relative to the other two groups. Increasing
the sample size in the schizophrenia group is, however, unlikely to alter

Neuropsychologia 135 (2019) 107233

the results: a main result was greater MD in schizophrenia compared to
autism and control groups and these comparisons had large effect sizes,
demonstrating that even with a small sample, greater MD was a signif-
icant result. A larger sample size may have generated a significant effect
of weaker FA in autism, as this comparison had a medium effect size
although we note that a group of 25 ASD participants is larger than many
of the groups in existing studies. Critically, even if this latter result did
differ with a larger group, this would not alter the concluding finding
that the main effect of MD when comparing the three groups is a
defining feature distinguishing schizophrenia from autism. One caveat is
that the ASD group had higher IQ than the schizophrenia group. This
may have impacted the groups differences in their diffusion measures of
white matter tract structure. However, there were no significant corre-
lations between IQ and MD in either group, suggesting that IQ differ-
ences would not have had a large impact on the results.

5. Conclusions

The functional impact of the differences in diffusivity in schizo-
phrenia and autism are unclear but illustrate potential endophenotypic
distinctions that may be diagnostically specific. Building a more com-
plete picture of how schizophrenia and autism are related but differ in
their neurological manifestations can help to create individualized
treatments. What is clear is that the impacted water diffusion in
schizophrenia is evident across the brain and is not located in specific
areas of the brain. Future studies investigating the behavioral impact
will help to ascertain the value of the increase in MD and RD as a
biomarker of schizophrenia.
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