ORGANOMETALLICS

Article

Solid-State ⁴⁵Sc NMR Studies of Cp*₂Sc-OR (R = CMe₂CF₃, CMe(CF₃)₂, C(CF₃)₃, SiPh₃) and Relationship to the Structure of Cp*₂Sc-Sites Supported on Partially Dehydroxylated Silica

Damien B. Culver,[‡] Winn Huynh,[‡] Hosein Tafazolian, and Matthew P. Conley*

Cite This: Organometallics 2020, 39, 1112–1122			Read Online	1	
ACCESS	III Metrics & More		Article Recommendations		s Supporting Information

ABSTRACT: Cp*₂Sc–OR (R = CMe₂CF₃, CMe(CF₃)₂, C(CF₃)₃, SiPh₃) was synthesized to determine how the alkoxide affects the quadrupole coupling (C_Q) obtained from solid-state ⁴⁵Sc{¹H} NMR spectroscopy. These alkoxides are characterized by large (>29 MHz) C_Q values, which are similar to C_Q values obtained for Cp*₂Sc–R (R = Me, Et, Ph) and Cp*₂Sc–X (X = F, Cl, Br, I) but significantly larger than C_Q values obtained for Cp*₂ScX(THF). The NMR properties from these alkoxides were used to understand the NMR properties of Cp*₂Sc-supported on silica partially dehydroxylated at 700 °C. This material contains two species from the solid-state ⁴⁵Sc{¹H} NMR spectra assigned to Cp*₂ScOSi≡ (**5a**) and Cp*₂Sc(OSi≡)O(SiO_x)₂ (**5b**). The solid-state ⁴⁵Sc{¹H} NMR spectrum of **5a** is considerably broader than **5b**, which relates to the magnitude of the quadrupolar coupling (C_Q) in these two different sites. Density functional theory (DFT) optimized structures of Cp*₂Sc–OR and small cluster approximations of **5a** and **5b** follow similar trends as the experimental C_Q values for

this family of organoscandium complexes. Analysis of the origin of C_Q using DFT methods shows that σ - and π -bonding orbitals from the Sc–O bond in Cp*₂Sc–OR and **5a** are major contributors to C_Q , whereas different orbitals contribute to C_Q in **5b**. These studies show that quadrupolar solid-state NMR spectroscopy can distinguish between surface sites on partially dehydroxylated silica.

INTRODUCTION

Many of the largest scale catalytic reactions in industry use heterogeneous catalysts. These catalysts are usually thought to contain organometallic intermediates, either on a metal or an oxide surface.¹ Understanding these catalysts at a molecular level is challenging because these complex materials often have very low active site loadings, which complicates analysis of spectroscopic data when attempting to determine active site structure. For these reasons, introducing molecular precision on oxides surfaces is a long-term interdisciplinary challenge. One of the most familiar ways to address this challenge is to incorporate organometallic complexes onto a partially dehydroxylated support, Scheme 1.^{2–9}

The proton transfer reaction in Scheme 1 results in formation of alkane and a well-defined supported organometallic that can form a covalent $M-O_x$ (O_x = surface oxygen)

Scheme 1. Reaction of Generic Organometallic with Oxide Surface To Form Either $M-O_x$ or M--- O_x Ion Pairs

or an electrophilic M---O_x ion pair. The nature of the support controls the formation of $M-O_x$ or $M--O_x$ ion pairs. Neutral supports (SiO₂, Al₂O₃) used in this reaction tend to form $M-O_x$. More Bronsted acidic supports, such as zeolites or sulfated oxides, usually form $M--O_x$ ion pairs.¹⁰⁻²¹

The most common method to determine structure in welldefined organometallics supported on oxides is solid-state NMR spectroscopy.^{22,23} Magic angle spinning (MAS) is now a common technique, and moderate spinning speeds (~10 kHz) are sufficient to suppress some of the anisotropic interactions in the solid state that can complicate analysis of NMR spectra. At these spinning speeds, the spectra of typical spin 1/2 nuclei (³¹P, ¹³C, ²⁹Si, etc) usually show isotropic chemical shift values that can be interpreted in similar ways to signals obtained from solution NMR spectra.

A few representative examples showing how analysis of isotropic NMR chemical shift can give information about the structure of surface species are shown in Figure 1. The isotropic ²⁹Si NMR chemical shift is sensitive to the nature of

Special Issue: Organometallic Chemistry at Various Length Scales

Received: December 11, 2019 Published: February 26, 2020

Figure 1. Representative examples of well-defined surface species that show pronounced differences in the isotropic ²⁹Si chemical shift (a,b) or ¹³C chemical shift (c, d).

the substituents connected to silicon.²⁴ Alkylsilanes have ²⁹Si NMR chemical shifts at ~0 ppm, while silvlium ions (R_3Si^+) paired to weakly coordinating anions have chemical shifts between \sim 90 and 140 ppm.^{25–27} This trend also applies to organosilanes supported on oxides. Alkylsilanes react with silica to form ≡SiO-SiR₃ (Figure 1a).²⁸ The ²⁹Si crosspolarization magic angle spinning (CPMAS) NMR spectrum of \equiv SiO-SiR₃ contains signals at ~14 ppm.²⁹⁻³¹ This chemical shift is close to the ²⁹Si NMR chemical shift of silvlethers in solution, and is consistent with formation of \equiv SiO-SiR₃, and the observation that weakly acidic supports do not form ion pairs. Sulfated zirconium oxide reacts with allyltriispropylsilane to form [ⁱPr₃Si][SZO] ion pairs (Figure 1b).³² The ²⁹Si CPMAS NMR spectrum of [ⁱPr₃Si][SZO] contains a major signal at 53 ppm, which is ~10 ppm downfield from the ²⁹Si NMR chemical shift of ⁱPrSiOTf and is consistent with the formation of a surface ion pair. Recent reports of ⁱPr₃Si-sites supported on silica surfaces containing weakly coordinating anions contained a ²⁹Si NMR signal at 70 ppm, to date the most deshielded ²⁹Si NMR signal for a R₃Sisite supported on an oxide.³³

Similar conclusions are supported by analysis of ¹³C NMR chemical shifts. \equiv SiO-ZrCp*(Me)₂, shown in Figure 1c, contains a signal at 39 ppm for the Zr-Me.³⁴ Cp*ZrMe₃ supported on sulfated alumina forms [Cp*ZrMe₂][oxide] ion pairs (Figure 1d), which is supported by a downfield shift of the Zr-Me signal (δ = 49) and extended X-ray adsorption fine structure (EXAFS) studies.²¹

Though solid-sate NMR is an indispensable technique in studies of surface species, there are certain ambiguities that cannot be resolved using this method. For example, Ta(= CH^tBu)(CH₂^tBu)₃ supported on silica partially dehydroxylated at 700 °C (SiO₂₋₇₀₀) forms \equiv SiO-Ta(=CH^tBu)(CH₂^tBu)₂) results supported by extensive solid-state NMR studies.³⁵ However, EXAFS analysis showed that a significant fraction of \equiv SiO-Ta(=CH^tBu)(CH₂^tBu)₂ also contains a siloxane bridge ligand, Figure 2a. Several early transition metal or lanthanide complexes supported on silica show similar behavior³⁶⁻³⁹ and in NMR data of spin 1/2 nuclei usually

Figure 2. Two products of the reaction between partially dehydroxylated silica and $Ta(=CH^{t}Bu)(CH_{2}^{t}Bu)_{3}$; \equiv SiO- $Ta(=CH^{t}Bu)(CH_{2}^{t}Bu)_{2}$ shown on the left and \equiv SiO- $Ta(=CH^{t}Bu)(CH_{2}^{t}Bu)_{2}(O(SiO_{x})_{2})$ is shown on the right in (a). The reaction of partially dehydroxylated silica and Cp*₂ScMe, the objective of this study (b).

cannot distinguish between the presence or absence of a siloxane bridge ligand. 40

This paper describes the reaction of $Cp_{2}^{*}ScMe$, a monomeric $C_{2\nu}$ bent metallocene,⁴¹ with partially dehydroxylated silica (Figure 2b), and the application of solid-state ⁴⁵Sc{¹H} NMR spectroscopy to determine the structures of surface sites. Scandium has one NMR active nucleus (⁴⁵Sc, I =7/2, $\gamma = 6.5081 \times 10^{7}$ rad T⁻¹ s⁻¹, 100% abundant) and is quadrupolar. Quadrupolar solid-state NMR of solids is a powerful technique to obtain information about structure⁴² and is also useful in studying supported organometallics.⁴³⁻⁴⁷ Given these characteristics, ⁴⁵Sc NMR may be able to distinguish between products that coordinate to siloxane bridges and those that do not coordinate to siloxane bridges.

Quadrupolar nuclei contain nonspherically symmetric distributions of positive charge. From a practical perspective, this is most commonly manifested as broad signals in solution NMR spectra. In solution, molecules tumble, which averages NMR interactions that depend on the orientation of the nuclear spins with respect to the external magnetic field (\mathbf{B}_0) . This is not the case in the solid-state, and spatially dependent NMR interactions can often be measured directly, provided that dynamics are slow on the NMR time scale. In quadrupolar nuclei, the dominant spatially dependent NMR interaction is between the electric field gradient (EFG) tensor and the quadrupole moment of the nucleus. The EFG is a traceless second-rank tensor (V, eq 1). The three principal components of the EFG tensor are ordered $|V_{33}| \ge |V_{22}| \ge |V_{11}|$. The quadrupolar coupling constant (C_Q) describes the magnitude of V_{33} , eq 2, where e = fundamental charge; Q = nuclear quadrupole moment; h = Planck's constant. Experimental C_Q can be extracted from solid-state NMR data. The magnitude of C_0 is usually much larger than typical MAS speeds (~10 kHz), which can complicate analysis of NMR spectra under MAS unless very fast spinning speeds are accessible (>50 kHz). Acquisition of static NMR spectra using low RF fields in combination with frequency steps,48 or pulse sequences containing echo-trains,⁴⁹ results in powder patterns whose properties can be simulated using commercially available software to extract C_Q from experimental data:

$$\mathbf{V} = \begin{vmatrix} V_{11} & 0 & 0 \\ 0 & V_{22} & 0 \\ 0 & 0 & V_{33} \end{vmatrix}$$
(1)

$$C_{\rm Q} = \frac{e \ Q v_{33}}{h} \tag{2}$$

 C_Q is sensitive to symmetry, perturbations of core orbitals, and population of valence bonding orbitals. 42,50,51 A summary of C_Q values for available Cp*_2Sc-complexes is shown in Figure 3. The base-free Cp*_2Sc-X (X = F, Cl, Br, I) and

Figure 3. Summary of available C_Q values for Cp*₂Sc-complexes.

Cp*₂Sc–R (R = Me, Et, Ph) are characterized by relatively large C_Q values >27 MHz. These values are larger than scandium complexes that have higher symmetry than these metallocenes⁵² or crystalline porous materials⁵³ but smaller than the C₃ Sc[N(SiMe₃)]₃ amide (C_Q = 66.2 MHz).⁵⁴ Figure 3 shows how subtle changes in the Cp*₂Sc-structure affect C_Q. For example, Cp*₂Sc–Me has a larger C_Q than Cp*₂Sc–Et because the latter contains a β -agostic structure (Figure 3).⁵⁵ More dramatic differences in C_Q were observed in studies of Cp*₂Sc–X and Cp*₂ScX(THF) (X = F, Cl, Br, I). The basefree halides have much larger C_Q values than the THF adducts.⁵⁶ Density functional theory (DFT) studies of these compounds showed that the smaller C_Q values for the THF adducts are due to the higher symmetry at Sc, which results in some degree of π -bonding from the halide to scandium.

The solid-state ⁴⁵Sc{¹H} NMR data shown in Figure 3 is a rough empirical aid for the interpretation of ⁴⁵Sc{¹H} NMR data of Cp*₂ScMe supported on partially dehydroxylated silica. Formation of Cp*₂ScOSi \equiv , a terminal siloxy surface species, should result in a large C_Q. Coordination of a siloxane bridge, which is reasonable based on the well-defined organometallics mentioned above, would form Cp*₂Sc(OSi \equiv)O(SiO_x)₂, which is expected to have a smaller C_Q than the terminal siloxy surface species.

DFT methods accurately predict C_Q and can decompose the C_Q into individual natural localized molecular orbitals to give insights into the origin of this spectroscopic observable.^{50,51,57} DFT descriptions of amorphous supports, such as SiO₂, are complex.⁵⁸ However, several studies showed that C_Q depends

only on the first coordination sphere and that small cluster models give predicted C_Q values close to experimental values for a given coordination environment.^{43,59,60} Simple approximations of a silica surface, such as the $-OSi(OMe)_3$ ligand or related simple siloxy models, also predict reactivity patterns and spectroscopic properties of organometallics supported on silica.^{b_{1-64}} This article shows that the reaction of Cp*₂ScMe on silica dehydroxylated at 700 °C (SiO₂₋₇₀₀) generates two surface species by solid-state ${}^{45}Sc{}^{1}H{}^{2-100}NMR$ spectroscopy. Analysis of solid-state ⁴⁵Sc{¹H} NMR data for terminal alkoxide complexes, formed in the reaction of Cp*2ScMe and ROH, shows that these complexes have similar C_O values as the base free scandocene complexes in Figure 3. DFT calculations of these molecular alkoxides reproduce the structures of these complexes and predict scandium C_O values close to experimental values. This benchmarks the DFT studies of the small cluster models for $Cp_2^*ScoSi \equiv$ and $Cp_2^*Sc (OSi \equiv) O(SiO_x)_2$ shown in Figure 4. This study shows that

Figure 4. DFT models for $Cp*_2ScOSi \equiv$ and $Cp*_2Sc(OSi \equiv)O-(SiO_x)_2$.

the two reaction products in $Cp_2Sc@SiO_2$ are $Cp_2ScOSi\equiv$ and $Cp_2Sc(OSi\equiv)O(SiO_x)_2$ from solid-state ⁴⁵Sc{¹H} NMR spectroscopy. NLMO decomposition of the origins of C_Q in these two clusters shows that the geometry differences in the κ^{1-} and κ^2 -coordination modes of $-OSi(OMe)_3$ result in different bonding orbital contributions to V_{33} .

EXPERIMENTAL SECTION

General Considerations. All manipulations were performed under an inert atmosphere of dinitrogen or argon. Benzene- d_6 and cyclohexane- d_{12} were purchased from Cambridge Isotope laboratories and dried over sodium/benzophenone, distilled under vacuum, and stored inside an inert atmosphere glovebox. Pentane and toluene were dried over sodium/benzophenone, degassed, and distilled under vacuum. Nonafluorotertbutanol, 1,1,1,-trifluoro-2-methyl-2-propanol, and 1,1,1,3,3,3-hexafluoro-2-methyl-2-propanol were purchased from standard suppliers, dried over calcium hydride, and distilled under vacuum prior to use. Triphenylsilanol was sublimed under vacuum prior to use. Methyllithium in Et₂O was purchased from Sigma-Aldrich. Synthesis of Cp*₂ScCl and Cp*₂ScMe was reported previously.⁴¹

Aerosil-200 was obtained from Degussa. Aerosil-200 dehydroxylated at 700 °C (SiO₂₋₇₀₀) was prepared by suspending the silica in excess water and drying the slurry under static air at 120 °C in an oven for 1 day. The resulting monolith was crushed and sieved to give $250-425 \ \mu$ M size silica aggregates. This material was loaded into a quartz tube containing an adapter with a Teflon stopcock to attach to a high vacuum line, placed in a tube furnace, heated under static air at $500 \ ^{\circ}C$ (5 $^{\circ}C \ min^{-1}$) for 4 h, and placed under vacuum on a diffusion pump vacuum line for 12 h. While under vacuum, the temperature was increased to 700 $^{\circ}C$ (5 $^{\circ}C \ min^{-1}$) and its temperature maintained for 4 h. After this time, the Teflon stopcock was sealed, and the tube _ __ __

	$\delta_{ m iso}~(m ppm)$	C_Q (MHz)	η	Ω (ppm)	к	α (deg)	β (deg)	γ (deg)
1	65(5)	31.6(1)	0.80(1)	290(20)	0.50(1)	95(5)	90(1)	90(1)
2	99(1)	30.5(1)	0.63(2)	270(10)	0.19(4)	106(4)	88(2)	88(3)
3	133(1)	29.2(2)	0.33(1)	375(3)	0.25(5)	103(2)	96(6)	78(3)
4	94(2)	35.1(1)	0.77(1)	239(3)	0.5(1)	108(5)	89(2)	90(1)
5a	135(15)	35.4(4)	0.60(5)	315(20)	0.90(8)	90(1)	90(1)	90(1)
5b	95(5)	21.9(3)	0.77(3)	150(15)	0.65(9)	90(1)	90(1)	90(1)

Table 1. -3 c NMR Parameters for 1–5 Extracted from Simulations in Figures 6	and	7**
--	-----	-----

^aValues reported in the table are averages from simulations of experimental NMR data acquired at 9.4 and 14.1 T. Numbers in parentheses give the deviation from the average from these data.

was cooled to ambient temperature. The partially dehydroxylated silica was stored in an Ar filled glovebox and contains 0.26 mmol OH g^{-1} .

NMR Spectroscopy. Solution phase ${}^{1}H$, ${}^{13}C{}^{1}H$, ${}^{19}F{}^{1}H$, and ⁴⁵Sc{¹H} NMR spectroscopy were acquired on a Bruker 300 Avance spectrometer, Varian 500, or Bruker 600 Avance spectrometer. ¹H and ¹³C NMR spectra were referenced to the NMR solvent residual peak. ^{19}F NMR spectra were referenced to $C_6F_6~(-163.9~\text{ppm})$ external standard. 45 Sc NMR spectra were referenced to 0.11 M ScCl₃ in 0.1 M aqueous HCl solution (0.0 ppm).

Solid state NMR spectra were recorded in 4 mm zirconia rotors packed inside an inert atmosphere glovebox, and acquired on a Bruker 400 Avance III or a Bruker Neo-600 NMR spectrometer. The ¹³C CPMAS NMR spectra were recorded with a 2 ms contact time and a 2 s relaxation delay. Static ⁴⁵Sc{¹H} NMR spectra were recorded with a Hahn-echo pulse sequence, with full echo detection $(\pi/2 - \tau - \pi - \pi)$ acq). Echo delays (τ) were 100–150 μ s. All analytical simulations of solid state spectra were performed in Topspin using Sola line shape analysis.

General Synthesis of Cp*₂Sc-OR. Cp*₂ScMe (200-500 mg, 0.6-1.5 mmol) was dissolved in toluene (5–15 mL) and cooled to 0 °C. The alcohol (1.05–1.1 equiv) was added dropwise to the solution by syringe. After addition, the reaction was stirred at 0 °C for 10 min, then 20 min at room temperature. The volatiles were removed under vacuum, and a minimal amount of pentane was added by cannula to dissolve the residue. Recrystallization from pentane at -20 °C results in yellow crystals for compounds 1 - 3. Yields and analytical data for the individual compounds are given below. The solid-state ⁴⁵Sc NMR data are given in below and summarized in Table 1. Results for C,H elemental analyses of 1-4 did not yield satisfactory results, possibly due to the sensitivity of these compounds. Elemental analysis data are given in the Supporting Information (Table S1).

*Cp**₂*Sc*-*OCMe*₂*CF*₃ (1). Yield: 62%. ¹H NMR (C₆D₆, 300 MHz): δ 1.89 (s, 30 H, CpMe), 1.56 (q, ${}^{4}J_{HF} = 1$ Hz, 6 H, OCMe₂CF₃). ${}^{13}C{}^{1}H$ NMR (C₆D₁₂, 151 MHz): 129.4 (q, ${}^{1}J_{CF} = 289$ Hz, OCMe₂CF₃), 122.5 (CpMe), 78.7 (q, ${}^{2}J_{CF}$ = 27 Hz, CCF₃Me₂), 29.2 (OCMe₂CF₃), 12.6 (CpMe). ${}^{19}F{}^{1}H{}$ NMR (C₆D₆, 282 MHz): δ -82.0 (s). 45 Sc NMR (C₆D₆, 73 MHz): δ 70 (br s).

*Cp**₂*Sc*-*OCMe*(*CF*₃)₂ (**2**). Yield: 10%. ¹H NMR (C₆D₆, 300 MHz): δ 1.83 (s, 30 H, CpMe), 1.78 (sept, ${}^{4}J_{\rm HF}$ = 1.5 Hz, 6 H, $OCMe(CF_3)_2$). ¹³C{¹H} NMR (C₆D₁₂, 126 MHz): 126.3 (q, ¹J_{CF} = 289 Hz, OCMe(CF₃)₂), 123.8 (CpMe), 82.9 (m, CCF₃Me₂), 23.2 $(OCMe(CF_3)_2)$, 12.7 (bs, CpMe). ¹⁹F{¹H} NMR (C₆D₆, 282 MHz): δ -77.5 (s). ⁴⁵Sc{¹H} NMR (C₆D₆, 73 MHz): δ 89.

 $Cp*_2Sc-OC(CF_3)_3$ (3). Yield: 26%. ¹H NMR (C_6D_{6} , 300 MHz): δ 1.79 (s, 30 H, CpMe). ${}^{13}C{}^{1}H$ NMR (C₆D₁₂, 151 MHz): δ 125.6 (s, CpMe), 123.7 (q, ${}^{1}J_{CF}$ = 295 Hz, OC(CF₃)₃), 86.6 (br m, OC(CF₃)₃), 12.4 (s, CpMe). ${}^{19}F{}^{1}H{}$ NMR (C₆D₆, 282 MHz): δ -73.2 (s). ⁴⁵Sc{¹H} NMR (C₆D₆, 73 MHz): δ 118 (br s).

 $Cp*_2Sc-OSiPh_3$ (4). This compound was synthesized with a slight modification of the generally synthesis. Triphenylsilanol (1.05 equiv) was dissolved in toluene and added to Cp*2ScMe by syringe. Yield: 48%. ¹H NMR (C₆D₆, 300 MHz): δ 7.28–7.31 (m, 6 H, ArH), 7.89– 7.92 (m, 9 H, ArH), 1.82 (s, 30 H, CpMe). ¹³C{¹H} NMR (C₆D₆, 151 MHz): δ 142.1 (s, Ph), 137.2 (s, Ph), 129.7 (s, Ph), 128.3 (s, Ph),

122.7 (s, CpMe), 12.5 (s, CpMe). $^{45}Sc{^1H}$ NMR (C₆D₆, 73 MHz): δ 289 (br s).

- 0

Synthesis of 5. SiO_{2-700} (0.2 g, 0.052 mmol OH) and $Cp*_2ScMe$ (18 mg, 0.055 mmol) were loaded into a double Schlenk in an argon filled glovebox. The double Schlenk was connected to a high vacuum line, evacuated, and pentane (5 mL) was condensed onto the solids at 77 K. The slurry was warmed to room temperature and gently stirred for 1 h. Then the solution was filtered to the other arm of the double Schlenk. The derivatized silica was washed by condensing solvent from the other arm of the double Schlenk at 77 K, warming to room temperature, stirring for 2 min, and filtering the solvent back to the other side of the flask. This was repeated two times. The volatiles were transferred to a flask containing a Teflon stopcock at 77 K. Analysis of the volatiles by gas chromatography shows that 0.23 mmol/g of CH₄ are released during the reaction. The pale yellow solid was dried under diffusion pump vacuum for 1 h and was stored in a glovebox freezer at -20 °C. Solid state NMR: ¹H MAS NMR (600 MHz): δ 2.9–2.5 (CpMe). ¹³C{¹H} CPMAS NMR (151 MHz): δ 121.5 (*CpMe*), 9.6 (*CpMe*); and ²⁹Si{¹H} CPMAS NMR (119) MHz): $\delta - 106 (SiO_2)$ ppm. Elemental analysis for 5: C 5.61, H 0.49. ⁴⁵Sc NMR data are shown below and summarized in Table 1.

Computational Details. The geometries of 1–4, 6a, and 6b were optimized with Gaussian 09 using the B3LYP functional and the 6-311G** basis set on scandium and the 6-31G** basis set on all other atoms. Frequency calculations at the same level of theory produced no imaginary frequencies, indicating an energy minimum equilibrium structure. The NMR parameters of 1-4, 6a, and 6b were modeled in the Amsterdam Density Functional suite of programs at the B3LYP/ DZ, Si(DZP) level of theory using the GIAO method. The calculated isotropic chemical shift was referenced to geometry-optimized $Sc(H_2O)_6^{3+}$ at the same level of theory, which was used previously to reference ⁴⁵Sc chemical shift calculations.⁵² Contributions of each natural localized molecular orbital (NLMO) to the C_Q were calculated at the same level of theory.⁵⁰ The EFG tensor plots were plotted using TensorView.⁶

RESULTS AND DISCUSSION

Synthesis of Cp_2^*Sc-OR (R = CMe_2CF_3 , $CMe(CF_3)_2$, $C(CF_3)_3$, SiPh₃) and Cp*₂ScOSi \equiv . The reaction of Cp*₂Sc-Me with fluorinated alcohols and triphenylsilanol form methane and Cp_2Sc-OR (R = CMe_2CF_3 (1), $CMe(CF_3)_2$ (2), $C(CF_3)_3$ (3), SiPh₃ (4)), Scheme 2. The products were isolated as crystalline (1 and 3) or microcrystalline (2 and 4) solids in moderate yields.

The solid-state structures of 1 and 3 are shown in Figure 5.3 crystallizes with three nearly identical molecules in the unit cell. 1 and 3 adopt bent $C_{2\nu}$ structures that are typical for d⁰ metallocenes. The Sc–O distance in 1 is 1.9481(8) Å, which is shorter than the average Sc–O distance in 3 (2.033(1) Å). In both cases, the Sc-O-C bond angle is nearly linear (175.16(7)° in 1 and 173.5(1)° in 3). The Cp*-Sc bond distances in 1 are 2.2031(6) and 2.2088(6) Å, and the Cp*-Sc- Cp^* angle is 135.26(2)°. In 3, the average Cp^* -Sc- Cp^* angle is $133.9(1)^{\circ}$, and the average Cp*-Sc bond distances are Scheme 2. Synthesis of Cp*₂Sc-OR

SiPh₃ (4)

Figure 5. ORTEP drawing of 1 and 3. Hydrogen atoms omitted for clarity. Refer to the Supporting Information for bond distances and angles.

2.199(1) and 2.205(1) Å. These values are similar to known permethylscandocene complexes.

The reaction of SiO₂₋₇₀₀ and Cp*₂ScMe results in the formation of methane and Cp*₂ScOSi \equiv (**5a**) and Cp*₂Sc-(OSi \equiv)O(SiO_x)₂ (**5b**), Scheme 3. This reaction forms 0.23 mmol g⁻¹ methane, which is close to the –OH loading of SiO₂₋₇₀₀ (0.26 mmol g⁻¹). The FTIR of **5** contains sp³ ν_{CH} and sp² ν_{CC} bands from the Cp* fragment (Figure S9). In addition, this spectrum shows a significant decrease in the ν_{OH} band associated with isolated and geminal silanols on the partially dehydroxylated silica surface. The ¹³C CPMAS spectrum of **5**

Scheme 3. Synthesis of Cp*₂Sc-OR

contains signals at 121.5 and 9.5 ppm that are signatures of the Cp* ligands in 5 (Figure S10). The ²⁹Si CPMAS spectrum of 5 contains only signals for bulk SiO₂ and does not contain signals for alkylsilanes (Figure S11). This result indicates that only HOSi sites on the partially dehydroxylated silica surface react with Cp*₂ScMe to form 5 and that side reactions associated with strained siloxane bridges or geminal silanols do not occur under these conditions.⁶⁶ These spectroscopic data do not distinguish between 5a and 5b, which is typical of these particular techniques. However, the examples mentioned above and results showing that Cp*₂ScX(THF) complexes (X = H, alkyl, halide) are isolable,^{41,56} suggest that 5b would be present on partially dehydroxylated silica surfaces.

Solid-State ⁴⁵Sc{¹H} NMR of 1–4 and Cp*₂ScOSi \equiv . The static ⁴⁵Sc{¹H} NMR spectra of 1–4 recorded on a 14.1 T NMR spectrometer are shown in Figure 6. NMR data acquired at 9.4 T are given in the Supporting Information (Figure S12). These spectra show characteristic broad second order quadrupolar powder patterns associated with solid-state ⁴⁵Sc NMR spectra of Cp*₂Sc–X complexes (X = alkyl, halide).⁵⁶ Simulations of these spectra are shown in red in Figure 6, and the NMR parameters associated with these simulations are summarized in Table 1. The C_Q values decrease following the trend 4 > 1 > 2 > 3.

The static ⁴⁵Sc{¹H} NMR spectrum of **5** recorded on a 14.1 and 9.4 T spectrometers is shown in Figure 7. The ⁴⁵Sc{¹H} NMR spectrum of 5 is more complicated than the ${}^{45}Sc{}^{1}H$ NMR spectra of 1-4. There are clear discontinuities in these spectra at both fields indicating that 5 simulates as two sites, which is consistent with the presumption that Cp*₂ScMe reacts with partially dehydroxylated silica to form 5a and 5b. Importantly, the simulated spectral parameters given in Table 1 are reproduced at both fields, which support simulating this spectrum with two sites. On the basis of the data obtained for 1-4, all of which have C_Q values >29 MHz, the broad $^{45}\text{Sc}\{^1\text{H}\}$ NMR signal that simulates with an average C_Q of 35.4(4) MHz is assigned to 5a. The narrower signal that simulates with an average C_Q of 21.9(3) MHz is assigned to 5b. Below DFT calculations of 1-4, and small models of 5a and 5b, will be described to support these assignments.

DFT Studies of 1–5. Crystallographically characterized 1 and 3 show typical structural features associated with $C_{2\nu}$ bent metallocenes, and are useful reference points to calibrate DFT studies. The structures of 1–4 were optimized with the B3LYP functional at the 6-311G**(Sc)/6-31G*(C, H, O, F, Si) level of theory. The bond angles and distances obtained from these optimizations are given in Table 2. The bond distances and angles of 1 and 3 agree well with the values obtained from the DFT structures. The structures of 2 and 4 are qualitatively similar to 1 and 3; these structures also adopt $C_{2\nu}$ structures with Sc–O–C or Sc–O–Si bond angles that are nearly linear.

Figure 6. Static solid-state ⁴⁵Sc{¹H} NMR spectra of 1 (a), 2 (b), 3 (c), and 4 (d) acquired at 14.1 T. The experimental spectra are shown in black and simulations are shown in red.

Figure 7. Static ${}^{45}Sc{}^{1}H$ NMR spectrum of 5 at 9.4 T (a) and 14.1 T (b). The experimental spectra are shown in black. Simulations of 5a are shown in green, and the total simulation is shown in red.

			-	-			
compound	Cp* _a -Sc (Å)	Cp* _b -Sc (Å)	$Cp*_{a}-Sc-Cp*_{b}(deg)$	Sc-O (Å)	Cp* _a -Sc-O (deg)	$Cp*_b-Sc-O (deg)$	Sc-O-C (deg)
2	2.23	2.23	135.0	1.94	111.9	113.1	175.5
1	2.22	2.23	134.3	1.98	111.4	114.4	172.3
3	2.21	2.22	134.4	2.02	111.5	114.1	175.4
4	2.21	2.21	137.8	1.96	110.2	112.0	174.0
6a	2.20	2.20	140.5	1.97	109.3	110.2	160.7
6b	2.24	2.24	138.4	2.04	106.9	109.0	106.1

Table 2. Geometrical Parameters from DFT Optimized Structures of Cp*₂Sc-OR

Two models for **5a** and **5b**, $Cp*_2Sc (\kappa^{1}-OSi(OMe)_3)$ (**6a**) and $Cp*_2Sc(\kappa^{2}-OSi(OMe)_3)$ (**6b**), were optimized at the same level of theory and are shown in Figure 8. Similar to **1–4**, **6a** and **6b** adopt bent metallocene structures. The Sc–O distance in **6a** is 1.97 Å, which is shorter than the Sc–O distance in **6b** (2.04 Å). The Sc–O–Si bond angle in **6a** is 160.7°, which is smaller than the Sc–O–C or Sc–O–Si bond angle for **1–4**. The κ^2 structure in **6b** has a Sc–O–Si bond angle of 106.1°, which is expected. The ⁴⁵Sc{¹H} NMR results described above show that Cp*₂Sc-OR complexes are characterized by fairly large C_Q values. The NMR parameters of 1–4 and 6 were calculated at the B3LYP/DZ level of theory, with silicon described with the DZP basis set. The results from these calculations are summarized in Table 3. Trends in C_Q and chemical shift (δ) are similar to those obtained experimentally. At this level of theory, the span values (Ω) are predicted to follow 4 > 1 > 2 > 3. However, the experimental Ω values do not follow an

Figure 8. Structures of 6a and 6b from DFT calculations.

obvious trend. The calculated Euler angles, which are defined as the angles between the shielding and EFG tensors, are close to those needed to simulate the experimental spectra shown in Figures 6–7 and summarized in Table 1. The calculated C_Q for **6a** is -36.6 MHz, and is close to the C_Q value for **5a**. This value is also close to the experimental and predicted values for **4**. The calculated C_Q for **6b** is 25.8 MHz, significantly smaller than the calculated C_Q for **6a**. This result is consistent with a large C_Q value for **5a**, corresponding to Cp*₂Sc(κ^1 -OSi \equiv), and a smaller C_Q value for **5b**, which contains an additional interaction with a nearby siloxane bridge to form Cp*₂Sc-(OSi \equiv)O(SiO_x)₂. These results indicate that C_Q derived from ⁴⁵Sc NMR measurements can distinguish between κ^1 or κ^2 geometries in **5a** and **5b**.

The smaller C_Q for **5b** and **6b** than in **5a** and **6a** is reminiscent of similar trends observed in $Cp^*{}_2Sc-X$ and $Cp^*{}_2ScX(THF)$ (X = F, Cl, Br, I).⁵⁶ In this study the THF adducts consistently show smaller C_Q values than the base free compounds. This is a consequence of the more tetrahedral geometry at scandium in $Cp^*{}_2ScX(THF)$, which results in π overlap between group fragment orbitals in these compounds. This interaction is absent in the THF free $Cp^*{}_2Sc-X$ compounds. This suggests that similar electronic consequences would emerge from analysis of the origin of the C_Q in **6a** and **6b**.

The orientation of the EFG tensor for 1 is shown in Figure 9a. The orientation of 2–4 and 6a have similar orientations, and are shown in Figure S13. The magnitude of C_Q is determined by eq 2, and depends on V_{33} , the largest contributor to the EFG tensor (eq 1). In 1, the orientation of V_{33} is perpendicular to the Sc–O bond, which aligns V_{33} with the LUMO of 1, shown in Figure 9b. The orientation of the EFG tensor in 6b is shown in Figure 9c. In this case, V_{33} orients along the Sc–O bond (Figure 9c). The calculated LUMO in 6b is shown in Figure 5d, and corresponds to a π^* -bonding orbital between an oxygen lone pair and the empty orbital on scandium. The LUMO and EFG tensor orientation in 1, as well as 2–4 and 6a, is similar to Cp*₂Sc–X, while the LUMO and EFG tensor orientation in 6b is similar to Cp*₂ScX(THF) (X = F, Cl, Br, I),⁵⁶

Table 3. Calculated NMR Parameters for 1-4 and 6

Figure 9. EFG Tensor plots of **1** (a) and **6b** (c). Calculated LUMO of **1** (b) and **6b** (d) calculated at B3LYP/DZ, Si(DZP); isovalue = 0.04.

The C_Q originates from the interaction of the quadrupolar moment of the scandium nucleus and the EFG tensor, which is sensitive to local structure. This coupling is electric in origin, indicating that the magnitude of V₃₃ will be related to core and valence scandium orbitals. DFT methods decompose the contributions of V₃₃ into Natural Localized Molecular Orbitals (NLMO).⁵⁷ This method is particularly valuable to distinguish how certain geometries, which relate to bonding characteristics, affect V₃₃.^{50,51,57} The NLMO decomposition of V₃₃ for 1–4 and 6 is shown in Figure 10a. Consistent with the

Figure 10. NLMO contributions to V_{33} calculated at B3LYP/DZ, Si(DZP) for 1–4 and 6 (a); plots of valence NLMO for the Sc–O σ -bond in 6a (b); for the Sc–O π -bond in 6a (c); and the Sc–O bond in 6b (c); isovalue = 0.01.

electronic argument, the major contributors to V_{33} are bonding orbitals between scandium and the Cp* ligand, as well as σ and π -bonding orbitals that describe the Sc–O bond, shown if Figure 10b and c for **6a** and Figure 10d for **6b**.

In 1-3, the scandium core orbitals are significant contributors to V_{33} . Filled core scandium orbitals are spherically symmetrical and should not contribute to V_{33} .

R	$\delta_{ m iso}~(m ppm)$	C_Q (MHz)	η	Ω (ppm)	к	α (deg)	β (deg)	γ (deg)
1	81	-32.8	1.0	288	0.09	90.9	89.0	87.5
2	108	-31.2	0.75	395	0.06	90.1	88.6	90.0
3	139	-30.3	0.46	520	0.11	89.1	90.3	86.5
4	93	35.4	0.99	270	0.05	89.1	90.3	86.5
6a	90	-36.6	0.93	342	0.07	104.2	88.5	90.4
6b	48	25.8	0.84	238	0.70	89.4	90.8	86.6

Nonzero contributions to C_Q from core orbitals is a result of Sternheimer shielding,⁶⁷ which relates to the anisotropic shielding of nuclear charge by outer core orbitals from bonding partners and polarizability.⁵⁰ However, the electronics of the alkoxide also clearly play a role in the contributions to V_{33} . As the alkoxide becomes more electron withdrawing the σ -bonding Sc–O orbital (a₁) contributes less to V_{33} .

Figure 10a shows that the contributors to V₃₃ in 4 and 6a, closely related molecular structures to 5a, are rather different than the contributions to V₃₃ in 6b, which is the model for 5b. In 4 and 6a, the major valence contributions are from the Cp*–Sc, of roughly equal magnitude, and the Sc–OSiR₃ σ - and π -bonds (a₁ and b₁). In 6b, the Cp*–Sc orbitals are major contributors, but the a₁ and b₁ orbitals are minor contributors to V₃₃ because this compound adopts a κ^2 -OSi(OMe)₃ ligand geometry. Rather the b₂ orbital is the major contributor to V₃₃ in 6b. These results show that the magnitude of C_Q for these complexes can differentiate between κ^1 - and κ^2 -geometries and that the origin of the C_Q in these geometries is related to different valence orbitals.

CONCLUSIONS

This study was motivated by the application of $^{45}\mathrm{Sc}\{^{1}\mathrm{H}\}$ NMR parameters to determine the structure of surface organoscandium sites supported on partially dehydroxylated silica. The reaction of Cp*₂ScMe and SiO₂₋₇₀₀ was chosen because the supported Cp*2Sc-fragment contains bulky Cp* ligands to enforce monomeric speciation in solution. This avoids complications associated with formation of aggregates during the grafting reaction, which can complicate analysis of the solid-state NMR data in some cases.^{43,59,60} The bent metallocene $C_{2\nu}$ geometry of the Cp*₂Sc-fragment allows access to only two possible conformations of the organoscandium species on the silica surface $(Cp_2^*ScOSi \equiv (5a))$ and $Cp*_2Sc(OSi\equiv)O(SiO_x)_2$ (**5b**)). Consistent with this hypothesis, two sites were needed to accurately fit the solid-state 45 Sc{ 1 H} NMR data of 5. One of the sites had a large C_Q, assigned to 5a, and the other site had a significantly smaller C_Q, assigned to **5b**.

The ⁴⁵Sc{¹H} NMR parameters of Cp*₂Sc-OR (1–4) were important benchmarks that were necessary to relate to the ⁴⁵Sc{¹H} NMR parameters of **5a** and **5b**. These compounds were prepared by straightforward reactions of Cp*₂ScMe with alcohols to yield Cp*2Sc-OR and methane. Diffraction studies of $Cp*_2Sc-OCMe_2CF_3$ (1) and $Cp*_2Sc-O(CF_3)_3$ (3) are typical of monomeric $C_{2\nu}$ bent metallocenes. 1-4 all show broad quadrupolar powder patterns typical of Cp_2^*Sc-X (X = halide, alkyl).^{55,56} These compounds also have similar C_Q values to those obtained for 5a. DFT studies showed that the EFG tensor in Cp*₂Sc-OR, and a small cluster Cp*₂Sc(κ^{1} - $OSi(OMe)_3$) (6a) to approximate the primary coordination sphere in 5a, orient the V_{33} component of the EFG tensor perpendicular to the Sc-O bond. This aligns V₃₃ with the LUMO of these compounds. NLMO calculations showed that the Sc–O σ - and π -bonding orbitals are contributors to V₃₃ in these terminal alkoxides.

These results are in contrast to those for $Cp_2Sc(\kappa^2-OSi(OMe)_3)$ (**6b**). This compound is a small cluster model of $Cp_2Sc(OSi\equiv)O(SiO_x)_2$ (**5b**). Though this is a rather dramatic truncation of a silica surface, the calculated C_Q for **6** (25.8 MHz) is rather close to the C_Q of **5b** ($C_Q = 21.9(3)$ MHz) derived from simulations of experimental NMR data.

This result shows that C_Q is sensitive to the primary coordination sphere of scandium, which is typically encountered when modeling NMR properties of quadrupolar nuclei. In **6b**, the V_{33} component of the EFG tensor is not aligned perpendicular to the Sc-O bond, as in the terminal alkoxides 1-4 and 6a, but rather along the Sc-O bond. NLMO decomposition of V₃₃ in **6b** is also quite different from the terminal alkoxides. The Sc-O σ - and π -bonding orbitals are minor contributors to V_{33} . In **6b**, the b_2 orbital is the major contributor to V_{33} because this compound adopts a κ^2 geometry with the siloxide. These results establish that the magnitude of C_O and the origin of V₃₃ are very sensitive to local structure, in this case the coordination of $a - OSi(OMe)_3$ ligand in κ^1 - or κ^2 geometries, and support the assignments of 5a and 5b. These studies show that quadrupolar NMR properties of surface organoscandium species, when coupled with relevant molecular models and supplemented by DFT studies, can provide valuable information about the structure of these supported organometallic sites.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.organomet.9b00840.

Chemical structure (XYZ) NMR spectra, elemental analysis results, IR spectra, coordinates for computations. EFG orientation plots.

coordinates for computations, EFG orientation plots, NLMO tables (PDF)

Accession Codes

CCDC 1971453–1971454 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Matthew P. Conley – Department of Chemistry, University of California, Riverside, California 92521, United States; orcid.org/0000-0001-8593-5814; Email: matthew.conley@ucr.edu

Authors

Damien B. Culver – Department of Chemistry, University of California, Riverside, California 92521, United States

- Winn Huynh Department of Chemistry, University of California, Riverside, California 92521, United States
- Hosein Tafazolian Department of Chemistry, University of California, Riverside, California 92521, United States

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.organomet.9b00840

Author Contributions

[‡]These authors contributed equally.

Notes

The authors declare no competing financial interest.

Organometallics

M.P.C. is a member of the UCR Center for Catalysis. Financial support for this work was provided by the University of California, Riverside and the National Science Foundation (CHE-1800561). The solid-state NMR measurements for this study were recorded on an instrument supported by the National Science Foundation (CHE-1626673).

REFERENCES

(1) Handbook of Heterogeneous Catalysis, 1st ed.; Wiley-VCH, 1997; p 2800.

(2) Marks, T. J. Surface-bound metal hydrocarbyls. Organometallic connections between heterogeneous and homogeneous catalysis. *Acc. Chem. Res.* **1992**, *25*, 57–65.

(3) Wegener, S. L.; Marks, T. J.; Stair, P. C. Design Strategies for the Molecular Level Synthesis of Supported Catalysts. *Acc. Chem. Res.* **2012**, *45*, 206–214.

(4) Basset, J.-M.; Coperet, C.; Soulivong, D.; Taoufik, M.; Cazat, J. T. Metathesis of Alkanes and Related Reactions. *Acc. Chem. Res.* **2010**, 43, 323–334.

(5) Lecuyer, C.; Quignard, F.; Choplin, A.; Olivier, D.; Basset, J.-M. Surface Organometallic Chemistry on Oxides: Selective Catalytic Low-Temperature Hydrogenolysis of Alkanes by a Highly Electrophilic Zirconium Hydride Complex Supported on Silica. *Angew. Chem., Int. Ed. Engl.* **1991**, *30*, 1660–1661.

(6) Pelletier, J. D. A.; Basset, J.-M. Catalysis by Design: Well-Defined Single-Site Heterogeneous Catalysts. *Acc. Chem. Res.* **2016**, *49*, 664–677.

(7) Guzman, J.; Gates, B. C. Supported molecular catalysts: metal complexes and clusters on oxides and zeolites. *Dalton Trans.* 2003, 3303–3318.

(8) Copéret, C.; Allouche, F.; Chang, K. W.; Conley, M.; Delley, M. F.; Fedorov, A.; Moroz, I.; Mougel, V.; Pucino, M.; Searles, K.; Yamamoto, K.; Zhizhko, P. Bridging the Gap between Industrial and Well-Defined Supported Catalysts. *Angew. Chem., Int. Ed.* **2018**, *57*, 6398–6440.

(9) Stalzer, M.; Delferro, M.; Marks, T. Supported Single-Site Organometallic Catalysts for the Synthesis of High-Performance Polyolefins. *Catal. Lett.* **2015**, *145*, 3–14.

(10) Kaphan, D. M.; Klet, R. C.; Perras, F. A.; Pruski, M.; Yang, C.; Kropf, A. J.; Delferro, M. Surface Organometallic Chemistry of Supported Iridium(III) as a Probe for Organotransition Metal–Support Interactions in C–H Activation. ACS Catal. **2018**, *8*, 5363–5373.

(11) Stalzer, M. M.; Nicholas, C. P.; Bhattacharyya, A.; Motta, A.; Delferro, M.; Marks, T. J. Single-Face/All-cis Arene Hydrogenation by a Supported Single-Site d0 Organozirconium Catalyst. *Angew. Chem., Int. Ed.* **2016**, *55*, 5263–5267.

(12) Gu, W.; Stalzer, M. M.; Nicholas, C. P.; Bhattacharyya, A.; Motta, A.; Gallagher, J. R.; Zhang, G.; Miller, J. T.; Kobayashi, T.; Pruski, M.; Delferro, M.; Marks, T. J. Benzene Selectivity in Competitive Arene Hydrogenation: Effects of Single-Site Catalyst Acidic Oxide Surface Binding Geometry. J. Am. Chem. Soc. 2015, 137, 6770–6780.

(13) Klet, R. C.; Kaphan, D. M.; Liu, C.; Yang, C.; Kropf, A. J.; Perras, F. A.; Pruski, M.; Hock, A. S.; Delferro, M. Evidence for Redox Mechanisms in Organometallic Chemisorption and Reactivity on Sulfated Metal Oxides. *J. Am. Chem. Soc.* **2018**, *140*, 6308–6316.

(14) Syed, Z. H.; Kaphan, D. M.; Perras, F. A.; Pruski, M.; Ferrandon, M. S.; Wegener, E. C.; Celik, G.; Wen, J.; Liu, C.; Dogan, F.; Goldberg, K. I.; Delferro, M. Electrophilic Organoiridium(III) Pincer Complexes on Sulfated Zirconia for Hydrocarbon Activation and Functionalization. J. Am. Chem. Soc. **2019**, *141*, 6325–6337.

(15) Williams, L. A.; Marks, T. J. Synthesis, Characterization, and Heterogeneous Catalytic Implementation of Sulfated Alumina Nanoparticles. Arene Hydrogenation and Olefin Polymerization Properties of Supported Organozirconium Complexes. *ACS Catal.* **2011**, *1*, 238–245. (16) Nicholas, C. P.; Ahn, H.; Marks, T. J. Synthesis, Spectroscopy, and Catalytic Properties of Cationic Organozirconium Adsorbates on Super Acidic Sulfated Alumina. Single-Site Heterogeneous Catalysts with Virtually 100% Active Sites. J. Am. Chem. Soc. 2003, 125, 4325–4331.

(17) Ahn, H.; Nicholas, C. P.; Marks, T. J. Surface organozirconium electrophiles activated by chemisorption on "super acidic" sulfated zirconia as hydrogenation and polymerization catalysts. A synthetic, structural, and mechanistic catalytic study. *Organometallics* **2002**, *21*, 1788–1806.

(18) Rodriguez, J.; Culver, D. B.; Conley, M. P. Generation of Phosphonium Sites on Sulfated Zirconium Oxide: Relationship to Brønsted Acid Strength of Surface – OH Sites. J. Am. Chem. Soc. **2019**, 141, 1484–1488.

(19) Culver, D. B.; Tafazolian, H.; Conley, M. P. A Bulky Pd(II) α -Diimine Catalyst Supported on Sulfated Zirconia for the Polymerization of Ethylene and Copolymerization of Ethylene and Methyl Acrylate. *Organometallics* **2018**, *37*, 1001–1006.

(20) Tafazolian, H.; Culver, D. B.; Conley, M. P. A Well-Defined Ni(II) α -Diimine Catalyst Supported on Sulfated Zirconia for Polymerization Catalysis. *Organometallics* **2017**, *36*, 2385–2388.

(21) Williams, L. A.; Guo, N.; Motta, A.; Delferro, M.; Fragala, I. L.; Miller, J. T.; Marks, T. J. Surface structural-chemical characterization of a single-site d0 heterogeneous arene hydrogenation catalyst having 100% active sites. *Proc. Natl. Acad. Sci. U. S. A.* **2013**, *110*, 413–418.

(22) Blanc, F.; Coperet, C.; Lesage, A.; Emsley, L. High resolution solid state NMR spectroscopy in surface organometallic chemistry: access to molecular understanding of active sites of well-defined heterogeneous catalysts. *Chem. Soc. Rev.* **2008**, *37*, 518–526.

(23) Copéret, C.; Liao, W.-C.; Gordon, C. P.; Ong, T.-C. Active Sites in Supported Single-Site Catalysts: An NMR Perspective. J. Am. Chem. Soc. 2017, 139, 10588–10596.

(24) Reed, C. A. The Silylium Ion Problem, R3Si+. Bridging Organic and Inorganic Chemistry. *Acc. Chem. Res.* **1998**, *31*, 325–332. (25) Xie, Z.; Manning, J.; Reed, R. W.; Mathur, R.; Boyd, P. D. W.; Benesi, A.; Reed, C. A. Approaching the Silylium (R3Si+) Ion: Trends with Hexahalo (Cl, Br, I) Carboranes as Counterions. *J. Am. Chem. Soc.* **1996**, *118*, 2922–2928.

(26) Ramírez-Contreras, R.; Bhuvanesh, N.; Zhou, J.; Ozerov, O. V. Synthesis of a Silylium Zwitterion. *Angew. Chem., Int. Ed.* **2013**, *52*, 10313–10315.

(27) Küppers, T.; Bernhardt, E.; Eujen, R.; Willner, H.; Lehmann, C. W. [Me3Si][R-CB11F11]—Synthesis and Properties. *Angew. Chem., Int. Ed.* **2007**, *46*, 6346–6349.

(28) Anwander, R.; Nagl, I.; Widenmeyer, M.; Engelhardt, G. n.; Groeger, O.; Palm, C.; Roser, T. Surface Characterization and Functionalization of MCM-41 Silicas via Silazane Silylation. *J. Phys. Chem. B* **2000**, *104*, 3532–3544.

(29) Zapilko, C.; Widenmeyer, M.; Nagl, I.; Estler, F.; Anwander, R.; Raudaschl-Sieber, G.; Groeger, O.; Engelhardt, G. Advanced Surface Functionalization of Periodic Mesoporous Silica: Kinetic Control by Trisilazane Reagents. J. Am. Chem. Soc. **2006**, *128*, 16266–16276.

(30) Conley, M. P.; Drost, R. M.; Baffert, M.; Gajan, D.; Elsevier, C.; Franks, W. T.; Oschkinat, H.; Veyre, L.; Zagdoun, A.; Rossini, A.; Lelli, M.; Lesage, A.; Casano, G.; Ouari, O.; Tordo, P.; Emsley, L.; Copéret, C.; Thieuleux, C. A Well-Defined Pd Hybrid Material for the Z-Selective Semihydrogenation of Alkynes Characterized at the Molecular Level by DNP SENS. *Chem. - Eur. J.* **2013**, *19*, 12234–12238.

(31) Bluemel, J. Reactions of Ethoxysilanes with Silica: A Solid-State NMR Study. J. Am. Chem. Soc. **1995**, 117, 2112–2113.

(32) Culver, D. B.; Conley, M. P. Activation of C-F Bonds by Electrophilic Organosilicon Sites Supported on Sulfated Zirconia. *Angew. Chem., Int. Ed.* **2018**, *57*, 14902–14905.

(33) Culver, D. B.; Venkatesh, A.; Huynh, W.; Rossini, A. J.; Conley, M. P. Al(ORF)3 (RF = C(CF3)3) activated silica: a well-defined weakly coordinating surface anion. *Chem. Sci.* **2020**, *11*, 1510–1517. (34) Millot, N.; Soignier, S.; Santini, C. C.; Baudouin, A.; Basset, J.-M. Synthesis, Characterization, and Activity in Ethylene Polymer-

(35) Le Roux, E.; Chabanas, M.; Baudouin, A.; de Mallmann, A.; Copéret, C.; Quadrelli, E. A.; Thivolle-Cazat, J.; Basset, J.-M.; Lukens, W.; Lesage, A.; Emsley, L.; Sunley, G. J. Detailed Structural Investigation of the Grafting of [Ta(CHtBu)(CH2tBu)3] and [Cp*TaMe4] on Silica Partially Dehydroxylated at 700 oC and the Activity of the Grafted Complexes toward Alkane Metathesis. *J. Am. Chem. Soc.* **2004**, *126*, 13391–13399.

(36) Rhers, B.; Salameh, A.; Baudouin, A.; Quadrelli, E. A.; Taoufik, M.; Copéret, C.; Lefebvre, F.; Basset, J.-M.; Solans-Monfort, X.; Eisenstein, O.; Lukens, W. W.; Lopez, L. P. H.; Sinha, A.; Schrock, R. R. A Well-Defined, Silica-Supported Tungsten Imido Alkylidene Olefin Metathesis Catalyst. *Organometallics* **2006**, *25*, 3554–3557.

(37) Conley, M. P.; Lapadula, G.; Sanders, K.; Gajan, D.; Lesage, A.; del Rosal, I.; Maron, L.; Lukens, W. W.; Copéret, C.; Andersen, R. A. The Nature of Secondary Interactions at Electrophilic Metal Sites of Molecular and Silica-Supported Organolutetium Complexes from Solid-State NMR Spectroscopy. J. Am. Chem. Soc. **2016**, 138, 3831– 3843.

(38) Chabanas, M.; Baudouin, A.; Coperet, C.; Basset, J.-M.; Lukens, W.; Lesage, A.; Hediger, S.; Emsley, L. Perhydrocarbyl ReVII Complexes: Comparison of Molecular and Surface Complexes. *J. Am. Chem. Soc.* **2003**, *125*, 492–504.

(39) Mazoyer, E.; Merle, N.; Mallmann, A. d.; Basset, J.-M.; Berrier, E.; Delevoye, L.; Paul, J.-F.; Nicholas, C. P.; Gauvin, R. M.; Taoufik, M. Development of the first well-defined tungsten oxo alkyl derivatives supported on silica by SOMC: towards a model of WO3/SiO2 olefin metathesis catalyst. *Chem. Commun.* **2010**, *46*, 8944–8946.

(40) A notable exception to this trend was encountered in 13 C CPMAS NMR studies of TaCl₂Me₃ supported on partially dehydroxylated silica: Chen, Y.; Callens, E.; Abou-Hamad, E.; Merle, N.; White, A. J. P.; Taoufik, M.; Coperet, C.; Le Roux, E.; Basset, J. M. (SiO)(TaCl2Me2)-Cl-V: A Well-Defined Silica-Supported Tantalum(V) Surface Complex as Catalyst Precursor for the Selective Cocatalyst-Free Trimerization of Ethylene. *Angew. Chem., Int. Ed.* **2012**, *51*, 11886–11889.

(41) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. sigma.-Bond metathesis for carbon-hydrogen bonds of hydrocarbons and Sc-R (R = H, alkyl, aryl) bonds of permethylscandocene derivatives. Evidence for noninvolvement of the.pi. system in electrophilic activation of aromatic and vinylic C-H bonds. *J. Am. Chem. Soc.* **1987**, *109*, 203–219.

(42) Ashbrook, S. E.; Sneddon, S. New Methods and Applications in Solid-State NMR Spectroscopy of Quadrupolar Nuclei. *J. Am. Chem. Soc.* **2014**, *136*, 15440–15456.

(43) Kermagoret, A.; Kerber, R. N.; Conley, M. P.; Callens, E.; Florian, P.; Massiot, D.; Coperet, C.; Delbecq, F.; Rozanska, X.; Sautet, P. Triisobutylaluminum: bulkier and yet more reactive towards silica surfaces than triethyl or trimethylaluminum. *Dalton Trans.* **2013**, *42*, 12681–12687.

(44) Merle, N.; Girard, G.; Popoff, N.; De Mallmann, A.; Bouhoute, Y.; Trebosc, J.; Berrier, E.; Paul, J.-F.; Nicholas, C. P.; Del Rosal, I.; Maron, L.; Gauvin, R. g. M.; Delevoye, L.; Taoufik, M. On the Track to Silica-Supported Tungsten Oxo Metathesis Catalysts: Input from 17O Solid-State NMR. *Inorg. Chem.* **2013**, *52*, 10119–10130.

(45) Merle, N.; Trebosc, J.; Baudouin, A.; Rosal, I. D.; Maron, L.; Szeto, K.; Genelot, M.; Mortreux, A.; Taoufik, M.; Delevoye, L.; Gauvin, R. M. 170 NMR Gives Unprecedented Insights into the Structure of Supported Catalysts and Their Interaction with the Silica Carrier. J. Am. Chem. Soc. **2012**, 134, 9263–9275.

(46) Grekov, D.; Vancompernolle, T.; Taoufik, M.; Delevoye, L.; Gauvin, R. M. Solid-state NMR of quadrupolar nuclei for investigations into supported organometallic catalysts: scope and frontiers. *Chem. Soc. Rev.* **2018**, *47*, 2572–2590.

(47) O'Keefe, C. A.; Johnston, K. E.; Sutter, K.; Autschbach, J.; Gauvin, R.; Trébosc, J.; Delevoye, L.; Popoff, N.; Taoufik, M.; Oudatchin, K.; Schurko, R. W. An Investigation of Chlorine Ligands in Transition-Metal Complexes via 35Cl Solid-State NMR and Density Functional Theory Calculations. *Inorg. Chem.* **2014**, *53*, 9581–9597.

(48) Medek, A.; Frydman, V.; Frydman, L. Central Transition Nuclear Magnetic Resonance in the Presence of Large Quadrupole Couplings: Cobalt-59 Nuclear Magnetic Resonance of Cobaltophthalocyanines. J. Phys. Chem. A **1999**, 103, 4830–4835.

(49) Schurko, R. W. Ultra-Wideline Solid-State NMR Spectroscopy. Acc. Chem. Res. 2013, 46, 1985–1995.

(50) Autschbach, J.; Zheng, S.; Schurko, R. W. Analysis of electric field gradient tensors at quadrupolar nuclei in common structural motifs. *Concepts Magn. Reson., Part A* **2010**, *36A*, 84–126.

(51) Srebro, M.; Autschbach, J. Computational Analysis of 47/49Ti NMR Shifts and Electric Field Gradient Tensors of Half-Titanocene Complexes: Structure–Bonding–Property Relationships. *Chem. - Eur. J.* **2013**, *19*, 12018–12033.

(52) Rossini, A. J.; Schurko, R. W. Experimental and Theoretical Studies of 45Sc NMR Interactions in Solids. J. Am. Chem. Soc. 2006, 128, 10391–10402.

(53) Giovine, R.; Volkringer, C.; Ashbrook, S. E.; Trébosc, J.; McKay, D.; Loiseau, T.; Amoureux, J.-P.; Lafon, O.; Pourpoint, F. Solid-State NMR Spectroscopy Proves the Presence of Pentacoordinated Sc Sites in MIL-100(Sc). *Chem. - Eur. J.* **2017**, *23*, 9525–9534.

(54) Vancompernolle, T.; Trivelli, X.; Delevoye, L.; Pourpoint, F.; Gauvin, R. M. On the use of solid-state 45Sc NMR for structural investigations of molecular and silica-supported scandium amide catalysts. *Dalton Trans.* **2017**, *46*, 13176–13179.

(55) Culver, D. B.; Huynh, W.; Tafazolian, H.; Ong, T.-C.; Conley, M. P. The β -Agostic Structure in (C5Me5)2Sc(CH2CH3): Solid-State NMR Studies of (C5Me5)2Sc-R (R = Me, Ph, Et). Angew. Chem., Int. Ed. 2018, 57, 9520–9523.

(56) Huynh, W.; Culver, D. B.; Tafazolian, H.; Conley, M. P. Solidstate 45Sc NMR studies of Cp*2Sc–X and Cp*2ScX(THF). *Dalton Transactions* **2018**, 47, 13063–13071.

(57) Rossini, A. J.; Mills, R. W.; Briscoe, G. A.; Norton, E. L.; Geier, S. J.; Hung, I.; Zheng, S.; Autschbach, J.; Schurko, R. W. Solid-State Chlorine NMR of Group IV Transition Metal Organometallic Complexes. J. Am. Chem. Soc. 2009, 131, 3317–3330.

(58) Rimola, A.; Costa, D.; Sodupe, M.; Lambert, J.-F.; Ugliengo, P. Silica Surface Features and Their Role in the Adsorption of Biomolecules: Computational Modeling and Experiments. *Chem. Rev.* **2013**, *113*, 4216–4313.

(59) Kerber, R. N.; Kermagoret, A.; Callens, E.; Florian, P.; Massiot, D.; Lesage, A.; Copéret, C.; Delbecq, F.; Rozanska, X.; Sautet, P. Nature and Structure of Aluminum Surface Sites Grafted on Silica from a Combination of High-Field Aluminum-27 Solid-State NMR Spectroscopy and First-Principles Calculations. *J. Am. Chem. Soc.* **2012**, *134*, 6767–6775.

(60) Kermagoret, A.; Kerber, R. N.; Conley, M. P.; Callens, E.; Florian, P.; Massiot, D.; Delbecq, F. ß.; Rozanska, X.; Coperet, C.; Sautet, P. Chlorodiethylaluminum supported on silica: A dinuclear aluminum surface species with bridging u2-Cl-ligand as a highly efficient co-catalyst for the Ni-catalyzed dimerization of ethene. *J. Catal.* **2014**, *313*, 46–54.

(61) Poater, A.; Solans-Monfort, X.; Clot, E.; Copéret, C.; Eisenstein, O. Understanding d0-Olefin Metathesis Catalysts: Which Metal, Which Ligands? J. Am. Chem. Soc. 2007, 129, 8207–8216.

(62) Solans-Monfort, X.; Clot, E.; Copéret, C.; Eisenstein, O. d0 Re-Based Olefin Metathesis Catalysts, Re(=CR)(CHR)(X)(Y);,Äâ The Key Role of X and Y Ligands for Efficient Active Sites. J. Am. Chem. Soc. 2005, 127, 14015–14025.

(63) Estes, D. P.; Gordon, C. P.; Fedorov, A.; Liao, W. C.; Ehrhorn, H.; Bittner, C.; Zier, M. L.; Bockfeld, D.; Chan, K. W.; Eisenstein, O.; Raynaud, C.; Tamm, M.; Coperet, C. Molecular and Silica-Supported Molybdenum Alkyne Metathesis Catalysts: Influence of Electronics and Dynamics on Activity Revealed by Kinetics, Solid-State NMR,

1121

and Chemical Shift Analysis. J. Am. Chem. Soc. 2017, 139, 17597-17607.

(64) Halbert, S.; Coperet, C.; Raynaud, C.; Eisenstein, O. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts. *J. Am. Chem. Soc.* **2016**, 138, 2261–2272.

(65) Young, R. P.; Lewis, C. R.; Yang, C.; Wang, L.; Harper, J. K.; Mueller, L. J. TensorView: A software tool for displaying NMR tensors. *Magn. Reson. Chem.* **2019**, *57*, 211–223.

(66) Conley, M. P.; Rossini, A. J.; Comas-Vives, A.; Valla, M.; Casano, G.; Ouari, O.; Tordo, P.; Lesage, A.; Emsley, L.; Coperet, C. Silica-surface reorganization during organotin grafting evidenced by Sn-119 DNP SENS: a tandem reaction of gem-silanols and strained siloxane bridges. *Phys. Chem. Chem. Phys.* **2014**, *16*, 17822–17827.

(67) Lucken, E. A. C. Nuclear Quadrupole Coupling Constants; Academic Press, 1969.