

1 **Pulverized granite at the brittle-ductile transition: An example from**
2 **the Kellyland fault zone, eastern Maine, U.S.A.**

3 Walter A. Sullivan¹ and Emily M. Peterman²

4 ¹Department of Geology, Colby College, 5800 Mayflower Hill, Waterville, Maine 04901, USA

5 ²Department of Earth and Oceanographic Sciences, Bowdoin College, 6800 College Station,
6 Brunswick, Maine 04011, USA

7 **Abstract**

8 Granite from a 50–200-m-wide damage zone adjacent to the brittle-ductile Kellyland Fault Zone
9 contains healed fracture networks that exhibit almost all of the characteristics of dynamically
10 pulverized rocks. Fracture networks exhibit only weak preferred orientations, are mutually cross-
11 cutting, separate jigsaw-like interlocking fragments, and are associated with recrystallized areas
12 likely derived from pervasively comminuted material. Fracture networks in samples with primary
13 igneous grain shapes further indicate pulverization. Minimum fracture densities in microcline are
14 ~100 mm/mm². Larger fractures in microcline and quartz are sometimes marked by neoblasts,
15 but most fractures are optically continuous with host grains and only visible in
16 cathodoluminescence images. Fractures in plagioclase are crystallographically controlled and
17 typically biotite filled. Petrologic observations and cross-cutting relationships between brittle
18 structures and mylonitic rocks show that fracturing occurred at temperatures of 400°C or more
19 and pressures of 200 MPa. These constraints extend the known range of pulverization to much
20 higher temperature and pressure conditions than previously thought possible. The mutually
21 cross-cutting healed fractures also provide the first record of repeated damage in pulverized
22 rocks. Furthermore, pulverization must have had a significant but transient effect on wall-rock

23 porosity, and biotite-filled fracture networks in plagioclase form weak zones that could
24 accommodate future strain localization.

25 **1. Introduction**

26 The high frequency of earthquakes along modern fault zones indicates that seismogenic
27 fault rocks should be ubiquitous in exhumed ancient faults. However, at our present level of
28 understanding, demonstrably seismogenic fault rocks appear rather rare. The apparent paucity
29 of seismogenic fault rocks is in part due to overprinting and recrystallization of seismogenic
30 rocks (e.g., Passchier, 1982, Price et al., 2012; Kirkpatrick and Rowe, 2013). However, we also
31 have historically overlooked and/or misinterpreted many fault rocks and fault structures that are
32 likely seismogenic (see recent review in Rowe and Griffith, 2015). For example, recent mapping
33 has identified 100–400-m-wide zones of dynamically pulverized rocks—damage-zone rocks that
34 exhibit intense fracturing and grain-size reduction yet record no appreciable shear offset—
35 adjacent to several large, active strike-slip fault zones, including the San Andreas Fault, the
36 Garlock Fault, and the Arima-Takatsuki Tectonic Line (e.g., Dor et al., 2006a, 2006b, 2008,
37 2009; Rockwell et al., 2009; Mitchell et al., 2011).

38 Theoretical considerations (Reches and Dewers, 2005), rock-deformation experiments
39 (e.g., Doan and Gary, 2009; Yuan et al., 2011; Doan and d'Hour, 2012; Aben et al., 2016), and
40 analyses of grain-size distributions (Wilson et al., 2005; Muto et al., 2015) are all consistent with
41 a seismogenic origin for pulverized rock. However, the exact seismic mechanism or
42 mechanisms leading to pulverization remain equivocal (see recent review in Xu and Ben-Zion,
43 2017). Pulverized rocks recognized along modern fault zones exhibit little or no healing, and
44 they commonly grade into fault cores dominated by incohesive gouge (Wilson et al., 2005; Dor
45 et al., 2006a, 2009; Rockwell et al., 2009; Mitchell et al., 2011; Wechsler et al., 2011; Rempe et
46 al., 2013; Muto et al., 2015). Additionally, very high-strain-rate axial compression experiments

47 using the split Hopkinson pressure-bar apparatus fail to produce pulverization at realistic strain
48 rates above 20 MPa confining pressures and fail to produce pulverization at any strain rate
49 above 60 MPa (Yuan et al., 2011). These observations have led to some speculation that
50 pulverization is only possible at very low confining pressures in the upper 2–4 km of the
51 earthquake source region (e.g., Dor et al., 2006a; Yuan et al., 2011; Fondriest et al., 2015).
52 Hence, constraining the maximum depth of pulverization is a critical factor in determining what
53 seismic mechanisms may drive the process. Currently, the two most widely invoked
54 mechanisms are rapid tensile loading on the high-seismic-velocity sides of bi-material ruptures
55 (e.g. Ben-Zion and Shi, 2005; Dor et al., 2006a; Xu and Ben-Zion, 2017), and passing Mach
56 fronts from super-shear ruptures (e.g. Doan and Gary, 2009; Yuan et al., 2011). Incipient
57 pulverization textures formed at confining pressures at or below the tensile strength of quartz
58 indicate that rapid compressional loading is also an important mechanism under at least some
59 conditions (Whearty et al., in press).

60 To date, pulverized rocks have been documented only along one ancient fault zone that
61 was exhumed from less than 2 km depth (Fondriest et al., 2015), and the potential for long-term
62 preservation of pulverized rock is unknown. However, recognizing pulverized rocks in damage
63 zones of ancient faults would help demonstrate seismogenic slip, and combining this
64 paleoseismic fingerprint with careful study of adjacent fault cores could improve our
65 understanding of the cryptic record of earthquakes in exhumed fault zones.

66 In this contribution we document damage-zone microstructures in granite adjacent to a
67 bi-material interface in the Paleozoic brittle-ductile Kellyland fault zone (KFZ). Preservation of
68 pulverization textures in the damage zone of the KFZ is significant because it: (a) extends the
69 known range of pulverization to much higher temperatures and higher confining pressures,
70 thereby providing some important constraints on the mechanism or mechanisms causing

71 pulverization, and (b) shows that dynamic pulverization textures can be preserved in ancient
72 inactive shear zones, despite complete healing in almost all grains.

73 **2. Geologic setting**

74 The KFZ is one of three strands of the Norumbega fault system in eastern Maine (Fig.
75 1). Like the San Andreas fault system, the Norumbega system formed parallel with a long-lived
76 active margin (e.g., Hatcher, 2010), cuts many arc- and oceanic-affinity accreted terranes as
77 well as plutonic rocks (e.g., Robinson et al., 1998; Ludman and West, 1999; Hibbard et al.,
78 2006), and offsets the seismic Moho (Costain et al., 1990; Doll et al., 1996). Regional mapping
79 and palinspastic reconstructions indicate that the KFZ accommodated at least 25 km of dextral
80 strike-slip motion (Wang and Ludman, 2004). In the area of this study, the KFZ forms a bi-
81 material interface juxtaposing chlorite-grade metasedimentary rocks of the Flume Ridge
82 Formation with the ca. 384-Ma Deblois granite pluton (Fig. 1) (Wang and Ludman, 2004; Wang,
83 2007). The Deblois pluton has a 0.5–1-km-wide contact areole (Ludman et al., 2000; Riley,
84 2004), and U-Pb-crystallization- and biotite-⁴⁰Ar/³⁹Ar-cooling ages of granite collected near the
85 study area are within error of each other (Idleman and Ludman 1998; Ludman et al., 1999;
86 Ludman et al., 2000), indicating rapid cooling and shallow emplacement.

87 Sullivan et al. (2013) recognized three strain facies in the KFZ cutting the Deblois
88 granite. From southeast to northwest these are: (1) a 2–3-km-wide belt of variably foliated to
89 undeformed granite called the foliated-granite domain, (2) a 100–300-m-wide belt of foliated-
90 granite cut by numerous small shear zones called the localized-shear-zone domain, and (3) a
91 200–400-m-wide belt of ultramylonite and minor mylonite derived from granite called the main-
92 ultramylonite domain (Fig. 1B). Bulk composition does not change between undeformed granite,
93 foliated-granite, and granite-derived ultramylonite (Sullivan et al., 2013).

94 Undeformed Deblois granite is texturally uniform and megacrystic to pegmatitic. It
95 contains perthitic microcline + quartz + oligoclase + biotite + hornblende; rapakivi overgrowths
96 of plagioclase on microcline are common (Riley, 2004; Wang, 2007). The foliated-granite
97 domain is marked by aligned feldspar megacrysts and weakly elongated quartz and biotite
98 grains, but many areas of this domain do not exhibit foliation. Quartz in this domain underwent
99 fast grain-boundary-migration recrystallization and often preserves chessboard-style subgrains
100 indicating high-temperature deformation (>600°C; Kruhl, 1996; Stipp et al., 2002; Sullivan et al.,
101 2013).

102 The localized-shear-zone domain consists of foliated-granite cut by numerous, discrete,
103 2-mm- to 1.5-m-wide steeply dipping mylonite and ultramylonite zones (Fig. 2A). Most shear
104 zones are bounded by at least one discrete fracture surface. These boundaries truncate wall-
105 rock foliations and individual mineral grains. Both synthetic and antithetic discrete brittle
106 fractures also cut the foliated granite, and many antithetic fractures root into localized shear
107 zones where they exhibit synthetic drag (Sullivan et al., 2013). Localized shear zones where
108 foliation planes are cut by brittle fractures have not been documented, but foliation in localized
109 shear zones sometimes bends around offset shear-zone boundaries. Sharp shear-zone
110 boundaries locally transition into discrete fractures. Probable recrystallized and deformed
111 pseudotachylite veins are preserved in some localized shear zones (Sullivan et al., 2013). The
112 ubiquitous association of shear zones with fractures, the presence of recrystallized and
113 deformed brittle fault rocks, and the composition and textures of mylonites and ultramylonites
114 described by Sullivan et al. (2013) indicate that ductile deformation in the localized shear zones
115 was catalyzed by grain-size reduction and mechanical mixing during brittle faulting. The
116 localized-shear-zone domain grades into the main-ultramylonite domain over 2–10 m (Fig. 1B).
117 Granite-derived ultramylonite does not contain brittle fractures like those observed in the
118 localized-shear-zone domain.

119 **3. Criteria for identifying pulverized rocks**

120 Samples of pulverized crystalline rock collected adjacent to modern fault zones exhibit a
121 characteristic suite of microstructural features that may be used to recognize ancient pulverized
122 rocks. These are: (a) primary grain shapes are preserved despite pervasive fracturing; (b)
123 dilational, opening-mode fractures are common; (c) primary quartz and feldspar grains host
124 zones of intensely comminuted material; (d) fracture sets have little or no preferred orientation
125 and form jigsaw-like interlocking fragments; (e) fractures typically do not offset primary
126 structures; and (f) there is little or no rotation of fragments across most fractures (c.f. Mitchell et
127 al., 2011; Wechsler et al., 2011; Rempe et al., 2013). These textures are typically gradational
128 with gouge and cataclasite in the fault core and intact rock outside of the damage zone (Dor et
129 al., 2006a, 2006b; Rockwell et al., 2009; Mitchell et al., 2011; Wechsler et al., 2011; Rempe et
130 al., 2013). Both experiments and observations of natural fault rocks indicate that healing of
131 fractures is rapid at temperatures typical of the brittle-ductile transition with smaller fractures
132 often healed in crystallographic continuity with their host grains (e.g., Küster et al., 2001;
133 Trepmann et al., 2007; Anders et al., 2014; Bestmann et al., 2016). Thus, repeated seismogenic
134 pulverization at elevated temperatures should produce multiple generations of opening-mode
135 fractures that cut healed fractures from earlier events.

136 Cataclasites, dynamic dilational breccias, and implosion breccias are also associated
137 with intense fracturing and grain-size reduction in or adjacent to large brittle-ductile fault zones.
138 However, each of these fault rocks can be distinguished from end-member dynamically
139 pulverized rock. Cataclasites exhibit offset and rotation of fragments, disaggregation of primary
140 textures, and through-going bands of fine-grained material (e.g., Sibson, 1977; Evans, 1988;
141 Blenkinsop, 1991; Nelis and Mosher, 1998). Fracturing and cataclasis of feldspars is considered
142 common in granite deformed under greenschist-facies conditions (e.g., Simpson, 1985; Tullis
143 and Yund, 1987), but formation of these fractures is associated with mesoscopic deformation of

144 the feldspar grains, foliation formation, and crystal-plastic deformation of quartz and biotite (e.g.,
145 Simpson, 1985; Gapais, 1989; Tullis, 2002). Dynamic dilatational breccias exhibit crackle to
146 mosaic textures with strong fracture preferred orientations and contain mesoscopic clasts
147 (Melosh et al., 2014). Implosion breccias are restricted to dilatational sites, typically contain
148 mesoscopic clasts, and host many veins (Sibson, 1986).

149 **4. Methods**

150 We examined granite specimens from throughout the localized-shear-zone domain and
151 adjacent foliated-granite domain and one granite sample collected ~4.9 km from the KFZ. To
152 minimize the complications of fracturing related to foliation development and/or overprinting by
153 later deformation, we focused our analyses on localities with no mesoscopic foliation or only
154 weak mesoscopic foliations. Polished thin sections of each sample were initially characterized
155 with a transmitted-light microscope and then carbon coated and analyzed using a Tescan
156 Vega3 scanning electron microscope equipped with a Tescan color cathodoluminescence (CL)
157 detector housed at Bowdoin College. The Color-CL detector can be operated in panchromatic-
158 CL or color-CL mode; in color-CL mode, dichroic filters are used to measure the light emitted
159 within red, green, and blue wavelengths to produce a color image. Color-CL and backscattered-
160 electron (BSE) images were collected from the same fields of view to assist in phase
161 identification. Color-CL images were collected using a working distance of 15 mm and
162 accelerating voltages of 18–20 kV for quartz and 18 kV for microcline and plagioclase. Because
163 CL intensity varied among grains within and across samples, contrast and brightness settings
164 were optimized to highlight variations in CL intensity within each grain. Thus, CL colors and CL
165 intensity cannot be directly compared among images.

166 Fracture maps of microcline grains were generated by tracing overlaid color-CL and BSE
167 images in Adobe Illustrator. Plagioclase in our samples has much lower CL intensities than

168 microcline, but similar CL colors. Hence, it was sometimes difficult to distinguish healed
169 fractures from long, thin perthitic exsolution lamellae. In these cases we did not digitize
170 questionable fracture/lamellae traces. It was also impossible to trace all fractures across large
171 exsolution lamellae or plagioclase inclusions, and fractures often could not be traced across
172 dark zones of recrystallized K-feldspar. Individual fractures were traced using successive
173 straight-line segments that approximate the curvature and irregularities of each fracture.
174 Fracture-orientation measurements were compiled from a unit circle in the center of each image.
175 Fracture traces were converted to a series of nodes in XY-coordinate space, and the orientation
176 of each straight-line segment was measured in sample coordinates using the MATLAB toolbox
177 FracPaQ (Healy et al., 2017). This method accounts for the nonlinearity of the fractures and
178 gives more weight to longer fractures that typically contain more line segments (Griffith et al.,
179 2010; Healy et al., 2017). Compiled fracture orientations are plotted on Rose diagrams with
180 each sector proportional to the frequency of orientations. As far as we are aware, FracPaQ does
181 not calculate average fracture densities for entire fracture maps or report the total length of
182 fracture segments. Therefore, average fracture densities were compiled by multiplying the total
183 number of segments by the average segment length in mm to obtain the total fracture length
184 and then dividing by the area of the inventory circle in mm². We interpret these as minimum
185 density measurements because fractures in some parts of each grain could not be mapped.

186 **5. Results**

187 *5.1. Station KL40*

188 *5.1.1. Sample KL40-2B*

189 Station KL40 is a 1-m² pavement outcrop of granite traversed by a 5–10-cm-wide,
190 northeast-striking, dextral mylonite/ultramylonite zone (Figs. 1B, 2) (Sullivan et al., 2013; their
191 Figures. 6C, 8). Sample KL40-2B spans the abrupt boundary between granite and the

192 mylonite/ultramylonite zone (Figs. 2A, 3A). Granite in KL40-2B is also traversed by a north-
193 northwest-striking sinistral transgranular shear fracture that offsets the edge of the
194 mylonite/ultramylonite zone but is deformed by it, and mylonitic fabrics grade into highly
195 fragmented quartz grains on one side of this shear fracture (Fig. 3A). Ultramylonite matrix in this
196 sample is biotite rich and quartz poor relative to the granite protolith (Sullivan et al., 2013),
197 which is consistent with disequilibrium melting (Spray, 2010). The composition and the
198 geometry of ultramylonite bands in the shear zone indicate that ultramylonite formed after
199 pseudotachylite.

200 Primary quartz domains in the granite of KL40-2B are divided into 0.5–3.5-mm-wide,
201 irregularly shaped to amoeboid grains that exhibit sweeping and/or patchy undulose extinction.
202 Boundaries of these grains are typically decorated with 5–20-µm-wide serrations and irregular
203 zones of 5–25-µm-wide neoblasts. All quartz grains are traversed by 10–50-µm-wide, planar or
204 curviplanar bands of 5–25-µm-wide quartz neoblasts and, locally, biotite that often cut quartz-
205 quartz and quartz-feldspar grain boundaries (Fig. 3B). Some grains also host irregularly shaped
206 zones of neoblasts that merge with the thin bands. These bands and irregular zones of
207 neoblasts resemble quartz microstructures formed by low-stress recrystallization after transient
208 high-stress crystal-plastic deformation and intragranular microfracturing (Trepmann et al., 2007;
209 Trepmann and Stöckert, 2013; Trepmann et al., 2017). At least some curviplanar bands of
210 neoblasts must be healed transgranular fractures because they cut quartz-quartz and quartz-
211 feldspar grain boundaries and/or contain biotite that requires a pathway for solution transfer.
212 Close association of neoblast bands with the larger shear fracture in this sample (Fig. 3B) also
213 supports a healed-fracture origin for these microstructures. Both large quartz grains and
214 neoblasts in this sample are CL-dark in panchromatic-CL and color-CL images. Quartz formed
215 under typical magmatic conditions is usually CL-bright because of high concentrations of Ti
216 (Spear and Wark, 2009; Leeman et al., 2012; Mills et al., 2017; see also Götze et al., 2001).

217 However, deformed or recrystallized quartz yields comparatively lower CL intensity, in part due
218 to lower Ti solubility in quartz with decreasing temperature and increasing lattice strain (Wark
219 and Watson, 2006; Ashley et al., 2014; see discussions in Thomas et al., 2010, 2015; Huang
220 and Audétat, 2012). Therefore, CL-dark domains within quartz are consistent with
221 recrystallization of damaged material at relatively low temperatures.

222 The single large primary microcline grain in KL40-2B exhibits patchy undulose extinction
223 in cross-polarized light, but the entire grain goes extinct within 5–10° of stage rotation indicating
224 little net rotation between extinction domains (Figs. 3A, B). This grain is dissected by optically
225 visible healed fractures marked by 10–50-µm-wide, planar to curviplanar bands of finely
226 recrystallized K-feldspar ± quartz ± biotite (Fig. 3B). Some of these fractures visibly offset grain
227 boundaries and/or perthitic lamellae whereas others show no visible offset. Most optically visible
228 fractures form the boundaries of extinction domains. Color-CL images of optically continuous
229 microcline reveal jigsaw-like networks of CL-bright feldspar separated by 2–100-µm-wide bands
230 and zones of CL-dark material that pervasively disrupt perthitic lamellae and primary inclusions
231 (Figs. 3C–E). Bands of CL-dark material are planar to curviplanar, commonly branch, and are
232 mutually cross-cutting in all directions (Figs. 3C, E). Based on these geometries and clear
233 cross-cutting relationships with primary features, we interpret CL-dark bands as healed fractures.
234 Most fractures exhibit no offset, and many are dilational (Fig. 3D). Dilational fractures are
235 primarily filled with K-feldspar variably intergrown with quartz and biotite (Fig. 3E), but some
236 areas are quartz or biotite dominated. Zones of CL-dark material are semi-polygonal to
237 amoeboid in shape, often taper into healed fractures, often have fractures radiating from them in
238 many directions, and often host island grains of higher-luminosity material (Figs. 3C, E). CL-
239 dark zones with radiating fractures and CL-bright islands likely represent pervasively
240 comminuted domains that were largely recrystallized upon healing, but a few semi-polygonal
241 zones could be dilational jogs along shear fractures. Fracture trends span a full 180° in sample

242 coordinates, but they do define a slight preferred orientation with the maximum fracture
243 densities roughly bisecting the obtuse angle between the faults in this sample, as expected for
244 wing cracks or extension fractures (Fig. 3D). The average fracture density in this sample is 118
245 mm/mm² or 1.18 x 10⁵ m/m² (Table 1).

246 *5.1.2. Sample KL40-8*

247 KL40-8 is a non-oriented sample of granite collected ~35 cm across strike from the
248 mylonite/ultramylonite zone (Fig. 2). It is traversed by a shear fracture with 1–2 mm of apparent
249 dextral separation, but the outlines of primary grains, igneous zoning, and igneous inclusions
250 are preserved (Fig. 4A). Primary quartz domains in KL40-8 are divided into 0.5–4-mm-wide,
251 semi-polygonal to amoeboid grains with sweeping and/or patchy undulose extinction. Quartz
252 grain boundaries exhibit the same serrated edges and zones of neoblasts observed in KL40-2B,
253 and quartz grains are also traversed by thin bands of neoblasts that often merge with irregular
254 zones of neoblasts hosted in larger grains or mantling smaller grains (Fig. 4B). Color-CL images
255 of quartz reveal a highly irregular patchwork of CL-dark and bright material (Fig. 4C). CL-bright
256 domains are traversed by many 2–30-μm-wide, planar to curviplanar bands of CL-dark quartz
257 interpreted as healed fractures—consistent with previous interpretations of instantaneously
258 healed microfractures in quartz (Bestmann et al., 2016). Most of these healed fractures are
259 crystallographically continuous with the host grain and are not visible in cross-polarized light.
260 Fractures are mutually cross-cutting, and often can be correlated or traced across larger CL-
261 dark domains (Fig. 4C). The patchwork of CL-bright and CL-dark quartz obscures many
262 fractures, so we did not attempt to map them.

263 Primary microcline grains in KL40-8 exhibit patchy to sweeping undulose extinction in
264 cross-polarized light with entire grains going extinct in 5–10° of stage rotation indicating little net
265 rotation between extinction domains (Fig. 4A). They also host optically visible, mutually cross-

266 cutting healed fractures marked by 10–100-µm-wide, planar or curviplanar bands of finely
267 recrystallized K-feldspar ± quartz ± biotite. As in KL40-2B, some of the larger fractures offset
268 grain boundaries and form the boundaries of extinction domains. However, most fractures
269 exhibit no offset or rotation. A color-CL map of the microcline grain in the lower right-hand side
270 of Figure 4A reveals nearly intact oscillatory zoning. High-magnification color-CL images of
271 optically continuous microcline reveal jigsaw-like networks of fragments separated by mutually
272 cross-cutting, healed fractures and zones of recrystallized material (Fig. 4E–H). Many of these
273 fractures also are dilational and filled with K-feldspar variably intergrown with quartz and biotite
274 (Fig. 4G). Fracture trends in two microcline grains of KL40-8 span a full 180°, but they also
275 define one or two weak preferred orientations. The dominant preferred orientation in both grains
276 is inclined at ~60° anti-clockwise to the shear fracture bisecting the sample (Figs. 4F, H)—
277 opposite what is expected for wing cracks or extension fractures related to the fault. One grain
278 also exhibits a second weak preferred orientation inclined ~25–30° clockwise to the shear
279 fracture (Fig. 4F). Average fracture densities in this sample are similar to KL40-2B (Table 1).
280 Plagioclase grains in KL40-8 are dissected by polygonal networks of dilational fractures
281 primarily filled with finely recrystallized biotite (Fig. 4D). These fractures typically follow albite-
282 twin and cleavage planes. There is little difference in extinction angle across most fractures
283 indicating little or no rotation or offset. Biotite-filled fractures in plagioclase locally transition into
284 quartz- or microcline-filled fractures in neighboring quartz or microcline grains.

285 *5.2. Elsewhere in the localized-shear-zone domain*

286 Two foliated granite samples, KL115 and KL109-B, were collected 20 m along strike
287 from each other 3.15 km northeast of station KL40 in the localized-shear-zone domain (Fig. 1B).
288 Weak mesoscopic foliations in these rocks are defined by elongated quartz and biotite grains
289 and rotated and aligned tabular feldspar grains. Cross-polarized-light and color-CL images of
290 quartz in KL115 and KL109-B exhibit the same microstructures observed in KL40-8. One

291 primary quartz grain observed in KL115 is drawn into a ribbon with a distinct core-mantle
292 recrystallization texture defined by bands of 5–30-µm-wide neoblasts surrounding elongated
293 relict grains. Relict grains and bands of neoblasts correspond to CL-dark and CL-bright domains
294 in color-CL images, and the CL-bright relict grains are locally cut by healed fractures. Microcline
295 grains observed in color-CL images exhibit jigsaw-like networks of fragments separated by 5–
296 100-µm-wide healed fractures and many zones of recrystallized material that commonly have
297 fractures radiating from them (Fig. 5). Fracture fill is identical to that in KL40-8. Dilational
298 fractures in KL115 are primarily perpendicular to the mesoscopic foliation whereas those in
299 KL109-B are both perpendicular to and parallel with the foliation. Fracture populations in both
300 samples span a full 180°, but they also exhibit weak preferred orientations either perpendicular
301 to (KL115) or parallel with (KL109-B) foliation. Average fracture densities in KL115 and KL109-B
302 are similar to those in samples from station KL40 (Table 1). Plagioclase in these samples also
303 exhibits networks of crystallographically controlled biotite-filled fractures. A single foliated-
304 granite sample collected from the localized-shear-zone domain at station KL13, 3.57 km
305 southwest of KL40 (Fig. 1B), exhibits similar healed fractures and biotite-filled-fracture networks
306 in cross-polarized-light and BSE images, but this sample was not examined using color-CL.
307 Outcrops of granite in the localized-shear-zone domain almost universally exhibit a
308 characteristic weathering pattern wherein microcline disaggregates randomly producing very
309 irregular surfaces at the mm to cm scale (Fig. 2B). This weathering pattern exists regardless of
310 whether or not the granite is foliated, and it is almost certainly a result of the pervasive
311 microfracturing of microcline in these rocks. In contrast, microcline grains in foliated and
312 undeformed granite exposed outside of the localized-shear-zone domain disaggregate along
313 systematic fractures and/or cleavage surfaces producing more regular, blocky weathering
314 surfaces at the mm to cm scale (Fig. 2C).

315 *5.3. Samples outside of the localized-shear-zone domain*

316 We examined four granite samples collected at sites KL51, KL41, KL110, and KL111
317 outside of the localized-shear-zone domain (Fig. 1B). Site KL51 is outside of the foliated-granite
318 domain 4.9 km across strike from the KFZ (see Figure 2 of Sullivan and Monz, 2013 for exact
319 location), and granite here exhibits a primary igneous texture in outcrop and thin section (Fig.
320 6A). Quartz domains consist of polycrystalline aggregates of 0.5–3.5-mm-wide irregularly
321 shaped to semipolygonal grains. Quartz-quartz grain boundaries are curviplanar to irregular in
322 shape and commonly exhibit many 100–400-µm-wide lobate indentations. Individual quartz
323 grains all go extinct within 5° of stage rotation, but some grains exhibit 100–400-µm-wide
324 polygonal subgrains. Most quartz grains contain planar inclusion trails that often cross grain
325 boundaries. However, there are no curviplanar bands or irregular zones of neoblasts as
326 observed in samples from the localized-shear-zone domain, and CL images of quartz grains in
327 sample KL51 exhibit none of the planar to curviplanar CL-dark bands or irregular zones of CL-
328 dark material seen in samples from the localized-shear-zone domain (Fig. 6B). Microcline from
329 KL51 commonly exhibits tartan twinning and ubiquitously hosts vermiciform perthitic exsolution
330 lamellae (Figs. 6C, D). Exsolution lamellae and twinning create a complex mosaic of bright and
331 less-bright areas in color-CL images (Fig. 6D), but microcline grains from this site exhibit none
332 of the evidence for fracturing seen in localized-shear-zone-domain samples such as planar to
333 curviplanar trails of neoblasts or bands of CL-dark material cutting primary features.

334 Site KL41 is ~150 m across strike from KL40. In hand sample, granite at KL41 exhibits a
335 primary igneous texture (Fig. 7A). Most primary quartz domains in sample KL41 are divided into
336 0.25–5-mm-wide, semi-polygonal to amoeboid grains with sweeping undulose extinction (Fig.
337 7B). Quartz-quartz grain boundaries are typically decorated with 5–20-µm-wide serrations ±
338 neoblasts, but thin bands and irregular zones of neoblasts are much less common than in
339 localized-shear-zone-domain samples. Color-CL images of primary quartz bodies reveal a
340 patchwork of irregularly shaped, high-luminosity domains surrounded by zones of CL-dark

341 material hosting small CL-bright islands (Fig. 7C). CL-bright quartz domains contain mutually
342 cross-cutting, planar-systematic sets of healed fractures, but these fractures typically cannot be
343 traced across CL-dark bands. Color-CL images of relatively intact primary quartz bodies such as
344 the one visible in the right-hand side of Figure 7B reveal very few fractures and areas of CL-
345 dark material. The patchworks of CL-dark and CL-bright material along with local patchy
346 undulose extinction are also consistent with partial static recrystallization of quartz driven by
347 intra-crystalline damage developed during transient high-stress deformation (Trepmann et al.,
348 2017). Microcline in KL41 exhibits straight or sweeping undulose extinction, and perthitic
349 lamellae are largely intact (Fig. 7B). Color-CL images of these grains reveal sets of planar-
350 systematic fractures cutting primary features and a few irregularly shaped, CL-dark domains
351 (Fig. 7D). Fracture sets are mutually cross cutting, exhibit no shear offset, and are locally
352 dilational (Fig. 7D). Overall fracture density is also very low compared to samples from the
353 localized-shear-zone domain. Some primary plagioclase grains in KL41 host polygonal networks
354 of biotite-filled fractures identical to those observed in localized-shear-zone-domain samples,
355 but others remain intact.

356 Sites KL110 and KL111 are ~36 and ~121 m across strike from KL115 respectively (Fig.
357 1B). Granite at both sites exhibits a mesoscopic foliation defined by elongated quartz grains and
358 rotated and aligned tabular feldspar grains. Granite at KL110 also exhibits type-I S-C fabrics
359 (Lister and Snoke, 1984) with C surfaces defined by ribbons of quartz and biotite. Quartz
360 domains in samples KL110 and KL111 are dominated by 10–80-µm-wide, semi-polygonal
361 neoblasts (Fig. 7F). Sparse relict grains within recrystallized quartz bands exhibit subgrains the
362 same size and shape as neoblasts. These microstructures indicate subgrain-rotation
363 recrystallization (e.g., Hirth and Tullis, 1992; Stipp et al., 2002). Healed fractures are locally
364 visible in relict quartz grains (Fig. 7F), but not visible in neoblasts. Microcline grains in these
365 samples exhibit straight or sweeping undulose extinction, and some grains host 20–100-µm-

366 wide, foliation-perpendicular dilational fractures marked by bands of 5–20- μm -wide K-feldspar \pm
367 quartz \pm plagioclase \pm biotite neoblasts (Fig. 7E). Color-CL images of microcline reveal single
368 sets of planar-systematic fractures that are roughly parallel with or perpendicular to the foliation
369 (Fig. 7G), and overall fracture density is very low compared with KL115 and KL109-B.

370 **6. Discussion**

371 *6.1. Temperature and pressure conditions during fracturing*

372 A variety of structural and petrologic observations provide constraints on the conditions
373 of fracturing in our samples. Cross-cutting relationships between the brittle fractures and the
374 mylonitic fabric observed in KL40-2B and elsewhere in the localized-shear-zone domain show
375 that brittle deformation was coeval with or predated mylonitic deformation and therefore must
376 have formed at the granite brittle-ductile transition. Quartz ribbons in granite-derived mylonitic
377 rocks of the KFZ underwent subgrain-rotation dynamic recrystallization during dislocation creep
378 and record flow stresses of 80–130 MPa (Sullivan et al., 2013; Sullivan and Monz, 2016). These
379 flow-stress values indicate relatively high strain rates (e.g., Gleason and Tullis, 1995; Hirth et al.,
380 2001), and dominance of subgrain-rotation recrystallization at relatively high strain rates
381 indicates deformation temperatures of 400 °C or more (Stipp et al., 2002). Additionally, biotite is
382 the only stable sheet silicate in healed fractures and the only stable sheet silicate in Fe-rich, Si-
383 depleted ultramylonite matrix throughout the localized-shear-zone domain (Sullivan et al., 2013).
384 Pelites deformed by the KFZ across strike from the study area also contain prograde biotite that
385 was in equilibrium with calcite-buffered fluids (Sullivan and Monz, 2016). Hence, fracturing must
386 have occurred in the biotite stability field, and this also indicates temperatures in excess of
387 400°C (e.g., Spear and Cheney, 1989; Spear, 1993).

388 There are no direct estimates of confining pressure from the KFZ, but flow stresses
389 recorded by mylonitic rocks and metamorphic mineral assemblages provide some pressure

390 constraints. Flow stresses recorded by dynamically recrystallized quartz aggregates at the
391 brittle-ductile transition should be significantly less than peak differential stresses achieved prior
392 to brittle failure (e.g. Trepmann and Stöckert, 2003; Handy and Brun, 2004; Trepmann et al.,
393 2017). Therefore, effective confining pressures during episodes of brittle deformation along the
394 brittle-ductile KFZ must have been high enough to support differential stresses well in excess of
395 100 MPa. Rapid cooling of the Deblois granite combined with progressive overprinting of high-
396 temperature microstructures by low-temperature microstructures requires that the KFZ formed
397 almost immediately after crystallization of the granite (Wang and Ludman, 2004; Sullivan et al.,
398 2013). Thus, the crystallization pressure of the granite is a good approximation of the confining
399 pressure during fault movement and fracturing. Unfortunately, quantitative pressure-temperature
400 estimates for the Deblois granite and/or rocks in its contact areole have not been published.
401 However, pelites of the Flume Ridge Formation in the contact areole of the Deblois granite
402 locally contain sillimanite (Riley, 2004). Sillimanite is not stable below 200 MPa pressure until
403 after the $\text{Al}_2\text{SiO}_5 + \text{K-feldspar}$ isograd is crossed (Holdaway, 1971; Spear and Cheney, 1989),
404 and it may not be stable at pressures below 200 MPa until after the wet-granite solidus is
405 crossed (Pattison, 1992). There is no evidence that sillimanite-bearing Flume Ridge Formation
406 samples reached the $\text{Al}_2\text{SiO}_5 + \text{K-feldspar}$ isograd, let alone the wet-granite solidus. Hence,
407 sillimanite in the contact areole of the Deblois granite indicates metamorphic pressures of 200
408 MPa or more. Wang and Ludmann (2004) also inferred metamorphic pressures of about 200
409 MPa in this area based on regional chlorite-grade metamorphism of rocks intruded by the
410 Deblois pluton.

411 *6.2. Fracture-forming mechanism*

412 The pervasively fractured granite samples from the localized-shear-zone domain exhibit
413 all of the characteristics common to pulverized granite in the upper crust including: (a) primary
414 grain shapes are preserved despite multiple generations of fracturing and healing; (b) dilational,

415 opening-mode fractures are common; (c) irregular recrystallized zones likely derived from
416 intensely comminuted material are hosted in primary microcline grains; (d) fracture sets have
417 little preferred orientation and form jigsaw-like interlocking fragments; (e) fractures typically do
418 not offset primary structures or earlier healed fractures; and (f) there is little or no rotation of
419 fragments across most fractures (c.f. Mitchell et al., 2011; Wechsler et al., 2011; Rempe et al.,
420 2013). None of these features are present at site KL51, 4.9 km across strike from the KFZ.
421 Microcline in foliated-granite samples from outside of the localized-shear-zone domain does
422 exhibit microfractures, but these form planar-systematic sets with much lower overall fracture
423 densities. Our samples also do not exhibit: (a) the offset and rotation, disaggregation of primary
424 textures, and through-going bands of fine-grained material common to cataclasites (e.g., Sibson,
425 1977; Evans, 1988; Blenkinsop, 1991; Nelis and Mosher, 1998); (b) the crackle to mosaic
426 textures with strong fracture preferred orientations common to dynamic tensional breccias
427 (Melosh et al., 2014); or (c) veins and mesoscopic clasts common to implosion breccias (Sibson,
428 1986). Microfracturing in the localized-shear-zone domain also is not restricted to obvious
429 dilational sites. We are aware of no measurements of fracture density from upper crustal
430 pulverized rocks. However, three tonalite samples from the San Jacinto fault containing fracture
431 networks interpreted as incipient pulverization texture exhibit fracture densities that are 10–25%
432 of our minimum fracture-density measurements (Whearty et al., in press). The crystallographic
433 control of fractures in plagioclase in our samples is also observed in pulverized rocks from the
434 upper crust (Wechsler et al., 2011). The only published quantitative analysis of fracture
435 orientations in pulverized granite (Rempé et al., 2013) documented weak preferred orientations
436 of fractures in some samples. These are similar to the preferred orientations in microcline in
437 samples KL40-8, KL115, and KL109-B. The systematic relationship between fracture
438 orientations and foliation in KL115 and KL109-B indicates that fracturing in these samples may
439 be partly related to foliation development or that foliation development might have modified
440 fractures after they formed. However, the pattern and density of fractures does not match

441 foliated-granite samples from outside the localized-shear-zone domain. Additionally, the
442 irregularly shaped zones of pervasively comminuted material with radiating fractures in both
443 samples and the foliation-parallel dilational fractures in KL109-B indicate that at least some
444 fracturing in KL115 and KL109-B records pulverization. Granite sampled at KL40 has no
445 foliation and preserves primary igneous grain shapes, so fracturing in KL40-2B and KL40-8
446 cannot be related to foliation development. Preferred orientations of fractures in KL40-8 also are
447 not obviously related to the shear fracture traversing the sample. Therefore, pulverization is the
448 most likely mechanism to explain the pervasive fracture networks in KL40-8. Additionally, quartz
449 typically deforms plastically in the biotite stability field at long-term geologic strain rates (e.g.,
450 White, 1976; Stipp et al., 2002). Pervasive fracturing of quartz in our samples requires strain
451 rates at least two or three orders of magnitude faster than long-term geologic rates (e.g., Hirth
452 and Tullis, 1994; Stipp et al., 2002; Bestmann et al., 2016). The low bulk strains in these
453 samples further require that high strain rates were transient, and transient high strain rates are a
454 fingerprint of the seismic cycle (e.g., Handy and Brun, 2004). The bands and irregular zones of
455 quartz neoblasts also indicate healing after transient high-stress deformation (Trepmann et al.,
456 2017). Finally, the occurrence of recrystallized pseudotachylite in the localized-shear-zone
457 domain independently confirms that seismogenic faulting occurred at this structural level in the
458 KFZ. Based on these observations and arguments, we interpret networks of healed fractures in
459 the granite of the localized-shear-zone domain as a fingerprint of dynamic pulverization at the
460 granite brittle-ductile transition. The mm- to cm-scale irregular weathering pattern of pervasively
461 fractured microcline (Fig. 2B) is nearly ubiquitous in the localized-shear-zone domain, and rocks
462 exhibiting this weathering pattern likely underwent the same fracturing observed in our isolated
463 samples. Thus, granite of the localized-shear-zone domain probably represents a 50–200-m-
464 wide belt of pervasive pulverization adjacent to the KFZ throughout the area of this study (Fig. 1;
465 see also Figure 2 of Sullivan et al., 2013).

466 6.3. Broader implications

467 Our results show that the mechanism or mechanisms causing pulverization over large
468 areas must extend to the brittle-ductile transition at temperatures and confining pressures of at
469 least 400 °C and 200 MPa. This contradicts experimental results where pulverization under
470 rapid compression is not possible above 60 MPa confining pressure (Yuan et al., 2011).
471 However, the microstructure of pulverized rocks indicates they form in response to tension
472 rather than compression (Mitchell et al., 2011; Wechsler et al., 2011; Rempe et al., 2013; Xu
473 and Ben-Zion, 2017). Rocks are much weaker under dynamic tension than dynamic
474 compression (Zhang and Zhao, 2014; Xia and Yao, 2015), and numerical models of crack
475 propagation indicate fractures will have no preferred orientation under isotropic tension (tension
476 in all directions) (Daphalapurkar et al., 2011). Therefore, dynamic isotropic tension is the most
477 likely mechanism for forming pulverized rock under high confining pressures (Xu and Ben-Zion,
478 2017). Two-dimensional numerical models of off-fault stress fluctuations around bi-material
479 ruptures at confining pressures of 50 MPa indicate that large earthquakes can generate
480 significant off-fault damage and transient isotropic tension 100 m or more from the fault (Ben-
481 Zion and Shi, 2005; Xu and Ben-Zion, 2017). Bi-material ruptures involving sub-Rayleigh-to-
482 supershear transitions (mother-daughter transitions) may produce trailing seismic pulses with
483 even greater magnitudes of isotropic tension (Xu and Ben-Zion, 2017). The KFZ in the area of
484 this study does form a bi-material interface between granite and low-grade metasedimentary
485 rocks (Fig. 1), and we tentatively invoke pulses of isotropic tension generated by bi-material
486 ruptures to explain pulverization of granite in the study area. Dynamic stress concentration and
487 tensile pulses along bi-material ruptures are theoretically confined to the side of the fault with
488 higher seismic velocities, and off-fault damage and pulverization should be much less extensive
489 on the low-velocity side of the fault (Ben-Zion and Shi, 2005; Xu and Ben-Zion, 2017).
490 Unfortunately, there is very little outcrop on the northwest side of the KFZ, and detailed mapping

491 has revealed no outcrops of metasedimentary rocks within 200 m of the shear zone (Wang,
492 2007; Sullivan and Monz, 2016), so, we cannot test this prediction.

493 Elevated pore-fluid pressure may also enable pulverization at greater depths. There is
494 abundant evidence for persistent elevated pore-fluid pressure in metasedimentary rocks cut by
495 the KFZ including multiple generations of synkinematic veins and pressure-shadow overgrowths
496 on porphyroclasts (Sullivan and Monz, 2016). However, these features are absent in foliated-
497 granite and granite-derived mylonitic rocks on the southwest side of the fault (Sullivan et al.,
498 2013). The absence of extensive mineral deposition in dilational sites in fault rocks derived from
499 Deblois granite indicates that pore-fluid pressures were well below lithostatic pressures during
500 deformation. Additionally, elevated pore-fluid pressures should weaken grain boundaries during
501 dynamic tension, but it is unlikely that pore-fluid pressure would weaken fluid-free grain interiors
502 under dynamic tension and promote the extensive intragranular fracturing in our samples.
503 Hence, we are wary of invoking pore-fluid pressure to help explain pulverization adjacent to the
504 KFZ.

505 The completely healed fractures in our samples also enable some important conclusions.
506 First, the multiple generations of cross-cutting healed fractures provide the first direct record of
507 successive fracturing events in pulverized rocks. This record confirms that repeated loading can
508 be an important part of the pulverization process as indicated by experiments and theoretical
509 considerations (Doan and D'Hour, 2012; Aben et al., 2016). Second, fractures in microcline and
510 quartz are primarily healed with their host mineral. This healing should return fractured
511 microcline and quartz grains to nearly their original strength. However, fractures in plagioclase
512 are primarily filled with biotite, creating mosaics of smaller feldspar grains surrounded by biotite
513 that can serve as sites for future strain localization. Finally, at least some fractures in all phases
514 are healed with phase mixtures or exotic phases. This indicates significant grain-scale diffusive
515 mass transfer occurred after fracturing and that the fractures greatly enhanced grain-scale wall-

516 rock permeability; however, enhanced permeability must have been transient because of the
517 healing process.

518 **7. Conclusions**

519 Granite samples from a 50–200-m-wide damage zone adjacent to the main strand of the
520 Paleozoic strike-slip KFZ contain dense networks of healed fractures that exhibit almost all of
521 the characteristics common to pulverized rocks in the upper crust. Fractures in this zone exhibit
522 only weak preferred orientations, are often dilational, are mutually cross-cutting, separate
523 jigsaw-like interlocking fragments, are often intimately associated with large recrystallized areas
524 likely derived from pervasively comminuted material, and rarely offset primary structures.

525 Minimum fracture densities in microcline grains are \sim 100 mm/mm² or 10⁵ m/m². Larger fractures
526 in microcline and quartz are sometimes marked by bands of neoblasts, but most fractures in
527 these minerals are optically continuous with their host grains and only visible in CL images.

528 Fractures in plagioclase are crystallographically controlled and typically filled with biotite.

529 Microstructural and petrologic observations and cross-cutting relationships between fracture
530 networks, brittle faults, and small mylonitic shear zones show that fracturing occurred at the
531 granite brittle-ductile transition under temperatures of 400°C or more and confining pressures of
532 200 MPa. Fracture networks are found in weakly foliated *and* non-foliated-granite within the field
533 area; the presence of fracture networks in samples that exhibit no foliation or other evidence for
534 pervasive cataclastic shearing further indicates that granite in this damage zone records
535 dynamic pulverization. These observations extend the known range of dynamic pulverization to
536 much higher temperature and pressure conditions than previously thought possible, and this
537 favors a dynamic tension mechanism for pulverization. The mutually cross-cutting healed
538 fractures in pulverized granite also provide the first direct record of repeated loading and
539 damage in pulverized rocks. Furthermore, pulverization in this zone must have had a significant

540 but transient effect on grain-scale wall-rock porosity, and the biotite-filled fracture networks in
541 plagioclase may also form weak zones able to accommodate future strain localization.

542 **Acknowledgements**

543 This work was funded by the Colby College Natural Science Division and NSF MRI 1530963 to
544 Peterman. Although we ultimately used a different platform, we wish to thank W. A. Griffith for
545 sharing a computer program for fracture analysis. C. D. Rowe also provided helpful advice on
546 interpreting microstructures and recognizing recrystallized pseudotachylite. The final version of
547 this manuscript was improved by reviews from W. A. Griffith and an anonymous reviewer, but
548 any remaining errors are our own.

549 **References cited**

550 Aben, F. M., Doan, M.-L., Gratier, J. P., Renard, F., 2017. High strain rate deformation of porous
551 sandstone and the asymmetry of earthquake damage in shallow fault zones. *Earth and*
552 *Planetary Science Letters* 463, 81–91.

553 Aben, F. M., Doan, M.-L., Mitchell, T. M., Toussaint, R., Reuschlé, T., Fondriest, M., Gratier, J.
554 P., Renard, F., 2016. Dynamic fracturing by successive coseismic loadings leads to
555 pulverization in active fault zones. *Journal of Geophysical Research: Solid Earth* 121, 2338–
556 2360, doi:10.1002/2015JB012542.

557 Anders, M. H., Laubach, S. E., Scholz, C. H., 2014. Microfractures: A review. *Journal of*
558 *Structural Geology* 69 part B, 377–394.

559 Ashley, K. T., Carlson, W. D., Law, R. D., Tracy, R. J., 2014. Ti resetting in quartz during
560 dynamic recrystallization: Mechanisms and significance. *American Mineralogist* 99, 2025–
561 2030.

562 Ben-Zion, Y., Shi, Z., 2005. Dynamic rupture on a material interface with spontaneous
563 generation of plastic strain in the bulk. *Earth and Planetary Science Letters* 236, 486–496.

564 Blenkinsop, T. G., 1991. Cataclasis and processes of particle size reduction. *Pure and Applied
565 Geophysics* 136, 59–86.

566 Costain, J. K., Domoracki, W. J., Coruh, C., 1990. Processing and preliminary interpretation of
567 Bottle Lake seismic reflection data. *Maine Geological Survey Open-File Report* 90-25d, 17 p.

568 Daphalapurkar, N. P., Ramesh, K. T., Graham-Brady, L., Molinari, J. F., 2011. Predicting
569 variability in the dynamic failure strength of brittle materials considering pre-existing flaws.
570 *Journal of the Mechanics and Physics of Solids* 59, 297–319.

571 Evans, J. P. , 1988. Deformation mechanisms in granitic rocks at shallow crustal levels. *Journal
572 of Structural Geology* 10, 437–443.

573 Doan, M.-L., d'Hour, V., 2012. Effect of initial damage on rock pulverization along faults. *Journal
574 of Structural Geology* 45, 113–124.

575 Doan, M.-L., Gary, G., 2009. Rock pulverization at high strain rate near the San Andreas fault.
576 *Nature Geoscience* 2, 709–712.

577 Doll, W. E., Domoracki, W. J., Costain, J. K., Coruh, C., Ludman, A., Hopeck, J. T., 1996.
578 Seismic reflection evidence for the evolution of a transcurrent fault system. *The Norumbega
579 fault zone, Maine. Geology* 24, 251–254.

580 Dor, O., Ben-Zion, Y., Rockwell, T. K., Brune, J., 2006a. Pulverized rocks in the Mojave section
581 of the San Andreas Fault zone. *Earth and Planetary Science Letters* 245, 642–654.

582 Dor, O., Chester, J. S., Ben-Zion, Y., Brune, J., Rockwell, T. K., 2009. Characterization of
583 damage in sandstones along the Mojave section of the San Andreas Fault: Implications for
584 the shallow extent of damage generation. *Pure and Applied Geophysics* 166, 1747–1773.

585 Dor, O., Rockwell, T. K., Ben-Zion, Y., 2006b. Geological observations of damage asymmetry in
586 the structure of the San Jacinto, San Andreas, and Punchbowl Faults in southern California:
587 A possible indicator for preferred rupture propagation direction. *Pure and Applied
588 Geophysics*, 163, 301–349.

589 Dor, O., Yildirim, C., Rockwell, T. K., Ben-Zion, Y., Emre, O., Sisk, M., Duman, T. Y., 2008.
590 Geological and geomorphologic asymmetry across the rupture zones of the 1943 and 1944
591 earthquakes on the North Anatolian Fault: possible signals for preferred earthquake
592 propagation direction. *Geophysical Journal International* 173, 483–504.

593 Fonderiest, M., Aretusini, S., Di Toro, G., Smith, S. A. F., 2015. Fracturing and rock
594 pulverization along an exhumed seismogenic fault zone in dolostones: The Foiana Fault
595 Zone (Southern Alps, Italy). *Tectonophysics* 654, 56–74.

596 Gapais, D., 1989. Shear structures within deformed granites: mechanical and thermal
597 indications. *Geology* 17, 1144–1147.

598 Gleason, G. C., Tullis, J., 1995. A flow law for dislocation creep of quartz aggregates
599 determined with the molten salt cell. *Tectonophysics* 247, 1–23.

600 Goldstein, A., Hepburn, J. C., 1999. Possible correlations of the Norumbega fault system with
601 faults in southeastern New England, in Ludman, A. and West, D.P., Jr., eds., *The
602 Norumbega Fault System of the Northern Appalachians: Geological Society of America
603 Special Paper* 331, p. 73–84.

604 Griffith, W. A., Nielsen, S., Di Toro, G., Smith, S. A. F., 2010. Rough faults, distributed
605 weakening, and off-fault deformation. *Journal of Geophysical Research* 115, B08409,
606 doi:10.1029/2009JB006925.

607 Gtöze, J., Plötze, M., Habermann, D., 2001. Origin, spectral characteristics and practical
608 applications of the cathodoluminescence (CL) or quartz—a review. *Mineralogy and Petrology*
609 71, 225–250.

610 Handy, M. R., Brun, J.-P., 2004. Seismicity, structure and strength of the continental lithosphere.
611 *Earth and Planetary Science Letters* 223, 427–441.

612 Hatcher, R. D., Jr., 2010, The Appalachian orogen: A brief summary. In: Tollo, R. P.
613 Bartholomew, M. J., Hibbard, J. P., Karabinos, P. M. (Eds.), *From Rodinia to Pangea: The*
614 *lithotectonic record of the Appalachian region*: Boulder, Colorado, Geological Society of
615 *America Memoir* 206, p. 1–19.

616 Huang, R., Audétat, A., 2012. The titanium-in-quartz (TitaniQ) thermobarometer: a critical
617 examination and re-calibration. *Geochimica Cosmochimica Acta* 84, 75–89

618 Healy, D., Rizzo, R. E., Cornwell, D. G., Farrell, N. J. C., Watkins, H., Timms, N. E., Gomez
619 Rivas, E., Smith, M., 2017. FracPaQ: A MATLAB toolbox for the quantification of fracture
620 patterns. *Journal of Structural Geology* 95, 1–16.

621 Hibbard, J. P., van Staal, C. R., Rankin, D. W., Williams, H., 2006. Lithotectonic map of the
622 Appalachian orogen, Canada - United States of America. *Geological Survey of Canada Map*
623 02096A, 2 sheets, scale 1:1,500,000.

624 Hirth G., Teyssier, C., Dunlap, W. J., 2001. An evaluation of quartzite flow laws based on
625 comparisons between experimentally and naturally deformed rocks. *International Journal of
626 Earth Sciences* 90, 77–87.

627 Hirth G., Tullis, J., 1992. Dislocation creep regimes in quartz aggregates. *Journal of Structural
628 Geology* 14, 145–160.

629 Hirth G., Tullis, J., 1994. The brittle-plastic transition in experimentally deformed quartz
630 aggregates. *Journal of Geophysical Research* 99, 11,731–11,747.

631 Holdaway, M. J., 1971. Stability of andalusite and the aluminum silicate phase diagram.
632 *American Journal of Science* 271, 97–131.

633 Kirkpatrick, J. D., Rowe, C. D., 2013. Disappearing ink: How pseudotachylites are lost from the
634 rock record. *Journal of Structural Geology* 52, 183–198.

635 Kruhl, J. H., 1996. Prism- and basal-plane parallel subgrain boundaries in quartz: a
636 microstructural geothermobarometer. *Journal of Metamorphic Geology*, 14, 581–589.

637 Küster, M., Röller, K., Fischer, M., McConnel, V. S., Stöckhert, B., 2001. The record of episodic
638 phase separation (H₂O–CO₂) in a hydrothermal system—quartz microstructures and fluid
639 inclusions at Long Valley Exploratory Well. *XVI ECROFI* Faculdade de Ciências do Porto,
640 Departamento de Geologia, Memória n°7, Porto, p. 245–248.

641 Leeman, W.P., MacRae, C.M., Wilson, N.C., Torpy, A., Lee, C.-TA., Student, J. J., Thomas, J.
642 B., Vicenzi, E. P., 2012. Quantitative application of cathodoluminescence (CL) to natural
643 quartz with application to geothermobarometry. *Microscopy and Microanalysis* 18, 1322–
644 1341.

645 Lister, G. S., Snocke, A. W., 1984. S-C mylonites. *Journal of Structural Geology* 6, 617–638.

646 Ludman, A., 1998. Evolution of a transcurrent fault zone in shallow crustal metasedimentary
647 rocks: The Norumbega fault zone, eastern Maine. *Journal of Structural Geology* 20, 93–107.

648 Ludman, A., Berry, H. N., IV, 2003. Bedrock Geology of the Calais 1:100,000 Quadrangle,
649 Maine. *Maine Geological Survey Open-File 03-97*, scale 1:100,000.

650 Ludman, A., Lanzirotti, A., Lux, D., and Chunzeng, W., 1999. Constraints on timing and
651 displacement of multiple shearing in the Norumbega fault system, eastern Maine. In:
652 Ludman, A., West, D.P., Jr., (Eds.), *The Norumbega Fault System of the Northern*
653 *Appalachians*. *Geological Society of America Special Paper* vol. 331, pp. 179–194.

654 Ludman, A., Wang, C., Gibbons, S., Idleman, B., Rasbury, T., 2000. Geometry and timing of
655 multiple faulting events in the Kellyland fault zone (Norumbega fault system) in the Fletcher
656 Peak-Waabassus Mountain area, eastern Maine. In: Yates, M., Lux, D., Kelley, J. (Eds.),
657 *Guidebook for Field Trips in Coastal and East-Central Maine. Guidebook-New England*
658 *Intercollegiate Geological Conference*, vol. 92, pp. 1 –22.

659 Ludman, A., West, D. P., Jr., 1999. Preface to: Norumbega Fault System of the Northern
660 Appalachians In: Ludman, A. and West, D.P., Jr., (Eds.), *The Norumbega Fault System of*
661 *the Northern Appalachians*. *Geological Society of America Special Paper* vol. 331, pp. v–xii.

662 Melosh, B. L., Rowe, C. D., Smit, L., Groenewald, C., Lambert, C. W., Macey, P., 2014. Snap,
663 Crackle, Pop: Dilational fault breccias record seismic slip below the brittle–plastic transition.
664 *Earth and Planetary Science Letters* 403, 432–445.

665 Mills, S. G., Gerbi, C., Marsh, J. H., Yates, M. G., Seaman, S. J., White, J. C., 2017. Tectonic
666 and chemical implications of cathodoluminescent microstructures in quartz, Parry Sound
667 domain, Ontario, Canada. *Canadian Journal of Earth Science* 54, 677–692.

668 Mitchell, T. M., Ben-Zion, Y., Shimamoto, T., 2011. Pulverized fault rocks and damage zone
669 asymmetry along the Arima-Takatsuki Tectonic Line, Japan. *Earth and Planetary Science
670 Letters* 308, 284–297.

671 Muto, J., Nakatani, T., Nishikawa, O., Nagahama, H., 2015. Fractal particle size distribution of
672 pulverized fault rocks as a function of distance from the fault core. *Geophysical Research
673 Letters* 42, 3811–3819.

674 Nelis, M. K., Mosher, S., 1998. Brittle deformation of granite. In: Snock, A. W., Tullis, J., Todd, V.
675 R., (Eds.), *Fault-related rocks: A photographic atlas*. Princeton University Press, Princeton,
676 New Jersey, pp. 22–27.

677 New Brunswick Department of Natural Resources and Energy, 2000. *Bedrock Geology of New
678 Brunswick. Minerals and Energy Division Map NR-1 (2000 Edition)*, scale 1:500,000.

679 Osberg, P.H., Hussey II, A.M., Boone, G.M., 1985. *Bedrock geologic map of Maine*. Augusta,
680 Maine Geologic Survey, scale 1:500,000.

681 Passchier, C. W., 1982. Pseudotachylite and the development of ultramylonite bands in the
682 Saint-Barthelemy Massif, French Pyrenees. *Journal of Structural Geology* 4, 69–79.

683 Pattison, D. R., 1992. Stability of andalusite and sillimanite and the Al_2SiO_5 triple point:
684 Constraints from the Ballachulish Aureole, Scotland. *Journal of Geology* 100, 423–446.

685 Price, N. A., Johnson, S. E., Gerbi, C. C., West, D. P., Jr., 2012. Identifying deformed
686 pseudotachylite and its influence on the strength and evolution of a crustal shear zone at
687 the base of the seismogenic zone. *Tectonophysics* 518-521, 63–83.

688 Reches, Z., Dewers, T. A., 2005. Gouge formation by dynamic pulverization. *Earth and
689 Planetary Science Letters* 235, 361–374.

690 Rempe, M., Mitchell, T., Renner, J., Nippes, S., Ben-Zion, Y., Rockwell, T., 2013. Damage
691 and seismic velocity structure of pulverized rocks near the San Andreas Fault. *Journal of*
692 *Geophysical Research: Solid Earth* 118, 2813–2831, doi:10.1002/jgrb.50184.

693 Riley, D. N., 2004. Granites, orogeny, and the Deblois pluton complex in eastern Maine, USA.
694 Ph.D. dissertation, Ohio State University, 546 pp.

695 Robinson, P., Tucker, R. D., Bradley, D., Berry, H. N., Osberg, P. H., 1998. Paleozoic orogens
696 in New England, USA. *Geologiska Föreningens i Stockholm Förhandlingar* 120, 119–148.

697 Rockwell, T., Sisk, M., Girty, G., Dor, O., Wechsler, N., Ben-Zion, Y., 2009. Chemical and
698 physical characteristics of pulverized Tejon Lookout Granite adjacent to the San Andreas
699 and Garlock Faults: Implications for earthquake physics. *Pure and Applied Geophysics* 166,
700 1725–1746.

701 Rowe, C. D., Griffith, W. A., 2015. Do faults preserve a record of seismic slip: A second opinion.
702 *Journal of Structural Geology* 78, 1–26.

703 Sibson, R. H., 1977. Fault rocks and fault mechanisms. *Journal of the Geological Society,*
704 London 133, 191–213.

705 Sibson, R. H., 1986. Brecciation processes in fault zones: Inference from earthquake rupturing.
706 *Pure and Applied Geophysics* 124, 159–175.

707 Simpson, C., 1985. Deformation of granitic rocks across the brittle-to-ductile transition. *Journal*
708 *of Structural Geology* 7, 503–511.

709 Spear, F. S., 1993. Metamorphic phase equilibria and pressure-temperature-time paths.
710 Mineralogical Society of America, Washington D.C., 799 pp.

711 Spear, F. S., Cheney, J. T., 1989. A petrogenetic grid for pelitic schists in the system SiO₂ -
712 Al₂O₃ - FeO - MgO - K₂O - H₂O. Contributions to mineralogy and petrology 101, 149–164.

713 Spear, F. S., Wark, D. A., 2009. Cathodoluminescence imaging and titanium thermometry in
714 metamorphic quartz. Journal of metamorphic geology 27, 187–205.

715 Spray, J. G., 2010. Frictional melting processes in planetary materials: From hypervelocity
716 impact to earthquakes. Annual Reviews in Earth and Planetary Science 38, 221–254.

717 Stipp, M., Stünitz, H., Heilbronner, R., Schmid, S. M., 2002. Dynamic Recrystallization of quartz:
718 Correlation between Natural and Experimental Conditions. In: de Meer, S., Drury, M.R., de
719 Bresser, J.H.P., Pennock, G.M. (Eds.), Deformation Mechanisms, Rheology and Tectonics:
720 Current Status and Future Perspectives. Geological Society, London, Special Publication 20,
721 171–190.

722 Sullivan, W. A., Boyd, A. S., Monz, M. E., 2013. Strain localization in homogeneous granite near
723 the brittle-ductile transition: A case study of the Kellyland fault zone, Maine, USA. Journal of
724 Structural Geology 56, 70–88.

725 Sullivan, W. A., Monz, M. E., 2016. Rheologic evolution of low-grade metasedimentary rocks
726 and granite across a large strike-slip fault zone: A case study of the Kellyland fault zone,
727 Maine, USA. Journal of Structural Geology 86, 13–31.

728 Thomas, J. B., Watson, E. B., Spear, F. S., Shemella, F. S., Nayak, S. K., Lanzirotti, A., 2010.
729 TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in
730 quartz. Contributions to Mineralogy and Petrology 160, 743–759.

731 Thomas, J. B., Watson, E. B., Spear, F. S., Wark, D. A., 2015. TitaniQ recrystallized:
732 experimental confirmation of the original Ti-in-quartz calibrations. Contributions to
733 Mineralogy and Petrology 169:27, doi:10.1007/s00410-015-1120-0.

734 Trepmann, C. A., Hsu, C., Hentschel, F., Döhler, K., Schneider, C., Wichmann, V., 2017,
735 Recrystallization of quartz after low-temperature plasticity—The record of stress relaxation
736 below the seismogenic zone. Journal of Structural Geology 95, 77–92.

737 Trepmann, C. A., Stöckhert, B., 2013. Short wavelength undulatory extinction in quartz
738 recording coseismic deformation in the middle crust—an experimental study. Solid Earth 4,
739 263–276.

740 Trepmann, C. A., Stöckhert, B., Dorner, D., Moghadam, R., H., Küster, M., Röller, K., 2007.
741 Simulating coseismic deformation of quartz in the middle crust and fabric evolution during
742 postseismic stress relaxation—An experimental study. Tectonophysics 442, 83–104.

743 Tullis, J., 2002. Deformation of granitic rocks: Experimental studies and natural examples. In:
744 Karato, S., Wenk, H. (Eds.), Plastic deformation of minerals and rocks. Reviews in
745 Mineralogy and Geochemistry, vol. 51, pp. 51–95.

746 Tullis, J., Yund, R. A., 1987. Transition from cataclastic flow to dislocation creep of feldspar:
747 Mechanisms and microstructures. Geology 15, 606–609.

748 Wang, C., 2007. Bedrock Geology of the Fletcher Peak 7.5' Quadrangle, Maine. Maine
749 Geological Survey Open File 07-143, scale 1:24,000, 16 pp.

750 Wang, C., Ludman, A., 2004. Deformation conditions, kinematics, and displacement history of
751 shallow crustal ductile shearing in the Norumbega fault system in the Northern Appalachians,
752 eastern Maine. Tectonophysics 384, 129–148.

753 Wark, D. A., Watson, E. B., 2006. The TitaniQ: a titanium-in-quartz geothermometer.

754 Contributions to Mineralogy and Petrology 152, 743–754.

755 Wechsler, N., Allen, E. E., Rockwell, T. K., Girty, G., Chester, J. S., Ben-Zion, Y., 2011.

756 Characterization of pulverized granitoids in a shallow core along the San Andreas Fault,

757 Littlerock, CA. Geophysical Journal International 186, 401–417.

758 West, D. P., Beal, H. M., Grover, T. W., 2003. Silurian deformation and metamorphism of

759 Ordovician arc rocks of the Casco Bay Group, south-central Maine. Canadian Journal of

760 Earth Sciences 40, 887–905.

761 Whearty, J. J., Rockwell, T. K., Girty, G. H., in press. Incipient pulverization at shallow burial

762 depths along the San Jacinto fault, southern California. In: Thomas, M.Y., Mitchell, T.M.,

763 and Bhat, H.S. (Eds.), Fault zone dynamic processes: Evolution of fault properties during

764 seismic rupture. Geophysical Monograph 227, John Wiley & Sons, Inc.

765 White, S., 1976. The Effects of Strain on the Microstructures, Fabrics, and Deformation

766 Mechanisms in Quartzites. Philosophical Transactions of the Royal Society, London 283,

767 69–86.

768 Wilson, B., Dewers, T., Reches, Z., Brune, J., 2005. Particle size and energetics of gouge from

769 earthquake rupture zones. Nature 434, 749–752.

770 Xia, K., Yao, W., 2015. Dynamic rock tests using split Hopkinson (Kolsky) bar system—a review.

771 Journal of Rock Mechanics and Geotechnical Engineering 7, 27–59.

772 Xu, S., Ben-Zion, Y., 2017. Theoretical constraints on dynamic pulverization of fault zone rocks.

773 Geophysical Journal International 209, 282–296.

774 Yuan, F., Prakash, V., Tullis, T., 2011. Origin of pulverized rocks during earthquake fault rupture.
775 Journal of Geophysical Research 116, B06309, doi:10.1029/2010JB007721.

776 **Figure captions**

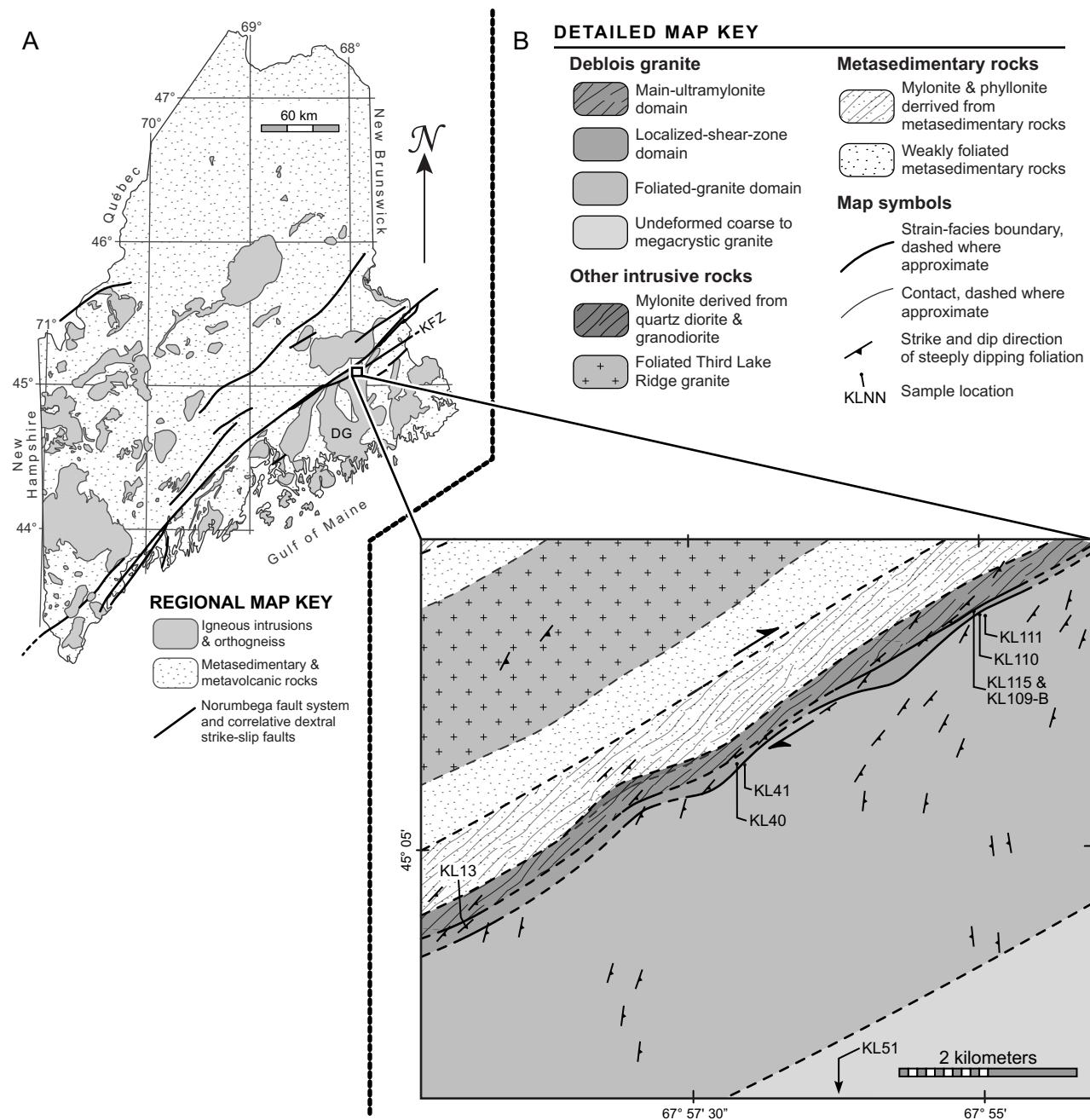
777 Figure 1. (A) Simplified bedrock geologic map of Maine, USA, showing the Norumbega fault
778 system and correlative dextral strike-slip faults. DG = Deblois granite and KFZ = Kellyland fault
779 zone. Compiled from: Osberg et al., 1985; Goldstein and Hepburn, 1999; New Brunswick
780 Department of Resources and Energy, 2000; Ludman and Berry, 2003; West et al., 2003; Wang
781 and Ludman, 2004; and Hibbard et al., 2006. (B) Geologic map of the study area showing strain
782 facies in the KFZ and sample locations. Modified from Ludman and Berry, 2003; Wang, 2007;
783 and Sullivan et al., 2013. Exact field location of KL51 shown in Figure 2 of Sullivan et al. (2013).

784 Figure 2. (A) Partial outcrop map of station KL40 showing sample locations and the
785 mylonite/ultramylonite zone. (B) Photograph of granite with no foliation at station KL40. U.S.
786 penny for scale is 1.9 cm in diameter. (C) Photograph of foliated-granite at station KL110 just
787 outside the localized-shear-zone domain (Fig. 1B). Note the difference in the mm- to cm-scale
788 weathering pattern of feldspars between this outcrop and that shown in B. U.S. penny for scale.

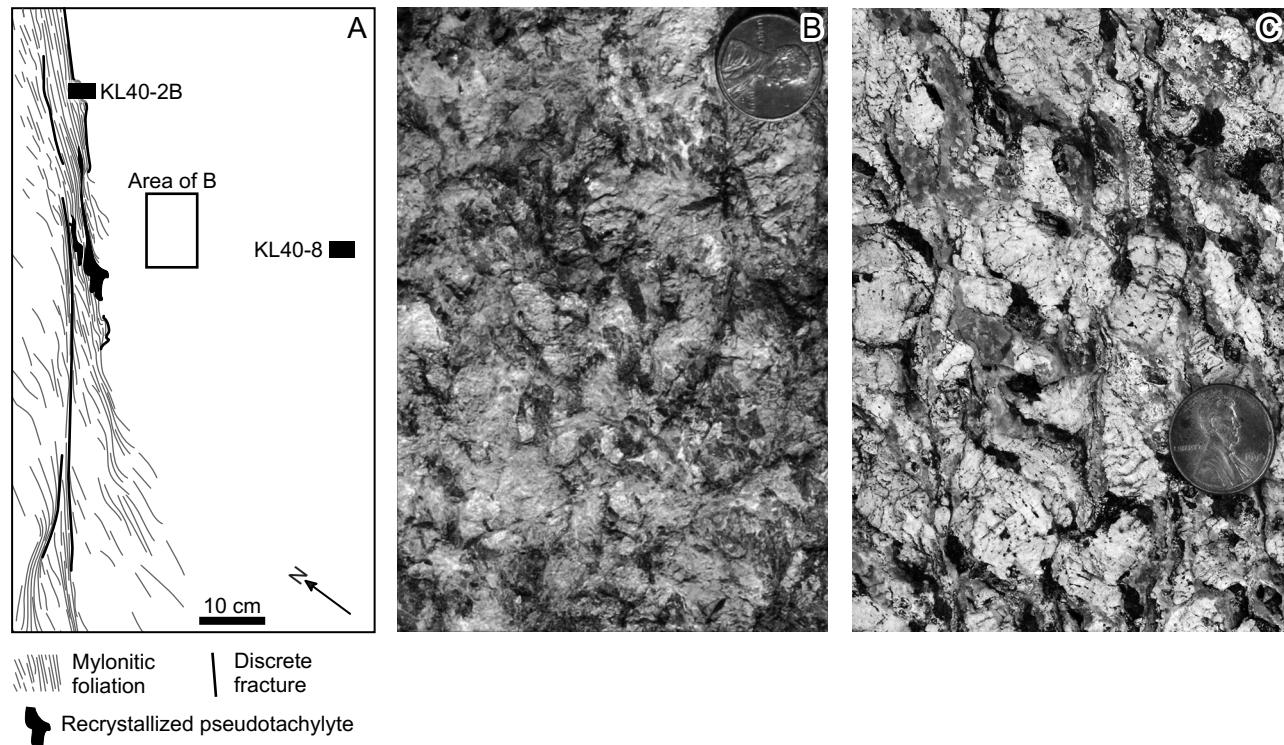
789 Figure 3. Images of sample KL40-2B. (A) Full-thin-section scan under cross-polarized light
790 showing fragmented quartz, optically continuous microcline, mylonitic shear zone, and shear
791 fracture. (B) Cross-polarized-light image of quartz and microcline cut by the shear fracture.
792 Arrows point out healed fractures marked by bands of neoblasts. (C) Color-CL image of optically
793 continuous microcline. Arrows highlight CL-dark healed fractures. (D) Map of fractures and
794 recrystallized zones in the microcline grain in (C) and rose diagram showing fracture
795 orientations compiled from the map. (E) Matched color-CL and BSE images of a dilational
796 fracture in microcline. The oval and polygon highlight CL-bright island grains in the fracture fill.
797 The rectangle highlights a later biotite + quartz-filled fracture cutting the K-feldspar filled fracture.

798 Arrows mark other cross-cutting healed fractures. Mineral abbreviations are: Bt = biotite, Kfs =
799 K-feldspar, Plg = plagioclase, Qtz = quartz, and Umyl is ultramylonite matrix. For references to
800 color, see the online version of this manuscript.

801 Figure 4. Images of KL40-8. (A) Full-thin-section scan under cross-polarized light showing the
802 primary igneous grain shapes, fragmented quartz, optically continuous microcline, and small
803 shear fracture. (B) Cross-polarized-light image of quartz. Arrows highlight healed fractures
804 marked by bands of neoblasts. (C) Color-CL image of quartz. Arrows highlight healed fractures
805 marked by CL-dark bands. (D) BSE image of a plagioclase grain hosted in quartz. Note the
806 planar network of biotite-filled fractures along albite-twin planes. (E) Color-CL image of optically
807 continuous microcline. Arrows highlight healed fractures marked by CL-dark bands. (F) Map of
808 fractures and recrystallized zones in the microcline grain in (E) and rose diagram showing
809 fracture orientations compiled from the map. (G) Matched color-CL and BSE images of optically
810 continuous microcline. Oval highlights cross-cutting, K-feldspar-filled dilatational fractures. Arrows
811 and rectangle highlight additional healed fractures. (H) Map of fractures and recrystallized zones
812 in the microcline grain in (G) and rose diagram showing fracture orientations compiled from the
813 map. Mineral abbreviations are the same as in Figure 3. For references to color, see the online
814 version of this manuscript.

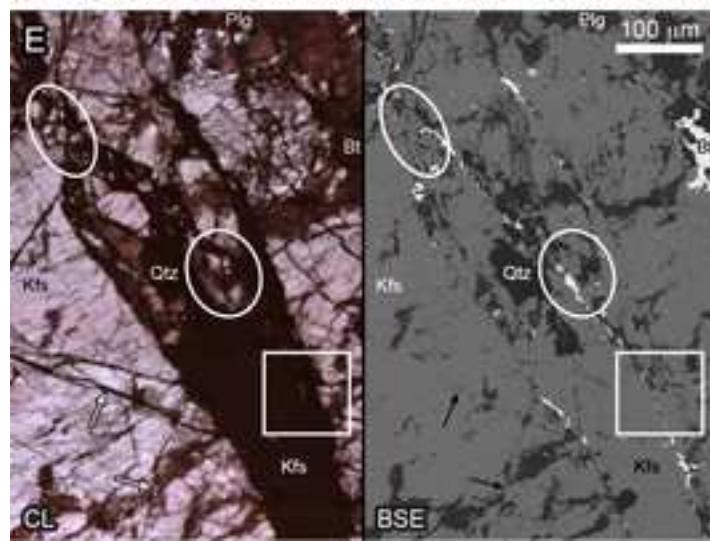
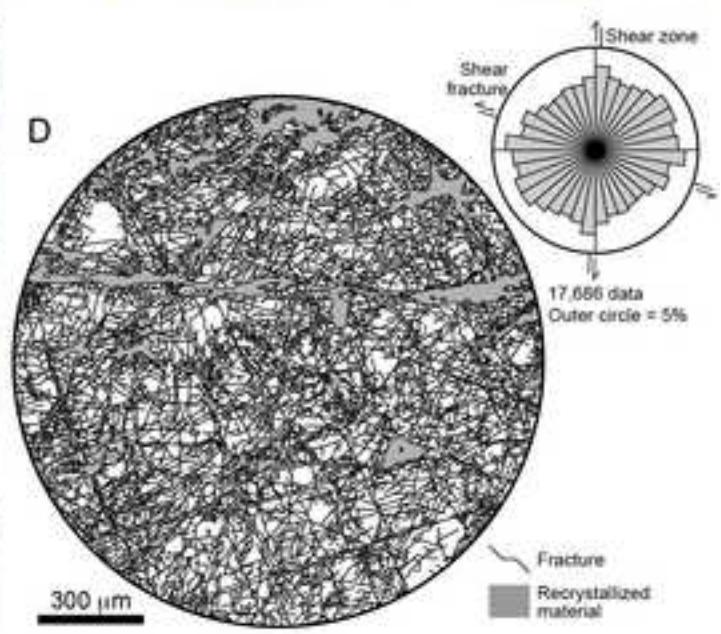
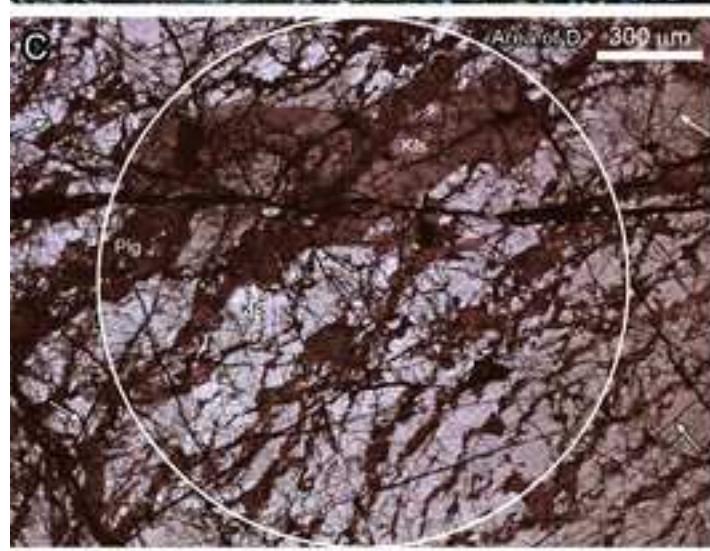
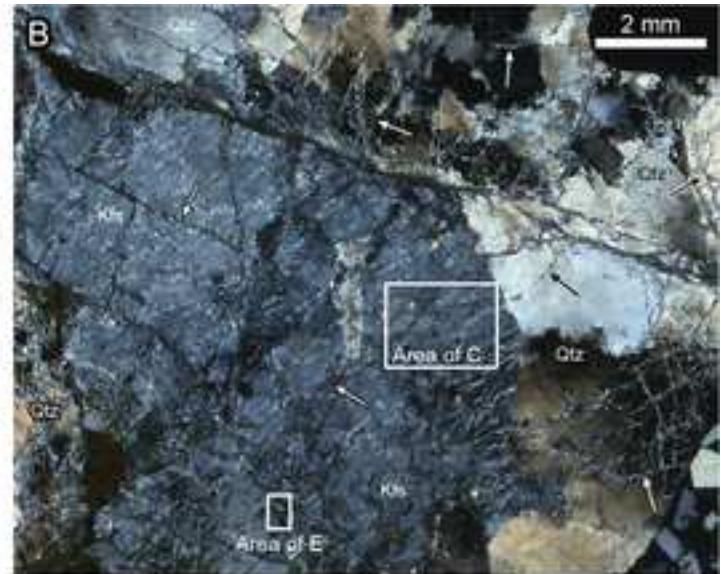

815 Figure 5. Maps of fractures and recrystallized zones in two optically continuous microcline
816 grains in sample KL115 and a single grain in KL109-B. The rose diagrams accompanying each
817 map show the orientations of fractures compiled from the unit circles centered in the map areas
818 relative to the mesoscopic foliation in each sample.

819 Figure 6. Images of undeformed granite sample KL51 collected ~4.9 km across strike from the
820 KFZ (See Figure 2 of Sullivan et al., 2013 for sample location). (A) Full-thin-section scan under
821 cross-polarized light showing the primary grain shapes and igneous texture. Note the rapakivi


822 overgrowth of plagioclase on microcline near the center of the image and the tartan twinning
823 and exsolution lamellae in microcline. (B) Color-CL image of quartz. The thin, dark bands are
824 optically visible grain boundaries. Note the absence of healed fractures. (C) Cross-polarized-
825 light image of a microcline grain hosting subhedral quartz inclusions. Note the tartan twinning,
826 perthitic exsolution lamellae, and absence of healed fractures. (D) Color-CL and backscattered-
827 electron images of the same field of view in a microcline grain. Note the perthitic exsolution
828 lamellae visible in both images, the tartan twinning visible in the CL image, and the absence of
829 healed fractures. Cracks visible in the images are from sample preparation. Mineral
830 abbreviations are the same as in Figure 3. For references to color, see the online version of this
831 manuscript.

832 Figure 7. Images of KL41 and KL110. (A) Outcrop photo of granite at KL41. U.S. Penny for
833 scale. (B) Full-thin-section scan of sample KL41 under cross-polarized light showing the primary
834 grain shapes, fragmented quartz, and optically continuous microcline. The rounded rectangle
835 highlights quartz with few or no fractures as described in the text. (C) Color-CL image of
836 fragmented quartz in KL41. Arrows highlight healed fractures marked by CL-dark bands. (D)
837 Color-CL image of microcline grain in KL41. Arrows highlight cross-cutting healed fractures
838 marked by CL-dark bands. (E) Full-thin-section scan of sample KL110 under cross-polarized
839 light showing dynamically recrystallized quartz and the C and S foliations. Arrows mark healed
840 dilational fractures in microcline. (F) Color-CL image of dynamically recrystallized quartz in
841 KL110. Arrow highlights a healed fracture in a relict grain. (G) Color-CL image of optically
842 continuous microcline in KL110. Arrows highlight healed fractures marked by CL-dark bands.
843 Mineral abbreviations are the same as in Figure 3. For references to color, see the online
844 version of this manuscript.

*Figure 01

*Figure 02

*Figure 03 color

[Click here to download high resolution image](#)

*Figure 03 gray scale

[Click here to download high resolution image](#)

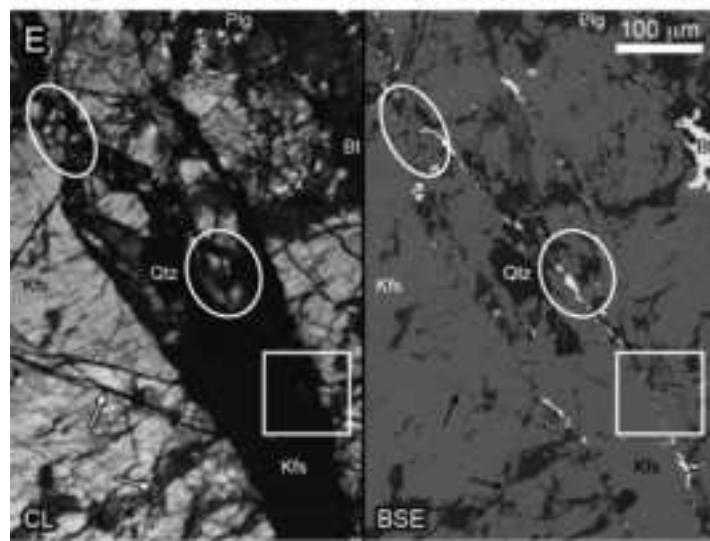
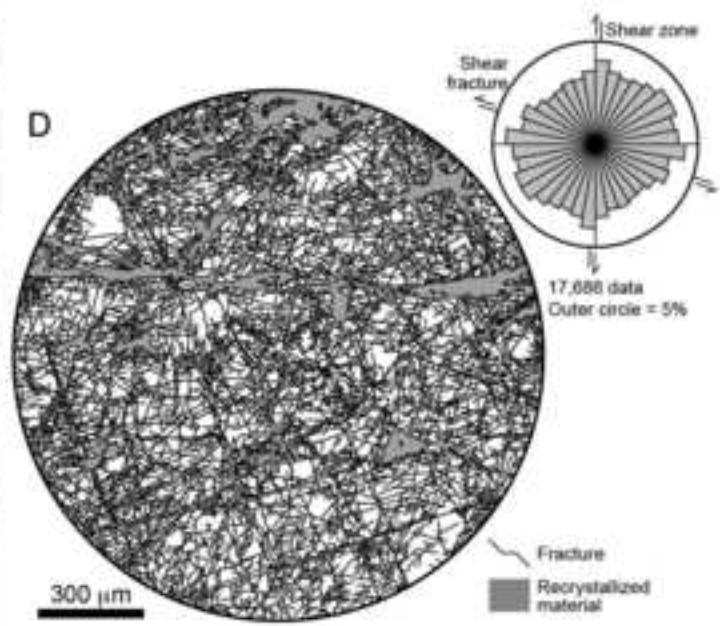
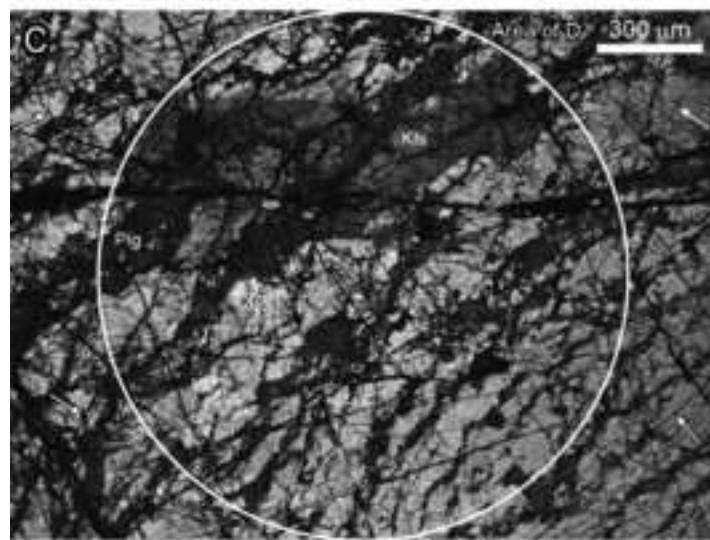
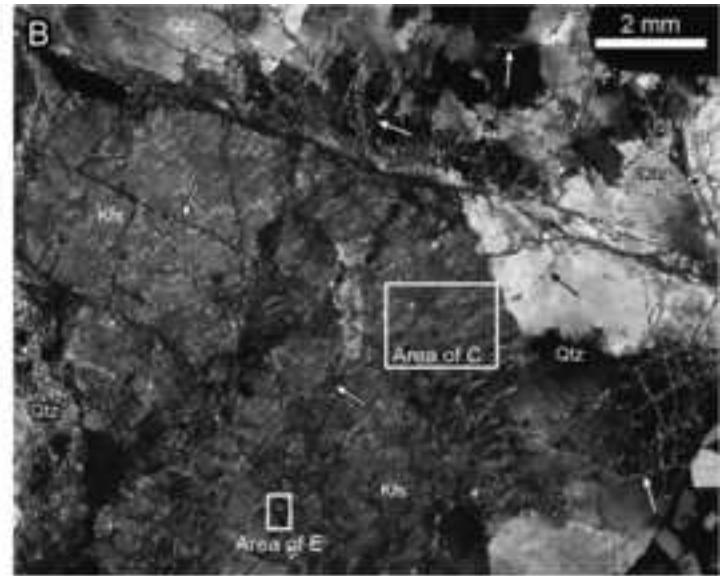
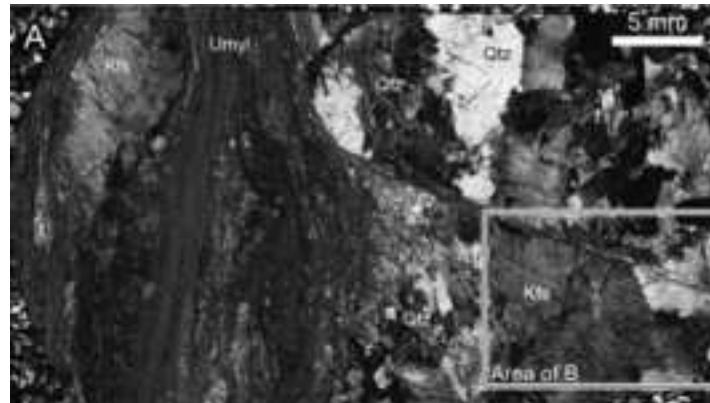






Figure 04 color

[Click here to download high resolution image](#)

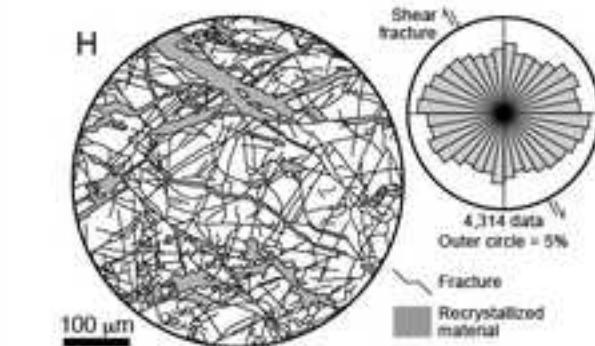
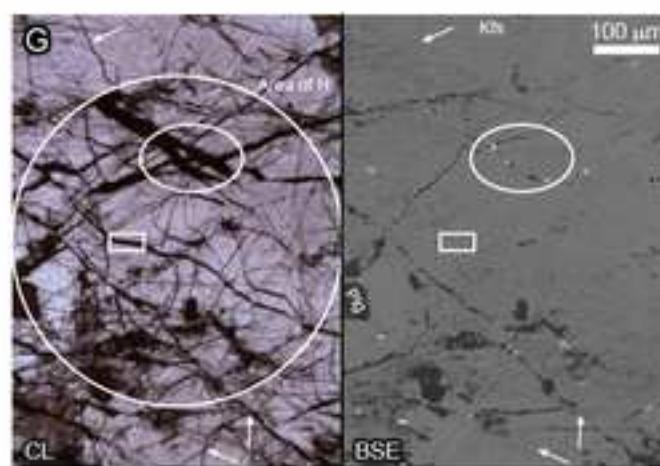
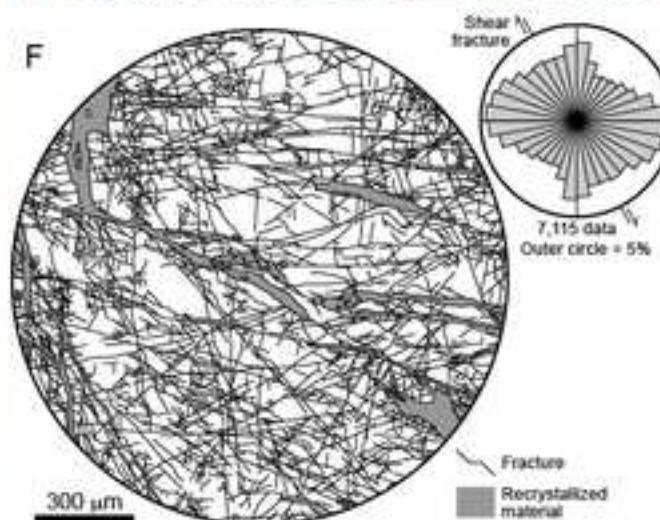
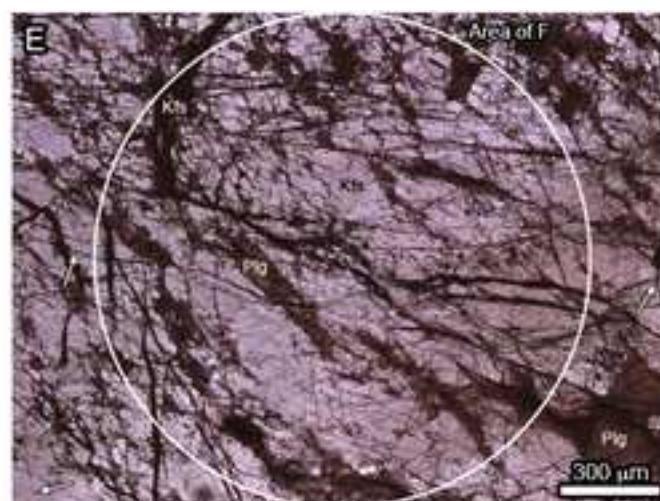
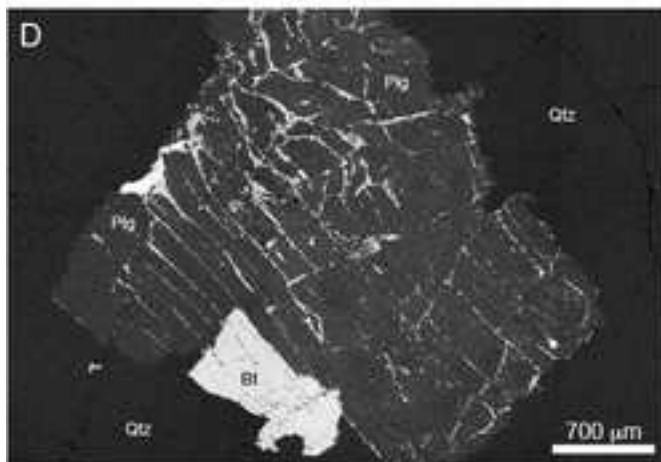
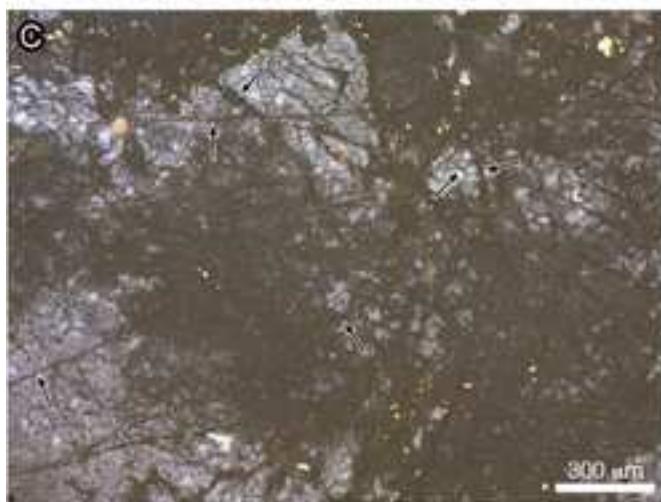
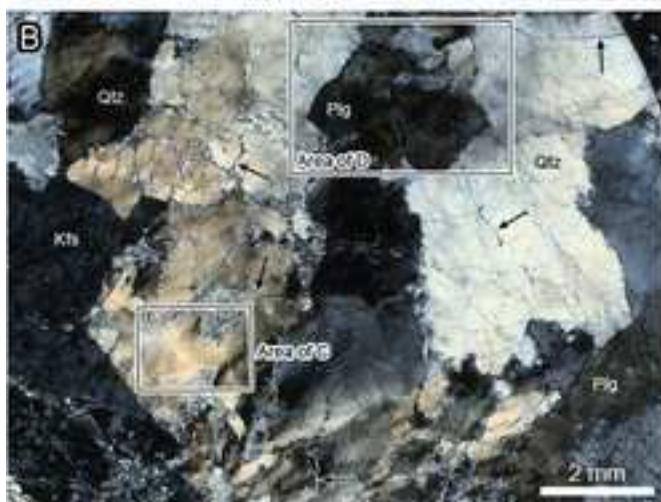








Figure 04 gray scale

[Click here to download high resolution image](#)

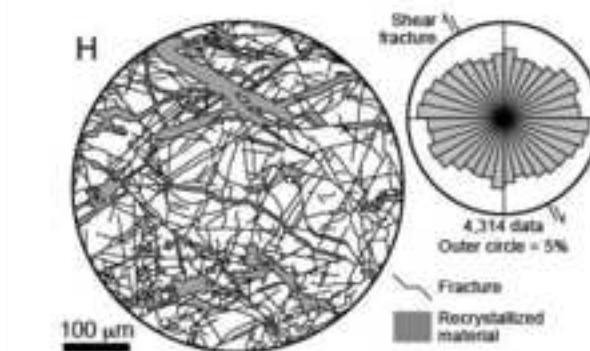
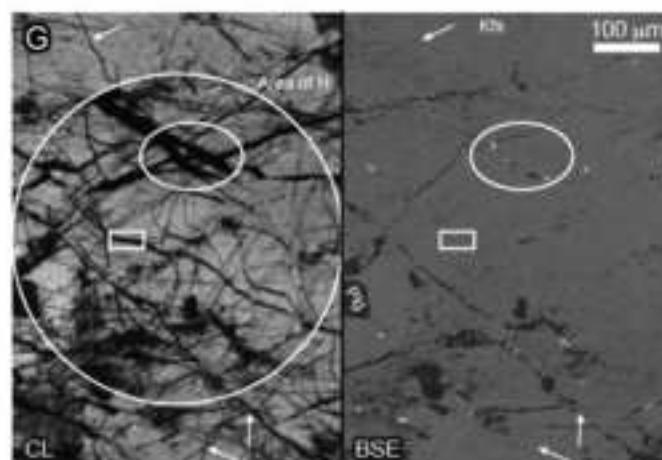
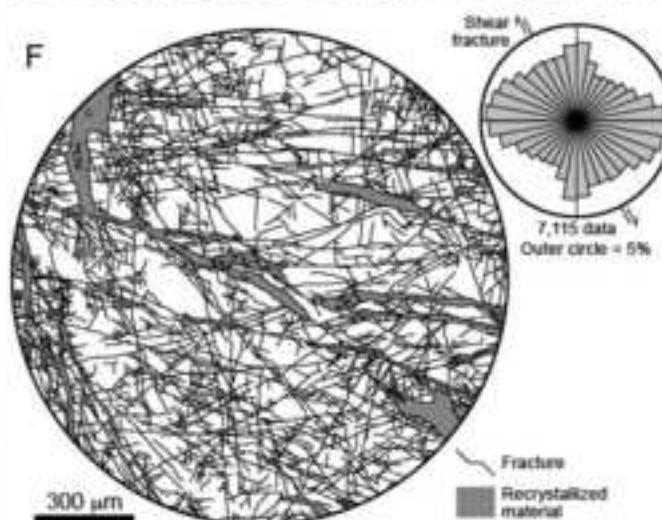
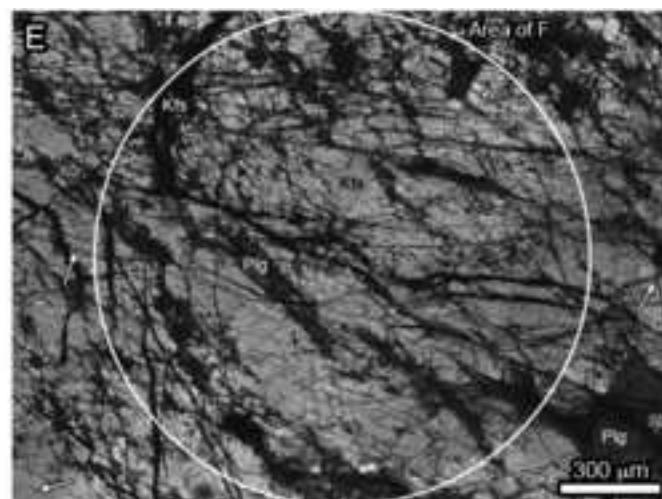
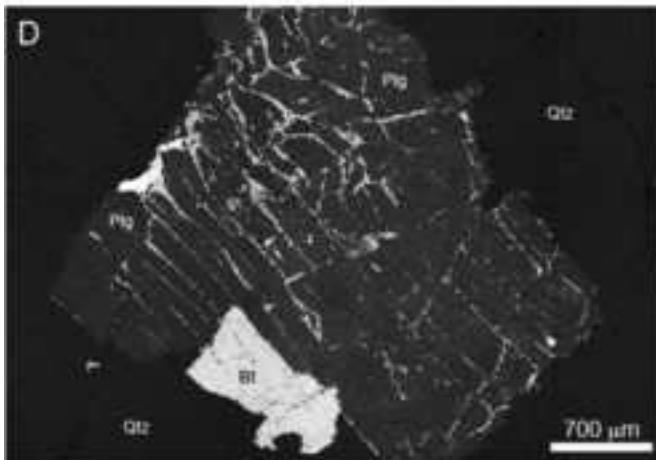
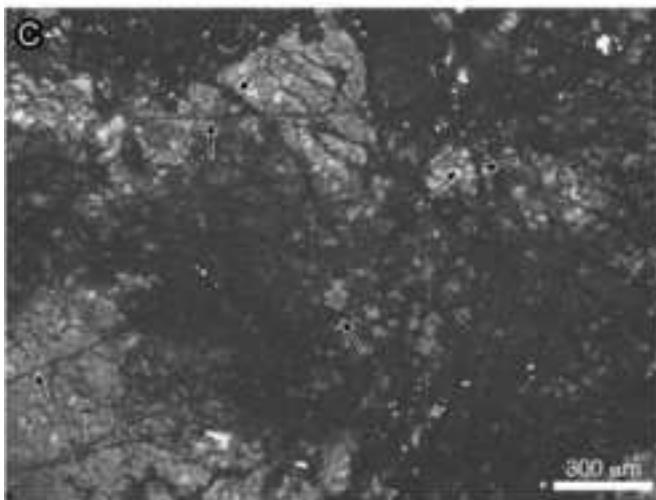
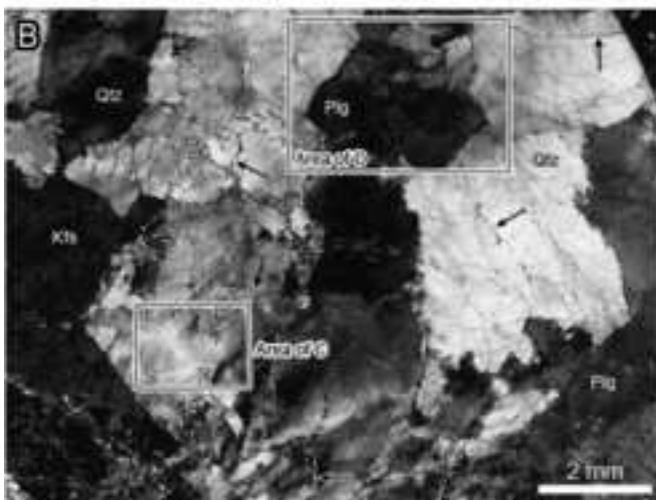
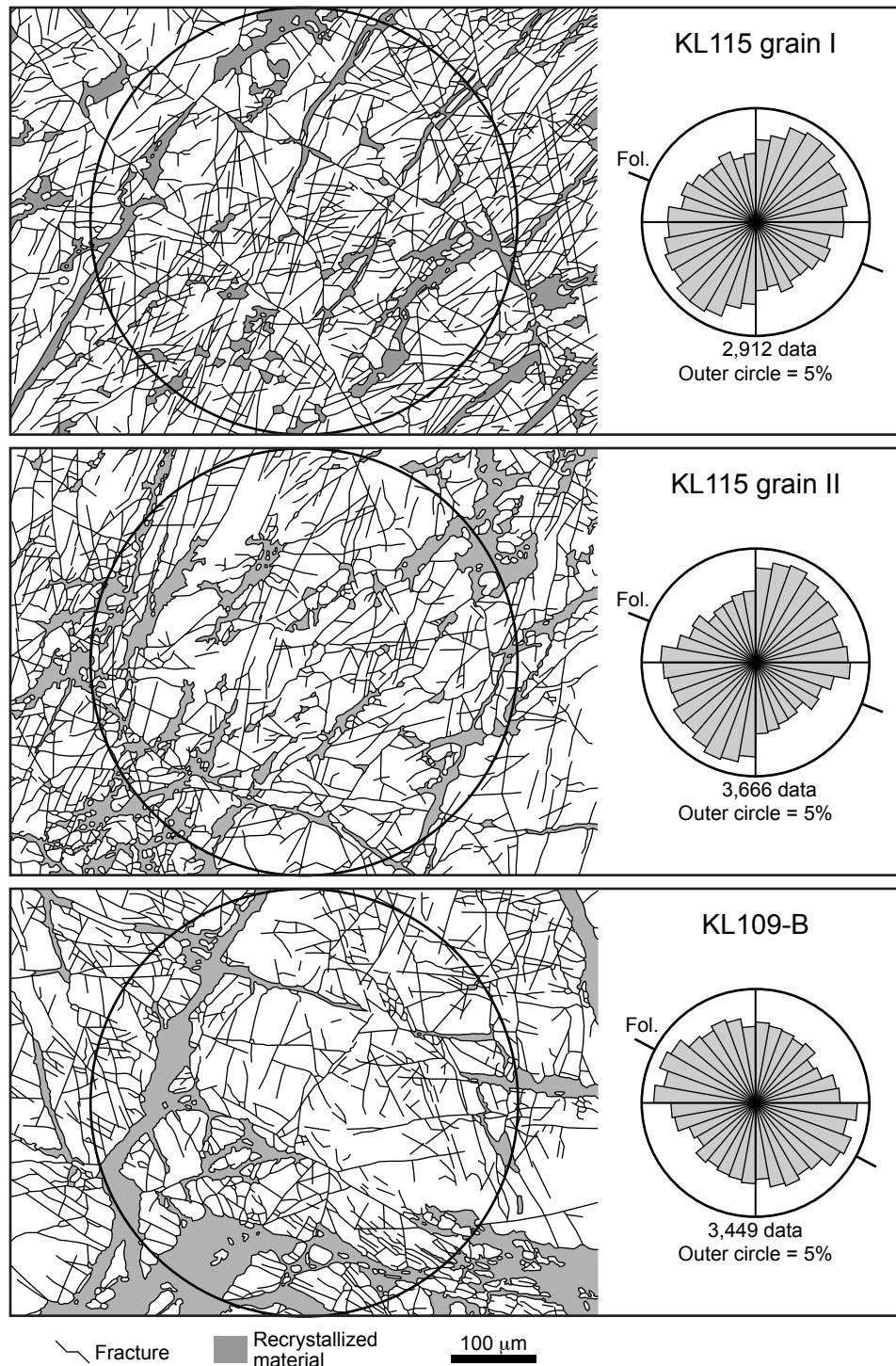
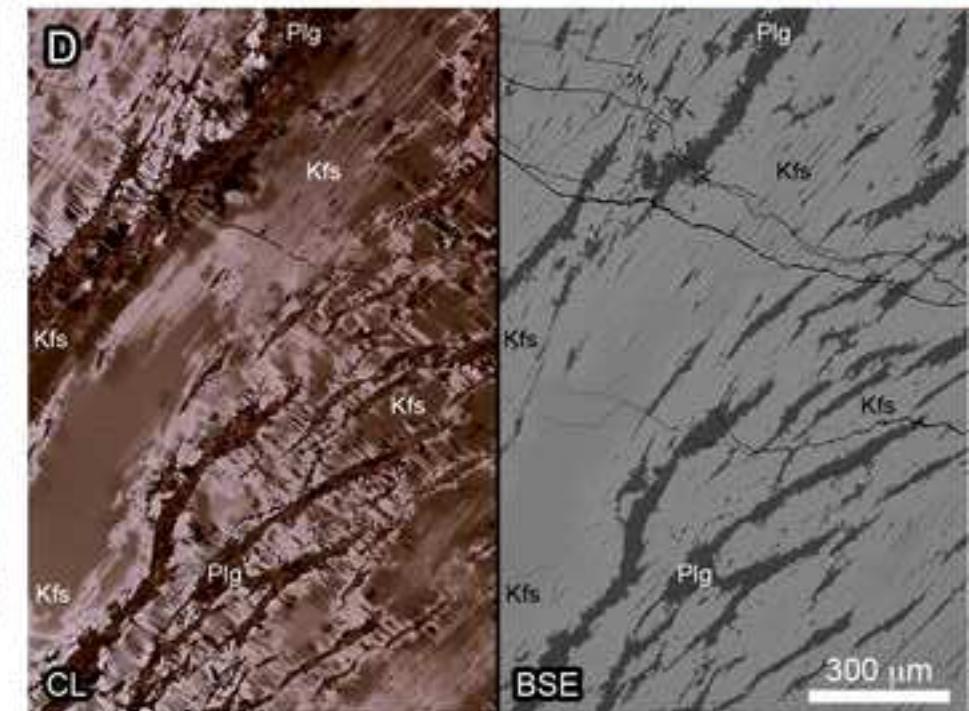
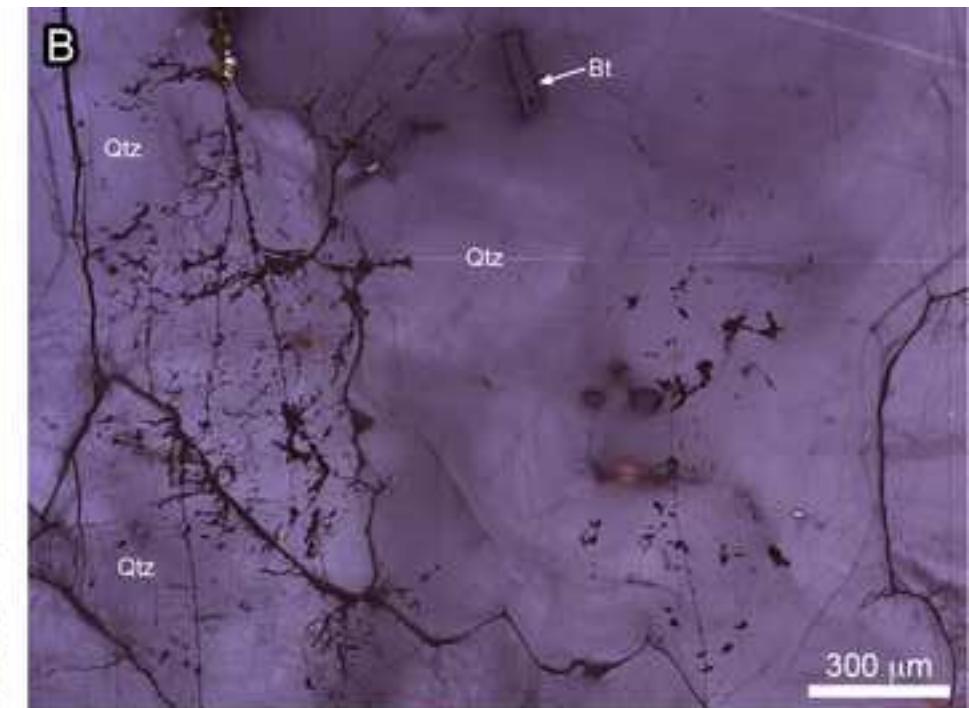
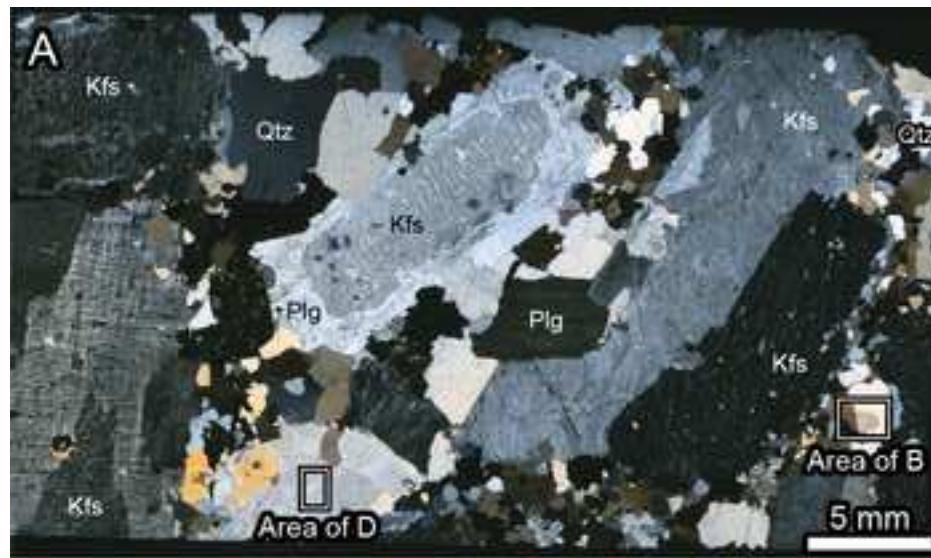
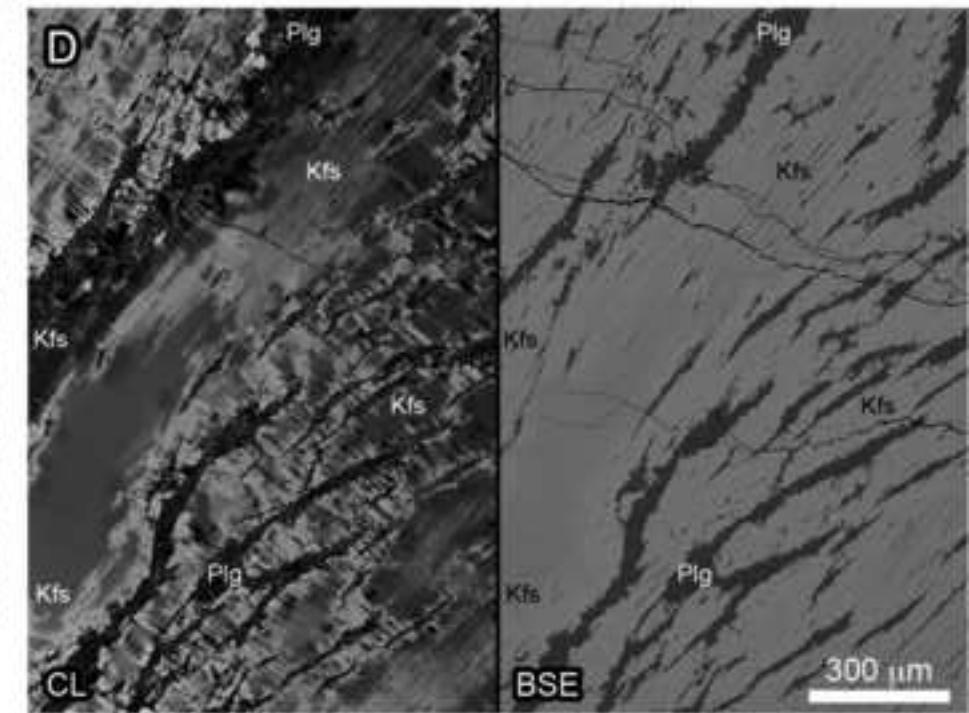
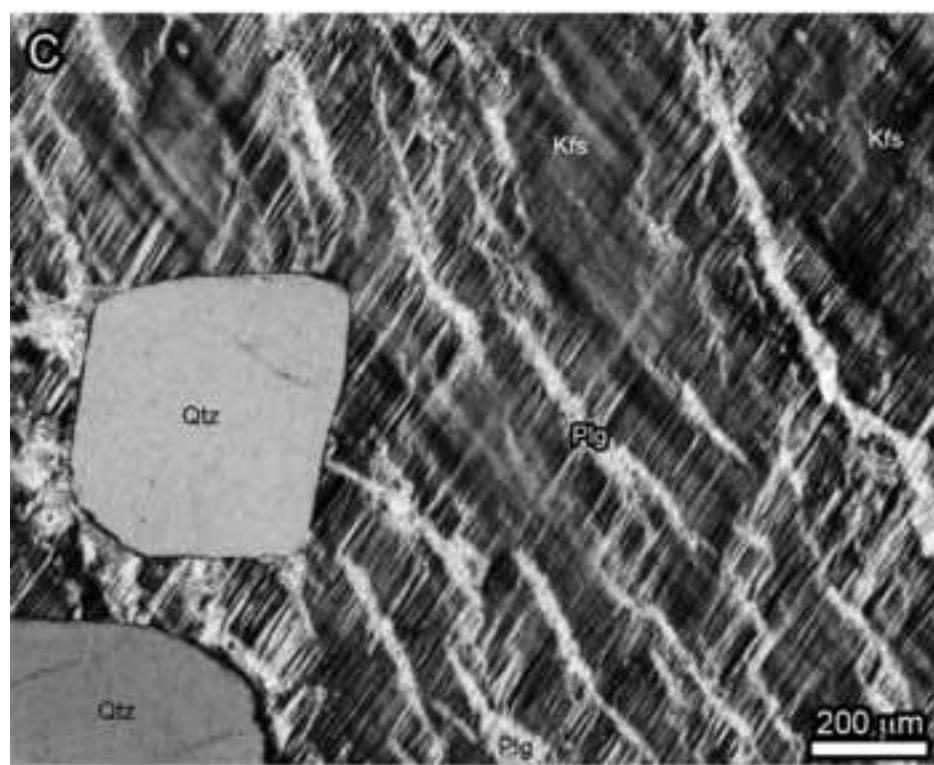
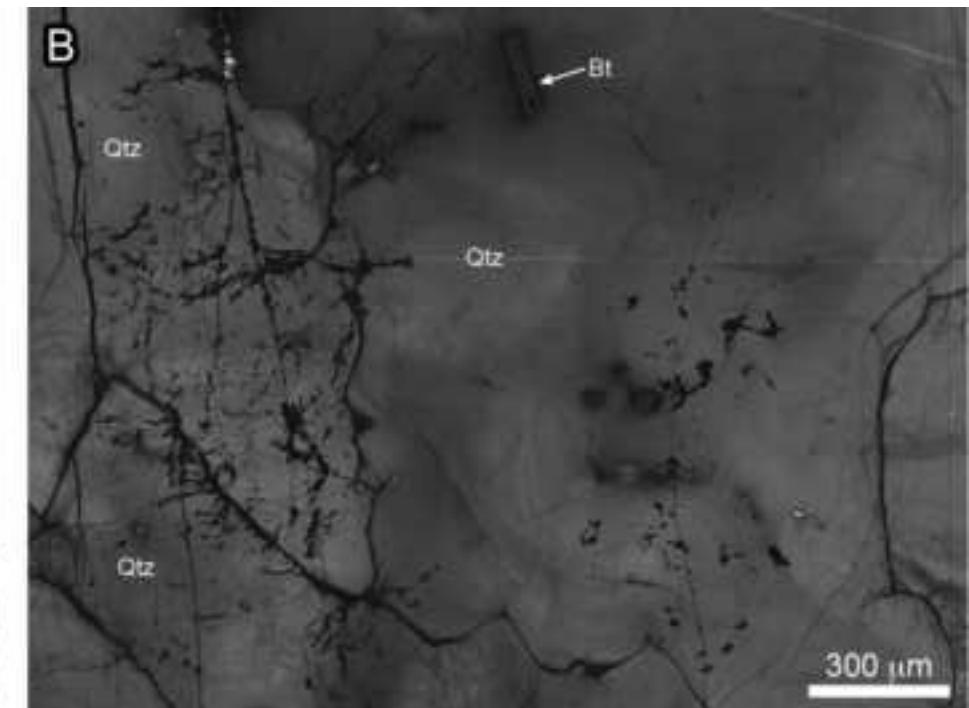
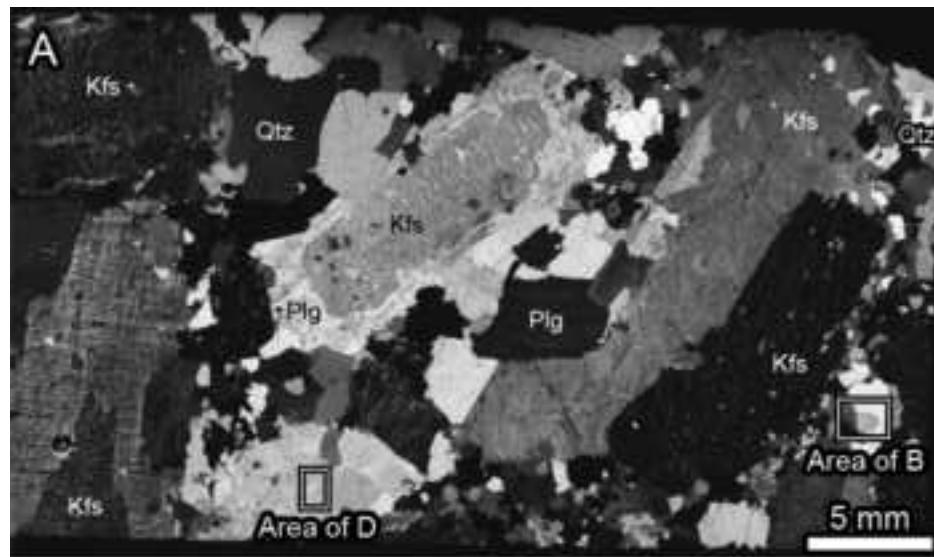
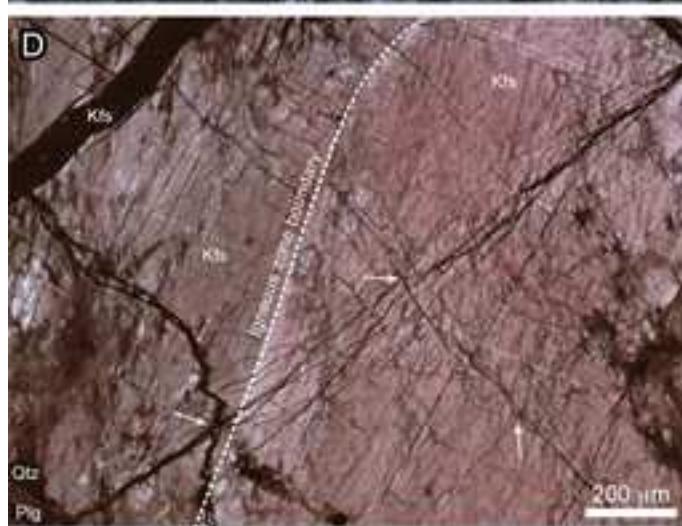
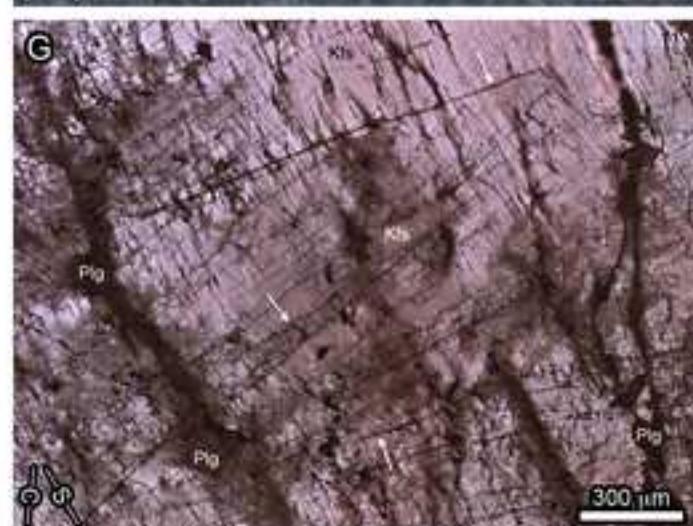
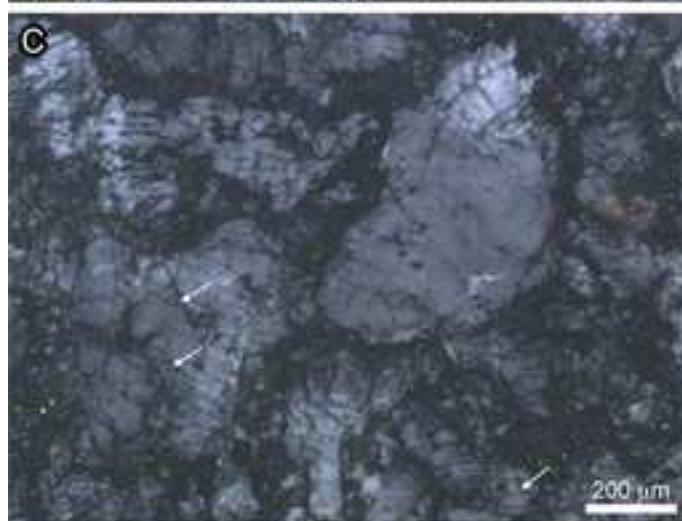
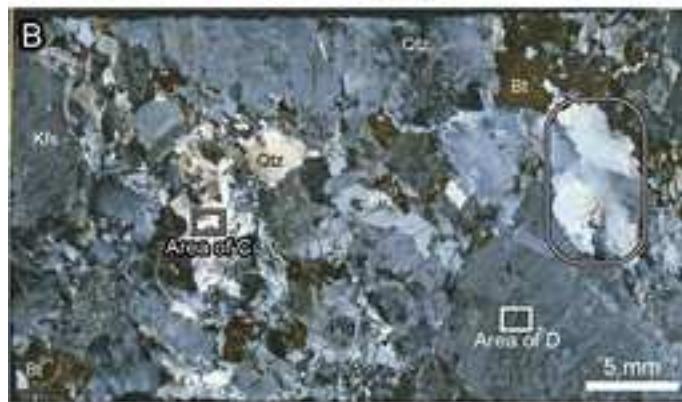
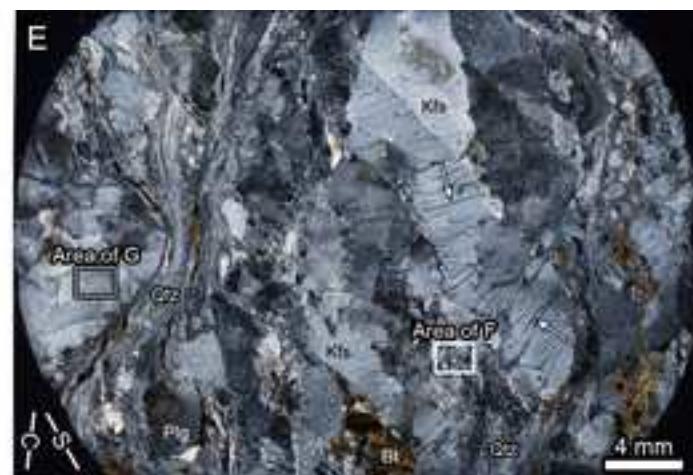












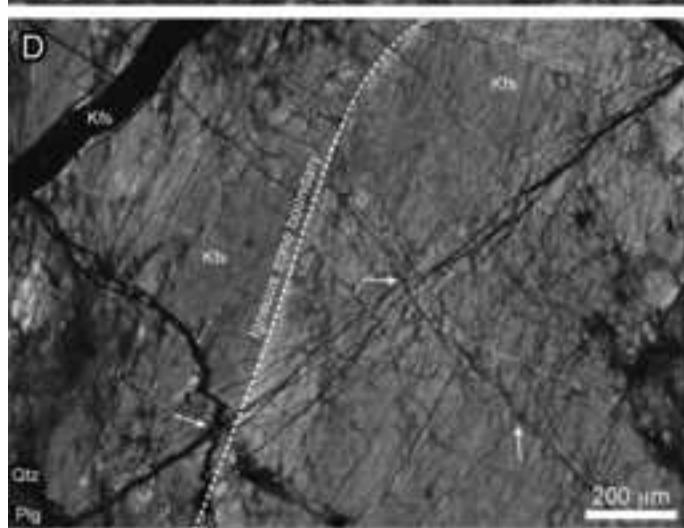
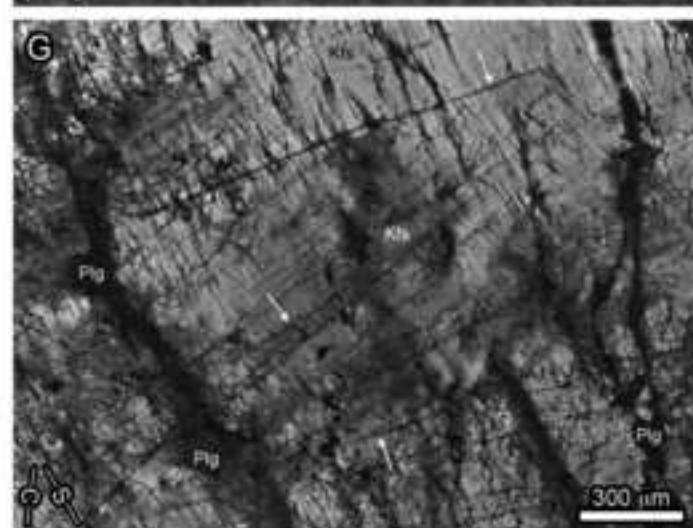
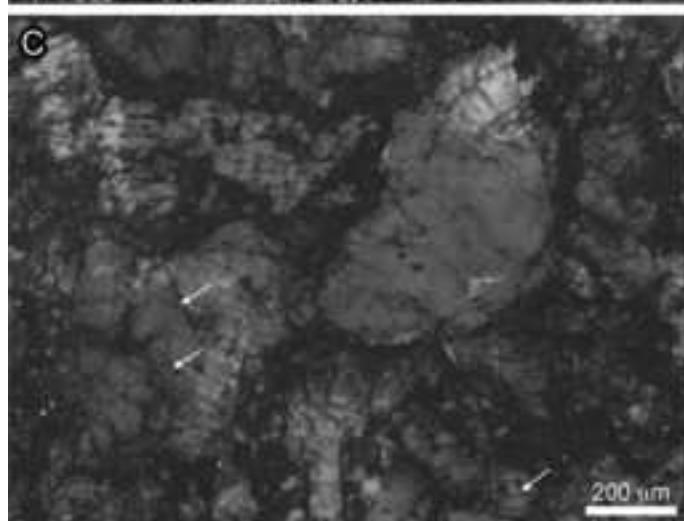
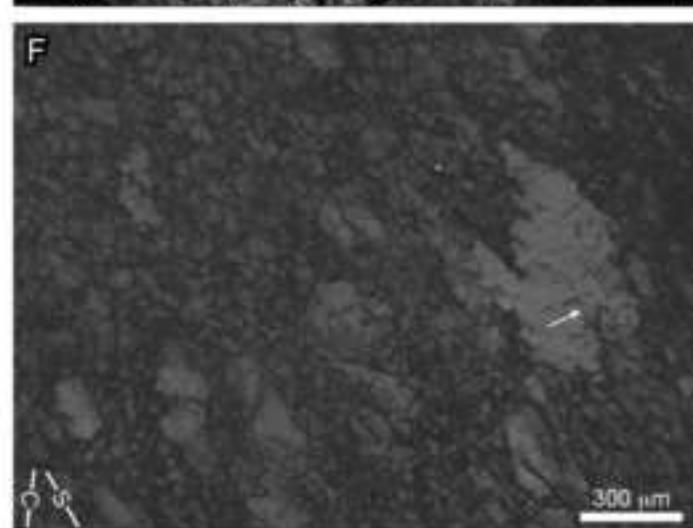
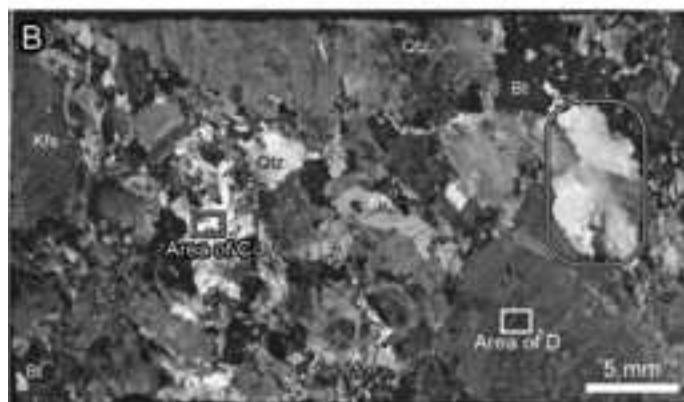
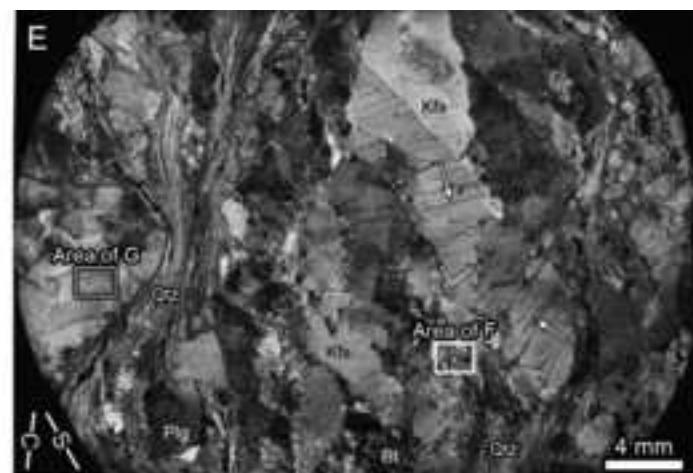
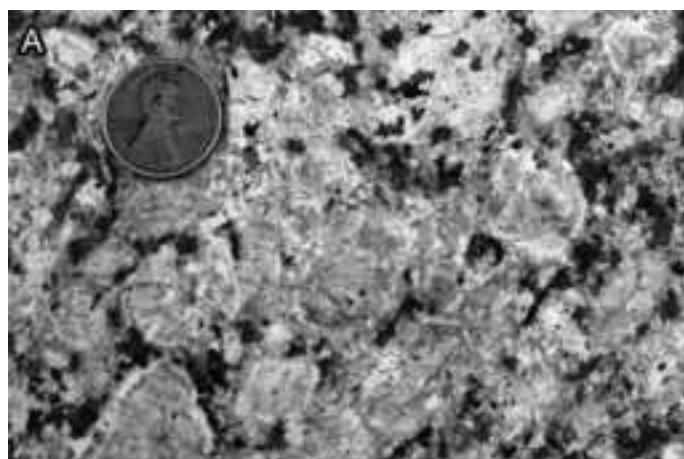
Figure 05





*Figure 06 color

[Click here to download high resolution image](#)






*Figure 06 gray scale

[Click here to download high resolution image](#)








*Figure 07 color

[Click here to download high resolution image](#)

*Figure 07 gray scale

[Click here to download high resolution image](#)

Table 1: Fracture-density measurements

Sample	Fracture map	Fracture density (mm/mm ²)	Fracture density (m/m ²)
KL40-2B	Fig. 3D	118	118,000
KL40-8	Fig. 4F	75	75,300
	Fig. 4H	130	130,000
KL115	Fig. 5, grain I	127	127,000
	Fig. 5, grain II	96	96,200
KL109-B	Fig. 5	103	103,000