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Abstract. In Bayesian inverse problems, the posterior distribution is used to quantify uncertainty about the
reconstructed solution. In fully Bayesian approaches in which prior parameters are assigned hyper-
priors, Markov chain Monte Carlo algorithms often are used to draw samples from the posterior
distribution. However, implementations of such algorithms can be computationally expensive. We
present a computationally efficient scheme for sampling high-dimensional Gaussian distributions
in ill-posed Bayesian linear inverse problems. Our approach uses Metropolis—Hastings independence
sampling with a proposal distribution based on a low-rank approximation of the prior-preconditioned
Hessian. We show the dependence of the acceptance rate on the number of eigenvalues retained and
discuss conditions under which the acceptance rate is high. We demonstrate our proposed sam-
pler by using it with Metropolis—Hastings-within-Gibbs sampling in numerical experiments in image
deblurring, computerized tomography, and NMR relaxometry.
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1. Introduction. Inverse problems aim to recover quantities that cannot be directly ob-
served, but can only be measured indirectly and in the presence of measurement error. Such
problems arise in many applications in science and engineering, including medical imaging [27],
earth sciences [2], and particle physics [40]. The deterministic approach to inverse problems in-
volves minimizing an objective function to obtain a point estimate of the unknown parameter.
Inverse problems also admit a Bayesian interpretation, facilitating the use of prior information
and allowing full quantification of uncertainty about the solutions in the form of a posterior
probability distribution. An overview of Bayesian approaches to inverse problems is available
in [34, 38, 58]. A recent special issue of Inverse Problems also highlights the advances in the
Bayesian approach and the broad impacts of its applicability [12].

In the Bayesian statistical framework, the parameters of interest, @, and the observed
data, b, are modeled as random variables. A priori uncertainty about the parameters is
quantified in the prior distribution, 7(x). Bayesian inference then proceeds by updating the
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information about these parameters given the observed data. The updated information is
quantified in the posterior distribution obtained via Bayes’s rule, 7(x|b) o< f(b|x)m(x), where
f(-]x) is the assumed data-generating model determined by the forward operator and @,
called the likelihood function. Rather than providing a single solution to the inverse problem,
the Bayesian approach provides a distribution of plausible solutions. Thus, sampling from
the posterior distribution allows for simultaneous estimation of quantities of interest and
quantifying the associated uncertainty.

A challenge of the hierarchical Bayesian approach is that the posterior distribution will
usually not have a closed form, in which case approximation techniques become necessary.
In light of this, an indirect sampling-based approximation often is used to explore the pos-
terior distribution. Since the seminal work of Gelfand and Smith [17], Markov chain Monte
Carlo (MCMC), particularly Gibbs sampling [22], has become the predominant technique for
Bayesian computation. Several MCMC methods for sampling the posterior distributions ob-
tained from inverse problems have been proposed in the literature [5, 16, 33, 1, 7]. However,
these methods can be computationally expensive on large-scale problems due to the need to
factorize a large covariance matrix at each iteration, though there are cases in which the choice
of the prior and the forward operator lead to a reduction in computational cost [6]. Approx-
imating complex, non-Gaussian posteriors without the computational intensity of MCMC is
still an ongoing area of research, e.g., variational Bayes [32] and integrated nested Laplace
approximation [50]. Each approach has features and caveats, a full exposition of which is
beyond the scope of this paper. In this work, we assume that a researcher has already decided
that they will use MCMC to access the posterior distribution.

Our aim in this work is to address the computational burden posed by repeatedly sam-
pling high-dimensional Gaussian random variables as part of a larger MCMC routine, e.g.,
block Gibbs [36] or one-block [49]. We do so by leveraging the low-rank structure of for-
ward models typically encountered in linear inverse problems. Specifically, we propose a
Metropolis—Hastings independence sampler in which the proposal distribution, based on a
low-rank approximation to the prior-preconditioned Hessian, is easy to construct and to sam-
ple. We also develop a proposal distribution using a randomized approach for computing
the low-rank approximation when doing so directly is computationally expensive. We derive
explicit formulas for the acceptance rates of our proposed approaches and analyze their sta-
tistical properties. We provide a detailed description of the computational costs. Numerical
experiments support the theoretical properties of our proposed approaches and demonstrate
the computational benefits over standard block Gibbs sampling.

The rest of the paper is organized as follows. In section 2, we formulate a general linear
inverse problem in the hierarchical Bayesian framework, with particular attention paid to the
computational bottleneck arising in standard MCMC samplers. In section 3, we present our
proposed approach of using low-rank approximation as the basis of an independence sampler to
accelerate drawing realizations from high-dimensional Gaussian distributions. In section 4, we
demonstrate the performance of our approach on simulated examples in image deblurring and
CT reconstruction via Metropolis—Hastings-within-Gibbs sampling [39]. The paper concludes
with a discussion in section 5 and proofs of stated results in the appendices. Further numerical
studies, including convergence and alternative parameterizations for MCMC, are presented in
supplementary material to this paper.
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2. The Bayesian statistical inverse problem. Assume that the observed data are cor-
rupted by additive noise so that the stochastic model for the forward problem is

(1) b= Ax + e,

where A € R"™*" is the forward operator, or the parameter-to-observation map, € is the
measurement error, and @ is the underlying quantity that we wish to reconstruct. We suppose
that € is a Gaussian random variable with mean zero and covariance p~'I, independent of
the unknown «. In some applications, ;4 may be known. Quite often, however, it is unknown
and we assume that is the case here. Under this model, b | x, u ~ N (Ax,u1I) so that the
likelihood is

(2) Fb] @ p) o u™2exp (—%(b ~Az) (b A:c)) , be R™.

The prior distribution for & encodes the structure we expect or wish to enforce on x before
taking observed data into account. An often reasonable prior for x is Gaussian with mean
zero and covariance 0T, = 0~ H(LTL)™Y ie.,

(3) (x| o) « o™%exp (—%mTI‘;rla:) , x € R"

where the covariance matrix I'y,; is assumed known up to the precision o.

Different covariance matrices may be chosen depending on what structure one wishes to
enforce on the estimand x. The prior structure we use in our numerical experiments (section 4)
is motivated by Gaussian Markov random fields (GMRFs) [49]. Other popular choices involve
Gaussian processes [45], which are parameterized in terms of covariance kernels.

We assume in this work that I',; is fixed up to a multiplicative constant. This makes avail-
able an a priori factorization that we use to construct a low-rank approximation. However,
Gaussian process covariance kernels typically depend on parameters other than the multiplica-
tive precision. For example, the covariance matrix of a Gaussian process often takes the form
I',. = oR(0), where 6 may be the correlation length or other parameters determining the
covariance function. When 6 is unknown, one can assign it a prior distribution and estimate
it along with the other parameters in the model by, e.g., updating it on each iteration of an
MCMC algorithm. Such repeated updates are not feasible for extremely high-dimensional
problems since each factorization I‘;rl = L"L is too expensive. However, it is possible to
assign a prior to 8 and subsequently obtain an empirical Bayes estimate 6 (e.g., marginal
posterior mode as done in [44]). This estimator can be plugged in to the covariance function
so that R(a) is fixed.

Conditional on p and o, the Bayesian inverse problem as formulated in (2) and (3) yields
x| b,u,0 ~N(Tcond, Leond), where Teonqg = (,uATA +0I‘;r1)_1 and Teonq = pleond A ' b; e,

1 o
(4) w(@ | b,p.0) x exp (=5 | Az — b} - ZI|La[3)
The conditional posterior mode, & = argmax,crn m(x | b,p,0), is the minimizer of the

negative log-likelihood (u/2)||Az — b||3 + (0/2)||Lz|j3 and thus corresponds to Tikhonov
regularization in the deterministic linear inverse problem. In a fully Bayesian analysis in
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Algorithm 1: An outline of the standard block Gibbs algorithm for sampling the
posterior density (5).

Input: Full conditional distributions of @ | b, u, o and (u, o) | €, b, sample size N,
burn-in period Nj.
Output: Approximate sample from the posterior distribution (5),
N
(@), 1y o) g -

=

Initialize x (g, p(0), and o(q).
fort=1to N do

Draw ;) ~ N(u(t_I)F((:?ndATb, F((:to)nd)’ where
(t)
Tr

cond — (Iu(tfl)ATA + U(tfl)rgrl)_l'
Draw (p), o)) ~ #,0 | Z(), b
5 end

w N

I

which g and o are unknown, we assign them a prior 7(u, o) so that they can be estimated
along with other parameters. In this case, the joint posterior density becomes

m n g
(5) m(@, 1,0 | b) o 120" exp (=L Az — bl}3 = 7| Lal3) w(u, o).

In section 4, we consider two different priors on the precision parameters: conditionally con-
jugate Gamma distributions and a so-called weakly informative prior.

With priors on the precision components, the full posterior distribution is no longer Gauss-
ian and generally not available in closed form. Non-Gaussian posteriors can sometimes be
approximated by a Gaussian distribution, but such an approximation can be poor, especially
with high-dimensional parameter spaces or multimodal posterior distributions [19, Chapter 4].
Thus we appeal to MCMC for sampling from the posterior distribution. A version of the ba-
sic block Gibbs sampler for sampling from (5) is given in Algorithm 1. Most often, p and o
are updated individually (especially when using conditionally conjugate Gamma priors), but
this is not necessary. Typically,  is drawn separately from (u, o) to take advantage of its
conditionally conjugate Gaussian distribution.

For any iterative sampling algorithm in the Bayesian linear inverse problem, the com-
putational cost per iteration is dominated by sampling @ | b, u,0 in (4). While sampling
from this Gaussian distribution is a very straightforward procedure, the fact that it is high-
dimensional makes it very computationally intensive. To circumvent the computational bur-
den, we substitute direct sampling with a Metropolis—Hastings independence sampler using a
computationally cheap low-rank proposal distribution. We present our proposed approach in
section 3.

3. Independence sampling with low-rank proposals. Here we briefly review indepen-
dence sampling and discuss a proposal distribution that uses a low-rank approximation to
efficiently generate samples from (4).

3.1. Independence sampling. Let 8 € R™ and denote the (possibly unnormalized) target
density by h(0). The Metropolis—Hastings algorithm [37, 26] proceeds iteratively by generating
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at iteration ¢ a draw, 8,, from an available proposal distribution possibly conditioned on the
current state, 6(;_1), and setting 6, = 6, with probability a(0;_1),0.) = h(0:)q(0;_1) |
0.)/(h(0-1))q(0« | 01_1))) N1, where q(- | O;_1)) is the density of the proposal distribution.
This algorithm produces a Markov chain {6} with transition kernel

K(0,0,) = a(6,0,)q(8. | 8) + 35(6.) (1 - / (0,0')q(0' | 0)d9’> ,

where dg(+) is the point mass at 8. Properties of the Metropolis—Hastings algorithm, including
convergence to the target distribution, may be found in [47] and elsewhere.

An independence Metropolis—Hastings sampler (IMHS) proposes states from a density that
is independent of the current state of the chain. The proposal has density ¢(6. | 0;_1)) =
g(0+), and the ratio appearing in a(6;_1), 0«) can be written as

h(6:)9(0¢-1) _ w(8.)
h(O-1))g(0x)  w(Oy-1))

where w(0) < h(0)/g(@). The IMHS is similar to the rejection algorithm. The rejection
algorithm draws a candidate value 6, from an available generating distribution with density g
such that for some M > 1, h(0) < Mg(0) for all 8. It then accepts the draw with probability
h(0.)/Mg(0.). Rejection sampling results in an exact draw from the target distribution.

For both the IMHS and the rejection sampler, it is desirable for g to match the target
density as closely as possible and, hence, to have an acceptance rate as high as possible. At
least, g should generally follow h, but with tails that are no lighter than h [20, 47]. These
guidelines are in contrast to those prescribed for the more common random walk Metropolis—
Hastings, in which the best convergence is generally obtained with acceptance rates between
20% and 50% [20, 48]. In what follows, we discuss our proposed generating distribution, both
as an independence sampler as well as its use in a rejection algorithm.

(6)

3.2. Approximating the target distribution. Samples from the conditional distribution
N (@cond, Leond) can be generated as @ = Teonq + Ge, where € ~ N(0,I) and G satisfies
Teonda = GG'. Forming the mean x.,,q and computing the random vector Ge involve expen-
sive operations with the covariance matrix. By leveraging the low-rank nature of the forward
operator A, we can construct a fast proposal distribution for an independence sampler.

Consider the covariance matrix I'cong = (MATA + aLTL)_l. Factorizing this matrix so
that

(7) Teond = LYWL TATAL ' +o)7'L™T

yields the so-called prior-preconditioned Hessian transformation H = L~ T AT AL™! [11,
15, 43, 52]. For highly ill-posed inverse problems such as those considered here, A either
has a rapidly decaying spectrum or is rank deficient. The product singular value inequali-
ties [28, Theorem 3.3.16 (b)] ensure that AL™! has the same rank as A and the same rate of
decay of singular values. A detailed discussion on the low-rank approximation of the prior-
preconditioned Hessian is provided in [15, section 3].

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.
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We approximate H using a truncated eigenvalue decomposition,
(8) L TATAL ' = VALV,

where V', € R"*F has orthonormal columns and A, € R¥** is the diagonal matrix containing
the k < n largest eigenvalues of H. If rank(A) = k, then exact equality holds. The truncation
parameter k controls the trade-off between accuracy on the one hand and computational and
memory costs on the other.

We approximate the conditional covariance matrix I'conq by substituting (8) into (7),

. 1 1
(9) Topqg = L= (I + ﬁVkAkV;) L.
g g

Using the Woodbury identity and the fact that V' has orthonormal columns, the right-hand
side of (9) becomes

~

1
Teond = ;L‘l(I — VD VLT, Dy, = diag (u)j(uXj +0) i =1,...,k) € RFK,

where A;, j = 1,...,k, are the diagonals of A;. To approximate the mean x.qnq, replace
Tcona by f‘cond so that Tcong = ,uf‘condATb. With these approximations, the proposal distri-
bution for our proposed independence sampler is N (Zcond, f‘cond). Optimality of this low-rank
approximation was studied in [57].

A factorization of the form fcond = GG can be used to sample from N (Zcond, f‘cond)-
It can be verified that G := o~ /2L~}(I — VkﬁkV;), with Dy, = I + (I — Dk)l/Q, satisfies
f‘cond = GG'. Since ﬁk is diagonal and k < n, we obtain a computationally cheap way
of generating draws from the high-dimensional proposal distribution N (&cond, f‘cond). Then
we can use a Metropolis—Hastings step to correct for the approximation. This results in our

proposed low-rank independence sampler (LRIS).

3.3. Analysis of acceptance ratio. Here, we derive an explicit formula for evaluating the
acceptance ratio for our proposed algorithm and provide insight into the conditions under
which the proposal distribution closely approximates the target distribution. For simplicity
of notation, we suppress the conditioning on b, i1, and o.

The target density is

= ! ex —}az—cc Tl (x—=x
(10) h(CC) T \/(QW)ndet(Fcond) p( 2( cond) rcond( cond))v

and the proposal density, g(x), replaces @cong With Zcong and Teong with fcond in h(x). The
following result gives a practical way to compute the acceptance ratio. It can be verified with
a little algebra, so the proof is omitted.

Proposition 1. Let x be the current state of the LRIS chain, and let z be the proposed

state. Then the acceptance ratio can be computed as n(z,x) = w(z)/w(x), where w(x) =
_ ~—1
exp (_wT(F ; I‘cond)w/2) :

cond
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An efficient implementation and the cost of computing this ratio is discussed in subsec-
tion 3.5. The quality of the low-rank approximation to the target distribution can be seen
through the acceptance ratio.

Proposition 2. Let x be the current state of the LRIS chain, and let z be the proposed state.
Then the LRIS acceptance ratio can be expressed as

- ooz = (£ 3 [(o72e) - (o7ze)’

j=k+1

Proof. See Appendix A. [ |

This proposition asserts that the acceptance ratio is high when either p is small or the
discarded eigenvalues {)\j};‘:k 41 are small. The dependence of the acceptance ratio on the
eigenvectors can be seen explicitly by writing (vaLz)2 — ('ujTL:I:)2 = ['UjTL(z—&—a:)] ['vaL(z—a:)].
Thus, if z4+x L Lij, j=k+1,...,n, then the acceptance ratio is 1.

While Proposition 2 provides insight into realizations of the acceptance ratio, the actual

acceptance ratio is a random variable. The expected behavior and variability of this quantity
can be understood through Theorem 1. To this end, define the constants

9 n n 1/2
M bud; T AT 1, 2 tp
12)  Ny:= — ——— (b AL j 14+ —A; =12,....
(12) Nes=ewp |50 30 o | IT (1+5%)  t=12,
j=k+1 j=k+1

Theorem 1. Let x be the current state of the LRIS chain, and let z be the proposed state.
Then

1

€n 1= Ez\m[n(z>w)] = NlT(J’)’

U727 = Vz\a:[n(zvx)] = thx) (]\l/vQ - Z\1[12> ’

where E, |5 (-) denotes expectation conditional on ®, V,(-) denotes the variance conditional
on x, and w(x) is as defined in Proposition 1.

Proof. See Appendix A. |

(13)

Using this result, a straightforward application of Chebyshev’s inequality [46] shows that
for any € > 0, Pry, (|17(z,ar:) — (Nw(z)) "t >€) < (N;1 - NfZ) /[€w? (z)], where Pr,(-)
denotes probability conditional on the current state . Thus, we can construct conditional
prediction intervals about the realized acceptance rate. For instance, at any given state x,
Pr,»(n(2,x) € [e; £ 4.4Tv,]) > 0.95. In Appendix A, we derive expressions for all moments
of the acceptance ratio.

It is clear from Theorem 1 that if the eigenvalues {)\j}?:k 41 are zero, then the acceptance
probability is 1. Likewise, if the eigenvalues are nonzero but small in magnitude, then the
acceptance rate is close to 1. Further, consider the SVD of AL~ = UXV ". Then bTAL_lvj
in (12) is equal to aijuj, where wu; is the jth singular vector of AL™!. Thus, the acceptance

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.
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rate may be close to 1 even if the components of the measurement b along the left singular
vectors of AL™! are small. This is closely related to filter factors that are used to analyze
deterministic inverse problems [25].

These results establish the moments of the acceptance rate for fixed precision parameters
u and o and fixed rank k of the proposal distribution. In practice, when running MCMC, p
and o will change on each iteration, meaning that the actual acceptance rate will vary from
one iteration to the next. Thus, it may not be clear a priori which truncation level to use to
achieve an acceptable acceptance rate while minimizing the computational cost. Of course, if
the low-rank matrix is obtained from a rank-deficient forward model by discarding only the
zero eigenvalues, then the acceptance rate is one for all y and o. Otherwise, a practitioner
can employ an adaptive LRIS in which the acceptance rate is tracked during an initial burn-
in period, adding rank to the distribution every, say, 100 iterations if the acceptance rate
is too low. This allows finding the minimum number of eigenvalues needed to achieve high
acceptance over the high probability region of ;4 and ¢. Provided the adaptation stops after a
finite number of iterations, convergence to the stationary distribution is still guaranteed [13].
An outline of the adaptive LRIS approach, along with practical guidelines to determine the
target rank k, is given in the supplementary material.

Convergence and the rejection algorithm. Our proposed candidate generating distribution
g(x) bounds the target distribution up to a fixed constant as a function of the remaining
eigenvalues in the low-rank approximation, as asserted by the next proposition.

Proposition 3. The target density h(x) (10) and the proposal density g(x) can be bounded
as h(x) < Nig(x) for all x, where N1 > 1 is given in (12).

Proof. See Appendix A. |

Proposition 3 establishes that the subchain produced by our proposed sampler has sta-
tionary distribution 7 (- | b, 4, o) and is uniformly ergodic by [47, Theorem 7.8]; i.e., for p € N,

(14) |EP(z,) — 7(- | by, 0)||lrv <2 (1—N;1)” Va € supp ,

where KP(x,-) is the p-step LRIS transition kernel starting from @ and || - |7y denotes the
total variation norm. Thus, if one runs several subiterations of the LRIS, the realizations
will converge to a draw from the true full conditional distribution at a rate independent
of the initial state. Convergence is faster as the remaining eigenvalues from the low-rank
approximation become small, and is immediate when the remaining eigenvalues are zero.
Equation (14) explicitly quantifies convergence of the subchain to the full conditional dis-
tribution as a function of the quality of the approximation to the target, quantified in Nj.
However, when the LRIS is used inside a larger MCMC algorithm (e.g., Metropolis—Hastings-
within-Gibbs), convergence of the entire Markov chain to its stationary distribution is affected
not only by the LRIS proposal distribution, but also by modeling choices on the remaining
parameters and the manner in which they are updated. There exist results for establish-
ing geometric ergodicity of componentwise Metropolis—Hastings independence samplers and
so-called two-stage Metropolis—Hastings-within-Gibbs algorithms [30] for which Proposition
3 could be useful. To the best of our knowledge, though, more general effects of the pro-
posal distribution on the convergence of a Metropolis—Hastings-within-Gibbs algorithm are
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unknown. While exploring this issue is beyond the scope of this work, we carry out in the
supplementary material an empirical study in which we assess convergence of a Metropolis—
Hastings-within-Gibbs chain as a function of the rank of the proposal. We observe that as
the number of eigenvalues retained increases, the convergence of the LRIS algorithm becomes
more rapid.

Proposition 3 suggests also that the approximating distribution can be used in a rejection
algorithm instead of LRIS. The proof of the proposition shows that det(I'cong) > det(Tcond),
but each determinant is a generalized variance [31]. When there are nonzero eigenvalues
left out of the low-rank approximation, the proposal density will have heavier tails than the
target density, a desirable property for a candidate distribution in a rejection algorithm [19].
Otherwise, the approximation is exact. We remark, however, that for a given candidate density
g, LRIS is more efficient than a rejection algorithm in terms of variances of the concomitant
estimators [35]. Further, the rejection sampler requires knowledge of Nj, which depends on
eigenvalues that may be unavailable.

3.4. Generating low-rank approximations. A major cost of our proposed sampler is in
the precomputation associated with constructing the low-rank approximation. The standard
approach for computing this low-rank approximation is to use a Krylov subspace solver (e.g.,
Lanczos method [51]) for computing a partial eigenvalue decomposition. Alternatively, we can
compute the rank-k SVD AL~ ! ~ UkEsz. Then the approximate low-rank decomposition
can be computed as H =~ VkEiV;. Here we discuss a computationally efficient alternative.

Randomized SVD, reviewed in [23], is a computationally efficient approach for computing
a low-rank approximation to the prior-preconditioned Hessian H. The basic idea of the
randomized SVD approach is to draw a random matrix Q € R™(+P) where the entries
of € are i.i.d. standard Gaussian random variables. Here, k is the target rank and p is an
oversampling parameter. An approximation to the column space of H is computed by the
matrix product Y = H. A thin-QR factorization Y = QR is computed, and the resulting
low-rank approximation to H is given by

(15) H~H:=QQ HQQ".

This can be postprocessed to obtain an approximate low-rank decomposition of the form (8).
This is summarized in Algorithm 2.

Algorithm 2: Randomized SVD algorithm for computing low-rank decomposition.

Input: Matrix H € R™*" and random matrix e R"*(*+p),

Output: Approximate eigenvectors V' and approximate eigenvalues A.
1 Compute Y = HQ and thin-QR factorization Y = QR.
2 Compute T = Q" HQ and its eigendecomposition T'= UAU .
3 Compute V = QU.

Similar to Theorem 1, we can bound the expected value of the acceptance ratio under the
randomized SVD approach.
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Theorem 2. Suppose we compute the low-rank approximation H using Algorithm 2 with
guess Q@ € R™E+P) - Let p > 2 be the oversampling parameter. Then

1/2

n
exp [ —pl| Lzl o + 8| D A :
j=k+1

1
w()

Eﬂ|z,m [n(z’ m)] =

where a = 1 + 1/%,ﬂ = ev];er and Eq|, o denotes expectation with respect to € given the

current state x and the proposed step z.
Proof. See Appendix A. [ |

The interpretation of this result is similar to Theorem 1. That is, if the eigenvalues of the
prior-preconditioned Hessian H are rapidly decaying or zero beyond the index k, then the
expected acceptance rate, averaged over all random matrices €2, is high.

In practice, an oversampling parameter of p < 20 is recommended [23]. As proposed,
Algorithm 2 requires 2(k + p) matrix-vector products (matvecs) with H. The second round
of matvecs required in step 2 can be avoided by using the approximation [53, section 2.3]

T~(Q'Q ' Q'Y)Q'e) .

This is an example of the so-called single-pass algorithm. Other single-pass algorithms are
discussed in [59]. In practice, the target rank k& may not be known, in which case a modified
approach may be used to adaptively estimate the subspace [23, Algorithm 4.2].

3.5. Computational costs. Denote the computational cost of a matvec with A by Ta,
and the cost of a matvec with L and L™ as Ty, and T -1, respectively. For simplicity, we
assume the cost of the transpose operations of the respective matrices is the same as that of
the original matrix.

It is difficult to accurately estimate the cost of the Krylov subspace method a priori, but
the cost is roughly 2 sets of matvecs with A and L™! and an additional O(nk?) operations.
The quantities AT and L™ ATb can also be precomputed at a cost of T4 and T4 + Tr-1
flops, respectively. Generally speaking, this is the same asymptotic cost for randomized SVD.
In practice, however, randomized SVD can be much cheaper; see [23] for details.

The cost of computing the mean &.onq involves the application of L™ and (I —V ;D V;)
This costs T, -1 4+ 4nk flops. Similarly, the cost of Ge is also T -1 +4nk flops. The important
point here is that generating a sample from the proposal distribution does not require a matvec
with A. This is useful for applications in which Ty can be extremely high. The computational
cost of computing the acceptance ratio can be examined in light of Proposition 1. On each iter-
ation, the weight w(x) will already be available from the previous iteration, so we only need to
compute w(z). We can simplify this expression as logw(z) = —uz (ATA-LTV AL V] L)z,
which requires one matvec with A and L each, two inner products and 4n flops, and an addi-
tional 2nk flops. Aside from the precomputational cost of the low-rank factorization, only the
evaluation of the acceptance ratio requires accessing the forward operator A. The resulting
costs are summarized in Table 1.

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 07/19/18 to 130.127.112.252. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

1086 D. A. BROWN, A. SAIBABA, AND S. VALLELIAN

Table 1
Summary of computational costs of various steps in the LRIS.

Operation Formula Cost
Precomputation Equation (8) 2k(Ta +Tr-1) + O(nk?)
Computing mean Leond = ,ufcondATb Tr-1 +4nk

Generating sample |  ~ N (Zcond, fcond) Tr-1 + 4nk
Acceptance ratio Proposition 1 Ta+TL+2n(k+2)

N

Figure 1. Observed image (left panel) and true image (right panel) in the 2D image deblurring example.

4. lllustrations. Here we demonstrate our proposed approach on two simulated examples.
The first example is a standard two-dimensional deblurring problem in which we compare the
performance of our proposed low-rank independence sampler to conventional block Gibbs
sampling to demonstrate the competitive solutions and the ability to access the posterior
distribution in an efficient manner. The second example is a more challenging application
motivated by medical imaging with a rank-deficient forward model. We apply our proposed
approach there to demonstrate feasibility and to consider a different prior on the precisions
than the conventional independent conjugate Gammas.

To ensure meaningful inferences based on the MCMC output, it is important to assess
whether the Markov chain is sufficiently close to its stationary distribution. It is well known
that an MCMC procedure will generally not result in an immediate draw from the target
distribution, unless the initial distribution is the stationary distribution. Usually it is not
possible to prove that a chain has converged to its limiting distribution, except in special
cases (e.g., perfect sampling [14]). However, diagnostic tools can be used to assess whether
or not a chain is sufficiently close so that one can safely treat its output as draws from the
target distribution. To diagnose convergence, we use (scalar and multivariate) potential scale
reduction factors (PSRF/MPSRF) [21, 9], trace plots, and autocorrelation plots. The reader
is referred to [47, Chapter 12], [13, Chapter 3], or [19, Chapter 11] for further discussions of
convergence diagnostics for MCMC.

4.1. 2D image deblurring. We take as our target image a 50 x 50 pixel grayscale image
of geometric shapes so that n = 2,500 in (3). We blur the image by convolution with a
Gaussian point spread function. The forward model A and true image x are created using
the Regularization Tools package [24]. The data are generated by adding Gaussian noise
with variance 0.01%|| Az ||%,. Figure 1 displays the target image and the noisy data.

We model smoothness on x a priori by taking L = —A + 6I in (3), where —A is the
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discrete Laplacian and ¢ is a small constant to ensure positive definiteness [34]. For the prior
and noise precision parameters, we assign a vague Gamma prior, Gamma(0.1,0.1), which
approximates the scale invariant objective prior while maintaining conditional conjugacy. We
compute the eigenvalues of the prior preconditioned Hessian matrix H via SVD to determine
an appropriate cutoff. Figure 7 (discussed further below) indicates rapid decay within the
first few eigenvalues, followed by a smoother decay, and another sharp decay. We use the
first k = 500 eigenvalues of the matrix to construct our low-rank approximation. We analyze
below the effect of truncation level on the acceptance rate of the sampling algorithm. For
comparison, we also compute a low-rank approximation using the randomized SVD approach
described in subsection 3.4.

Convergence and UQ metrics. We implement a Metropolis—Hastings-within-Gibbs algo-
rithm in which step 3 of Algorithm 1 is substituted with our proposed low-rank independence
sampler (LRIS) presented in section 3. Three different chains are run in parallel, with each
chain initialized by drawing x, 4, and ¢ randomly from their prior distributions. Each chain
is run for N = 50,000 iterations, with the first 25,000 iterations discarded as a burn-in pe-
riod. For comparison, the Gibbs sampler is implemented identically to the low-rank procedure
with three independent chains run in parallel with widely dispersed initial values. All simu-
lations are done in MATLAB running on OS X Yosemite (8GB RAM, Intel Core i5 2.66GHz
Processor).

Figures 2 and 3 display trace plots and autocorrelation functions, respectively, for the
last 25,000 iterations of the u and o chains for both ordinary block Gibbs sampling and our
proposed algorithm. As is known to occur with block Gibbs sampling in high-dimensional
linear inverse problems [5], we observe near independence within the p chains and strong
autocorrelation in the ¢ chains. Despite the high autocorrelation, we still are able to achieve
approximate convergence and a sufficient effective sample size (ESS) from the o chains by
running each chain long enough. By combining the three independent chains after approximate
convergence, we effectively triple the ESS and thus the number of independent pieces of
information available about the target posterior. Thinning the chains to, e.g., every 10th,
50th, or 100th draw would dramatically reduce the autocorrelation of the chains. However, it
was argued by Carlin and Louis [13] that such thinning is not necessary and does not improve
estimates of quantities of interest Figure 4 illustrates the approximate convergence of the
ergodic averages i) = n~ IS L i) and O,y = n” IS 10, n = 1,...,25,000, despite
the high autocorrelation of the o cham. The hmltlng values from both approaches closely
agree.

While assessing convergence of high-dimensional parameters is more difficult than for
scalar quantities, we can track realized values of the data-misfit part of the log-likelihood as
a proxy for monitoring convergence. These realizations also should settle down as the chain
approaches the target distribution. Figure 4 displays these plots for both algorithms along
with the multivariate PSRFs. Again, we see consistency between ordinary block Gibbs and
our own approach, as well as approximate convergence according to the rule of thumb that
the PSRF should be approximately less than or equal to 1.1 [19].

The advantage of using the LRIS approach is clear in Table 2, which displays the total
wall time to complete the 50,000 MCMC iterations for both block Gibbs and our proposed
low-rank sampling approach. Table 2 also displays the cost per effective sample (CES), defined
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Figure 2. Trace plots of u (left) and o (right) obtained from the MCMC output of both block Gibbs sampling
(top row) and the LRIS-based algorithm (bottom row), where each of the three colors represents a different chain.
The potential scale reduction factors (E) are displayed above each plot, along with the lag 1 autocorrelation
coefficients and effective sample size (ESS) estimated from one chain each under both approaches.
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Figure 3. FEstimated autocorrelation functions of u (left) and o (right) obtained from one of the chains
each under block Gibbs sampling (top row) and our proposed LRIS algorithm (bottom row).

as the total computation time divided by the effective sample size [16], for one of the o chains
obtained under both algorithms as well as the randomized SVD approach. CES is a measure
of the average computational effort required between effectively independent draws. The
LRIS approach yields a 76% reduction in computation time compared to the standard block
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Figure 4. Cumulative averages of the p chains (far left) and o chains (middle left) obtained from the
MCMC output in the 2D deblurring example. The dotted lines represent the three chains from block Gibbs;
the solid lines correspond to the LRIS algorithm output. Plot of the data-misfit part of the log-likelihood values
calculated from the MCMC output of both block Gibbs sampling (middle right) and our low-rank independence
sampling algorithm (far right), where each of the three colors corresponds to a different chain. The multivariate
potential scale reduction factors are displayed above.

Table 2
Total wall time to complete 50,000 MCMC' iterations under block Gibbs sampling and the LRIS approach
for the 2D deblurring example, along with the estimated cost per effective sample (CES) for one of the o chains
in each case.

Algorithm Wall time (s) CES for o
Block Gibbs 27907 84.30
LRIS 5134 13.20
LRIS (randomized SVD) 5307 13.86

Gibbs sampler, along with an approximate 80% reduction in computational effort between
independent draws of o. The average acceptance rate over the three chains using our low-
rank proposals is 98%, for both “exact” and randomized SVD. The acceptance rate versus
rank is discussed further below.

We attain this dramatic reduction in computational effort without sacrificing the quality
of posterior inferences, as evident in Figure 5. This figure displays the approximate posterior
means of @ from both block Gibbs and our low-rank approach. The estimators we obtain
with randomized SVD are similar and hence omitted. We show also the (u, o) scatterplots
and approximate marginal densities obtained from both algorithms in Figure 6, again showing
agreement. The strong Bayesian learning that occurred about these parameters is evident in
Figure 11 of the supplementary material. Table 3 gives the relative errors to quantify the
quality of the reconstructions. We observe nearly identical solutions under both MCMC
approaches, both graphically and quantitatively.

Acceptance rate versus rank. To explore the effect of the retained number of eigenvalues
on the acceptance rate for our algorithm, we estimate the predicted and empirical acceptance
rates of sampling from the proposal distribution, over a range of truncation levels, at a given
state of the chain. We fix the state by initializing (&, u, o) as the last sample from one of
the chains obtained from the LRIS. At each truncation level k, we compute the expected
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Figure 5. Approzimate posterior mean images obtained from block Gibbs sampling (left) and the proposed
low-rank sampling algorithm (right) for the 2D deblurring ezample.

25 = & s 25
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iz I

y ,\ // \\.
/ \ p

Figure 6. Scatterplots of the (u, o) realizations obtained from block Gibbs (left panel) and the low-rank
approach (right panel) for the 2D deblurring example, where the three different colors correspond to different
chains. The smoothed marginal posterior densities are displayed in the margins of the plots.

Table 3
Relative error (RE) of the estimates for the 2D image deblurring example.

Estimator RE
Posterior mean (block Gibbs) | 0.4453
Posterior mean (LRIS) 0.4455

value of the acceptance ratio using Theorem 1. We draw 2,000 samples from the proposal
distribution and compute the acceptance ratio of each using Proposition 2. From these we
estimate the empirical failure rates to compare with their expected values as the truncation
level increases. Figure 7 displays the results. The close agreement between the predicted and
empirical acceptance rates support the theoretical results in section 3.

4.2. CT image reconstruction. Computed x-ray tomography (CT) is a common medical
imaging modality in which x-rays are passed through a body from a source to a sensor along
parallel lines indexed by an angle w and offset y with respect to a fixed coordinate system
and origin. The intensities of the rays are attenuated according to an unknown absorption
function as they pass through tissue. The attenuated intensity I is recorded while the lines
are rotated around the origin so that I(S) = I(0) exp{— fos a(z(s))ds}, where s = 0 is the
source of the x-ray, s = S is the receiver location, x(-) indicates the line position, and « is
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Figure 7. (left) Eigenvalues of H in the 2D image deblurring example. (right) Predicted and empirical
failure rates for different truncation levels K. The empirically determined upper 0.975 quantile is given by the
dashed line; the lower quantile often attained zero values, so it is not displayed.

the absorption function. The observed data are a transformation of the intensities, yielding
the Radon transform model for CT [34, 4], fL (@) ))ds, where L(w,y) is the
line along which the x-ray passes through the body The inverse problem is to reconstruct
the absorption function, which provides an image of the scanned body. Discretization of the
integral yields the model in (1). This is typically an underdetermined system with infinitely
many solutions, resulting in an ill-posed inverse problem.

Our target image is the Shepp—Logan phantom [56]. The forward model is implemented
in MATLAB on the same computer as in subsection 4.1 with code available online [3]. The
data are simulated by adding Gaussian noise with variance 0.012||Az|%. The target « is
discretized to a relatively fine grid of size 128 x 128 so that dim(x) = 16,384. We suppose
that the data are observed over lines and angles such that dim(b) = 5,000. Thus, rank(A) =
5,000 < dim(x), guiding our choice of eigenvalue truncation in the low-rank approximation
to H. An approximate eigendecomposition of the prior preconditioned Hessian is computed
using randomized SVD with ¢ = 5,000, as discussed in section 3, since computing the “exact”
SVD is considerably more expensive. As in subsection 4.1, we take L = —A + 41.

For the nuisance parameters, we use a weakly informative prior [18], namely, the proper
Jeffreys prior proposed by Scott and Berger [55]. For convenience, we parameterize the model
in terms of variance components instead of precisions, 72 := ¢~ ! and k2 := p~!'. Then the
proper Jeffreys prior on (k2,72%) is!

(w% +7%)77
(52) M1+ 72K 72 x ()7
2

(r? | &) (K?),

nsp(K2,7%)
(16)

so that the scale invariant prior is used for x? while scaling 72 by the data level variance, as
advocated by Jeffreys [29]. The implementation of this prior as a modification to Algorithm 1,

"We write “proportional to” (m(6) o g(0)) for proper priors to indicate that 7(6) = cg(6), where c™' =

J 9(8)df < oo uniquely determines the density. However, the normalizing constant for an improper prior does
not exist, so the prior is not unique. In the scale invariant case, any prior 7r(/£2) =a/ k? for any a > 0 works.
Since a is arbitrary, we simply set it equal to 1 for convenience and take 7(k?) = 1/x%. See [8, Chapter 3].
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Figure 8. Estimated joint densities for the precision parameters using the proper Jeffreys prior (left) and
the conjugate Gamma priors (right).

presented in Appendix B, is similar to the approach of [10]. Section 2 of the supplementary
material contains further discussion of prior specification for the nuisance parameters.

We simulate three Markov chains using our proposed LRIS approach for 40,000 iterations
(average acceptance rate ~ 100%). Each chain is initialized with values drawn randomly from
the prior. We thin the chains by retaining every 50th draw to reduce the autocorrelation, mak-
ing it easier to diagnose convergence. We discard the first 400 draws of the thinned chains
as a burn-in period. Trace plots and autocorrelation plots are used to verify approximate
convergence of the chains. Relevant diagnostic plots are displayed in Figures 12, 13, and 14
of the supplementary material. The total computation time for our sampling approach is
197,517 seconds, or about 55 hours. This is noteworthy since the algorithm repeatedly up-
dates a large, nontrivial covariance matrix and samples an approximately 16,000-dimensional
Gaussian distribution 40,000 times. An ordinary block Gibbs sampler is simply not feasible
for this problem.

We compare the results with samples obtained using the conjugate Gamma model with
the same vague priors on p and ¢ as in subsection 4.1. Convergence diagnostics are displayed
in Figures 15 and 16 of the supplementary material. Figure 8 compares the approximate joint
distributions for the precision parameters (u, o) under the conjugate model to the distribution
based on the proper Jeffreys model, after back-transforming x? and 72. Here we see the
effect of prior selection in that both p and o tend to concentrate around different values,
with much greater uncertainty in p in the proper Jeffreys case. The differences between the
two marginal posteriors of (u,o) affect the quality of the reconstructed images, displayed
in Figure 9 and quantified in Table 4. This echoes Gelman’s observation [18] that even a
supposedly noninformative prior on the hyperprecision can have a disproportionate influence
on the results. In this case, using a weakly informative prior for ¢ that depends on pu results
in a higher quality reconstruction.

These simulations show that by exploiting the low-rank structure of the preconditioned
Hessian of the forward model, we are able to substantially reduce the computational burden
compared to block Gibbs sampling. Even when the forward model is of full row rank, the
results illustrate the potential for efficiency gains using our proposed LRIS approach, provided
the system is underdetermined. Our approach using either proper Jeffreys or conjugate priors
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Figure 9. Posterior mean estimators of the true image in the CT image reconstruction example, using the
proper Jeffreys prior (left) and the conjugate Gamma priors (right).

Table 4
Relative error (RE) of the estimates for the CT image reconstruction example.

Scale parameter prior RE
Proper Jeffreys 0.3270
Conjugate Gamma 0.4229

is much more feasible than a block Gibbs sampler, for which the computational demands can
be prohibitively expensive. A comparison of the conventional conjugate Gamma priors to a
weakly informative prior suggests that even a “noninformative” prior may exert considerable
influence on the results, despite strong Bayesian learning in the posterior.

In the supplementary material, we further consider the challenging problem of nuclear
magnetic resonance (NMR) relaxometry. There, we demonstrate that our approach still pro-
duces within reasonable computation time a solution that is comparable to those obtained from
deterministic iterative procedures such as conjugate gradient least squares. This is achieved
with randomized SVD and without explicitly forming the forward operator A in the LRIS
algorithm.

5. Discussion. When approximating the posterior distribution via Markov chain Monte
Carlo in the hierarchical Bayesian linear inverse problem, the bottleneck is in repeatedly
sampling high-dimensional Gaussian random variables. Sampling from the joint posterior
with standard MCMC is challenging due to the high dimensionality of the estimand, since
drawing from the full conditional involves expensive operations with the covariance matrix.

In this work we propose a computationally efficient sampling algorithm which is well suited
for a fully Bayesian approach in which the noise precision and the prior precision parameters
are unknown and assigned prior distributions. Our proposed low-rank independence sampler
uses a proposal distribution constructed via low-rank approximation to the preconditioned
Hessian. We show that the acceptance rate is high when the magnitudes of the discarded
eigenvalues of the Hessian are small, a feature of severely ill-posed problems. When it is
not obvious how to determine an appropriate truncation of rank due to the dependence of
the known acceptance rates on other parameters in the model, we discuss how to adaptively
determine the truncation level as part of the MCMC algorithm to find the minimal rank with
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high acceptance rates. We demonstrate both theoretically and empirically that the quality
of the approximation is directly related to the acceptance rate of the sampler, as intuition
would suggest. We illustrate our approach on several examples, demonstrating convergence
as a function of rank, as well as computational improvements to accessing the full posterior
distribution.

A known issue with block Gibbs sampling in Bayesian inverse problems is the deteriora-
tion of the chains due to correlation between the hyperparameters and the estimand x as the
dimension of the problem increases [5]. Several approaches have been proposed to ameliorate
this by breaking the dependence between the hyperparameters and « in the algorithm. These
include the one-block algorithm [49], partially collapsed samplers [60, 33], noncentered param-
eterization (NCP) [41, 42], and marginal then conditional (MTC) sampling [16]. Noncentered
parameterization is easily incorporated into our proposed approach without sacrificing gains
in efficiency. (See the supplementary material for discussion of NCP and an illustration of
combining it with our low-rank sampler.) One-block sampling and MTC sampling, on the
other hand, require expressions for marginal densities that no longer hold when substituting
the true full conditional of & with an approximation, as well as approximation of determi-
nants of large covariance matrices to which the results in this work are not directly applicable.
Combining our proposed low-rank sampling approach with these algorithms is the subject of
ongoing research, to appear in future work.

Appendix A. Proofs.

Proof of Proposition 2. The difference between the true and the approximate covariance
matrices can be expressed as

L oond — f‘;jad =puATA+oL"L— (,U/LTVkAkVZL + O'LTL) ;
— " (L TATAL - VAV L,
n
=uL’ Z )\j'vjv;r L,
j=k+1
giving that logw(x) = —§ Z?:k R (vaLzrs)2 < 0, and hence the acceptance ratio is given
by (11). -

Lemma 3. Suppose M is symmetric positive definite. Then

/n exp <—;zTMz =+ JTz> dz = Mexp <;JTM1J> .
Proof. See [54, Lemma B.1.1]. [ ]
Lemma 4. The moments of the acceptance ratio are
Bl (2 2)] = o
Nyw™(x)

where Ny, is defined in (12).

Copyright © by STAM and ASA. Unauthorized reproduction of this article is prohibited.



Downloaded 07/19/18 to 130.127.112.252. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

LOW-RANK SAMPLERS IN BAYESIAN INVERSE PROBLEMS 1095

Proof. The proof proceeds in four steps.
L. Simplifying E5[w™(2)]. We focus on E,|4[w™(2)]. By definition, this is

~—1

exp (_%(ﬁ;cond)—rrcondi’cond> 1 T T
/ w(2)g(z)dz = — /exp (—z Mz+J z) dz,
n (2m)™/2 det(Tcona) /2 2

where, by using ®cong = uf‘condATb, we get

_ ~—1 ~—1 ~—1
M = m(r . r ond) + I‘cond and J = I‘condmcond = MATb'

cond

Applying Lemma 3 and rearranging, we have

exp (45(AT6)T (M~ — Teona) AT0)
det(M)1/2 det(T gonq) 1/

(17) Ezjelw™(2)] =

We focus on the numerator and denominator of (17) separately.
2. Denominator of (17). Note that

_ ~—1
=mIl, +(1-mT

~—1 ~

M=mT} —T, . 4)+T

-1
cond cond cond>

and furthermore
k n
M=1L" '“Z )\jvjva + mpu Z )\j'uj'va +ol | L.
j=1 j=k+1

Using the properties of determinants, it can be shown that

k n
det(M) = o™ det(L)? H1 (1 + gAJ) '1;[“ (1 + %Aj) .
J= J=

Similarly,
k
det(Toonq) = 0™ det(L)* [ | (1 + ﬁAj) .
(o
j=1

Combining these results, the denominator of (17) becomes

~ 1/2
det(M)"/? det(Teonq) /% = (det(M) H (1 + @/\]) / .

det (fcond) >k g
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~

3. Numerator of (17). Consider M ! — T'¢onq. By the Woodbury matrix identity,

- H T mpA; T -T
=—L! —Z J G Z v, | L
. J . I
o < pAj o i mpuA; +o
1 i BA
J T -T
_ = _ vl | L
o ; p\j+o 7
1 <& \j
=— = m)\,u. J L_lvj'v;»rL_T
o Plarwt mUA; + o
The numerator is therefore
12 T T 1B T N MU QT 14)2
exp (2(A b) (M~ —Tena)A b> =exp | —o- 'Z muAj+a(b AL 'v;)
j=k+1
4. Combining intermediate results. Plugging the results of steps 2 and 3 into (17) gives
us E,pp[w™(2)] = N—lm, where N, is defined in (12). The proof readily follows because
Ezja[n™ (2, )] = Ezpp[w™(2)]/w™ (z). u

Proof of Theorem 1. From Lemma 4, we have E,,[n"(z,x)] = m The first result
follows immediately by plugging in m = 1. For the second result, we use tfne fact that for a
random variable X with E(X?) < oo, V[X] = E[(X — E[X])?] = E[X?] — (E[X])?. The result
follows from (13) and applying Lemma 4 with m = 2. [ |

Proof of Proposition 3. Using h as defined in (10) and the definition of the proposal den-

sity g,
h(z) det(f‘cond) wT T T
0@~ | dot(Tegna) V@ P\~ 0 Allcond = Leona) A7 ).

From the proof of Lemma 4, M ! = T'¢,nq when m = 1. Comparing terms with (17), this
gives us h(x) = Nig(x)w(x), where N; is defined in (12). From the proof of Proposition 2,
logw(x) < 0, and therefore w(x) < 1. The desired result follows. Note that the bound is
tight because w(0) = 1. [ |

Proof of Theorem 2. From Proposition 1, we need to consider the quadratic form

~—1

1 —
izT(Fc_olnd - 1-‘cond)z = %ZTLT(H - H)sz

—~ ~1 —~
where H is the low-rank approximation; see (15). This follows from T4 = (UL HL +
oL"L). Using the Cauchy-Schwarz inequality, we can bound (in the spectral norm)

2" LT (H — H)Lz < ||Lz|%|H — H||,.
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Arguing as in [23, section 5.3], we have |H — ﬁ”g < 2|H — QQ"H|s. Applying [23,
Theorem 10.6] we have
N . 1/2
(18) Eo|H-Hly < 2o +8[ Y A ,
Jj=k+1
with constants « and § given in the statement of the result. Applying Jensen’s inequality,

Eq [n(z.2)] > exp (—ul| L2|Eq | H — H2)

Plug (18) into the above equation to complete the proof. |

Appendix B. Implementing the proper Jeffreys prior. Here we briefly discuss an im-
plementation of the LRIS algorithm when the Scott—Berger prior (16) is used instead of the
independent conjugate Gamma priors.

In this case, the model (16) becomes

y |z, k% ~ N(Ax, 1),
x| 1% ~ N(0,7°T),
(% | k%) = k21 + 12 /D) 72,

m(k?) = k2.

(19)

To obtain the full conditional densities necessary for Gibbs sampling, it is convenient to
reparameterize the model with v = 72/k%. After the change of variables, the joint posterior
(5) becomes

m

m(x, k%, v | b) o (k)™ ;n_lv_”/Q(l +v)72
1 1
coxp (= 51z |4z~ b3+ Lal3] ).

The full conditional on @ is a standard result for the normal-normal model (4); i.e.,

(20)

T | K27 v, b~ N(mconda Fcond)a

where Teopg = K2 (ATA + 1)_1I‘;r1)71 and Teong = (ATA + 11_11‘1;1)71 ATb. We can sample
from this density using our proposed low-rank approximation approach. (See section 3.) The

full conditional on k2 is

m+n 1 1
Az bl + o 1Eal} )

k% | z,v,y ~ InvGamma <

To draw from this density, draw W ~ Gamma (242, 1| Az — b|3 + £ || Lz|]3) and set 2 =
1/W. The full conditional on v is

1 2
(21) m(v | ®, k%, b) u= (2D oy [— 2/4;2'U”Lw”g:| (1 i v>

hv) <1—tv>2’

(22)
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where h(v) is the density of an InvGamma((n+2)/2, | Lz||3/(2+2)) distribution. Thus we can
use an independence Metropolis—Hastings algorithm with candidate distribution

InvGamma((n + 2)/2, | Lz|j3/(2x2)).
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