Biomechanics and Modeling in Mechanobiology
https://doi.org/10.1007/510237-020-01290-y

ORIGINAL PAPER q

Check for
updates

To lead or to herd: optimal strategies for 3D collective migration of cell
clusters

Tyler A. Collins’ - Benjamin M. Yeoman' . Parag Katira'-

Received: 2 September 2019 / Accepted: 11 January 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Cells migrating in clusters play a significant role in a number of biological processes such as embryogenesis, wound healing,
and tumor metastasis during cancer progression. A variety of environmental and biochemical factors can influence the col-
lective migration of cells with differing degrees of cell autonomy and inter-cellular coupling strength. For example, weakly
coupled cells can move collectively under the influence of contact guidance from neighboring cells or the environment.
Alternatively strongly coupled cells might follow one or more leader cells to move as a single cohesive unit. Additionally,
chemical and mechanical signaling between these cells may alter the degree of coupling and determine effective cluster sizes.
Being able to understand this collective cell migration process is critical in the prediction and manipulation of outcomes of
key biological processes. Here we focus on understanding how various environmental and cellular factors influence small
clusters of cells migrating collectively within a 3D fibrous matrix. We combine existing knowledge of single-cell migration
in 2D and 3D environments, prior experimental observations of cell—cell interactions and collective migration, and a newly
developed stochastic model of cell migration in 3D matrices, to simulate the migration of cell clusters in different physi-
ologically relevant environments. Our results show that based on the extracellular environment and the strength of cell—cell
mechanical coupling, two distinct optimal approaches to driving collective cell migration emerge. The ability to effectively
employ these two distinct migration strategies might be critical for cells to collectively migrate through the heterogeneous
tissue environments within the body.
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1 Introduction In the first three processes mentioned above, cells move col-

lectively within sheets or at the boundary of a 2D sheet,

Collective cell migration is vital for physiological processes
such as tissue growth, morphogenesis, wound healing, and
cancer metastasis (Arima et al. 2011; Munjal and Lecuit
2014; Alexander et al. 2008; Gillitzer and Goebeler 2001).
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and the factors that drive these collective phenomena have
been widely described and studied (Petitjean et al. 2010;
Sepulveda et al. 2013; Vedula et al. 2012; Garcia et al. 2015;
Palamidessi et al. 2019). Primarily, guiding forces in these
cases come from neighboring non-motile cells providing
contact guidance, cell shape and polarity changes driven
by inter-cellular tension, forces from cell mitosis or cell
death, and chemotactic and durotactic signaling from the
environment (DuChez et al. 2019; Lo et al. 2000; Arrieu-
merlou and Meyer 2005; Parker et al. 2002; Cai et al. 2014;
Mansury et al. 2002; Robertson-Tessi et al. 2015). How-
ever, these scenarios are different from those encountered
during collective cell migration in 3D matrix like environ-
ments as observed during cancer metastasis. In the case of
metastasis, collective cell migration occurs either as long
finger-like protrusions emanating from the main tumor or as
small migrating clusters of cells that separate from the main
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tumor (Lambert et al. 2017). This collective dissemination
and migration of tumor cells enhances successful seeding at
a secondary tumor site (Wang et al. 2016). Here, we aim to
understand the factors that govern and promote the migra-
tion of small cell clusters in 3D matrices. Metastatic cancer
cells migrate through extracellular matrices (ECMs), which
can exhibit a range of different properties depending on the
tissue type (Wang et al. 2016; Nasrollahi and Pathak 2016).
ECM properties that play a significant role in cell migration
are stiffness (Wu et al. 2014; Plotnikov et al. 2012), fiber
density (Carey et al. 2012), fiber alignment (Fraley et al.
2015), ECM porosity (Ilina et al. 2011), bond density (Bur-
gess et al. 2000), and chemical signaling (Carey et al. 2012;
Fraley et al. 2015). In addition, cell properties also affect
migration, such as proteolytic ability (Levental et al. 2009),
cell stiffness (Lange and Fabry 2013), cell mechanoactivity
(Bosgraaf and Van Haastert 2009), and expression levels of
cell—cell and cell-ECM adhesion receptors (Gallant et al.
2005). Additionally, in vivo and in vitro studies have shown
that collectives are led by phenotypically different “leader”
cells with “follower” cells trailing behind (Friedl and Mayor
2017). Leader cells exhibit characteristics that are mesen-
chymal-like—softer, fluidized cells with high mechanical
activity (Wolf et al. 2007; Cross et al. 2008), whereas fol-
lower cells resemble an epithelial phenotype—stiffer cells
with low mechanical activity (Saez et al. 2005). The transi-
tion of cells from an epithelial to a mesenchymal phenotype
(EMT) is often regarded as the proximate cause of cancer
metastasis. During EMT, downregulation of adheren junc-
tions decreases cell—cell adhesion, which when coupled with
increased mechanoactivity drives cell migration (Nasrollahi
and Pathak 2016). EMT is a dynamic bidirectional process
that does not always run to completion (Lambert et al. 2017).
As such, clusters of metastatic cancer cells may experience
phenotypically dynamic states, where followers transition
into leaders as directed by extracellular and inter-cellular
signaling. For example, followers transition to leaders when
bound to ECM integrins in the front and cell cadherins in the
rear (Kato et al. 2014). Furthermore, the presence of cancer-
associated fibroblasts (CAFs) promotes transitioning into a
leader phenotype (An et al. 2013). CAFs increase collective
cell migration by realigning local tumor environments with
tube-like pathways of highly aligned fibers (Gaggioli et al.
2007). Alternatively, only partial EMT of all cells might
result in the absence of well-defined leader cells (Bronsert
et al. 2014).

We investigate how cell clusters with or without defined
leader cells migrate within different ECM environments
using stochastic simulations of cell-cell and cell-ECM
interactions. Our approach builds on existing in silico
models (Frascoli et al. 2013; Mousavi et al. 2014; Drasdo
and Hoehme 2012; Chen and Zou 2017) by adding a num-
ber of unique features as detailed below. We employ a 3D
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computational model that simulates long-term (> 48-h real
time) cell-matrix and cell-cell interactions to track collec-
tive migration in a fiber-based 3D environment. Factors
affecting migration such as bond density, fiber direction,
fiber density, cell mechanoactivity, pseudopod protrusion
frequency, protrusion length, active contractility, proteo-
lytic activity, transmission of active forces and biochemi-
cal signals from leader cells to follower cells, and passive
adhesive and elastic forces between cells are some of the
key tunable parameters within the model. Using this model,
we determine optimal migration environments by modulat-
ing the fiber density, fiber alignment, adhesion strength, and
cluster size parameters. Additionally, we test two distinct
cluster migration scenarios—(1) a defined leader phenotype
that is maintained for the duration of the simulation (48 h)
drives the cluster, while the rest of the cells are purely fol-
lower cells (Fig. 1a and Video S1), and (2) peripheral cells in
contact with the matrix elements can easily switch in and out
of leading phenotype (Fig. 1b and Video S2). We find that
the leader and follower dynamics are an important feature
for collective cell migration. While the exact mechanics of
cell migration are still not well known, evidence for both
these scenarios of defined one or two leaders driving small
clusters (Bianco et al. 2007) or undefined leadership such as
the phenotypic variability for cells in collectives undergo-
ing EMT, embryonic development, and migration through
dynamic ECM environments can be found in the literature
(Friedl and Mayor 2017; Ewald et al. 2008; Jakobsson et al.
2010).

Defined Leader

Fig. 1 Cartoon showing two collective cell migration types. a Cluster
cell migration with a defined leader where a single cell maintains the
leader phenotype (blue cell) for the duration of migration. The path it
migrates is traced out by the purple line. b Switching leader scenario
where the cells can switch between the leader and the follower pheno-
type depending on their migration phase. Only one cell can have the
leader phenotype at a given point in time, but the cell does not main-
tain this phenotype. First leader traces the purple path while the sec-
ond leader traces the green path and so on
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2 Methods

The proposed mathematical migration model was devel-
oped from our previous single-cell migration model (Yeo-
man and Katira 2018) and an altered multi-cell model pro-
posed by Palsson (2008). Here we summarize the salient
features of the combined model.

In Yeoman and Katira (2018), we presented a simula-
tion setup to predict cell migration in 3D matrix environ-
ments as a function of cell and ECM mechanical properties
such as adhesion strength, active contractility, mechano-
activity, matrix fiber density, fiber diameter distribution,
fiber alignment, matrix stiffness, and the presence of
chemotactic signaling. This setup is as follows: (1) Cells
migrate by extending pseudopods along the length of the
matrix fibers it is interacting with (Kim et al. 2015). (2)
The fiber along which a new pseudopod extends is selected
based on its proximity to the preferred direction of motion
as determined by cell polarity and case cell shape. (3) The
cell shape, which varies between elongated and rounded,
is determined as a function of the alignment between the
fibers the cells are in contact with, cell-matrix adhesion
strength, contractile force exerted by the cell, and the stift-
ness of the matrix (Ahmadzadeh et al. 2017). (4) The fib-
ers in this simulation setup are generated on an as-needed
basis, stochastically, using the fiber density distribution,
fiber diameter distribution, and fiber alignment angle dis-
tribution of the simulated matrix. This allows for a rapid
simulation of cell-fiber interactions with a handful of fib-
ers it is currently interacting with and allows for long-
term cell migration predictions within 3D environments.
(5) Gradients in fiber density or stiffness can be introduced
by changing the local averages of the distributions from
which new fiber and cross-links along these fibers are sto-
chastically generated. Additional details on the single-cell
stochastic migration model can be found in Yeoman and
Katira (2018).

We modify this existing setup to allow for cell—cell
interactions and the altered dynamics of leader and fol-
lower cells. Additionally, we calculate our cell shape dif-
ferently from that described above, with shape dependent
on the whether a cell is leading or following. The steps of
the algorithm can be seen in the model summary Fig. 2.
The starting point for this algorithm is the ECM fiber
generation. Fibers are stochastically generated as needed
and are populated with a random distribution of bind-
ing sites. The cells then react to the number of binding
sites on the fiber they are extending a pseudopod along
by entering one of three phases: retraction, outgrowth,
or contraction. The cells are initialized in the retraction
phase and can enter the other phases depending on the
number of bonds between the pseudopod tip and fiber.

During outgrowth, the cell extends its pseudopod by an
incremental distance each time step, and the number of
bonds between pseudopod tip and fiber is counted. If the
number of bonds is above a maximum threshold, then
the cell will enter contraction; if the number of bonds
is below a minimum threshold, then the cell will enter
retraction. Alternatively, cells will switch from outgrowth
to retraction phase if the pseudopod has been extending
for a certain stochastically determined time. Fiber cross-
links are randomly distributed along the length of a fiber
when it is stochastically generated. If a fiber cross-link
is reached, then the cell is likely to continue outgrowth
along the obtuse angle between the current fiber and a
new stochastically generated fiber. During retraction, the
current pseudopod shrinks, while a new pseudopod under-
goes outgrowth. The new pseudopod may grow along the
existing fiber in the reverse direction with a 20% chance
or grow along a new fiber stochastically generated with
an 80% chance. In the collective cell migration model, all
cells can enter the outgrowth and retraction phases. How-
ever, only leader cells can enter the contraction phase if
the growing pseudopod encounters enough binding sites.
Cells are assigned as followers when another cell in the
cluster has become a leader. Determination of the leader
cell phenotype is described later in this section. During the
contraction phase, an active force, Fi.‘“t, is generated along
the pseudopod vector. The pseudopod contracts in length,
dragging the cell center forward under the action of the
active force. Active migration force is a function of the
number of adhesions between the pseudopod and the fiber
it is attached to, the matrix stiffness, and cell contractil-
ity (Yeoman and Katira 2018). As the cell center moves
forward, the pseudopod length decreases, and when the
pseudopod length reaches zero (or a minimum threshold),
the cell enters retraction.

2.1 Modeling cell-cell interactions

Cell—cell interaction forces, section A in Fig. 2, are deter-
mined by calculating the distance from one cell center to
every other cell center, or ry. If r; < dj, then the cells
are considered to be in contact and passive forces will be
calculated between cells i and j. A 2D representation of
the adhesive and compressive passive forces can be seen
in Fig. 3. The equations used to compute the passive forces

are (Palsson 2008):

- Fcompressive = Fcompx(_xij)S/z’ x<0
Fsts ={F = _Fadh)((xij +xp) ... (D)

adhesive
2 — X‘Z
e~ M+xg)” _ vy A it, x>0
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Fig.2 Flowchart for collective cell migration algorithm. Green boxes represent the contracting phase, blue boxes represent the outgrowth phase,
and red boxes represent the retracting phase. The inset “A” is where forces acting on the cells in the cluster are calculated
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s L v v i T

Adhesive Forces

Fig.3 Schematic showing how forces are transmitted through a clus-
ter. a The leading cell transmits adhesive force through adheren junc-
tions between cells, pulling along the follower cells behind it. b Com-
pressive forces are transmitted between cells if the cell movement is
blocked by a neighboring cell

The scalar passive force, Fl’.;ass, is continuous at x = 0, and,
depending on x;;, the passive force is either positive or nega-
tive. Feompressive 18 the passive force pushing two cells away
from each other, and F g ;.. pulls cells toward one another.

Fomp 18 @ compressive force constant, y is an orientation
factor, x; is an adjusted cell-cell distance factor. Fq, is an
adhesive force constant, x;, and v, are constants for continu-
ity, and A is a strength constant.

The orientation factor is solved with:

_rcell l_'_l
*=5\a"a @

i J

reen 18 the average cell radius, d; and d; is the distance from
cell center to cell membrane along the r;; unit vector.
The calculation for x;; is:

dl-j — Mming;y

Xy = ——— 3)

Teell

d,_./. is the distance from cell membrane to cell mem-

brane along the r; unit vector, mingg is a value derived
from the minimum radius from packing deformed

incompressible ellipsoids into a fixed space and that comes
out to ming &~ — 0.1 * rg;.

The calculation for the constants x; and v is:

1
= P 4
Xo 22 “
—Ax2
VO =.er 0 (5)

The following equation determines the passive force vector
with:

pass __ ppass rij

i =T gl (6)

3

The magnitude of the force is multiplied by the unit vector
from the center of cell i to cell j, and Fz.ass is the passive force
between cell i and cell j.

The net force per cell, F?et, is calculated here:

met __ act pass
F=F< 4+ ) B

JEN()

)

F?C‘ is the force vector generated during the contraction
phase of a cell.

act _ Fokgemlo,i b
Y Fo+keemlo;  llpsll

®)

This force is determined with, lO,i’ the protrusion length of
a cell’s extending pseudopod, F);, the maximum contractile
force in the pseudopod, and is multiplied by the extending
pseudopod’s unit vector. p; is the vector for cell i’s extend-
ing pseudopod. The contractile force, F, is calculated here:

F

_ S max Iy

Fo= n,+ni ®
2

where n, is the number of bonds between the pseudopod and
ECM fiber, and n1, is the cell-ECM bond density at which
2

the generated force is half of F .

The drag force per cell, F?, is based on the cell-cell com-
mon surface area and cell-matrix common surface area, and
is calculated here:

. A
F) = ”s%vi the Y, i) (10)
JEN()
The first term on the right is the drag force from cell-bond
interactions of the ECM, and the second term on the right
is the drag force from cells moving past one another. The
constant 4 is the viscosity coefficient for cell-matrix inter-
actions, 4, is the viscosity coefficient for cell-cell interac-
tions, A is the total surface area of the cell, A;;and A; are the
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common surface areas between the cell and the matrix, and
cell and cell, respectively. j € N(i) denotes that all neigh-
bors of i are j, so the summation is only for cells in contact
of cell i. v; and v; are the vector velocities of cells i and j,
respectively.

The calculation for common surface area between cells is:

sf+ ren((1/d) + (1/d)))

A;; = 0.25exp(—5(x; — ming)*) X e

D
sf is a surface factor and was left at 1 for simplicity, found
in Palsson (2001).

The velocity of each cell is determined from the following
sets of equations:

1

vi| [SE; - SN[ '[Fe
3 E ; (12)
vi | |sNy - SE;| | P
SE; =fy +/, (13)
Ay
SN, =He (14)
; kecmk;
Jo =ny 15
b (kgem + kkog (1
fo =6anK’ (16)

After expanding out the drag force equation for each cell, the
values for each drag coefficient can be grouped into either
SE;; or SN;;, with one being the friction surrounding cell i or
the friction between cells i and j, respectively. Matrix divi-
sion is used to solve for the velocity. The proposed model
for SE;; substitutes in f;, and f, for the frictional calculation
in Palsson (2008) because using a friction coefficient based
on the number of bonds, rather than a viscosity-based coef-
ficient from cells moving past ECM seems more appealing
when considering that the bond information is readily availa-
ble in the model. f, is an adjusted frictional component from
Yeoman and Katira (2018) with the removal of an exponen-
tial factor. ni)r is the number of bonds made between a cell
and ECM fibers, kg is an ECM spring constant, k; is the
cell-matrix bond stiffness, and k. is a cell-matrix dissocia-
tion rate. f, is a viscous frictional component,  is the ECM
viscosity, and K, is a drag adjustment factor.

The change in position r; of the cell center of cell i is then
simply obtained by:

Ar; = v;At a7
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where At is the simulation time step. (Optimal time step of
2 s determined previously in Yeoman and Katira (2018) is
used.)

2.2 Quantifying migration

The algorithm shown in Fig. 2 and the equations described
above are used to calculate the position of every cell at every
time step. The overall center of mass of the cluster is tracked
and its trajectory is analyzed using different approaches as
it migrates (Dickinson and Tranquillo 1993). The four main
characteristics evaluated are mean squared displacement
(MSD), cluster speed, persistence length, and lifetime. MSD
is obtained between non-overlapping points at specific time
intervals along the trajectory. We fit this MSD (R?) vs time
interval data to find the motility coefficient, y, and exponent,
a (Yeoman and Katira 2018). Using the motility coefficient
and the exponent, an effective MSD of that particular cluster
over the cluster’s lifetime 7 is back calculated using:

(R*) = u(T))" (18)

This is repeated for 10 instances of cluster migration, with
every combination of environmental and cell-cell adhesion
parameter tested. Sample MSD for cluster trajectories are
shown in Supplementary Figures S1 and S2.

Cluster speed is calculated by averaging the instantaneous
velocity of each cell in the cluster at each time step. We use
cluster speed to show us how quickly a cluster is migrating
through the ECM. Lifetime is the simulated time that it takes
for a single cell to break away from the cluster. We use this
as a metric for determining how well a cluster stays together
in certain ECM conditions. Persistence length indicates the
distance over which a cluster maintains its directionality of
migration. Persistence length L, was calculated by fitting
MSD vs contour length data to Eq. 19 using a nonlinear least
squares regression:

L i
<R2>=2L§<L—p—1+e ') (19)

The maximum contour length L used was 10 pm. High per-
sistence values indicate that the clusters are migrating with
little change in a particular direction of travel, while low
values tell us that the cluster changes the direction often.

2.3 Leader scenarios

Clusters of cells are driven by two different scenarios—
defined single leader and switching leaders. For a defined
leader, the same cell continues as the leader throughout the
simulation, while the remaining cells are labeled as fol-
lowers. For the switching leader scenario, there is a set of
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rules in place to select the leader during each time step. Any
cell can be the leader, but only one leader can be active at
a time. The leader cell is selected when a cell enters con-
traction before any other cell in the cluster. If two or more
cells enter contraction during a time step, then leadership
is randomized. If the current leader and another cell enter
contraction during a time step, then the current leader keeps
leadership. Followers are able to enter retraction and out-
growth, but cannot enter contraction. Followers also take
on a spherical shape, while leaders have an ellipsoidal front
and spherical rear.

2.4 Generation of the 2-phase optimal migration
plots

Figure 5a—d shows a heat map generated by a thin-plate
spline fit to the data in Supplementary Figures S3 and S4.
However, only the migration strategy with the higher MSD
is plotted on the heat map to show which behavior dominates
in any given region, with blue representing cluster migration
strategy with a defined leader and red representing cluster
migration strategy with switching leaders.

Table 1 Simulation parameters

2.5 Model validation

The model parameters are obtained from previously pub-
lished experimental and theoretical studies (Table 1). The
model equations are also based on the previously published
theoretical work. The model predicts cluster cell migration
speeds on the order of 1-50 pm/h , and clusters migrate
distances on the order of a few hundred micrometers without
breaking. These values seem reasonable (Friedl et al. 1995;
Carmona-Fontaine et al. 2008; Cai et al. 2016). Additionally,
the model predicts biphasic relationship for MSD, speed,
and persistence length as a function of fiber density, which is
consistently observed in typical single-cell migration studies
(Burgess et al. 2000; Zaman et al. 2006; Palecek et al. 1997,
DiMilla et al. 1991; Gaudet et al. 2003). As shown in Fig. 4
and Supplementary Figures S3 and S4, our model predicts
these biphasic trends for migration with both, defined leader
and switching leader strategies. Beyond this, it has been hard
to find quantitative cluster cell migration data in the litera-
ture to validate other key predictions of our model.

Parameter Description Value References

A Surface area of the cell (um?) Calculated Geometry

Apgeudo Pseudopod area in contact with local fiber (um?) ~0.3 Lusche et al. (2009), Cooper (2007)

Al Fiber alignment index 0-0.8 Sun et al. (2015)

Fax Max. active force (nN) 10 Du Roure et al. (2005), Abraham et al. (1999) and
Ananthakrishnan and Ehrlicher (2007)

Pliber Fiber density of the ECM (fibers/pum?) > 0.002 Harjanto and Zaman (2013)

Feomp Compressive force factor (N) 30% 1077 Knutsdottir et al. (2016)

Foan Adhesive force factor (N) 25 % 107°-10 x 10~%  Palsson (2008)

Teell Cell radius (pm) 7.5 Palsson (2008)

A Strength constant 7 Palsson (2008)

n{“ Bonds at rear of cell Calculated Yeoman and Katira (2018)

kgem Stiffness of the ECM (N/pm) Calculated Yeoman and Katira (2018), Zaman et al. (2005),
Bruinsma (2005) and Zaman et al. (2006)

k; Stiffness of cell-ECM bond (nN/pm) 0.25x 107° Erdmann and Schwarz (2006)

ko Cell-ECM unbinding rate under zero force conditions 0.1-100 Bruinsma (2005), Taubenberger et al. (2007) and Li

™ et al. (2003)

K’ Drag adjustment factor Calculated Yeoman and Katira (2018)

n ECM viscosity (nN*s/pm?) ~ 10710 Zaman et al. (2005)

U Cell—cell viscosity (N*s/pum) 2.5%x 1077 Palsson (2008)

H Cell-surface viscosity (N*s/pm) 8x 1078 Palsson (2008)

Ayreax Cluster inclusion distance (um) 2X T +5.5 Estimated

n, Avg. number of binding sites per [, Calculated Yeoman and Katira (2018)

ni Cell-ECM bond density at which the generated force 100 Bruinsma (2005)

is half of F .,
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Fig.4 Effect of fiber density on MSD, cluster lifetime, cluster speed,
and persistence length for various cluster sizes for a defined leader
cluster migration strategy. a MSD as a function of fiber density.
b Cluster lifetime as a function of fiber density. ¢ Cluster speed as
a function of fiber density. d Persistence as a function of fiber den-
sity. Blue line is a 3-cell cluster, green line is a 5-cell cluster, and red
line is a 10-cell cluster. Fiber density was increased linearly from
0.5 % 1073 to 2 x 1073 fibers/pum?3. Cell—cell adhesion was set to mod-
erate (50 nN cell—cell dissociation force). Ten simulations for each
scenario were run at each fiber density and run for 48 h of simulated
time or until cluster dissociation. Error bars represent + SEM

3 Results

The primary result of our model is that for different levels of
cell—cell adhesion, fiber alignment, cluster size, and either
of the two cluster migration scenarios described above, cell
migration distance shows a biphasic relationship with fiber
density (Figs. S3 and S4). There seems to be an optimal
ECM density ideal for cluster cell migration for every dif-
ferent combination of environmental and cellular condi-
tions. This is along the lines of the biphasic relationship
reported previously between migration distance and ECM
density for single-cell migration. More importantly, our
results show that for cluster cell migration, there are unique
environmental and cellular conditions where one of the two
migration strategies clearly outperforms the other (Fig. 5).
(1) Cluster cell migration with a defined leader cell (migra-
tion scenario 1, blue region in Fig. 5) is ideal for clusters
with high cell-cell adhesion migrating in high fiber density
environments and preferable fiber alignment. (2) Cluster cell
migration where the cells switch between leader and fol-
lower phenotypes (migration scenario 2, red region in Fig. 5)
is ideal for clusters with low-to-intermediate cell-cell adhe-
sion migrating in low fiber density environments.
Analyzing the results in further detail, when inter-cellular
adhesion is low, corresponding to low cadherin expression
(with a cell-cell separation force of ~ 25 nN) (Chu et al.
2004), the MSD is significantly higher for clusters able to
switch between leaders (cluster migration scenario 2) in
both aligned and unaligned low-density matrices (Fig. 6a,
red and orange lines). The radar plots in Fig. 6b, d, f show
how cluster speed, persistence, and lifetime are also affected
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collected at 3 cell-cell adhesion ’%“ 90 EC‘ 90
levels and 5 fiber density levels. = 80 = 80
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by the fiber density and cell-cell adhesion strength. When
cell—cell adhesion is low in low fiber density environments,
cluster lifetime and persistence are similar for both lead-
ing scenarios in aligned and unaligned matrices (Fig. 6b).
Persistence is about twice as high for clusters with a defined
leader in aligned matrices, but the higher cluster speed for
clusters with no defined leader is greater by more than a fac-
tor of 4, leading to a higher migratory efficiency (Fig. 6b).
In less dense environments, the ability to switch between
leaders allows the cluster to overcome the sparsity of bind-
ing sites and probe a larger region of space. The cluster can
more quickly find fibers with sufficient binding sites for
force generation and displacement. Interestingly, the ability
to switch between leaders also helps redistribute the migra-
tion forces evenly between the loosely bound cells, allowing
the cells to stay clustered together even in high-density envi-
ronments. We attribute this to a herding effect, which can be

15 2 Lifetime (hr)

%1073

enhanced by increasing the number of cells in the cluster,
thereby increasing the lifetime of the cluster (Fig. S5A).
On the other hand, when there is single leader driving the
cluster of loosely bound cells in high-density environments,
the leader cell is more likely to break off quickly from the
main cluster due to a buildup of migration forces between
the cell—cell interface of the leader and follower cells (Fig.
S5B). (Figure 6d shows the difference in lifetimes of loosely
bound clusters migrating in high-density environments for
both migration scenarios.)

As inter-cellular adhesion increases, cell migration with a
single defined leader becomes more advantageous in denser
matrices (Fig. 6¢ dark and light blue lines). Cluster speed is
higher for clusters with undefined leaders for the same rea-
sons as in less dense matrices, but the persistence decreases
due to an increased probability of changing direction as the
leaders switch between peripheral cells (Fig. 6d). A single
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leader in these cases allows for a more persistent migration,
while the higher adhesion between the cells allows for cluster
to hold up against the increased migration forces.

When the cell—cell separation force exceeds 50 nN, clus-
ter migration driven by a single defined leader becomes
even more advantageous in matrices with high fiber density
(Fig. 6¢e). Single leader clusters migrate more persistently,
especially with highly aligned fibers, through matrices
with high fiber density and therefore have a higher MSD
(Fig. 6f). When the cluster’s leader is undefined, the cluster’s
migration direction will change every time the leading cell
switches, thus reducing the migratory efficiency (Fig. 6f).
Interestingly, cluster migration driven by switching leaders
loses its edge in keeping the cluster together in high-density
environments as well (Fig. 6f). Because all the peripheral
cells can generate migratory forces, the likelihood that one
of them generates strong enough forces to rip it apart from
its neighbors goes up as compared to the case where only
one leader cell is dragging the cluster behind it.

The single leader migration scenario is more suited to take
advantage of fiber alignment, especially for high adhesion
strength clusters in high-density environments (Fig. 6a, e).
This is again because having a single leader allows the cluster
to migrate more persistently along aligned fibers (Fig. 6b, d,
). However, at intermediate and low adhesion strengths, the
fiber alignment in high-density environments stretches out
the cluster more along the persistent migration path, straining
the contact between the leader and the follower cells. This
increases the likelihood of the cluster disintegrating, lowering
the cluster lifetime and overall migration distance (Fig. 6¢).

Overall, the smaller five-cell clusters have a higher MSD
than the larger 10-cell clusters because they experience
less drag as they migrate through the ECM. Cluster speed
increases with increased cell-cell adhesion because the
cluster becomes more compact as the trailing cells migrate
closer to the leading cell. Regardless of cluster size, clusters
with an undefined leader have a greater migratory efficiency
in regions of low fiber density at any cell-cell adhesion
strength, in both aligned and unaligned ECMs. Having a
defined leader is favored when both adhesion and fiber den-
sity are high, and this type of migration is enhanced when
the fibers are aligned.

4 Discussion

Clusters that are driven by a defined leader cell (scenario
1) are akin to animal foraging behaviors commonly seen
in certain bees, ants, and fish species (Reebs 2000; Couzin
et al. 2005; Sumpter 2006), where a single or a few leaders
act as catalysts for coordinating directionality. A minority
of defined leaders within a collective can enhance group
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movement in a single direction. However, this requires sig-
nal transmission (chemical, mechanical or otherwise) from
the leader(s) to the rest of the collective and can become less
effective as the overall size of the collective grows. Alter-
natively, clusters driven by switching leaders between all
peripheral cells (scenario 2) are akin to herding that can give
rise to self-organization in flocks of starlings or schools of
fish (Sumpter 2006; Cavagna et al. 2010; Goodenough et al.
2017). Neighbor mimicking and distributed decision making
are two behavior patterns reminiscent of herding. Neighbor
mimicking helps align the motion of individuals, leading to
more cohesive moments that helps maintain the integrity of
mass-migrating groups (Buhl et al. 2006). Distributed deci-
sion making on the other hand can allow the collective to
evaluate and choose from alternatives to increase migration
efficiency (Mallon 2001).

To our knowledge, this study is the first to show that
under certain environmental conditions, leading- and herd-
ing-like behaviors that are similar to the self-organizing,
active systems seen throughout the animal kingdom can
differentially dominate and govern optimal strategies in
relatively small collectives of cells migrating through a 3D
ECM. In extracellular matrices where fibrous proteins are
scarce, for clusters with the ability to switch between lead-
ers, multiple cells can probe the environment to overcome
the scarcity of binding sites. By sharing the role of finding
a sufficient number of binding sites for displacement, the
cluster spends less time searching than a cluster with a sin-
gle leader. In fiber dense environments, the more strategic
behavior is dependent on cell-cell adhesion strength and
the force required to separate two cells. For clusters with
low cell—cell adhesion, herding occurs when leadership can
switch between cells. The peripheral cells in these clusters
nudge their neighbors toward the cluster’s center, generating
compressive forces between neighboring cells. This helps
align their motion to their nearest neighbor, leading to more
cohesive movements that help maintain the cluster stability
and extend the cluster lifetime. The advantages of defined
leadership only become apparent when cell—cell adhesion
is high enough, and motion of the leader can be transmitted
farther along the follower cells effectively. High adhesion
greatly improves the migratory efficiency in dense ECM by
allowing a single leader to maintain its directional persis-
tence for longer, especially in environments with high fiber
alignment.

Our results show that collective cell migration is pos-
sible for significant distances, even when cells only weakly
couple with each other. Under these conditions where cluster
dissociation and single-cell migration would be expected,
collective migration can be maintained by herding-like
behavior. Because small clusters of cancer cells are more
likely to establish secondary tumor sites, herding and
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self-organization of migrating cancer cells may increase
metastatic potential in unfavorable environmental condi-
tions. Furthermore, collective cell migration is also possible
and may be beneficial in low fiber density environments. In
these environments, cells in a cluster are together able to
probe a larger volume of the ECM for binding sites than an
individual cell, and therefore, decision making for move-
ment is faster.

The results presented here are based on cells display-
ing a predefined migratory phenotype. For example, in a
single defined leader scenario, the leader cell may be a
cell that has undergone EMT and pulls along a group of
cells that have remained epithelial, whereas if all cells
have undergone partial EMT, they can switch between
different leaders. However, the model presented here
also provides a platform to examine how genotypic and
phenotypic changes can alter individual and collective
cell migration and examine whether these changes are
specifically targeted to promote any particular migra-
tion scenario to suit a particular outcome. Studies have
shown that genetic regulators can activate partial EMT
and collective cell migration during metastases in Dros-
ophila intestinal tumors (Campbell et al. 2017). Cells
are known to downregulate cell-cell adhesion proteins
during EMT (Nasrollahi and Pathak 2016), so the extent
of this regulation may be important for the metastatic
potential of a tumor depending on the properties of the
extracellular environment around the tumor (Vander-
Vorst et al. 2019). Other recent experimental studies
have also shown that the matrix architectural context
can drive phenotypic changes in cellular phenotype that
influences migratory behavior (Velez et al. 2017; Morris
et al. 2016). In the future, we hope to couple the model
presented here with intra- and extracellular signaling-
driven temporal changes in cellular genotype, phenotype
and consequently mechanotype to examine how migrat-
ing cellular collectives may adapt to different extracel-
lular environments.

5 Conclusions

We present a model that can simulate collective cell migra-
tion long term in 3D with both cell-cell and cell-ECM
interactions. Although validation of the model is limited
due to the difficulty of performing 3D cluster migra-
tion assays, we believe that this physics-based approach
works well as an accurate predictive tool for experimental
research. Furthermore, the model allows for perturbations
to be easily introduced for several parameters affecting cell
and ECM properties to study how cellular clusters might
optimize the leader—follower dynamics to better adapt for

movement through their given environment. Leader—fol-
lower dynamics play an important role in any form of col-
lective migration and further research to interrogate which
cell types and genetic regulators give rise to the different
leading scenarios could present new targets for inhibiting
cancer metastasis. Our results highlight some of the migra-
tory phenotypes that should be looked into for in vitro and
clinical settings and present possible prognostic pheno-
types that could be identified prior to aggressive cancer
treatments.
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