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Abstract

The use of perennial crop species in agricultural systems may increase ecosystem services

and sustainability. Because soil microbial communities play a major role in many processes

on which ecosystem services and sustainability depend, characterization of soil community

structure in novel perennial crop systems is necessary to understand potential shifts in func-

tion and crop responses. Here, we characterized soil fungal community composition at two

depths (0–10 and 10–30 cm) in replicated, long-term plots containing one of three different

cropping systems: a tilled three-crop rotation of annual crops, a novel perennial crop mono-

culture (Intermediate wheatgrass, which produces the grain Kernza®), and a native prairie

reconstruction. The overall fungal community was similar under the perennial monoculture

and native vegetation, but both were distinct from those in annual agriculture. The mutualist

and saprotrophic community subsets mirrored differences of the overall community, but

pathogens were similar among cropping systems. Depth structured overall communities as

well as each functional group subset. These results reinforce studies showing strong effects

of tillage and sampling depth on soil community structure and suggest plant species diver-

sity may play a weaker role. Similarities in the overall and functional fungal communities

between the perennial monoculture and native vegetation suggest Kernza® cropping sys-

tems have the potential to mimic reconstructed natural systems.

Introduction

Intensive agricultural practices can have many detrimental environmental impacts and reduce

important ecosystem services [1,2]. To offset these effects and increase the sustainability of

agricultural systems, there has been a push to better mimic natural systems, such as intact prai-

ries and grasslands, by growing perennial crop species [3–5]. Long-lived crop species have the

potential to improve water and soil conservation, improve overall soil health, and reduce

inputs compared to conventional agriculture practices [6]. Perennial crops can alter abiotic

soil properties [7,8], but much less is known about how perennial crop species impact soil

microbial community structure. Soil communities underlie many of the ecosystem processes
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on which sustainability relies [9,10], so understanding community differences among agricul-

tural and natural systems is critical to increase sustainability.

Agricultural systems implement many cropping practices that act as abiotic and biotic fil-

ters of microbial communities [11–14]. Repeated soil disturbance, such as in a conventionally

tilled agriculture system, often leads to changes in the diversity and overall community struc-

ture of soil communities [11,15]. Nutrient enrichment to increase or maintain productivity

shifts microbial dominance from slow to fast growing taxa and may decrease abundance of

plant mutualists, with important implications for nutrient cycling and retention [16]. Varia-

tion in plant diversity (temporal and spatial [17–19]) and plant longevity (annual vs perennial

plants [4,20]) among cropping systems changes the abundance and diversity of plant derived

resources, which can also lead to changes in soil community structure. Fungal communities

contribute to the stability and productivity of natural and agricultural systems [9], so under-

standing cropping system impacts on fungal community structure is critical to predict their

impact on plants. Mutualistic fungi form symbioses on which the vast majority of plants rely

and saprotrophic fungi play a major role in decomposition and nutrient cycling [21]. More-

over, fungal pathogens maintain productivity in natural systems, balancing the relationship

between plant diversity and productivity [22,23] and represent diseases that cause great losses

in agroecosystems [24].

Tillage in annual cropping systems alters soil physical structure and resource availability,

which can alter soil fungal community as a whole and shift fungal functional groups (patho-

gens, saprotrophs, and mutualists) [15,25,26]. Increased incorporation of plant residues with

tillage may reduce fungal pathogens in annual cropping systems [27,28], while the physical

cutting and disruption of hyphal formation can have varying effects on saprotrophs [25,29,30]

and decrease abundance of mutualists [25,29–31].

The plant community in a cropping system provides resources for soil fungal communities

as hosts for pathogens and mutualists and through litter and root inputs for saprotrophs. The

quality and quantity of host and input resources may depend on the characteristics of the crop

(identity, functional group, and life cycle) planted as well as temporal and spatial crop diver-

sity. For instance, legume crops may be colonized by a unique community of fungal mutualists

[32], have unique root architecture [33], and cause increased nutrient availability [34] com-

pared to non-legume crops, but these functional group effects may also vary among legume

species [35,36]. Resources may also change with the life cycle of a crop. Crops with a perennial

life cycle typically have greater belowground productivity than annual crops, which may

increase the vertical distribution and total pool of root associated resources [37,38]. Variations

in crop characteristics lead to diversification of resources (litter and root inputs) and potential

hosts for soil fungi when crop diversity is increased. This increase can lead to changes in the

overall fungal community and fungal functional groups [17,19,36,39].

Fungal community changes in response to management shifts among cropping systems

may also differ markedly with soil depth. Fungal communities have been shown to differ with

sampling depth [40,41], but the depth at which communities change may depend on how a

cropping system is managed. In a cropping system with tillage, homogenization of the upper

soil layers may lead to similar fungal communities throughout the entirety of disturbed soil

[14,25]. In cropping systems without tillage, distinct fungal communities may be found at shal-

lower depths due to a maintained gradient of resources [25,42].

To better understand how a novel perennial cropping system affects soil community struc-

ture, we characterized soil fungal communities in the Agroecology Research Trials at the Land

Institute in Salina, KS. Soil samples were taken from conventionally tilled annual plots, novel

perennial crop (Intermediate wheatgrass) monoculture plots, and reconstructed native prairie

plots. Samples were taken at two depths to assess how management practices effects on fungi

Soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction
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may differ with depth. We expected each cropping system to have a unique fungal community

due to tillage and temporal diversity in the annual system, no soil disturbance and low plant

diversity in the perennial monocrop, and no soil disturbance and high plant diversity in the

native prairie polyculture. We also expected the differences in plant communities and distur-

bance to create unique fungal functional group (pathogens, saprotrophs, mutualists)

communities.

Methods

Site description

The Agroecology Research Trials (A.R.T. plots) were established at the Land Institute in Salina,

Kansas in 2002. The experimental site soil is classified as McCook series Fluventic Haplustoll

that had been in alfalfa production since 1996. The existing alfalfa stand was removed using an

under-cutter and disc harrow before experiment installation.

Experiment layout

Research blocks were separated into plots (ca. 900 m2 with no aisles), and one of three crop-

ping systems was randomly assigned to each plot within each block. The cropping systems

were: perennial monoculture, native vegetation, and annual agriculture. Perennial monocul-

tures consist of intermediate wheatgrass (Thinopyrum intermedium), which produces the

perennial grain Kernza1. Thus, each block contains a representative plot of each cropping

system. Plots have been repeatedly harvested for both seed and forage. Some invasion by native

warm-season grasses has occurred in recent years. The native vegetation plots were planted

with a native prairie seed mix consisting of warm-season grasses, cool-season grasses, and

forbs to reconstruct a native prairie system. Plots are managed as hay meadows with frequent

swathing and baling and occasional burning. In recent years the native plant community has

been dominated by the grasses big bluestem (Andropogon gerardii), Indiangrass (Sorghastrum
nutans), switchgrass (Panicum virgatum), eastern gamagrass (Tripsacum dactyloides), sideoats

grama (Bouteloua curtipendula), interspersed with the legume Illinois bundleflower (Des-
manthus illinoensis), and the forb Maximillian sunflower (Helianthus maximiliani). Some

plots have been invaded by smooth bromegrass (Bromus inermis).
Annual agriculture plots are on a rain-fed winter wheat—sorghum—soybean crop

sequence. Nitrogen (~ 84–123 kilograms/hectare) and phosphorus (~ 56 kilograms/hectare)

fertilizers are applied as needed before planting of crops. Plots are tilled annually with a disc,

chisel, and or harrow before planting. A cultivator is used as needed for weed control.

Soil samples

Soil samples (1.7 x 30 cm) were taken from each cropping system plot across the three blocks

in June 2015. At the time, annual agriculture plots were planted to winter wheat. Three cores

were taken from each plot at least 2m away from the plot edge, separated by depth into 0–10

cm and 10–30 cm subsamples, then subsamples from the same depth were pooled. Final soils

for analysis included pooled samples from each depth, for each cropping system, replicated

across the three blocks (2 depths X 3 cropping system plots X 3 blocks). Soils were stored at

-20˚C for 2 months until processing.

DNA extraction and sequencing

DNA was extracted from 0.25 g of each molecular subsample using MoBio PowerSoil Kits

(MoBio, Carlsbad, USA). Extracted DNA was quantified using a Qubit 2.0 (LifeTechnologies,

Soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction
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Carlsbad, USA) to normalize template DNA for PCR. The ITS2 region of rDNA was amplified

from 5 ng of template DNA with fungal-specific primers ITS4 and fITS7 using the PCR param-

eters described in Ihrmark et al. (2012) [43] and Q5 proof-reading polymerase (New England

Biosystems, Ipswich, USA). PCR products were cleaned using Agencourt AMPure XP mag-

netic beads (Beckman Coulter, Indianapolis, USA), then unique Nexterra indices (Illumina,

San Diego, USA) were ligated to each sample. Finally, a second bead-purification step was

used. Final libraries for each sample were pooled to a single library; concentration and size

were verified using a TapeStation 2200 (Agilent, Santa Clara, USA). Fungal sequences were

generated using an Illumina Mi-seq (Illumina, San Diego, USA) at the Kansas State Integrated

Genomics Center. Qiime v.1.9.0 was used for bioinformatic processing [44]. Quality and bar-

code filtering resulted in 2,281,565 reads with an average phred score �30 and median length

of 270 bp. Open-reference OTU picking and chimera checking using Usearch 6.1 and the

UNITE fungal ITS reference database [45] was used to cluster OTUs (97%). All OTUs with <5

reads were removed to eliminate potential PCR/sequencing artifacts. Taxonomic classification

was assigned to OTUs using the RDP classifier. The DESeq2 variance-stabilizing transforma-

tion [46] was performed in R to normalize the data [47]. Because of the debate about how to

normalize microbiome data [46,48,49], the dataset was also rarefied to equal sampling depth.

The statistical analysis described below was performed on the DESeq2 and rarefied data. The

results were qualitatively similar, so for brevity only the DESeq2 results are presented. FUN-

guild [50] was used to assign functional classification to OTUs. LINUX code for the entire bio-

informatics pipeline is available by request. Sequences were submitted to the National Center

for Biotechnology Sequence Read Archive under #PRJNA528501. Library preparation and bio-

informatics were completed in collaboration with the KU Center for Metagenomic Microbial

Community Analysis and the KU Advanced Computing Facility.

Statistical analyses

Analyses were performed on all OTUs before FUNguild (All) and OTUs solely designated as

“highly probable” and “probable” Pathotrophs, Saprotrophs, and Symbiotrophs (mutualists) in

FUNguild. Nonmetric multidimensional (NMS) scaling with the Sørensen index was used to

visually inspect for the differences in fungal communities among cropping systems and sample

depth (PC-ORD 6.0, MjM Software Design, Gleneden Beach, OR, USA). Permutational MAN-

OVAs (PerMANOVA, 999 permutations) with the Bray-Curtis dissimilarity index were per-

formed using the vegan package in R [51] to test for differences among treatment groups, and

significant PerMANOVAs were followed by a pairwise comparison test using the RVAideMe-

moire package in R [52]to identify differences among treatments. The inverse Simpson’s Diver-

sity (1/D) and observed richness of OTUs within all, pathotroph, saprotroph, and symbiotroph

categories were compared among treatment groups using ANOVA (proc glm; SAS™ v9.3; SAS

Institute Inc., Cary, NC, USA) with block, planting treatment, and depth as fixed factors. Signif-

icant ANOVAs were followed by a Tukey’s HSD multiple comparison test to identify differ-

ences among treatments. The results of the analysis of the diversity indices and observed

richness were similar for all categories, so for brevity only the richness results are presented (see

Supplement S1 Table, S1 Fig, and S2 Fig for diversity results). Blocked indicator species analysis

was performed on all OTUs to identify representative OTUs at each depth within each cropping

system (PC-ORD 6.0, MjM Software Design, Gleneden Beach, OR, USA).

Results

The bioinformatics analysis resulted in 7496 fungal OTUs. The phylum with the greatest OTU

richness was Ascomycota (79.7%) followed by unclassified OTUs (10.4%), then Basidiomycota

Soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction
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(5.2%), Glomeromycota (2.9%), Zygomycota (1.48%), and Chytridiomycota (0.4%). Unidenti-

fied OTUs had the greatest abundance, followed by Ascomycota, Glomeromycota, Basidiomy-

cota, Zygomycota, and Chytridmycota. The relative abundance of each phylum generally

followed this pattern, but slightly varied among cropping system and sampling depth

(Table 1). FUNguild assigned an ecological function to 2399 OTUs (32.0%).

Community analysis using all OTUs revealed that the soil fungal communities were similar

in cropping systems with perennial monocultures of intermediate wheatgrass and native vege-

tation, and both were different than the annual agriculture system (Table 2, Fig 1A). Soil fungal

communities also differed at 0–10 and 10–30 cm within each cropping system (Table 2, Fig

1B). Analysis of OTUs assigned to a functional classification showed that pathotroph commu-

nities were similar among cropping systems but differed at the two sampling depths (Table 2;

Fig 2A and 2B). Saprotroph and symbiotroph communities were similar in the intermediate

wheatgrass and native vegetation cropping systems, and both were different than annual agri-

culture system (Fig 2C–2E). Saprotroph and symbiotroph communities also differed with sam-

pling depth (Fig 2D–2F).

The richness of all OTUs (All) was marginally greater in perennial monocultures and

annual agriculture than native vegetation (main effect of cropping system; Table 3; Fig 3A),

and richness decreased with depth (main effect of depth; Fig 3B). Pathotroph richness

decreased with depth but only significantly in the annual agriculture system (cropping system

x depth interaction; Fig 4A). Saprotroph richness was greater in annual agriculture than the

Table 1. Relative abundance (percent) of fungal phyla OTUs in each cropping system (annual agriculture (AN), native vegetation (NV), and perennial monoculture

(PM)) and at each sampling depth (0–10 cm (10) and 10–30 cm (30)).

Cropping system and depth Unidentified Ascomycota Glomeromycota Basidiomycota Zygomycota Chytridmycota

PM10 50.45 43.12 2.99 2.46 0.66 0.33

PM30 53.02 36.22 5.97 2.87 1.64 0.28

AN10 48.12 45.14 1.65 3.48 1.17 0.43

AN30 46.19 42.27 3.54 2.18 5.50 0.32

NV10 48.23 44.91 2.82 2.58 0.87 0.60

NV30 54.18 37.28 3.80 2.12 2.15 0.47

https://doi.org/10.1371/journal.pone.0228202.t001

Table 2. Degrees of freedom (DF), pseudo F values, and R2 from PerMANOVAs for the effect of three cropping systems (perennial monoculture (PM), annual agri-

culture (AN), and native vegetation (NV)) and two soil depths (0–10 and 10–30 cm) on soil fungal communities. All consists of the entire fungal community before

using FUNguild and the three trophic guilds (Pathotroph, Saprotroph, and Symbiotroph) consist of OTUs categorized as “highly probable” and “probable” by FUNguild.

Pairwise comparisons were made among cropping systems across depths for each PerMANOVA (different letters indicate a significant difference (p < 0.05)).

All Pathotrophs Saprotrophs Symbiotrophs

DF F R2 F R2 F R2 F R2

Block 2,10 1.67�� 0.12 0.94�� 0.09 1.98�� 0.14 1.84�� 0.13

Cropping System (CS) 2,10 3.09�� 0.23 1.38 0.13 3.36�� 0.24 3.48�� 0.25

Depth 1,10 4.93�� 0.18 4.00�� 0.19 4.43�� 0.16 5.68�� 0.20

CS�Depth 2,10 1.50† 0.11 1.25 0.12 1.20 0.09 1.00 0.07

CS pairwise comparison PM a a a a

AN b a b b

NV a a a a

† p < 0.10

� p < 0.05, and

�� p < 0.01

https://doi.org/10.1371/journal.pone.0228202.t002

Soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction
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native vegetation (Table 3, Fig 4B), and the richness of symbiotrophs was greatest in perennial

monocultures (Fig 4C).

Indicator species analysis performed on all OTUs identified 612 significant indicator

OTUS, and 94 had highly probable and probable classifications (S2 Table). At the 0–10 cm

depth, the perennial monoculture system had 9 OTUs with highly probable and probable clas-

sifications. The majority were saprotrophs (5 OTUs) in the phylum Ascomycota, followed by

symbiotrophs (3 OTUs) in the genus Glomus and a single pathotroph in the phylum Ascomy-

cota and genus Leptoshpaeria. The annual agriculture systems had 34 highly probable and

probable classifications with a majority being saprotrophs (29 OTUs), followed by pathotrophs

(4 OTUs), and a single symbiotroph from the genus Funneliformis. The native vegetation sys-

tem had one highly probable saprotroph from the phylum Ascomycota and genus Pyreno-
chaeta. At the 10–30 cm depth, perennial monocultures had 16 highly probable and probable

classified OTUs. All were symbiotrophs with three identified to the genus Glomus. The annual

agriculture system had 33 highly probable and probable classified OTUs with a majority being

saprotrophs (27 OTUs) in the phylum Zygomycota (17 OTUs) followed by symbiotrophs (6

OTUs). A single symbiotroph was identified to the genus Septoglomus. The native vegetation

system had a single highly probable saprotroph in the phylum Zygomycota and genus

Ramicandelbar.

Discussion

The objectives of this study were to characterize and compare the soil fungal community at

two depths in long term plots conditioned by three different cropping systems. The overall soil

Fig 1. Nonmetric multidimensional scaling ordination of All OTUs sampled from plots of the three cropping systems (CS: perennial monoculture (PM),

annual agriculture (AN), native vegetation (NV); A) and two soil depths (0–10 and 10–30 cm; B). The cropping system or depth label is at the centroid of

each community.

https://doi.org/10.1371/journal.pone.0228202.g001
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Fig 2. Nonmetric multidimensional scaling ordination of Pathotroph (A,B), Saprotroph (C,D), and Symbiotroph (E,F) OTUs sampled from

plots of three cropping systems(CS: perennial monoculture (PM), annual agriculture (AN), native vegetation (NV)) and two soil depths (0–10

and 10–30 cm). The cropping system or depth label is at the centroid of each community.

https://doi.org/10.1371/journal.pone.0228202.g002

Soil fungi in a novel perennial crop monoculture, annual agriculture, and native prairie reconstruction
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fungal community, saprotrophs, and symbiotrophs were similar in perennial monoculture and

native vegetation cropping systems, but both were different than the annual agriculture system.

These fungal communities also differed between sampling depths within each cropping sys-

tem. Pathotroph communities were similar among cropping systems, but differed between

sampling depths. Overall richness (all) of OTUs decreased with depth and was lower in native

vegetation than perennial monocultures and annual agriculture. Pathotroph richness

decreased with depth in annual agriculture, saprotroph richness was greater in annual agricul-

ture than native vegetation, and symbiotroph richness was greatest in perennial monocultures.

Contrary to our expectations, the three cropping systems did not create three distinct soil com-

munities, and soil fungal communities in native vegetation treatments were not more diverse

than perennial monocultures. These results reinforce studies that show tillage [15,25] and

depth [26,40,41] as drivers of soil community structure, and suggest that plant species diversity

may play a weaker role.

The annual agriculture system had unique overall, saprotroph, and symbiotroph fungal

communities. This was expected as repeated tillage [15,25] and nutrient addition [16] can have

Table 3. ANOVA (degrees of freedom (DF) and F values) results for the effect of block, cropping system (perennial monoculture, annual agriculture, and native

vegetation), and sample depth (0–10 and 10–30 cm) on richness of All, Pathotroph, Saprotroph, and Symbiotroph fungal OTUs.

Variable DF All Pathotrophs Saprotrophs Symbiotrophs

Block 2,10 0.58 0.89 0.57 4.46�

Cropping System (CS) 2,10 3.68† 2.32 5.00� 8.47��

Depth 1,10 21.42�� 40.84�� 2.13 0.06

CS�Depth 2,10 2.26 6.20� 0.03 0.20

† p < 0.10

� p < 0.05, and

�� p < 0.01

https://doi.org/10.1371/journal.pone.0228202.t003

Fig 3. Richness (Least Square mean ± 95% confidence limits) of All OTUs across the three cropping systems (perennial monoculture (PM), annual agriculture (AN),

and native vegetation (NV); A) and each sampling depth across cropping systems (B). Different letters indicate a significant difference (Tukey’s HSD multiple

comparison)). The ANOVA was marginally significant for cropping system (A; Table 2), so no multiple comparisons test was performed.

https://doi.org/10.1371/journal.pone.0228202.g003
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strong effects on the overall fungal community as well as its’ functional components. Indicator

species analysis pointed to the unique effects of conventionally tilled agriculture on sapro-

trophs in the annual agriculture system, as 84% of the highly probable and probable indicator

OTUs were saprotrophs. Tillage effects on saprotrophs can vary from positive [25,30] to nega-

tive [29,53,54] depending on community characterization methods, and in this study we

found an increase in saprotroph richness in a system with added nutrients and tillage com-

pared to the native vegetation plots. Tillage and nutrients typically negatively affect symbio-

troph (AMF) communities [16,25,54–56], but here we found AMF richness was similar in the

annual agriculture plots and in the native vegetation plots.

An increased number of plant species in the native vegetation cropping system did not sup-

port different overall or functional communities of soil fungi compared to the perennial

monoculture system. Similar fungal communities have been observed when comparing long-

term diverse plantings of prairie species and monocultures of the warm-season grass Panicum
virgatum (switchgrass) in bioenergy studies [12]. In long-term grassland biodiversity experi-

ments, increasing plant species richness effects on soil fungal communities have varied. Dassen

et al. 2017 [19] sampled bulk soils along a large plant species richness gradient (1 to 60 species)

at the Jena experiment in Germany. There was no effect of increasing plant species richness on

overall fungal community structure, and plant functional group (grass, legume, or forb) had a

greater influence on soil communities than plant species diversity (richness and abundance).

These findings are very relevant to the present study, as the high abundance of grass species in

the native vegetation cropping system may have contributed to similarities in fungal commu-

nity composition with the perennial monoculture, as T. intermedium is also a grass. Differ-

ences in fungal community structure have been observed when comparing a subset of plots

from a long term biodiversity experiment at Cedar Creek Minnesota U.S.A. Leblanc et al. 2015

[18] compared rhizosphere fungal community structure in monocultures of a grass and

legume species and 16 species mixtures. Fungal community structure in the monocultures dif-

fered from each other and both differed from the rhizosphere communities in the 16 species

mixtures. Both of the above studies also highlighted the importance of abiotic soil factors at

the time of sampling, which unfortunately is lacking in our study.

Increased plant species richness in the native vegetation cropping system also did not lead

greater overall fungal richness compared to the perennial monoculture cropping system. Pre-

vious studies have found no [57], marginal [19], and positive [18] effects of increasing plant

species richness on measures of overall soil fungal diversity. The inconsistency of results

among studies may be due to differences in sampling effort and type of soil samples taken

(bulk soil, rhizosphere, or root) [19,57]. Interestingly, the perennial monocultures had a

greater richness of symbiotrophs despite the native vegetation cropping system having greater

number of potential plant hosts. AMF diversity has been shown to increase with plant diversity

[39], but studies suggest that plant identity, functional group, and soil abiotic properties may

be just as important [19,32]. Monitoring of abiotic properties in these cropping systems has

shown conditions to be fairly similar over time (Crews unpublished data), so the difference

may be due to the identity of the species in monoculture. This finding, as well as the majority

of indicator OTUs (76%) being symbiotrophs, gives promise for increased ecosystem services

provided by AMF and potentially increased sustainability of the perennial grain Kernza1.

Fig 4. Richness (Least Square mean ± 95% confidence limits) of Pathotroph OTUs in each cropping system (perennial

monoculture (PM), annual agriculture (AN), and native vegetation (NV) and at each sampling depth (0–10 cm and

10–30; significant cropping system x depth interaction; A) and Saprotroph (B) and Symbiotroph (C) OTUs from the

three cropping systems across sampling depths (significant main effect of cropping system). Different letters indicate a

significant difference (Tukey’s HSD multiple comparison).

https://doi.org/10.1371/journal.pone.0228202.g004
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Soil depth was also an important factor in structuring the community structure of soil fungi

in this experiment. Resources tend to be higher at the soil surface and decline with depth

within the soil profile [40]. This gradient tends to concentrate soil fungi at the surface and can

lead to changes in community composition and diversity (richness and relative abundance)

with depth [41].This is consistent with the trends observed in this experiment, as the overall

and functional fungal community structure was distinct within each cropping system at each

depth, and the overall OTU richness decreased with depth. Despite possible homogenization

effects of tillage, distinct communities were found at both sampling depths in the annual agri-

culture system [14,42]. It is possible that a nutrient gradient was still present, or the deeper

sample reached below the tillage depth. Of the functional classifications, pathotrophs was the

only functional group to have a decrease in richness with depth. The identity and relative

abundance of saprotrophs and symbiotrophs may change more than richness with depth,

which lead to overall community shifts [26].

Here we characterized the overall and functional components of the soil fungal community

in three cropping systems to better understand potential management practices influencing

community structure and compare a novel perennial cropping system to a tilled agricultural

system and reconstructed natural system. The separation of the overall and functional group

communities of soil fungi in annual agriculture system from the perennial monoculture and

native prairie reconstruction reinforce studies showing strong effects of tillage [15,25] and

nutrient addition [16] on soil communities. Similarities in fungal community structure

between the untilled perennial monoculture and native prairie reconstruction suggest the lack

of a plant diversity effect, and also indicate that perennial cropping systems do have the poten-

tial to closely mimic reconstructed natural systems. Because cropping systems typically imple-

ment multiple management strategies (i.e. annual crop, tillage, and nutrient addition vs

perennial crop, no-tillage, no nutrient addition), it is challenging to isolate and explicitly test

specific mechanisms driving soil community structure. Additionally, these management strat-

egies may also influence intra-seasonal variability of soil fungal communities in different ways.

For example, different crops mature at varying times throughout the growing season, and crop

effects fungal on community structure may differ between the onset of growth and peak bio-

mass [58]. Future studies will focus on experiments designed to assess the relative effects of till-

age, crop life cycle, and crop diversity on soil communities in these systems, as well as assess

the function of the soil communities cultivated by these cropping systems by studying effects

on subsequent crop growth.
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