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A Bayesian Inference-Based
Approach to Empirical Training
of Strongly Coupled Constituent
Models
Partitioned analysis enables numerical representation of complex systems through the
coupling of smaller, simpler constituent models, each representing a different phenom-
enon, domain, scale, or functional component. Through this coupling, inputs and outputs
of constituent models are exchanged in an iterative manner until a converged solution
satisfies all constituents. In practical applications, numerical models may not be avail-
able for all constituents due to lack of understanding of the behavior of a constituent and
the inability to conduct separate-effect experiments to investigate the behavior of the con-
stituent in an isolated manner. In such cases, empirical representations of missing con-
stituents have the opportunity to be inferred using integral-effect experiments, which
capture the behavior of the system as a whole. Herein, we propose a Bayesian inference-
based approach to estimate missing constituent models from available integral-effect
experiments. Significance of this novel approach is demonstrated through the inference of
a material plasticity constituent integrated with a finite element model to enable efficient
multiscale elasto-plastic simulations. [DOI: 10.1115/1.4044804]

Keywords: statistical inference, empirical surrogate, Gaussian process model, model
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1 Introduction

The behavior of natural and engineered systems is governed by
interactions of physical phenomena (i.e., thermal or mechanical),
domains (i.e., fluid or structure), scales (i.e., micro or macro), or
functional components (i.e., aircraft wings or hull). These com-
plex systems may be decomposed into independent, isolated con-
stituent models, each representing an individual phenomenon,
domain, scale, or component [1]. With this approach, constituent
models are first solved independently and then allowed to commu-
nicate with each other through iterative algorithms that exchange
their inputs and outputs. For example, a numerical representation
of a highly anisotropic granular material can be developed by cou-
pling a macroscale finite element model to predict stress, which
can then be used by a mesoscale plasticity model to predict plastic
strain behavior [2,3]. The computational process of solving the
response of a coupled system by means of iterative evaluations of
separate constituents is known as partitioned analysis [4].1

Partitioned analysis is innately dependent upon the availability
of domain knowledge to develop a computational model for each
constituent. However, there are many engineering and science
problems where it is not feasible to develop mechanistic models
for all needed constituents due to lack of expert knowledge of the
specific constituent physics as well as significant resources needed
for code development. Such situations unavoidably result in an
incomplete representation of the overall system. One solution is to
augment the models with experimental data to account for missing
constituents. Ideally, tests that isolate the missing constituent

response (known as separate-effect experiments) are available and
one can empirically develop an input–output relationship to emu-
late the missing constituent. If such separate-effect experiments
are unavailable, however, making use of integral-effect experi-
ments (that capture the full system, including all relationships
between constituents) or intermediate-effect experiments (that
capture select interdependencies, but not all) may be a feasible
option [5]. However, a mathematical framework for empirically
learning a missing constituent from integral-effect experiments is
currently unavailable in the literature. Addressing this knowledge
gap is the focus of this paper.

The ability to infer the functional form of a constituent from
available integral-effect experiments will be a meaningful contri-
bution for the field of multiscale, multiphysics modeling [6]. In
particular, developing such a capability would have a high impact
in advanced materials modeling where models are used to predict
material performance in extreme conditions [7–11]. Multiscale
material problems with clear separation of scales that contribute
to the elastic and plastic components lend themselves particularly
well to approaches using partitioned analysis [12]. Traditionally,
in such applications, model developers determine dependent
parameters based on small-scale, separate-effect experiments
[13]. However, this approach is unreliable for complex materials
where separate-effect experiments are not always feasible [14].
The goal of this paper is to generate empirical approximations of
missing constituents (referred to henceforth as empirical constitu-
ents) to couple with existing numerical models (referred to hence-
forth as computational constituents) to enhance the modeling of
strongly coupled problems.2

The method presented herein is based on inference of a func-
tional representation of a missing constituent from integral-effect
experiments, explicitly recognizing and incorporating uncertain-
ties prevalent throughout the process. The remainder of this paper

1Conversely, monolithic analysis involves the development of a single code that
requires all constituents to advance in time in a synchronous manner.
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presents the details of the proposed functional inverse analysis
and demonstrates its applicability through both academic and
practical problems. Background discussion on the nature of
strongly coupled models is presented in Sec. 2. Section 3 provides
technical details on the Bayesian inference with consideration of
the iterative nature of strongly coupled models. Section 4 details a
case study of an elasto-plastic analysis in which the elastic behav-
ior is captured by a finite element macroscale constituent, and the
plasticity constituent is empirically inferred from integral-effect
four-point bending test data. The inverse analysis and resulting
plasticity constituent are presented in Sec. 5. Section 6 concludes
with the significant findings, discussion of coupled systems for
which the proposed methodology is ideally suited, and outlining a
path forward for future work.

2 Perspectives on Model Calibration in Partitioned

Analysis

Numerical models require input parameters to predict a system
response. A subset of the model input parameters, however, may
not have precisely known values. These parameters are referred to
as uncertain parameters, h. Uncertain parameters often relate to
physical properties of a system, such as definitions of material
characteristics and boundary conditions. The other important sub-
set of model inputs is the control parameters, x, which designate
the operational conditions of the system, such as temperature or
applied load [16]. Model calibration is a method of inferring the
values of uncertain parameters by comparing model predictions,
g, to experimental measurements, y, of the same response at

matched control parameter settings. Figure 1 illustrates traditional
model calibration within a single domain, X. Using traditional
calibration, a nominal value for h is determined that achieves the
best fit to all available data. Calibration parameters of this type
will be referred to as stationary parameters for the remainder of
the paper.

Consider a simple weakly coupled system, as shown in Fig. 2.
The weakly coupled system has a one-way dependence in which
the simulation for domain X2 requires predicted data from the X1

model as an input parameter. The prediction made by constituent
domain X1 is represented by g1. Each domain also has a control
input, x, and X2 has an uncertain stationary parameter, h. The
response of the full system as predicted by the coupled model is g.
Since this predicted response requires coupling of the constituents,
it would be compared to an integral-effect experiment for calibra-
tion. The integral-effect experiments would be conducted in the
coupled space, incorporating both X1 and X2. Now, let us pose
the question: what if there is no constituent model available for
X1? With the constituent missing, the coupled model is incom-
plete and we are instead left with a only a simulation of X2,
referred to as the computational constituent. Here, we introduce a
new type of uncertain parameter, known as a functional parame-
ter, that serves to represent the functional form of the missing con-
stituent model, u xuð Þ. Contrary to the traditional stationary
parameter, this new form of uncertain parameter will be calibrated
so that its value is allowed to change as appropriate in relation to
the relevant constituent domain control parameter. Such func-
tional calibration has been demonstrated in Refs. [17] and [18].

Finally, consider the more complex extension of functional
parameter calibration to a strongly coupled system, as shown in
Fig. 3. The strongly coupled system has a two-way dependence
where the simulation for domain X2 requires predictions of the
X1 model as an input parameter and vice versa. Control inputs, x,
and uncertain stationary parameters, h, are now inputs to the
coupled system rather than a specific model. In the same manner
as the weakly coupled system, the goal is to achieve coupled
model predictions, g, with the best match to measurements from
integral-effect experiments, y. Again, consider the question: what
if one of the constituent models is unavailable? We are then left
with one computational constituent, X1, with an uncertain input
that is dependent upon its own prediction. The methodology pro-
posed in this paper reframes this complex coupling uncertainty
such that functional calibration can be extended for inference of a
missing constituent model within a strongly coupled system. Once
inferred, this empirical constituent model, represented as an

Fig. 1 Traditional calibration of stationary parameters

Fig. 2 Functional calibration for inference of a missing constituent model in a weakly
coupled system
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uncertain functional parameter, can be implemented in the compu-
tational constituent, resulting in a new, experimentally augmented
partitioned model.

3 Methodology for Inferring Constituent Models in

Strongly Coupled Systems

3.1 Conceptual Framework. The methodology presented in
this paper seeks to empirically estimate the previously unknown
representation of a missing constituent model in a strongly
coupled framework. Figure 4 is a representation of the missing
constituent shown in Fig. 3 with the assumption imposed that the
response predicted by X1 would be a control parameter for the
missing domain, i.e., g1 ¼ xu. From this point forward, the param-
eter input to the coupling relationship (xu) will be designated as a
special class of control parameter, the functional control. This
assumption is necessary for the existing functional calibration
methodology because predictions of the desired empirical constit-
uent must have a control parameter on which it is functionally
dependent. All other control parameters (x) do not change from
the traditional approach and will be referred to as system control
parameters. Implications of this assumption will be discussed fur-
ther in Sec. 5.

Herein, the inference problem is posed such that the available
physics-based constituent model is compared against associated
integral-effect experiments. In this comparison, uncertain station-
ary parameters, h, must also be taken into account to avoid the
incorrect calibration of the functional parameter in compensation
for incorrect values of the stationary parameter. Therefore, predic-
tions of the coupled system, g, are represented as a function of x,
h, and u xuð Þ. Calibration of the stationary and functional

parameters takes place by optimizing the fit of model predictions
to experimental measurements at N discrete control inputs while
also taking into consideration experimental errors, �, which are
assumed to be independent and Gaussian distributed:

y xið Þ ¼ g xi; h;u xuð Þ
� �

þ �i for i ¼ 1; 2; …; N (1)

where �i � Nð0; k�1
y Þ. The measurement precision, ky, is typically

treated as unknown and estimated from the data. Joint inference
of uncertain parameters, h and u xuð Þ, is necessary in this scenario
to prevent unwarranted compensations between parameters. If a
separate-effect experiment were to be available for the computa-
tional constituent, h could be calibrated prior to u xuð Þ inference.
However, our focus in this paper is scenarios where the systems
are so strongly coupled only integral-effect data is attainable
therefore requiring joint inference.

3.2 Bayesian Modeling. We take a Bayesian approach to
learning the form of the functional parameters, u xuð Þ, as well as
the value for the stationary parameters, h, so that both sources of
uncertainties, as well as model and experimental uncertainties,
may be considered simultaneously [17,18]. The Bayesian statisti-
cal paradigm proceeds by first representing any prior knowledge
about unknown parameters and associated uncertainty through a
prior distribution. The observed data are related to the unknown
parameters through the assumed data-generating mechanism (i.e.,
the assumed probability distribution that the data came from, also
called the likelihood). After obtaining the observed data, the prior
distribution is updated with the information the data contains
about the parameters to obtain the posterior distribution. Bayesian
inference then proceeds by summarizing the posterior distribution;
e.g., estimating the unknown parameters with the mean of the pos-
terior distribution. For complex Bayesian models, the posterior
distribution is typically simulated by sampling from it via Markov
chain Monte Carlo (MCMC). A general exposition of Bayesian
statistics may be found, for example, in Ref. [19].

In the case considered in this paper, if a functional form of the
constituent model is known, a function with a known parametric
structure can be imposed and the parameters estimated, such as
that demonstrated in Ref. [20]. On the other hand, if even the
parametric form of the function is unknown, one may prefer to
use a nonparametric prior so that the functional form may be
learned from the data. Gaussian process (GP) models are one
example of such nonparametric models recommended as a well-
suited, flexible alternative when the true form is not known
[21,22]. Nonparametric models such as the GP make no

Fig. 3 Functional calibration for inference of a missing constituent model in a strongly
coupled system

Fig. 4 Example system for demonstration of functional
calibration
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assumptions about particular functional forms, thereby giving the
data more freedom in determining the shape of the appropriate
function. Similar to the way a Gaussian distribution is defined
with a mean and standard deviation, a GP is defined with a mean
and a covariance function. Any prior knowledge regarding the
expected general tendencies of the functional form to be inferred
(such as the degree of smoothness of the function) can be incorpo-
rated through the selection of the covariance function. The prod-
uct power exponential covariance structure results in infinitely
differentiable functions and hence is often preferred in applica-
tions thought to have smooth, continuous functional forms. This is
often the case with the majority of mechanistic engineering sys-
tems and is, therefore, the covariance structure used in this work
[22,23]. Other covariance structures may be implemented as is
suitable for the application at hand. The GP covariance function
will generally depend on so-called hyperparameters. In our case,
these parameters determine the precision (i.e., how far a particular
function tends to move away from the mean, denoted ku) and the
correlation length (i.e., how correlated or “smooth” points of the
function near each are, denoted qu). See Ref. [22] for an overview
of GPs.

In this paper, we avoid assuming a specific functional form for
the unknown functional parameter (i.e., the empirical constituent)
and assume a Gaussian process prior

uðxuÞ � GP lðxuÞ; k�1
u R qu; xuð Þ

� �
(2)

where l(xuÞ is the mean function (i.e., a “default function” about
which the GP varies), and R qu; xuð Þ is the correlation function
which, when multiplied by k�1

u , yields the covariance function.
The precision and correlation length parameters are themselves
assigned hyper-prior distributions. It is usually sufficient to fix the
mean function to be constant, and that is what we do here. The GP
prior can also be augmented with any known constraints (e.g.,
monotonicity) that can be incorporated into posterior sampling.
Such constraints can improve the ability to estimate unobserved
constituents. Implementation of such constraints will be demon-
strated with a mechanistic material model in Sec. 4. Employing a GP
on u xuð Þ, predictions of the resulting semi-empirical partitioned
model may be obtained from the posterior distribution and the
assumed model in Eq. (1). To sample from the posterior distribution
(and hence to estimate the unknown quantities), Gibbs sampling is
implemented with Metropolis substeps for better convergence of
u xuð Þ [17,24–27]. The reader is referred to Ref. [18] for discussion
on the effects of subsampling the functional parameter.

3.3 Proof-of-Concept Demonstration. Consider the aca-
demic example in Fig. 4. Our aim is to infer the missing constitu-
ent model by calibrating simulation outputs, g, to a set of
synthetic experimental data, y. The form of X1 is known

X1 ¼ xu ¼ 1:3ux3 þ 1:5 sin hxð Þ þ 3 (3)

where h has a true value of 10. The true from of the missing con-
stituent is

u xuð Þ ¼ 10
ffiffiffiffiffi
xu

p � xu
2

7
(4)

Synthetic integral-effect experiments, y, are generated by Eq. (5)
once values of Eqs. (3) and (4) are determined by
Newton–Raphson iterations as well as the true value of h.

y ¼ cos
ffiffiffiffiffiffi
X1

p� �
(5)

To demonstrate the methodology, we assume the functional form
of Eq. (4) and the value of the stationary parameter, h, are not
known. We seek to infer uðxuÞ from a GP prior as well as the
value of h, where the prior on h is taken to be uniform so that all
values within a known range are assumed to be equally likely, a
priori.

A GP with a constant mean of 0.5 and squared exponential
covariance function dependent upon a precision hyperparameter,
ku and length hyperparameter, qu is used as a prior distribution
on the functional form of uðxuÞ. Details on the boundaries and
prior distributions for these parameters are provided in Table 1.

Posterior densities of the GP hyperparameters are shown in
Fig. 5 and posterior draws for u xuð Þ (generated using the GP with
the hyperparameters from Fig. 5) and h are shown in Fig. 6 with

Table 1 Model parameter boundaries and prior distributions for Bayesian inference

Minimum Maximum Prior distribution

X1 model parameters

Control parameters System control (x) 0 1 —
Functional control ðxuÞ 3 14 —

Uncertain model parameters Stationary parameter (h) 5 20 Uniform (5,20)

Functional parameter ½u xuð Þ� 1 5 u xuð Þ � GP l; k�1
u R

� �
GP empirical constituent hyperparameters

Precision ku — — Gamma (5,5)

Smoothness qu — — Beta (1,0.1)

Fig. 5 GP hyperparameter posterior densities

Fig. 6 Inferred functional parameter, u(xu), and constant
parameter, h, compared with true values used to generate syn-
thetic integral-effect experiments
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comparison of these inferred parameter values to the true parame-
ter values. Once the GP representing the empirical constituent
model for u xuð Þ is determined, it is incorporated into the X1

model to produce coupled predictions, which are shown in com-
parison to integral-effect experiments in Fig. 7. This example
demonstrates the capability to infer both uncertain stationary
parameter values as well as the important missing dependencies.
Predictions made with the empirically inferred constituent illus-
trate the potential of our proposed approach to enable semi-
empirical models of strongly coupled systems given only a single
constituent and integral-effect data.

4 Multiscale Plasticity of Anisotropic Elasto-Plastic

Material

4.1 Four-Point Bending of a Zirconium Beam. In this sec-
tion, we apply the method discussed in Sec. 3 to infer the constitu-
ent material behavior of a zirconium beam [28]. The zirconium
material exhibits a multiscale, elasto-plastic behavior. This behav-
ior can be modeled by a macroscale finite element simulation for
elasticity calculations coupled to a mesoscale calculating plastic
strain components. In the following study we have a macroscale
finite element model available but assume the mesoscale plasticity
model is unavailable and must be inferred as an empirical model
represented as a functional parameter. Figure 8 illustrates the cou-
pling between the two scales as well as the classification of each
parameter in the calibration context. The simulation control
parameter is displacement applied to the beam over time, u. The
macroscale anisotropic elasticity model predicts stress, r, at every
time step. If a mesoscale model were to be available it would take
the macroscale stress prediction and in turn predict the plastic
strain component, epl [2,29]. Therefore, the goal of functional cali-
bration is to obtain an empirical plasticity model as a stand-in for
the mesoscale predictions, i.e., u xuð Þ � epl rð Þ. When both scales
are accounted for, the model predicts total strain, e.

The modeled beam has a 6.35� 6.35mm cross section and
length of 50.8mm. A four-point bending test is conducted in
which supports under the beam are placed 12.7mm from the cen-
terline and vertical displacement of 10mm is applied at two points
6.35mm from the centerline (Fig. 9). An ABAQUS finite element
model is used for the macroscale simulation with 32� 4� 4 solid
20 node elements. The response of interest is total strain (combi-
nation of elastic and plastic) distribution in x and y components
along the centerline of the beam face.

4.2 Integral-Effect Experiments. Synthetic experiments are
generated using a fully coupled finite-element plasticity model
(e.g., the macroscale model with the “true” form of the plastic
constituent included in the coupling). The stress–plastic strain
relationship used as the true function is shown in Fig. 10. In the
remainder of this analysis, this constitutive relationship is
assumed unknown and to be inferred from experimental data.
Integral-effect data in the form of time-dependent strain measure-
ments are synthetically generated using simulations of the previ-
ously described four-point bending test. Total strain is measured
at nine locations on the face of the beam along the centerline.
Measurements are taken continuously as the beam is loaded,
resulting in a time series of total strain at every node. Integral-
effect data at four moments in time are shown in Fig. 11.

4.3 Emulating Functionally Augmented Simulations. In a
situation where the computer model is computationally demand-
ing, it may be necessary to emulate the simulations to generate
predictions rapidly. In our application, where the macroscale finite
element model involves over 10,000 integration points, the com-
putational demands of model evaluations in MCMC quickly
become prohibitive. This limitation can be alleviated by a fast-
running emulator. An emulator is trained using simulation runs
available at a limited number of input settings and then imple-
mented to estimate the simulation output at input settings where
model evaluations are not available [30,31]. For this purpose,
we use a GP in lieu of the physics-based finite element model
with the mean predictions of this GP in place of the model
predictions, g.

Fig. 7 Mean predictions of the calibrated semi-empirical model
predictions g(X1;u; h; x )

Fig. 8 Representation of multiscale coupling through empiri-
cally derived plasticity constituent model

Fig. 9 Four-point bend test configuration

Fig. 10 Stress–plastic strain relationship used for the simu-
lated experimental testing
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4.3.1 Selection of Functional Parameter Design Points.
While a large body of literature exists for generating efficient
parameter design spaces for training emulators in which parame-
ters are constant [32], the techniques for design of computer
experiments to explore parameter spaces for training runs of func-
tional parameters is limited. In applications such as our functional
model calibration, the emulator must accept a function as input
rather than a constant value to predict a model output that is repre-
sentative of the simulations to be sampled during MCMC.

Consider, for instance, the case where the functional parameter
u xuð Þ is to be related to 50 settings of xu. Values for these 50
points drawn randomly with no relation to each other would not
accurately represent the functions to be sampled during calibra-
tion. Instead, the points should be related within the space achiev-
able by the GPs defined smoothness and precision. Recently,
Ezzat et al. [33] evaluate a series of sequential design techniques
for functional emulator training. In our application, samples are
drawn from the GP hyperparameters, ku and qu, and used to gen-
erate realizations of u xuð Þ. A parameter of random sample step
size, c, is also included. The step size parameter defines the degree
to which a realization is allowed to change from one sample to the
next during the MCMC. Inclusion of step size in the emulator
training ensures that all samples possibly generated during

calibration will be bounded by the training domain. The resulting
training set is a suite of functions feasibly obtained by the func-
tional parameter’s GP representation. GP hyperparameters allow
for deviation from a baseline linear function, l0. Draws of u xuð Þ
follow the form shown in Eq. (6), where the covariance matrix is
a squared exponential form parameterized by the smoothness
parameter, qu (Eq. (7))

u xuð Þ � N l0; cku
�1R

� �
(6)

R xui; xujð Þ ¼ qu
4 xu i�xu jð Þ2 (7)

4.3.2 Emulator Training. A Latin hypercube design is used to
select 400 runs given parameter ranges Table 2. The Gaussian
processes for the machine learning (gpml) toolbox [22] is used to
train the emulator by providing the functional inputs, u xuð Þ, and
relevant cross-sectional strain outputs of the macroscale finite ele-
ment model. Every third run is held out from the training set for
the purpose of emulator cross validation. Cross validation is com-
pleted by comparing emulation predictions to model runs with the
same input parameters. This cross validation is completed at all
20 of the displacement settings to assess the fidelity of emulator
strain predictions. Cross validation results are shown in Fig. 12.
Ideally, emulator strain predictions would match the finite element
strain predictions given the same inputs simulation; in which case,
all points in Fig. 12 would fall along the 45 deg line. As seen in
the figure, the emulator and finite element model predictions fall
closely along this line, providing confidence in the capability of the
trained emulator to accurately represent the finite elemnt model with
functional inputs. Since emulator predictions are generated by a GP
they also include uncertainty, shown by error bars in Fig. 12.

Fig. 11 Sample of integral-effect experiments capturing the midsection strain during loading

Table 2 GP hyperparameter ranges for generating
emulator design of experiments

GP parameters Minimum Maximum

c 0.05 1.5
ku 0.05 3.0
qu 0.80 1.0

Fig. 12 Cross validation of GP emulator strain predictions by comparison with ABAQUS FE
strain predictions at increasing displacements
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Uncertainty is included at all of the displacements but becomes indis-
tinguishable from the prediction at higher displacements because the
uncertainty is orders of magnitude lower than predicted values.

4.4 Bayesian Inference on the Empirical Gaussian Process
Plasticity Model. Finally, the methodology presented in Sec. 3 is
applied to infer the functional form of the plasticity model, under
the assumption that this constituent is unavailable. Table 3 details
parameter ranges and prior distributions used in the functional
Bayesian calibration.

Recall from Sec. 3.2 that a GP is desirable in Bayesian infer-
ence because it provides the flexibility of not imposing a func-
tional form. GP models can also be made to satisfy appropriate
constraints through transformation and/or truncation of the normal
distribution. Furthermore, appropriate constraints may be placed
as upper and lower bounds on the functional parameter value at
any given xu [17] or any other sampling point throughout the
domain where information regarding the function is available. If
general knowledge of the shape of the function is known, e.g., the
function must be monotonic, then derivatives may be included in
the covariance structure to better inform the sampled functional
form [34]. In our study, the following known information is
imposed on the GP model: (i) plastic strain is zero when the stress
is zero; therefore, the function should be bounded to be negligible
at low values; (ii) plastic strain should not exceed 0.5; therefore,
the function should be bounded to a maximum of 0.5 across the
entire domain; and (iii) plastic strain is irrecoverable by nature;
therefore, the function should be monotonically increasing.

The first two constraints are implemented by bounding the sam-
ples so that no values outside these ranges at the appropriate areas
of the domain can be drawn. The third constraint, monotonicity, is
implemented by encouraging monotonic GP sampling as intro-
duced in Ref. [34]. This constraint utilizes an expanded covari-
ance matrix to learn about the derivatives of the GP. The new
form of the covariance matrix is shown in Eq. (8), where R is the
normal covariance function as defined by Eq. (7). Using this
modified covariance, we take draws from a normal distribution
with covariance including derivatives as well as a mean vector
(Eq. (9)). In this mean vector, selected sampling locations, x0u, are

not required to be the same as xu

R ¼
R xui; xujð Þ

@R

@xuj
xui; xu

0
j

� �
@R

@xui
xu

0
i; xuj

� � @R2

@xui@xuj
xu

0
i; xu

0
j

� �
2
66664

3
77775 (8)

u�

u0�

" #
� N

u

u0

" #
; k�1

u R

 !
(9)

These draws result in a new sample of the functional parameter
u�, as well as corresponding derivatives, u0�. A monotonicity
indicator m x0u

� �
is implemented that equals one when a derivative

at a point x0u is positive and zero if it is negative. Monotonic

increase is then encouraged by applying m as a penalty term to
the likelihood if the function is decreasing rather than increasing
(Eq. (10)). For example, when u0� is negative at a given point, m
will be equal to 0, making log(m) negative infinity, therefore caus-
ing the proposed value to always be rejected. However, when u0�

is positive at a given point, m will be equal to 1, making log mð Þ
equal to zero, thus having no effect on the log-likelihood. Further,
the sampling is updated such that R is used in the place of R

throughout the entire formulation and
u

u0

� �
is used in place of u,

except in the model evaluations

log p u�jku;qu;u
� �� �

¼ky
2

y�g u�;hð Þð ÞT y�g u�;hð Þð Þ

�ku
2

u��0:5

u0�

" #T
Rd�1 u��0:5

u0�

" #
þ log mð Þ

(10)

Computation of the residual between measurements and predic-
tions within the likelihood also accounts for the prediction preci-
sion, ky.

Constituent model inference is completed with 1000 burn-in
runs and 1000 sampling runs, each with five subiterations of
u xuð Þ [18,27]. Figure 13 shows all posterior draws of the func-
tional parameter, as well as the mean and standard deviation
of this distribution at control locations xu compared to the true
function (the plasticity model implemented to generate the
integral-effect experimental data). The posterior distribution in
these figures is shown within the plastic strain range of 0–0.5 to
illustrate the reduction in uncertainty from the initial prior with a
uniform distribution from 0 to 0.5. Posterior densities of the GP
hyperparameters are shown in Fig. 14.

5 Results and Discussion

5.1 Multiscale Plasticity Calibration Results. The observed
posterior distribution (Fig. 13) is populated primarily by linearly
increasing functions, which aligns with the posterior density of qu
strongly concentrated near 1, as well as the imposed monotonicity
constraint. While it is typically desired to concentrate the density
of qu to be close to 1 to impose smoothness in the function, the
prior distribution heavily weighted to 1 in combination with the
monotonicity constraint causing a trend in the functions to main-
tain positive derivatives, may be inducing restriction to functions
approaching linearity in form. Even with this consideration, the
trend of the true plastic strain form is captured within the credible
interval throughout the domain. The pointwise mean of u xuð Þ fol-
lows a trend approximating the true function and matches most
accurately in the region of highest plastic strain response, suggest-
ing high plastic strain may be necessary for sufficient sensitivity
to calibrate.

Table 3 Parameter information and prior distributions for plasticity model inference

Minimum Maximum Prior distribution

Macroscale elastic model parameters

Independent control, x Displacement, u (mm) 0 10 —

Dependent control, xu Stress, r (MPa) 0 400 —

Functional parameter, u Plastic strain, epl 0 0.5 u � GP l; ku
�1R

� �
GP empirical plasticity constituent hyperparameters

Precision ku — — Gamma (5,5)

Smoothness qu — — Beta (1,0.1)
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Predictions of the finite element model augmented with the
mean function of the inferred GP constituent model are shown in
comparison to integral-effect experiments in Fig. 15, where
points falling along the 45 deg line demonstrate the matching of
calibrated predictions to integral-effect experimental data. Pre-
dictions are shown at four different heights of the beam midsec-
tion where integral-effect data were collected. The coupled
predictions tend to match experiments reasonably well and are
within 11% error, even at the outer fibers of the beam where the
largest amount of plastic strain occurs during the testing. This is
despite the fact that the mean function used to generate these
coupled predictions is approximately linear, while the true plas-
ticity function is nonlinear. This observation raises concern about
sensitivity specific to the chosen model, especially in regions of
low stress and low plastic strain, and leads to the slight overesti-
mation of strain at the higher stress regions in Fig. 15. Overall,
however, the coupled predictions serve as an appropriate repre-
sentation of the experimental measurements and the underlying
plasticity relationship.

5.2 Discussion of Methodology Applicability. We must
consider the ways in which the nature of coupling a system with
two-way dependence impacts applicability of the proposed meth-
odology. In addition to control, x, and uncertain, h, parameters let
us introduce a new “general” input parameter, denoted as z [35].
For example, a material strength simulation may include a control
input of load, x, an uncertain parameter of modulus of elasticity,
h, and a constant input parameter such as density, z, to predict dis-
placement of a sample.

Considering these three classes of input parameters, Fig. 16
illustrates nine possible combinations by which dependent
parameters can be shared between two strongly coupled constitu-
ent models. In this figure, the subscript letter denotes the model
that is predicting a parameter to be input into the next model.
Note that in all scenarios, uncertain parameters, h, are not
involved in the coupling. This is because, in our treatment, a
dependent output of a constitutive model is not treated as an
uncertain input parameter. It is a prediction of a constituent
model, the system therefore has some knowledge of its value.
This follows from the reasoning that any uncertainty in a
dependent parameter will be mitigated by predicting the parame-
ter value using the computational constituents.

The focus of the methodology proposed herein is on systems
where the input to the constituent model that needs to be empiri-
cally inferred is a control input, x. As such, cases in which none of
the dependent parameters fed into the missing constituent process
are control parameters are not suited for inference through the
mathematical framework presented. Expansion of the method for
calibration opportunities where a control parameter is not
involved in the iterative coupling is an exciting opportunity for
future work.

Fig. 13 Posterior draws (left) and summary (right) of the empirical
plasticity constituent model compared to the true functional form

Fig. 14 Posterior densities of empirical GPmodel hyperparameters

Fig. 15 Comparison of newly coupled model predictions and integral-effect experiments
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6 Conclusions

Partitioned analysis provides model developers with the oppor-
tunity to represent the strongly coupled physical relationships
observed in our complex engineering and science systems. Fur-
ther, it provides the ability to leverage existing mature models of
constituents within a system so that the focus of new model devel-
opment efforts may be on the coupling among constituents rather
than redeveloping already validated models with a monolithic
approach. However, partitioned analysis is hindered when a con-
stituent model is not available and conducting separate-effect
experiments to empirically derive a constituent is not feasible.

This paper presents a statistical approach to infer the important
coupling relationships between an existing physics-based model
and its missing constituent through Bayesian inference utilizing
integral-effect experimental data. The capability to infer the
physics of a constituent model in the form of a functional input
parameter, particularly for strongly coupled analysis, is unlike any
other methodology existing today. The potential of the proposed
methodology has been demonstrated with an academic example
as well as development of a mesoscale plasticity model for repre-
sentation of a multiscale elasto-plastic system.

While the results demonstrate the promise of this new method,
there is clearly still work to be done. First, the physics-based con-
stituents likely to be implemented in this inferential procedure
will typically be too computationally demanding to evaluate thou-
sands of times during the sampling steps, raising a need for emula-
tors. Methods for generating sufficient design of experiments in
functional parameter spaces, however, are not currently well-
established. Producing a training dataset from a set of GP models
with hyperparameters guiding the design selection has been dem-
onstrated, but other approaches are still needed. Second, training
of the constituent model form through GP model hyperparameters
provides a combination of flexibility and control as the functional
form is not restricted, but known constraints can be incorporated.
The interaction of the prior information on the GP hyperpara-
meters, such as encouraging monotonicity in the likelihood along
with smoothness through the priors, is not yet well understood and
should be further studied as methods continue to mature.
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