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ABSTRACT: Low-dimensional solids are highly anisotropic by
nature and show promise as new quantum materials, leading to
exotic physical properties not realized in three-dimensional
materials. To discover correlations in low-dimensional systems,
studying robust crystal structures that allow for chemical tuning is
critical for optimizing materials properties. In our search for novel
quantum intermetallic materials, we discovered a new homologous
series, An+1BnX3n+1 (A = rare earth; B = transition metal; X =
tetrels; n = 1−5) which crystallizes in orthorhombic space groups
Cmmm (for odd “n”) and Cmcm (for even “n”). This series, best
characterized by the stacking of structural subunits of AlB2, AuCu3,
and BaNiSn3, represents a bulk architecture of highly correlated quantum materials. Though not a conventional “low dimensional”
material with a van der Waals gap, the lattice parameters of the members of this series have a high aspect ratio (b/a) and can
systematically be “tuned” as a function of dimensionality. This new homologous series can serve as a robust intermetallic system to
study collective phenomena in quantum materials.

■ INTRODUCTION

The study of quantum materials represents an exciting area of
condensed matter physics and solid-state chemistry.1 Quantum
materials have been of increasing interest in the past decade in
part due to the experimental discovery of topological insulators
following theoretical predictions.2−4 The field of quantum
materials can be described as a fusion of several areas that
share one important characteristic, namely, that their proper-
ties cannot be adequately approximated using classical physics
and require the invocation of quantum mechanics.5−9 During
the past five years, an area of focus has been exploiting external
stimuli, such as temperature or pressure, to tune the quantum
properties of these materials to work toward the ultimate goal
of properties “on demand”.10,11 The impact of materials
discovery has been highlighted recently in the United States
Department of Energy’s reports of Basic Research Needs for
Synthesis12 and Quantum Materials for Energy Relevant
Technology,1 driving the field to discover new quantum
materials. In this perspective, we introduce a new homologous
series with the formula Cen+1ConGe3n+1.
To advance the understanding of quantum materials and

their optical, electrical, magnetic, and transport properties in a
field lacking universal theories, one can study both related
systems and new families of compounds. A strategy is to
consider targeted structure types, such as the perovskite
structure type, to develop overarching rules to guide materials
discovery.13 The perovskite crystal structure, ABO3, one of the
most ubiquitous systems, consists of A-site cations where A

represents larger cations (commonly alkaline earth or rare
earth ions) in a 12-coordinate cuboctahedral ReO3 (or AuCu3)
environment and B-site cations typically occupied by smaller
cations (commonly transition metals) forming BO6 octahedra.
The oxygen sites can also be replaced with main group anions,
denoted as X. The list of ABX3 compounds is extensive,
adopted by various permutations of A, B, and X site
elements.14,15 This chemical robustness has led to the
exploration of an incredible breadth of quantum phenomena,
including superconductivity,16 colossal magnetoresistance,17

and topological insulators.18−20 Experimentalists have found
many ways to expand the simple perovskite structure to build
double,21,22 triple,23 and higher-order perovskites24,25 which
have allowed the investigation of complex interplay between d
and f electrons.26,27

Building upon the perovskite structure-type, the Ruddles-
den−Popper (RP) series is an intergrowth of rock-salt
structural units between perovskite slabs.28,29 The RP family
of materials form a homologous series described by the general
formula An+1BnO3n+1, where “n” is an integer that describes the
number of rock-salt intergrowths between perovskite slabs. RP
phases have been demonstrated to be exfoliated, highlighting
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the potential to the tuning of layer dimensions (n).30 An
example of the RP series is Srn+1IrnO3n+1, where increasing the
number of rock salt layers leads to a Mott insulating state from
correlated metallic states.31

The intermetallic Remeika phases of the Yb3Rh4Sn13-type
have been described as a triple perovskite with “covalent−
ionic” interactions.32 The crystal structure consists of Sn-
centered icosahedra and Yb-centered cuboctahedra occupying
the A site, Rh trigonal prisms on the B site, and X occupied by
Sn. Early work on isostructural Ce3Co4Sn13 shows complicated
semiconducting-like behavior33 and charge density waves in a
three-dimensional structure-type. More recently, several
compounds adopting the structure type34 have been shown
to exhibit quantum phase transitions and superconductivity
emerging from the semiconducting state.35,36 For example,
Yb3Ir4Ge13 was demonstrated to be a system to study strong
correlation physics in a semimetallic environment.36 The
stannide members are adopted by early lanthanides; however,
germanides can be adopted by smaller lanthanides. While
determining the stability of Ce cuboctahedral germanides, we
discovered a new homologous series.

■ An+1BnX3n+1, AN INTERMETALLIC HOMOLOGOUS
SERIES

Herein, we present a newly realized homologous series
following the general formula An+1BnX3n+1 (A = rare earth; B

= transition metal; X = tetrels; n = 1−5), as shown in Figure 1.
The formula of this new series is reminiscent of the
Ruddlesden−Popper series An+1BnO3n+1;

28,29 however, the
structures are not related. This new intermetallic series, with
representative members summarized in Table 1, is comprised

Figure 1. Representative members of the An+1BnX3n+1 series (n = 1−5), where A is orange, B is green, and X is blue/gray.

Table 1. Summary of Representative An+1BnX3n+1 Series Members

n = 1 n = 2a n = 3a n = 4 n = 5

prototype compound CeCo0.89(3)Ge2 (or Ce2CoGe4)
37 La3Co2Sn7

38 Eu4Ni3Sn10
39 Ce5Co4Ge13

40 Ce6Co5Ge16
41

no. of unique crystallographic A sites 1 2 2 3 3
space group Cmcm Cmmm Cmcm Cmmm Cmcm
b (Å) 16.74(1) 27.60(5) 38.431(8) 45.175(9) 55.441(11)

aCe−Co−Ge analogues have not been reported for these members; therefore, we present the original crystal structures type.

Figure 2. b cell dimension as a function of each member of the series
An+1BnX3n+1. Red circles indicate the b lattice parameter, blue squares
indicate the b/a ratio, and gray circles and squares represent the
theoretical lattice parameter and b/a ratio of possible n = 6 and n = 7
members. The line is a guide for the eye. The a and c parameters are
on the order of 4.07 Å−4.33 Å for each member of the series.
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of orthorhombic structures alternating between Cmcm (odd
“n” members) and Cmmm (even “n” members) space groups
with similar a and c lattice parameters with increasing b axis
dimensions, as shown in Figure 2.
In our recent work on n = 2 (Pr3Co2+xGe7 and

Ln3Co2+xGe7−ySny (Ln = Pr, Nd, Sm))42 and n = 5
(Ce6Co5Ge16),

41 we noted stacking of common structural
prototypes present in the An+1BnX3n+1 series, including AlB2,
AuCu3, and BaNiSn3 (structures shown in Figure 3). Figure 4
highlights the AlB2 subunit which is present in each member of
the series. Each member’s structure can be thought of as an
“atomically scaled” heterostructure of stacked subunits
allowing for the study of the interplay of subunit interactions.
Figure 5 shows the stacking of substructural units throughout
the series. The incorporation of these subunits is fascinating
given the discovery of rich magnetic and electrical properties of
compounds adopting such structure types. For example, the

first Ce-based magnetically mediated superconductor is CeIn3
of the AuCu3 structure-type, where superconductivity is
achieved upon the application of pressure.43 CeIn3 is also a
subunit in the homologous series CenMIn3n+2 (n = 1, 2, ∞; M
= Co, Rh, Ir), where the growth of single crystalline Co, Rh,
and Ir analogues44 allowed for the realization of magnetically
mediated superconductivity, such as in CeIn3,

43 and the
quantum criticality of CeMIn5 (M = Co, Rh, Ir).45 Addition-
ally, the pressure-induced superconductor, CeCoGe3, adopts
the noncentrosymmetric BaNiSn3 structure type,46 another
substructure in this new homologous series. These subunits are
a host to exotic properties, and by stacking them in a larger
“heterostructure”, we can study the emergent phenomena.

■ LOOKING FORWARD
Over the last 10 years, the subject of crystal growth has been
prominently featured in the discovery of new classes of
quantum materials. While our group and others have fruitfully
taken advantage of flux growth of intermetallic systems, we
have strived to strategically select elements that yield the
greatest potential for desired properties.13,47,48 Due to the
similarity of the compositions of each member of the
homologous series, the synthesis of homogeneous single
crystalline phases has been a challenge. Single crystal and
powder X-ray diffraction have been critical in determining the
identity of the phase(s) and bulk purity for each synthesis
attempt and orienting single crystals for physical property
measurements. As we reflect on all the ways crystal growth has
impacted and advanced new discoveries, the selection of robust
crystal structures is critical for optimizing materials properties.
This new homologous series can serve as a robust intermetallic
system to study competing magnetic interactions of itinerant
electrons leading to potentially rich complex behavior. The
determination of Ce hybridization with conduction electrons

Figure 3. Local environment of the A atom in the hexagonal AlB2
(A), cubic AuCu3 (B), and tetragonal BaNiSn3 (C) substructural units
that make up the An+1BnX3n+1 series.

Figure 4. AlB2-type subunit (highlighted in blue) in each member of the An+1BnX3n+1 series. Each structure contains two AlB2 subunits (the odd
members have a full AlB2 subunit in the center of the unit cell and one half of the AlB2 subunit at both the top and the bottom of the unit cell).
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in the Cen+1ConX3n+1 (X = Ge or Sn) series can lead to the
systematic study of the coupling of Ce f-electrons and
conduction electrons, therefore, allowing the systematic
investigation of collective phenomena in quantum materials.
The strength of our research effort is in the discovery of novel
magnetic and electronic properties in low-dimensional
materials which has led to the pursuit of hierarchical materials
with specific substructures.48 Here, we have shown that the
strategy lies in targeting robust structure types followed by
chemical tuning to study the interplay of electronic and
magnetic correlations.1,10,12,49

Low-dimensional solids are highly anisotropic by nature and
show promise in new quantum materials leading to exotic
physical properties not realized in three-dimensional materials.
We have the opportunity to extend our synthetic strategy of
the flux-growth method by designing single crystalline low-
dimensional materials in bulk. It is important to consider that
the discovery of new layered intergrowth compounds may be
possible by using structural subunits as building blocks. We are
left with the question, “Can a new homologous series lead to
exotic properties that can be tuned solely by chemical
substitution of structural subunits?” We envision work on
this new homologous series to inspire the “artificial stacking” of
new quantum materials.
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