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ABSTRACT

Motivated by the computational and storage challenges that dense
embeddings pose, we introduce the problem of latent network sum-

marization that aims to learn a compact, latent representation of
the graph structure with dimensionality that is independent of the
input graph size (i.e., #nodes and #edges), while retaining the ability
to derive node representations on the fly. We proposeMulti-LENS,
an inductive multi-level latent network summarization approach
that leverages a set of relational operators and relational functions

(compositions of operators) to capture the structure of egonets and
higher-order subgraphs, respectively. The structure is stored in low-
rank, size-independent structural feature matrices, which along
with the relational functions comprise our latent network summary.
Multi-LENS is general and naturally supports both homogeneous
and heterogeneous graphs with or without directionality, weights,
attributes or labels. Extensive experiments on real graphs show
3.5 − 34.3% improvement in AUC for link prediction, while requir-
ing 80 − 2152× less output storage space than baseline embedding
methods on large datasets. As application areas, we show the effec-
tiveness of Multi-LENS in detecting anomalies and events in the
Enron email communication graph and Twitter co-mention graph.
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1 INTRODUCTION

Recent advances in representation learning for graphs have led to a
variety of proximity-based and structural embeddings that achieve
superior performance in specific downstream tasks, such as link
prediction, node classification, and alignment [10, 13, 28]. At the
same time though, the learned, K-dimensional node embeddings
are dense (with real values), and pose computational and storage
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Figure 1: Our proposed approach to Latent Network Sum-

marization calledMulti-LENS produces a summary consist-

ing of relational functions Fr and node-independent matri-

ces S of size K ×C. Thus, while embedding methods output

N node embeddings of dimensionality K , latent summariza-

tion methods produce an output that is independent of N
and thus is graph-size independent. Despite not storing the

embeddings, Multi-LENS can derive them on the fly.

challenges especially for massive graphs. By following the con-
ventional setting of K = 128 for the dimensionality, a graph of 1
billion nodes requires roughly 1TB for its embeddings. Moreover,
this dense representation often requires significantly more space
to store than the original, sparse adjacency matrix of a graph. For
example, for the datasets that we consider in our empirical analy-
sis, the learned embeddings from existing representation learning
techniques require 3 − 48× more space than the original edge files.

To address these shortcomings, we introduce the problem of
latent network summarization. Informally, the goal is to find a low-
dimensional representation in a latent space such that it is indepen-
dent of the graph size, i.e., the number of nodes and edges. Among
other tasks, the representation should support on-the-fly computa-
tion of specific node embeddings. Latent network summarization
and network embedding are complementary learning tasks with
fundamentally different goals and outputs, as shown in Fig. 1. In
particular, the goal of network embedding is to derive N node em-
bedding vectors of K dimensions each that capture node proximity
or equivalency. Thus, the output is a N × K matrix that is depen-
dent on the size of the graph (number of nodes) [10, 24]. This is
in contrast to the goal of latent network summarization, which is
to learn a size-independent representation of the graph. Latent net-
work summarization also differs from traditional summarization
approaches that typically derive supergraphs (e.g., mapping nodes
to supernodes) [19], which target different applications and are
unable to derive node embeddings.
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To efficiently solve the latent network summarization problem,
we propose Multi-LENS (Multi-level Latent Network Summariza-
tion), an inductive framework that is based on graph function com-
positions. In a nutshell, the method begins with a set of arbitrary
graph features (e.g., degree) and iteratively uses generally-defined
relational operators over neighborhoods to derive deeper function
compositions that capture graph features at multiple levels (or dis-
tances). Low-rank approximation is then used to derive the best-fit
subspace vectors of network features across levels. Thus, the latent
summary given by Multi-LENS comprises graph functions and
latent vectors, both of which are independent of the graph size. Our
main contributions are summarized as follows:
• Novel Problem Formulation. We introduce and formulate
the problem of latent network summarization, which is comple-
mentary yet fundamentally different from network embedding.
• Computational Framework.WeproposeMulti-LENS, which
expresses a class of methods for latent network summarization.
Multi-LENS naturally supports inductive learning, on-the-fly
embedding computation for all or a subset of nodes.
• Time- and Space-efficiency.Multi-LENS is scalablewith time
complexity linear on the number of edges, and space-efficient

with size independent of the graph size. Besides, it is paralleliz-
able as the node computations are independent of each other.
• Empirical analysis on real datasets. We apply Multi-LENS
to event detection and link prediction over real-world heteroge-
neous graphs and show that it is 3.5%-34.3%more accurate than
state-of-the-art embedding methods while requiring 80-2152×
less output storage space for datasets with millions of edges.
Next we formally introduce the latent network summarization

problem and then describe our proposed framework.

2 LATENT NETWORK SUMMARIZATION

Intuitively, the problem of latent network summarization aims to
learn a compressed representation that captures the main structural
information of the network and depends only on the complexity of
the network instead of its size. More formally:

Definition 1 (Latent Network Summarization). Given an

arbitrary graph G = (V ,E) with |V | = N nodes and |E | = M edges,

the goal of latent network summarization is to map the graph G
to a low-dimensional K ×C representation J that summarizes the

structure ofG , where K ,C ≪ N ,M are independent of the graph size.

The output latent representations should be usable in data mining

tasks, and sufficient to derive all or a subset of node embeddings on

the fly for learning tasks (e.g., link prediction, classification).

Compared to the network embedding problem, latent network
summarization differs in that it aims to derive a size-independent
representation of the graph. This can be achieved in the form of su-
pergraphs [19] (in the original graph space) or aggregated clusters
trivially, but the compressed latent network summary in Defini-
tion 1 also needs to be able to derive the node embeddings, which
is not the goal of traditional graph summarization methods.

In general, based on our definition, a latent network summa-
rization approach should satisfy the following key properties: (P1)
generality to handle arbitrary network with multiple node types, re-
lationship types, edge weights, directionality, unipartite or k-partite

Table 1: Summary of symbols and notations

Symbol Definition

G = (V , E) heterogeneous network with |V | = N nodes and |E | = M edges
A adjacency matrix ofG with row i Ai, : and column i A:,i

TV , TE sets of object types and edge types, respectively
Ni , Nt

i non-typed / types (1-hop) neighborhood or egonet of node i
ℓ, L index for level & total number of levels (i.e., max order of a rel. fns)
B ={bi } set of initial feature vectors in length N
Fr ={F(1)r , . . . , F(L)r }, ordered set of relational functions across levels
Fb = {fbi }, set of base graph functions (special relational functions)
Φ = {ϕi }, set of relational operators

F(0) N × |B | base feature matrix derived by the base graph functions Fb
F(ℓ) N ×

(
|B | · |Φ |ℓ

)
generated feature matrix for level ℓ

K (ℓ) , K dimensionality of embeddings at level-ℓ and the final dimensionality
H(ℓ) N × |F(ℓ)r | histogram-based representation of feature matrix F(ℓ)
S(ℓ) low-rank latent graph summary at level ℓ

structure, etc. (P2) high compression rate, (P3) natural support of
inductive learning, and (P4) ability to on-the-fly derive node em-
beddings used in follow-up tasks.

3 MULTI-LENS FRAMEWORK

To efficiently address the problem of latent network summarization
introduced in Section 2, we propose Multi-LENS, which expresses
a class of latent network summarization methods that satisfies
all desired properties (P1-P4). The summary J given by Multi-
LENS contains (i) necessary operators for aggregating node-wise
structural features automatically and (ii) subspace vectors on which
to derive the embeddings. We give the overview in Figure 2 and list
the main symbols and notations used in this work in Table 1.

At a high level, Multi-LENS leverages generally-defined rela-
tional operators to capture structural information from node neigh-
borhoods in arbitrary types of networks. It recursively applies these
operators over node neighborhoods to produce both linear and non-
linear functions that characterize each node at different distances
(§ 3.2). To efficiently derive the contextual space vectors, Multi-
LENS first generates histogram-based heterogeneous contexts for
nodes (§ 3.3), and then obtains the summary via low-dimensional
approximation (§ 3.4). We include the empirical justification of our
design choices in the Appendix. Before discussing each step and its
rationale, we first present some preliminaries that serve as building
blocks for Multi-LENS.

Figure 2: Overview of Multi-LENS. Dashed boxes: interme-

diate results that do not need to store; shaded boxes: outputs

that need storing. The size of the latent network summaries,

J =
{
F,S

}
, is independent of N ,M .



3.1 Preliminaries

Recall that our proposed problem definition (§ 2) applies to any
arbitrary graph (P1). As a general class, we refer to heterogeneous
(information) networks or typed networks.

Definition 2 (Heterogeneous network). A heterogeneous

network is defined as G = (V ,E,θ , ξ ) with node-set V , edge-set E, a
function θ : V → TV mapping nodes to their types, and a function

ξ : E → TE mapping edges to their types.

We assume that the network is directed and weighted with un-
weighted and undirected graphs as special cases. For simplicity, we
will refer to a graph asG(V ,E). Within heterogeneous networks, the
typed neighborhood or egonet1 Nt of a node is defined as follows:

Definition 3 (Typed neighborhood Nt ). Given an arbitrary

node i in graph G = (V ,E), the typed t neighborhood Nt
i is the set

of nodes with type t that are reachable by following directed edges

e ∈ E originating from i with 1-hop distance and i itself.

The neighborhood of node i ,Ni , is a superset of the typed neighbor-
hood Nt

i , and includes nodes in the neighborhood of i regardless
of their types. Higher-order neighborhoods are defined similarly,
but more computationally expensive to explore. For example, the
k-hop neighborhood denotes the set of nodes reachable following
directed edges e ∈ E originating from node i within k-hop distance.

The goal of latent network summarization is to find a size-
independent representation that captures the structure of the net-
work and its underlying nodes in the latent space. Capturing the
structure depends on the semantics of the network (e.g., weighted,
directed), and thus different ways are needed for different input
networks types. To generalize to arbitrary networks, we leverage
relational operators and functions [28].

Definition 4 (Relational operator). A relational operator

ϕ(x,R) ∈ Φ is defined as a basic function (e.g., sum) that operates

on a feature vector x associated with a set of related elements R and

returns a single value.

For example, let x be an N × 1 vector and R the neighborhood
Ni of node i . For ϕ being the sum, ϕ(x,R) would return the count
of neighbors reachable from node i (unweighted out degree).

Definition 5 (Relational function). A relational function

f ∈ F is defined as a composition of relational operators f =
(
ϕ1 ◦

· · · ◦ ϕh−1 ◦ ϕh
)
(x,R) applied to feature values in x associated with

the set of related nodes R. We say that f is order-h iff the feature

vector x is applied to h relational operators.

Together, relational operators and relational functions comprise
the building blocks of our proposed method, Multi-LENS. Itera-
tive computations over the graph or a subgraph (e.g., node neigh-
borhood) generalize for inductive/across-network transfer learn-
ing tasks. Moreover, relational functions are general and can be
used to derive commonly-used graph statistics. As an example, the
out-degree of a specific node is derived by applying order-1 rela-
tional functions on the adjacency matrix over its the egonet, i.e.,
out-deg(i) =

∑(Ai :,N) regardless of object types.

1In this work we use neighborhood and egonet interchangeably.

3.2 Multi-level Structure Extraction

We now start describing our proposed method,Multi-LENS. The
first step is to extract multi-level strcuture around the nodes. To
this end, as we show in Figure 2, Multi-LENS first generates a set
of simple node-level features to form the base feature matrix F(0)
via the so-called base graph functions Fb . It then composes new
functions by iteratively applying a set of relational operators Φ over
the neighborhood to generate new features. Operations in both Fb
and Φ are generally defined to satisfy (P1).

3.2.1 Base Graph Functions. As a special relational function, each
base graph function fb ∈ Fb consists of relational operators that
perform on an initial N ×1 feature vector b ∈ B. The vector b could
be given as the row/column of the adjacency matrix corresponding
to node i , or some other derived vector related to the node (e.g., its
distance or influence to every node in the graph). Following [28],
the simplest case is fb =

∑
, which captures simple base features

such as in/out/total degrees. We denote applying the same base
function to the egonets of all the nodes in graph G as follows:

fb ⟨b,N⟩ = [fb (b,N1), fb (b,N2), . . . , fb (b,NN )]T , b ∈ B (1)
which forms an N × 1 vector. For example, fb =

∑⟨Ai :,N⟩ enu-
merates the out-degree of all nodes in G. By applying fb on each
initial feature b, e.g., 1N×1 or row/column of adjacency matrix A,
we obtain the N × B base matrix F(0):

F(0) = [fb ⟨b1,N⟩, fb ⟨b2,N⟩, . . . , fb ⟨bB ,N⟩], b1· · ·B ∈ B (2)
which aggregates all structural features of the nodes within N.
The specific choice of initial vectors b is not very important as
the composed relational functions (§ 3.2.2) extensively incorporate
both linear and nonlinear structural information automatically. We
empirically justify Multi-LENS on the link prediction task over
different choices of B to show its insensitivity in Appendix § B.3.

3.2.2 Relational Function Compositions. To derive complex & non-
linear node features automatically, Multi-LENS iteratively applies
operators ϕ ∈ Φ (e.g., mean, variance, sum, max, min, l2-distance) to
lower-order functions, resulting in function compositions. ℓ such
compositions of functions over a node’s egonetNi captures higher-
order structural features associated with the ℓ−hop neighborhoods.
For example, assuming x is the vector consisting of node-wise
degrees, the max operator captures the maximum degree in the
neighborhood N of a node. The application of the max operator
to all the nodes forms a new feature vector max⟨x,N⟩ where each
entry records the maximum degree in the corresponding neighbor-
hood. Fig. 3 shows that the maximum degree of node {2, 3, 4} is
aggregated for node 3 in max⟨x,N⟩ By iteratively applying max

to max⟨x,N⟩ in the same way, the maximum value from broader
neighborhood N is aggregated, which is equivalent to finding the
maximum degree in the 2-hop neighborhood. Fig. 3b depicts this
process for node 3.

Formally, at level ℓ ∈ {1, . . . ,L}, a new function is composed as:

f (ℓ) = ϕ ◦ f (ℓ−1),∀ϕ ∈ Φ (3)

where L < diam(G) or the diameter ofG , and f (0) = fb (§ 3.2.1). We
formally define some operators ϕ ∈ Φ in Appendix B.1. Applying
f (ℓ) to F(0) generates order-ℓ structural features of the graph as
F(ℓ). In practice,Multi-LENS recursively generates F(ℓ) from F(ℓ−1)



(a) 1- and 2-hop neighborhood

of node 3

(b) max ◦max⟨x, N⟩ captures the
max degree in 2-hop neighborhood

Figure 3: The composition of relational functions incorpo-

rates node degrees (columnvector x) in expanded subgraphs.

by applying a total of |Φ| operators. The particular order in which
relational operators are applied records how a function is generated.
Multi-LENS then collects the composed relational functions per
level into Fr as a part of the latent summary.

In terms of space, Equation (3) indicates the dimension of Fr
grows exponentially with |Φ|, i.e., |F(ℓ)r | = |B| |Φ|(ℓ), which is also
the number of columns in F(ℓ). However, the max level L is bounded
with the diameter of G, that is L ≤ diam(G) − 1 because functions
with orders higher than that will capture the same repeated struc-
tural information. Therefore, the size of Fr is also bounded with
L. Although the number of relational functions grows exponen-
tially, real-world graphs are extremely dense with small diameters
diam(G) ∝ log logN [7]. In our experiments in § 4, |Fr | ≈ 1000 for
|B| = 3 base functions, |Φ| = 7 operators, and L = 2 levels.

3.3 Heterogeneous Context

So far we have discussed how to obtain the base structural feature
matrix F(0) and the multi-level structural feature representations
F(ℓ) by recursively employing the relational functions. As we show
empirically in supplementary material B.2, directly deriving the
structural embeddings based on these representations leads to low
performance due to skewness in the extracted structural features.
Here we discuss an intermediate transformation of the generated
matrices that helps capture rich contextual patterns in the neighbor-
hoods of each node, and eventually leads to a powerful summary.

3.3.1 Handling skewness. For simplicity, we first discuss the case
of a homogeneous network G with a single node and edge type,
and undirected edges. To handle the skewness in the higher-order
structural features (§ 3.2) andmore effectively capture the structural
identity of each node within its context (i.e., non-typed neighbor-
hood), we opt for an intuitive approach: for each node i and each
base/higher-order feature j, we create a histogram hi j with c bins
for the nodes in its neighborhoodNi . Variants of this approach are
used to capture node context in existing representation learning
methods, such as struc2vec [25] and xNetMF [13]. In our setting,
the structural identity of node i is given as the concatenation of all
its feature-specific histograms.

hi =
[
hi1 hi2 · · · hiZ

]
, (4)

whereZ = |B|+∑L
ℓ=1 |B| · |Φ|

ℓ is the total number of histograms, or
the number of base and higher-order features. Each histogram is in
logarithmic scale to better describe the power-law-like distribution
in graph features and has a total of c bins. By stacking all the nodes’
structural identities vertically, we obtain a rich histogram-based
context matrix H =

[
h1; h2; · · · ; hN

]
as shown in Fig. 4.

Figure 4: Example of creating histogram-basedmatrix repre-

sentation H(0) with Z = 2 features in the base feature matrix

F(0). A single object / edge type and no edge directionality is

assumed here for simplicity.

3.3.2 Handling object/edge types and directionality. The histogram-
based representation that we described above can be readily ex-
tended to handle any arbitrary network G with multiple object
types, edge types and directed edges (P1). The idea is to capture
the structural identity of each node i within its different contexts:
• Nt

i or Nτ
i : the neighborhood that contains only nodes of

type t ∈ TV or edges of type τ ∈ TE , and
• N+i or N−i : the neighborhood with only outgoing or incom-
ing edges for node i .

For example, to handle different object types, we create a context
matrix Ht

o by restricting the histograms on neighbors of type t ,
Nt
i . These per-type matrices can be stacked into a tensorH, with

each slice corresponding to a node-level histogram, Ht
o of object

type, t . Alternatively, the tensor can be matricized by frontal slices.
By further restricting the neighborhoods to contain specific edge
types and/or directionality in a similar manner, we can obtain the
histogram-based representations Ht

e and Ht
d , respectively.

By imposing all of the restrictions at once, we can also obtain
context matrix H that accounts for all types of heterogeneity. We
discuss this step with more details that may be necessary for repro-
ducibility in § C of the supplementary material.

3.4 Latent Summarization

The previous two subsections can be seen as a general framework
for automatically extracting, linear and non-linear, higher-order
structural features that constitute the nodes’ contexts at multiple
levels ℓ. Unlike embedding methods that generate graph-size depen-
dent node representations, we seek to derive a compressed latent
representation ofG (P2) that supports on-the-fly generation of node
embeddings and (inductive) downstream tasks (P3,P4). Although
graph summarization methods [19] are relevant as they represent
an input graph with a summary or supergraph, it is infeasible to
generate latent node representations due to the incurred informa-
tion loss. Thus, such methods, which have different end goals, do
not satisfy (P4).

3.4.1 Multi-level Summarization. Multi-LENS explores node sim-
ilarity based on the assumption that similar nodes should have
similar structural context over neighborhoods of different hops.
Given the histogram-based context matrix H(ℓ) that captures the
heterogeneity of feature values associated with the ℓ−order egonets
in G (§ 3.2.2),Multi-LENS obtains the level-ℓ summarized repre-
sentation S(ℓ) via factorization H(ℓ) = Y(ℓ)S(ℓ), where Y(ℓ) is the
dense node embedding matrix that we do not store. Then, the latent
summary J consists of the set of relational functions Fr (§ 3.2), and



the multi-level summarized representations S = {S(1), . . . , S(ℓ)}.
Though any technique can be used (e.g., NMF), we give the factors
based on SVD for illustration:

level-ℓ node embeddings (not stored): Y(ℓ) = U(ℓ)
√
Σ(ℓ) (5)

level-ℓ summarized representation: S(ℓ) =
√
Σ(ℓ)V(ℓ)T (6)

where Σ(ℓ) are the singular values of H(ℓ), and U(ℓ)T , V(ℓ)T are its
left and right singular vectors, respectively.

Intuitively, S(ℓ) contains the best-fit K (ℓ)-dimensional subspace
vectors for node context H(ℓ) in the neighborhood at order-ℓ. The
summary representations across different orders form the hier-
archical summarization of G that contains both local and global
structural information, and the derived embedding matrix Y(ℓ) also
preserves node similarity at multiple levels. There is no need to
store any of the intermediate matrices F(ℓ) and H(ℓ), nor the node
embeddings Y(ℓ). The former two matrices can be derived on the
fly given the composed relational functions Fr . Then, the latter can
be efficiently estimated using the obtained sparse H(ℓ) matrix and
the stored summarized matrix S(ℓ) through SVD (§ 3.6 gives more
details). Moreover, since the elements of the summary S, i.e., the
relational functions Fr and the factorized matrices, are indepen-
dent of the nodes or edges of the input graph, both require trivial
storage and achieve compression efficiency (P2). We provide the
pseudo-code of Multi-LENS in Algorithm 1.

We note that the relational functions Fr are a key enabling factor
of our summarization approach. Without them, other embedding
methods cannot benefit from our proposed summarized represen-
tations S, nor reconstruct the node context and embeddings.

3.4.2 Inductive Summaries (P3). The higher-order features derived
from the set of relational functions Fr are structural, and thus
generalize across graphs [1, 13, 14] and are independent of node
IDs. As such, the factorized matrices in S learned on G can be
transferred to another graph G ′ to learn the node embeddings Y(ℓ)
of a new, previously unseen graph G ′ as:

Y′(ℓ) = H′(ℓ)(S(ℓ))† (7)
where S(ℓ) ∈ S is learned on G, † denotes the pseudo-inverse, and
H′(ℓ) is obtained via applying Fr toG ′. The pseudo-inverse, (S(ℓ))†
can be computed efficiently through SVD as long as the rank of S(ℓ)
is limited (e.g., empirically setting K (ℓ) ≤ 128) [4].

Equation (7) requires the same dimensionality K (ℓ) = K ′(ℓ) and
the same number of bins of histogram context matrices c = c ′ at
each level ℓ. The embeddings learned inductively reflect the node-
wise structural difference between graphs, G and G ′, which can be
used in applications of graph mining and time-evolving analysis.
We present an application of temporal event detection in § 4.4.

3.4.3 On-the-fly embedding derivation (P4). Given the summarized
matrix S(ℓ) at level ℓ, the embeddings of specific nodes that are
previously seen or unseen can be derived efficiently. Multi-LENS
first applies Fr to derive their heterogeneous context H(l )sub based
on the graph structure, and then obtains the embeddings via Eq. (7).
We concatenate Y(ℓ) given as output at each level to form the final
node embeddings [31]. Given that the dimension of embeddings is
K (ℓ) at level ℓ, the final embedding dimension is K =

∑L
ℓ=1 K

(ℓ).

Algorithm 1 Multi-LENS
Input: (un)directed heterogeneous graph G , a set of relational opera-
tors Φ; layer-wise embedding dimensionality K (ℓ), for K =

∑L
ℓ=1 K

(ℓ)

dimensions in total; number of bins c for the histogram representation
Output: Summary J =

{
F, S

}
1: Fr ← fb ▷ Base graph functions: Eq. (1)
2: Initialize F(0) ▷ Base feature matrix Eq. (2)
3: for ℓ = 1, . . . ,L do ▷ multi-level summarization

4: for i = 1, . . . , |Φ | do ▷ relational operators

5: parallel for j = 1, . . . ,BRℓ−1
do ▷ Columns in F(l )

6: f = ϕi ◦ f (ℓ−1)j ▷ Compose func. in F(ℓ−1)r

7: F(ℓ) = F(ℓ) ∪ ϕi ⟨F(ℓ−1):, j , N⟩ ▷ Feature concatenation

8: Derive heterogeneous context H(ℓ) ▷ § 3.3 and Eq. (10)
9: S(ℓ) =

√
Σ(ℓ)V(ℓ)T ▷ SVD: H(ℓ) = U(ℓ)Σ(ℓ)V(ℓ)T

10: Fr ← Fr ∪ f , S ← S ∪ S(ℓ)

3.5 Generalization

Here we discuss the generalizations of our proposed approach
to labeled and attributed graphs. It is straightforward to see that
homogeneous, bipartite, signed, and labeled graphs are all spe-
cial cases of heterogeneous graphs with |TV | = |TE | = 1 types,
|TV | = 2 and |TE | = 1 types, |TV | = 1 and |TE | = 2 types, and
|TV | = #(node labels) and |TE | = #(edge labels) types, respectively.
Therefore, our approach naturally generalizes to all of these graphs.
Other special cases include k-partite and attributed graphs.

Multi-LENS also supports attributed graphs that have multiple
attributes per node or edge (instead of a single label): Given an
initial set of attributes organized in an attribute matrix Fa , we
can concatenate Fa with the base attribute matrix and apply our
approach as before. Alternatively, we can transform the graph into
a labeled one by applying a labeling function χ : x→ y that maps
every node’s attribute vector x to a labely [1]. Besides, our proposed
method is easy to parallelize as the relational functions are applied
to the subgraphs of each node independently, and the feature values
are computed independently.

3.6 Complexity Analysis

3.6.1 Computational Complexity. Multi-LENS is linear to the
number of nodes N and edgesM . Per level, it derives the histogram-
based context matrix H(ℓ) and performs a rank-K (ℓ) approximation.

Lemma 3.1. The computational complexity of Multi-LENS is

O((c |Fr | |TV | |TE | + K2)N +M).
We give the proof in Appendix A.1. As indicated in § 3.2, the

number of features in H(ℓ) across L layers is equivalent to the
number of composed relational functions |Fr |. Since |Fr | is bounded
with L and L < diam(G), the term (c |Fr | |TV | |TE | + K2) forms a
constant related to graph heterogeneity and structure.

3.6.2 Space Complexity. The runtime and output compression
space complexity of Multi-LENS is given in Lemma 3.2. In the
runtime at level ℓ, Multi-LENS leverages F(ℓ−1) to derive F(ℓ) and
H(ℓ), which comprise two terms in the runtime space complexity.
We detail the proof in Appendix A.2



Lemma 3.2. The Multi-LENS space complexity during runtime

is O((c |Fr | |TV | |TE | + |Fr |)N ). The space needed for the output of
Multi-LENS is O(cK |Fr | |TV | |TE | + |Fr |).

The output of Multi-LENS that needs to be stored (i.e., set of
relational functions Fr and summary matrices in S) is indepen-
dent of N ,M . Compared with output embeddings with complexity
O(NK) given by existing methods,Multi-LENS satisfies the crucial
property we desire (P2) from latent summarization (Def. 1).

4 EXPERIMENTS

In our evaluation we aim to answer four research questions:
Q1 How much space do the Multi-LENS summaries save (P2)?
Q2 How does Multi-LENS perform in machine learning tasks,

such as link prediction in heterogeneous graphs (P1)?
Q3 How well does it perform in inductive tasks (P3)?
Q4 Does Multi-LENS scale well with the network size?

We have discussed on-the-fly embedding derivation (P4) in § 3.4.3.

4.1 Experimental Setup

4.1.1 Data. In accordance with (P1), we use a variety of real-world
heterogeneous network data from Network Repository [26]. We
present their statistics in Table 2.
• Facebook [11] is a homogeneous network that represents
friendship relation between users.
• Yahoo! Messenger Logs [28] is a heterogeneous network
of Yahoo! messenger communication patterns, where edges
indicate message exchanges. The users are associated with
the locations from which they have sent messages.
• DBpedia

2 is an unweighted, heterogeneous subgraph from
DBpedia project consisting of 4 types of entities and 3 types
of relations: user-occupation, user-work ID, work ID-genre.
• Digg

2 is a heterogeneous network that records the voting be-
haviors of users to stories they like. Node types include users
and stories. Each edge represents one vote or a friendship.
• Bibsonomy

2 is a k-partite network that represents the be-
haviors of users assigning tags to publications.

4.1.2 Baselines. We compare Multi-LENS with baselines com-
monly used in graph summarization, matrix factorization and rep-
resentation learning over networks, namely, they are: (1) Node
aggregation or NA for short [2, 33], (2) Spectral embedding or
SE [32], (3) LINE [31], (4) DeepWalk or DW [23], (5) Node2vec or
n2vec [11], (6) struc2vec or s2vec [25], (7) DNGR [6], (8) GraRep
or GR [5], (9) Metapath2vec or m2vec [8], and (10) AspEm [30],
(11)Graph2Gauss or G2G [3]. To run baselines that do not explicitly
support heterogeneous graphs, we align nodes of the input graph
according to their object types and re-order the IDs to form the
homogeneous representation. In node aggregation, CoSum [33] ran
out of memory due to the computation of pairwise node similarity.
We use Louvain [2] as an alternative that scales to large graphs and
forms the basis of many node aggregation methods.

4.1.3 Configuration. We evaluate Multi-LENS with L = 1 and
L = 2 to capture subgraph structural features in 1-hop and 2-
hop neighborhoods, respectively, against the optimal performance

2http://networkrepository.com/

Table 2: Statistics for the heterogeneous networks that we

use in our experiments.

Data #Nodes #Edges #Node Types Graph Type
facebook 4 039 88 234 1 unweighted
yahoo-msg 100 058 1 057 050 2 weighted
dbpedia 495 936 921 710 4 unweighted
digg 283 183 4 742 055 2 unweighted
bibsonomy 977 914 3 754 828 3 weighted

achieved by the baselines. We derive in-/out- and total degrees to
construct the N × 3 base feature matrix F(0). Totally, we generate
≈ 1000 composed functions, each of which corresponds to a col-
umn vector in F. For fairness, we do not employ parallelization
and terminate processes exceeding 1 day. The output dimensions
of all node representations are set to be K = 128. We also provide
an ablation study in terms of the choice of initial vectors, differ-
ent sets of relational operators in supplementary material B.2-B.4.
For reproducibility, we detail the configuration of all baselines
andMulti-LENS in Appendix B.1. The source code is available at
https://github.com/GemsLab/MultiLENS.

4.2 Compression rate of Multi-LENS

The most important question for our latent summarization method
(Q1) is about how well it compresses large scale heterogeneous
data (P2). To showMulti-LENS’s benefits over existing embedding
methods, we measure the storage space for the generated embed-
dings by the baselines that ran successfully. In Table 3 we report the
space required by theMulti-LENS summaries in MB, and the space
that the outputs of our baselines require relative to the correspond-
ing Multi-LENS summary. We observe that the latent summaries
generated byMulti-LENS take up very little space, well under 1MB
each. The embeddings of the representation learning baselines take
up 80 − 2152× more space than the Multi-LENS summaries on
the larger datasets. On Facebook, which is a small dataset with 4K
nodes, the summarization benefit is limited; the baseline methods
need about 3 − 12× more space. In addition, the node-aggregation
approach takes up to 12× storage space compared to our latent sum-
maries, since it generates an N × 1 vector that depends on graph
size to map each node to a supernode. This further demonstrates
the advantage of our graph-size independent latent summarization.

Table 3: Output storage space required for embedding meth-

ods relative to the Multi-LENS summaries (given in MB).

Multi-LENS requires 3−2152× less output storage space than
embedding methods.

Data SE LINE n2vec DW m2vec AspEm G2G ML

(MB)

facebook 8.13x 8.48x 12.79x 12.84x 3.82x 8.50x 9.17x 0.58

yahoo 187.1x 180.0x 242.2x 231.0x 79.8x 197.4x 195.8x 0.62

dbpedia 710.0x 714.2x 996.4x 996.2x - 749.2x 743.6x 0.81

digg 608.2x 612.8x 848.9x 830.3x 259.9x 641.7x 635.2x 0.54

bibson. 1512.1x 1523.0x 2152.5x 2152.5x - 1595.8x - 0.75

http://networkrepository.com/
https://github.com/GemsLab/MultiLENS


Table 4: Link prediction: node embeddings derived by Multi-LENS (ML) outperforms all baselines measured by every eval-

uation metric. Specifically, Multi-LENS outperforms embedding baselines by 3.46% ∼ 34.34% in AUC and 3.71% ∼ 31.33% in

F1 on average. It outperforms even more over the aggregation-based methods. The asterisk
∗
denotes statistically significant

improvement over the best baseline at p < 0.01 in a two-sided t-test. OOT = Out Of Time (12 hours), OOM = Out Of Memory

(16GB).

Data Metric NA SE LINE DW n2vec GR s2vec DNGR m2vec AspEm G2G ML(L = 1) ML(L = 2)

facebook
AUC

ACC

F1 macro

0.6213
0.5545
0.5544

0.6717
0.5995
0.5716

0.7948
0.7210
0.7210

0.7396
0.6460
0.6296

0.7428
0.6544
0.6478

0.8157
0.7368
0.7367

0.8155
0.7388
0.7387

0.7894
0.7062
0.7060

0.7495
0.7051
0.7041

0.5886
0.5628
0.5628

0.7968
0.7274
0.7273

0.8703
0.7920

∗
0.7920

∗

0.8709
∗

0.7904
0.7905

yahoo-msg
AUC

ACC

F1 macro

0.7189
0.2811
0.2343

0.5375
0.5224
0.5221

0.6745
0.6269
0.6265

0.7715
0.6927
0.6897

0.7830
0.7036
0.7016

0.7535
0.6825
0.6821

OOT OOM
0.6708
0.6164
0.6145

0.5587
0.5379
0.5377

0.6988
0.6564
0.6562

0.8443
0.7587

∗
0.7577

∗

0.8446
∗

0.7587
∗

0.7577
∗

dbpedia
AUC

ACC

F1 macro

0.6002
0.3998
0.2968

0.5211
0.5399
0.4539

0.9632
0.9111
0.9110

0.8739
0.8436
0.8402

0.8774
0.8436
0.8402

OOM OOT OOM OOT
0.6364
0.5869
0.5860

0.7384
0.6625
0.6613

0.9820
∗

0.9186

0.9186

0.9809
0.9151
0.9150

digg
AUC

ACC

F1 macro

0.7199
0.2801
0.2660

0.6625
0.6512
0.6223

0.9405
0.8709
0.8709

0.9664
0.9023
0.9019

0.9681
0.9049
0.9046

OOM OOT OOM
0.9552
0.8891
0.8890

0.5644
0.5459
0.5459

0.8978
0.8492
0.8492

0.9894
∗

0.9596
∗

0.9595
∗

0.9893
0.9590
0.9590

bibsonomy
AUC

ACC

F1 macro

0.7836
0.2164
0.2070

0.6694
0.6532
0.6064

0.9750
0.9350
0.9349

0.6172
0.5814
0.5781

0.6173
0.5816
0.5782

OOM OOT OOM OOT
0.6127
0.5790
0.5772

OOM
0.9909

∗
0.9485

∗
0.9485

∗

0.9909
0.9466
0.9466

4.3 Link Prediction in Heterogeneous Graphs

For Q2, we investigate the performance of Multi-LENS in link pre-
diction task over heterogeneous graphs (P1). We use logistic regres-
sion with regularization strength = 1.0 and stopping criteria= 10−4.
An edge ei j is represented by the concatenating the embeddings
of its source and destination: emb(ei j ) = [emb(i), emb(j)] as used
in [28]. For each dataset G(V ,E), we create the subgraph G ′(V ,E ′)
by keeping all the nodes but randomly removing ∼ 40% edges. We
run all methods onG ′ to get node embeddings and randomly select
10%|E | edges as the training data. Out of the removed edges, 25%
(10%|E |) are used as missing links for testing. We also randomly
create the same amount of “fake edges” for both training and test-
ing. Table 4 illustrates the prediction performance measured with
AUC, ACC, and F1 macro scores.

We observe that Multi-LENS outperforms the baselines mea-
sured by every evaluation metric. Multi-LENS outperforms em-
bedding baselines by 3.46% ∼ 34.34% in AUC and 3.71% ∼ 31.33%
in F1 score. For runnable baselines designed for node embeddings
in homogeneous graphs (baseline 3 - 8), the experimental result
is expected asMulti-LENS incorporates heterogeneous contexts
within 2-neighborhood in the node representation. It is worth not-
ing that Multi-LENS outperforms Metapath2vec and AspEm, both
of which are designed for heterogeneous graphs. One reason behind
is the inappropriate meta-schema specified, as Metapath2vec and
AspEm require predefined meta-path / aspect(s) in the embedding.
On the contrary, Multi-LENS does not require extra input and
captures graph heterogeneity automatically. We also observe the
time and runtime space efficiency of Multi-LENSwhen comparing
with neural-network based methods (DNGR, G2G), GraRep and
struc2vec on large graphs. Although the use of relational operators
is similar to information propagation in neural-networks,Multi-
LENS requires less computational resource with promising results.
Moreover, theMulti-LENS summaries for both L = 1 and L = 2 lev-
els achieve promising results, but generally we observe that there
is a slight drop in accuracy for higher levels. This indicates that
node context at higher levels may incorporate noisy, less-relevant
higher-order structural features (§ 3.2.2).

4.4 Inductive Anomaly Detection

To answer Q3 about inductive learning, we first perform anomalous
subgraph detection on both synthetic and real-world graphs. We
also showcase the application of Multi-LENS summaries on real-
world event detection, in an inductive setting (P3).

4.4.1 Anomalous Subgraph Detection. Following the literature [21],
we first generate two “background” graphs, G1 and G2. We then
induce an anomalous subgraph into G2 by randomly selecting n
nodes and adding edges to form an anomalous ER subgraph with
p and n shown in Table 5. We leverage the summary learned from
G1 to learn node embeddings in G2, we identify the top-n nodes
with the highest change in euclidean distance as anomalies, and
report the precision in Table 5. In the synthetic setting, we generate
two Erdős-Rényi (ER) graphs, Gsyn

1 and Gsyn
2 , with 104 nodes and

average degree 10 (pback = 10−3). In the real-graph setting, we
constructGreal

1 andGreal
2 using two consecutive daily graphs in the

bibsonomy dataset.
In the synthetic scenario, we observe that Multi-LENS gives

promising results by successfully detecting nodes with the most de-
viating embedding values, except when the size of injection is small.
In the case of very sparse ER injections (p = 0.1), the anomalies
are not detectable over the natural structural deviation between
G
syn
1 and Gsyn

2 . However, denser injections (p ≥ 0.3) affect more
significantly the background graph structure, which in turn leads
to notable change in the Multi-LENS embeddings for the affected

Table 5: Anomalous Erdős-Rényi (ER) subgraphs (with n
nodes and probability p) detection precision on both syn-

thetic and real-world graphs.

Real Graph Synthetic Graph
p \ n 100 200 300 400 500 50 75 100

0.1 0.200 0.780 0.950 0.973 0.980 0.06 0.3333 0.81
0.3 0.870 0.960 0.990 0.995 0.996 1 1 1
0.5 0.920 0.990 0.993 1 1 1 1 1
0.7 0.940 0.990 1 1 1 1 1 1
0.9 0.980 1 1 1 1 1 1 1



(a) Twitter: Consecutive embeddings change

in Twitter during 05/12/2014–07/31/2014.

(b) Enron: Consecutive embeddings change in

weekdays during 01/01/2001–5/01/2002.

(c) Runtime (in sec) for Multi-LENS vs.

node2vec.

Figure 5: (a)-(b) Major event detection in real world datasets; (c) Runtime reported on ER graphs with davg = 10. Multi-LENS

scales similarly to node2vec with less memory requirement while node2vec runs out of memory on the graph with 107 nodes.

subset of nodes. For real-world graphs, we also observe thatMulti-
LENS successfully detects anomalous patterns when the injection
is relatively dense, even when the background graphs have com-
plex structural patterns. This demonstrates thatMulti-LENS can
effectively detect global changes in graph structures.
4.4.2 Graph-based Event Detection. We further applyMulti-LENS
to real-world graphs to detect events that appear unusual or anoma-
lous with respect to the global temporal behavior of the complex
network. The datasets we used are the Twitter3 and Enron4 graphs.
Twitter has totally 308 499 nodes and 2 601 834 edges lasting from
05/12/2014 to 07/31/2014, and Enron has totally 80848 nodes and
2 233 042 edges lasting from 01/01/2001 to 05/01/2002. Similar to the
synthetic scenario, we split the temporal graph into consecutive
daily subgraphs and adopt the summary learned from Gt−1 to get
node embeddings of Gt . Intuitively, large distances between node
embeddings of consecutive daily graphs indicate abrupt changes of
graph structures, which may signal events.

Fig. 5a shows the change of Frobenius norm between keyword /
hashtag embeddings in consecutive instances of the daily Twitter
co-mentioning activity. The two marked days are 3σ (stdev) units
away from the median value [17], which correspond to serious
events: (1) the Gaza-Israel conflict and (2) Ebola Virus Outbreak.
Compared with other events in the same time period, the detected
ones are the most impactful in terms of the number of people
affected, and the attraction they drew as they are related to terrorism
or domestic security. Similarly for Enron, we detect several events
based on the change of employee embeddings in the Enron corpus
from the daily message-exchange behavior. We highlight these
events, which correspond to notable ones in the company’s history,
in Fig. 5b and provide detailed information in Appendix B.5.

4.5 Scalability of Multi-LENS

Finally, Q4 concerns the scalability of our approach. To that end,
we generate Erdős-Rényi graphs with average degree davg = 10,
while varying the number of nodes from 102 to 107. For reference,
we compare it against one of the fastest and most scalable baselines,
node2vec. As shown in Fig. 5c, node2vec runs out of memory on

3http://odds.cs.stonybrook.edu/twittersecurity-dataset/
4http://odds.cs.stonybrook.edu/enroninc-dataset/

the graph with 107 nodes, whereasMulti-LENS scales almost as
well as node2vec and to bigger graphs, while also using less space.

5 RELATEDWORK

We qualitatively compare Multi-LENS to summarization and em-
bedding methods in Table 6.

Node embeddings. Node embedding or representation learning has
been an active area which aims to preserve a notion of similar-
ity over the graph in node representations [10, 28]. For instance,
[6, 8, 11, 23, 31] define node similarity in terms of proximity (based
on the adjacency or positive pointwise mutual information matrix)
using random walks (RW) or deep neural networks (DNN). More
relevant to Multi-LENS are approaches capturing similar node
behavioral patterns (roles) or structural similarity [1, 13, 27, 28].
For instance, struc2vec and xNetMF [13, 25] define similarity based
on node degrees, while DeepGL [28] learns deep inductive rela-
tional functions applied to graph invariants such as degree and
triangle counts. [18, 24] investigate theoretical connection between
matrix factorization and the skip-gram architecture. To handle
heterogeneous graphs, metapath2vec [8] captures semantic and
structural information by performing RW on predefined metapaths.
There are also works based on specific characteristics in heteroge-
neous graphs. For example, AspEm represents underlying semantic
facets as multiple “aspects” and selects a subset to embed based on
datasetwide statistics. Unlike above methods that generate dense
embeddings of fixed dimensionality, Multi-LENS derives compact
and multi-level latent summaries that can be used to generate node
embeddings without specifying extra input. The use of relational
operators is also related to recent neural-network based methods.
For example, the mean operator is related to the mean aggregator
of GraphSAGE [12] and the propagation rule of GCN [16]. But un-
like these and other neural-network based methods that propagate
information and learn embeddings based on features from the local
neighborhood, Multi-LENS learns latent subspace vectors of node
contexts as the summary.

Summarization. We give an overview of graph summarizationmeth-
ods, and refer the interested reader to a comprehensive survey [19].
Most summarization works fall into 3 categories: (1) aggregation-
based which group nodes [22] or edges [20]) into super-nodes/edges

http://odds.cs.stonybrook.edu/twittersecurity-dataset/
http://odds.cs.stonybrook.edu/enroninc-dataset/


Table 6: Qualitative comparison of Multi-LENS to existing

summarization and embedding methods. Does the method:

handle heterogeneous graphs; yield an output that is size-

independent, but node-specific, and representations that are

independent of node proximity; support inductive learning

and scale well (i.e., it is subquatratic on the network size)?

Input Representations / Output Method
Hetero- Size Node Proxim.

geneity indep. specific indep. Scalable Induc.

Aggregation [2] ✓ ✗ ✗ ✗ ✓ ✗
Cosum [33] ✗ ✗ ✗ ✓ ✗ ✗
AspEm [30] ✓ ✗ ✓ ✗ ✓ ✗
metapath2vec [8] ✓ ✗ ✓ ✗ ✓ ✗
n2vec [11], LINE [31] ✗ ✗ ✓ ✗ ✓ ✗
struc2vec [25] ✗ ✗ ✓ ✓ ✗ ✗
DNGR [6] ✗ ✗ ✓ ✗ ✗ ✗
GraphSAGE [12] ✓ ✗ ✓ ✓ ✓ ✓

Multi-LENS ✓ ✓ ✓ ✓ ✓ ✓

based on application-oriented criteria or existing clustering algo-
rithms; (2) abstraction-based which remove less informative nodes
or edges; and (3) compression-based [29] which aim to minimize
the number of bits required to store the input graph. Summariza-
tion methods have a variety of goals, including query efficiency,
pattern understanding, storage reduction, interactive visualization,
and domain-specific feature selection. The most relevant work is
CoSum [33], which tackles entity resolution by aggregating nodes
into supernodes based on their labels and structural similarity. Un-
like these methods, Multi-LENS applies to any type of graphs and
generates summaries independent of nodes/edges in a latent graph
space. Moreover, it is general and not tailored to specific ML tasks.

6 CONCLUSION

This work introduced the problem of latent network summarization

and described a general computational framework, Multi-LENS
to learn such space-efficient latent node summaries of the graph
that are completely independent of the size of the network. The
output (size) of latent network summarization depends only on
the complexity and heterogeneity of the network, and captures
its key structural behavior. Compared to embedding methods, the
latent summaries generated by our proposed method require 80-
2152× less output storage space for graphs with millions of edges,
while achieving significant improvement in AUC and F1 score for
the link prediction task. Overall, the experiments demonstrate the
effectiveness of Multi-LENS for link prediction, anomaly and event
detection, as well as its scalability and space efficiency.
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A COMPLEXITY ANALYSIS PROOF

A.1 Computational complexity

Proof. The computational complexity of Multi-LENS includes
deriving (a) distribution-based matrix representation H and (b) its
low-rank approximation.

The computational unit of Multi-LENS is the relational opera-
tion performed over the egonet of a specific node. Searching the
neighbors for all node i ∈ V has complexity O(N +M) through BFS.
The complexity of step (a) is linear to |Fr |, as indicated in § 3.3, this
number is |B| |Φ|ℓ · 2|TV | |TE |c .

Based on the sparsity of H, Multi-LENS performs SVD effi-
ciently through fast Monte-Carlo Algorithm by extracting the most
significant K singular values [9] with computational complexity
O(K2N ). Therefore step (b) can be accomplished in O((K (ℓ))2N )
by extracting the most significant K (ℓ) singular values at level ℓ.
Furthermore, deriving allK singular values has O(K2N ) complexity
as

∑L
ℓ=1(K

(ℓ))2 ≤ (∑L
ℓ=1 K

(ℓ))2 = K2. The overall computational
complexity is thus O(N |Fr | |TE | |TV |c + K2N +M). Note that both
|Φ| and L are small constants in our proposed method (e.g., |Φ| = 7
and L ≤ 2). Multi-LENS scales linearly with the number of nodes
and edges (N +M) in G. □

A.2 Space Complexity

Proof. In the runtime at level ℓ, Multi-LENS stores F(ℓ−1) to
dervie F(ℓ) and H(ℓ), which take O(N |Fr |) and O(c |Fr | |TV | |TE |N )
space, respectively. SVD can be performed with p ≪ N sampled
rows. For the output, storing the set of ordered compositions of rela-
tional functions in the summary requires space complexityO(|Fr |).
For the set of matrices S, we store S(ℓ) across all L levels. As shown
in the time complexity analysis, the number of binned features
(columns) in H over all levels is 2|Fr | |TV | |TE |c , which includes in-
corporating |TV | object types with both in-/out- directionality and
all edge types. The size of the output summarizationmatrices is thus
O(K |Fr | |TV | |TE |c), which is related to the graph heterogeneity and
structure and independent of the network size N ,M . □

B EXPERIMENTAL DETAILS

B.1 Configuration

We run all experiments on Mac OS platform with 2.5GHz Intel Core
i7 and 16GB memory. We configure the baselines as follows: we
use 2nd-LINE to incorporate 2-order proximity in the graph; we
run node2vec with grid searching over p,q ∈ {0.25, 0.50, 1, 2, 4} as
mentioned in [11] and report the best. For GraRep, we set k = 2
to incorporate 2-step relational information. For DNGR, we follow
the paper to set the random surfing probability α = 0.98 and use
a 3-layer neural network model where the hidden layer has 1024
nodes. For Metapath2vec, we retain the same settings (number
of walks = 1000, walk length = 100) to generate walk paths and
adopt a similar the meta-path “Type 1-Type 2-Type 1” as the “A-P-
A” schema as suggested in the paper. For Multi-LENS, although
arbitrary relational functions can be used, we use order-1 fb =

∑
as

the base graph function for simplicity in our experiments. To begin
with, we derive in-/out- and total degrees to construct theN ×3 base
feature matrix F(0) denoted as

[
fb ⟨b1,N⟩, fb ⟨b2,N⟩, fb ⟨b3,N⟩

]

where b1 = Ai :, b2 = A:i , and b3 = (A + AT )i :, for i ∈ V . We
set L = 2 to construct order-2 relational functions to equivalently
incorporate 2-order proximity as LINE does, but we do not limit
other methods to incorporate higher order proximity. All other
settings are kept default. In table 7, we list all relational operators
used in the experiment.

Table 7: Relational operators used in the experiment

ϕ Definition ϕ Definition

max/min max/mini∈S xi variance
1
|S|

∑
i∈S x2i − (

1
|S|

∑
i∈S xi )2

sum

∑
i∈S xi l1-distance

∑
j∈S |xi − x j |

mean
1
|S|

∑
i∈S xi l2-distance

∑
j∈S (xi − x j )2

B.2 Heterogeneous Context

We justify the effectiveness to derive heterogeneous context of fea-
ture matrix F. We perform the link prediction task on yahoo-msg
and dbpedia datasets w./w.o. using H following the setup indicated
in §B.1. The result is as follows. We observe the significant improve-
ment in performance when deriving the histogram heterogeneous
context, which empirically supports our claim in §3.3.

Table 8: Link prediction performance w./w.o. H

Data Metric w.o. H w. H

yahoo-msg
AUC

ACC

F1 macro

0.7919
0.7122
0.7111

0.8443

0.7587

0.7577

dbpedia
AUC

ACC

F1 macro

0.9369
0.9023
0.9020

0.9820

0.9197

0.9197

B.3 Choice of initial vectors

In this subsection we justify the impact of initial vectors B to the
performance on two datasets, yahoo-msg and dbpedia. We follow
the configuration in §B.1 and runMulti-LENSwith different initial
vectors indicated in Table 9. We observe that there is no significant
difference when using different B. This is as expected as the three
vectors are linearly correlated and shows the power of relational
operators to derive complex higher-order features.

Table 9: Link prediction performance with different B

Data Metric B = {b1 } B = {b1, b2 } B = {b1, b2, b3 }

yahoo-msg
AUC

ACC

F1 macro

0.8439
0.7558
0.7545

0.8443

0.7559
0.7547

0.8443

0.7587

0.7577

dbpedia
AUC

ACC

F1 macro

0.9821

0.9164
0.9164

0.9821

0.9168
0.9168

0.9820
0.9197

0.9197

B.4 Choice of relational operators

In this subsection we justify the impact of relational operators Φ
to the performance on yahhoo-msg dataset. To explore the effect
of each operator, we set Fb = Φ, and set B = {b1, b2, b3} with
L = 1. To illustrate the effectiveness of the operators only, we do
not derive histogram-based node contexts. We observe that sum and
mean have potentially higher impacts to the performance thanmax

andmin. Using the combination of l1- and 12-distance produces the
worst performance.



Table 10: Link prediction performance with different Φ

Φ AUC ACC F1 macro

{max} 0.7317 0.6582 0.6526
{max, min} 0.7727 0.6888 0.6873
{sum, mean, var} 0.8274 0.7584 0.7584
{l1, l2} 0.6906 0.6311 0.6307
{max, min, sum} 0.8283 0.7445 0.7436
{max, min, sum, mean} 0.8336 0.7611 0.7609

B.5 Detailed Event detection

Events detected in Fig. 5b: (1) The quarterly conference call where
Jeffrey Skilling, Enron’s CEO, reports "outstanding" status of the
company; (2) The infamous quarterly conference call; (3) FERC
institutes price caps across the western United States; (4) The Cali-
fornia energy crisis ends; (5) Skilling announces desire to resign to
Kenneth Lay, founder of Enron; (6) Baxter, former Enron vice chair-
man, commits suicide, and (7) Enron executives Andrew Fastow
and Michael Kopper invoke the Fifth Amendment before Congress.

C HETEROGENEITY CONTEXT IN DETAIL

C.1 Histogram representation

Specific feature values in F(ℓ) derived by ℓ-order composed re-
lational functions could be prodigious due to the power-law na-
ture of real-world graphs (e.g., total degree), which leads to under-
representation of other features in the summary. Among various
techniques to handle skewness, we describe the N × 1 feature vec-
tor by the distribution of its unique values, on which we apply
logarithmic binning [15]. The justification of our decision in Ap-
pendix B.2 shows that binning is necessary to improve performance
and incorporate multiple operators in Multi-LENS.

For feature vector x, a set of nodes in N and c bins, logarithmic
binning returns a vector of length c:

Ψ(x,N, c) = [C(0),C(1), . . . ,C(loga (c))] (8)
whereC(v) counts the occurrence of valuev :C(v) = ∑

i ∈N δ (v, xi ).
In C(v), δ is the Kronecker delta (a.k.a indicator) function, a is the
logarithm base, and c = max{max (x), c}. We set c to the value
exceeding the maximum feature value (max(x)) regardless of object
types to make sure that the output bin counts remain the same
across all features. We can explicitly fill in 0s in Eq. (8) in the case
of c > max(x). Similar to Eq. (1), we use Ψ⟨x,S′, c⟩ to denote the
process of applying Ψ function over all nodes in V (rows of F)
to get the N × c log-based histogram matrix. Further, we denote
the process of applying Ψ on all feature vectors (columns of F) as
H = Ψ⟨F,N, c⟩. We use H to denote the resultant histogram-based
feature matrix. In the next subsection, we will explain how to apply
Ψ on different related subsets R ⊆ N to incorporate heterogeneity
in the summary.

C.2 Heterogeneous contexts

C.2.1 Object types. In heterogeneous graphs, the interaction pat-
terns between a node and its typed neighbors reveal important
behavioral information. Intuitively, similar entities have similar in-
teraction patterns with every single type of neighbor. For example,
in the author-paper-venue networks, authors submitting papers
to the same track at the same conference have higher similarity
than authors submitting to different tracks at the same conference.

To describe how a specific node i interacts with objects of type t ,
Multi-LENS collects typed t neighbors by setting R = Nt

i and
computes the “localized” histogram of a specific feature vector x
through Ψ(x,Nt

i , c). Repeating this process for nodes i ∈ V forms
an N × c distribution matrix Ψ⟨x,Nt , c⟩.

Multi-LENS enumerates all types of neighbors within N to
incorporate complete interaction patterns for each node in the
graph. This process can be seen as introducing one more dimension,
the object types, toH to form a tensor, as shown in Fig. 6. We flatten
the tensor through horizontal concatenation and denote it as H:

Ho =
[
Ψ⟨F,NT1 , c⟩,Ψ⟨F,NT2 , c⟩, . . . ,Ψ⟨F,Nt , c⟩

]
(9)

where t = {1, . . . , |TV |}

Figure 6: At level ℓ, enumerating object types in N intro-

duces one more dimension to the feature matrix and leads

to a tensor. Note that Ψ⟨x,N, c⟩ is an N × c matrix (shaded

area). Layer t of the tensor is also denoted as Ψ⟨F,Nt , c⟩ for
brevity.

C.2.2 Edge directionality. So far we assume the input graph is
undirected by focusing on nodes in N and search for neighbors
in the 1-hop neighborhood regardless of edge directions. Multi-
LENS handles the directed input graphs by differentiating nodes
from the out-neighborhood and in-neighborhood. The process is
almost identical to the undirected case, but instead of using N in
Equation (9), we consider its two disjoint subsets N+ and N− with
incoming and outgoing edges, respectively. The resultant histogram-
based feature matrices are denoted as H+o and H−o , respectively.
Again, we horizontally concatenate them to get the feature matrix
incorporating edge directionality Hd as Hd =

[
H+o ,H−o

]
.

C.2.3 Edge types. Edge types in heterogeneous graphs play an
important role in determining graph semantics and structure. The
same connection between a pair of nodes with different edge types
could convey entirely different meanings (e.g., an edge could in-
dicate “retweet” or “reply” in a Twitter-communication network).
This is especially important when the input is a multi-layer graph
model. To handle multiple edge types, Multi-LENS constructs sub-
graphs д(V ,Eτ ) restricted to a specific edge type τ ∈ TE . For each
subgraph, Multi-LENS repeats the process to obtain the corre-
sponding feature matrix Hd per edge type that incorporates both
node types and edge directionality. We denote the feature matrix
Hd with respect to edge type τ as Hτ

d . Thus, by concatenating them
horizontally we obtain the final histogram-based context represen-
tation denoted as:

He =
[
H1
d ,H

2
d , . . . ,H

τ
d
]

(10)
where τ = {1, . . . , |TE |}. Therefore, He captures all three aspects
of heterogeneity of graphG with size N × 2|TV | |TE |c · |Fr |. We use
H to denote this representation for brevity.
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