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ABSTRACT !
Time

Mapping the human brain, or understanding how certain brain ROI 4] -
regions relate to specific aspects of cognition, has been and remains Ter
an active area of neuroscience research. Functional magnetic res- & ‘
onance imaging (fMRI) data—in the form of images, time series o
or graphs—are central in this research, but pose many challenges Rror ROI#n %

in phenotype prediction tasks (e.g., noisy, small training samples).
Standardly employed handcrafted models and newly proposed neu-
ral network methods pose limitations in the expressive power and
interpretability, respectively, in this context.

In this work focusing on fMRI-derived brain graphs, a modality
that partially handles some challenges of fMRI data, we propose
a grouping-based interpretable neural network model, GroupINN,
that effectively classifies cognitive performance with 85% fewer
model parameters than baseline deep models, while also identifying
the most predictive brain subnetworks within several task-specific
contexts. Our method incorporates the idea of node grouping into
the design of the neural network. That way, unlike other methods
that employ clustering as a preprocessing step to reorder nodes,
GroupINN learns the node grouping and extracts graph features
jointly. Experiments on task-based fMRI datasets show that our
method is 2.6 — 69X faster than other deep models, while achieving
comparable or better accuracy and providing interpretability.
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1 INTRODUCTION

For decades, a main goal in the field of neuroscience has been to
understand how specific aspects of cognition and intelligence are
functionally encoded in the brain [9, 13, 24, 38]. Functional mag-
netic resonance imaging (fMRI), a non-invasive measure of neural

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

KDD 19, August 4-8, 2019, Anchorage, AK, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6201-6/19/08....$15.00
https://doi.org/10.1145/3292500.3330921

772

fMRI Data Time series Functional graph

Figure 1: From fMRI images! to functional graphs [5]: first, fMRI
images are processed via correction, denoising, smoothing and par-
cellation to obtain spatially-averaged time series per region of in-
terest (ROI). Then, time series are further processed by computing
Pearson's correlation and Fisher's r to z transformation to obtain
functional graphs.
activation, has been paramount in advancing our understanding
of the functional organization of the brain [21]. Large strides have
been made specifically in brain graphs or connectomes, which are
obtained by computing pairwise correlations between fMRI time se-
ries of different regions of interest (ROIs) [27], as illustrated in Fig. 1.
In this work, we propose a neural network-based framework for
mapping regional and cross-regional functional activation patterns
to cognitive phenotypes, formalized as a classification problem.
Our work is motivated by the special considerations needed for
analyzing fMRI data and the methodological gaps in addressing
these considerations to date. First, fMRI data are inherently high
dimensional and can contain on the order of 10° activation values
per subject. Second, fMRI data have a low signal-to-noise ratio
caused by changing levels of non-neural noise derived from car-
diac and respiratory processes or scanner instability. Third, most
available datasets contain a relatively low number of samples when
compared to the dimensionality of the data [22]. Classically in the
neuroscience literature, linear models such as PCA, ICA and other
matrix factorization methods are adopted for dimensionality reduc-
tion and denoising [1, 12, 31], but given the highly nonlinear nature
of functional interactions [41], these models may not adequately
capture the complex relationships between cortical regions. More
recently, neural networks have been proposed for prediction tasks
using fMRI data [28, 41], which can appropriately model nonlin-
earities but require many training samples and long training times
for numerous parameters. Moreover, these neural network mod-
els suffer from the "black box" stigma, as it is difficult to interpret
how the underlying brain activation patterns contribute to the final
model prediction, and are therefore of limited use to the functional
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neuroscience community. To address the limitations of these prior
works, we focus on the following problem:

PrROBLEM 1. Given a set of subjects, each with corresponding fMRI
data and a label associated with a certain phenotype, we seek to
devise an efficient, interpretable, and parsimonious neural net-
work model that can predict each phenotype with high accuracy.

In this work, we rely on fMRI-based functional graphs (Fig. 1)
to address some of the above-mentioned challenges. Instead of re-
gressing phenotypes, which are often noisy [9], we cast Problem 1
as a classification problem, which is commonly done in the litera-
ture [41] [40]. Further considering the limitations of prior works,
we propose GroupINN, a new neural network-based architecture
which operates on these brain graphs and is efficient, uses fewer
parameters, and provides interpretability. To reduce the number
of parameters used in the model, we adopt the idea of multi-graph
clustering (where the goal is to find a common clustering across
multiple graphs) to summarize the original graph into a super-
graph with each cluster as a supernode [23]. Unlike other work
that performs grouping as a preprocessing step, we achieve the
summarization by designing a novel node grouping layer to reduce
dimensionality as part of our end-to-end neural network model.
To extract features from the learned supergraph, we design a new
variant of a graph convolutional layer that achieves higher accuracy
and can be viewed as an extension of random walk with restart.
The main contributions of our work are:

o Novel, Fast & Parsimonious Model. We propose a new end-
to-end neural network-based formulation that can learn effi-
ciently and effectively from little and noisy data by incorpo-
rating the idea of multi-graph clustering into the architecture
design of the neural network.

Interpretability. Beyond parameter reduction, the node group-
ing layer of GroupINN can explain relationships between brain
subnetworks and cognitive functions. Some of our findings
are supported in the literature and some may serve as starting
points for further investigation in neuroscience [5-7].
Experiments on Real Data. Extensive experiments on real
data and comparisons to state-of-the-art approaches show that
GroupINN needs only 0.01% parameters compared to CNN, 11%
compared to Diffpool [44] and 15% compared to the GCN [14],
while it is up to 69X, 3x and 2.6x faster, respectively. At the
same time, it achieves better or comparable accuracy across a
variety of tasks.

The code is available at: https://github.com/GemsLab/GroupINN.

The rest of the paper is organized as follows: Sec. 2 introduces the
related work; Sec. 3 describes GroupINN, our proposed approach;
in Sec. 4, we present our empirical analysis, in which we discuss
the performance (runtime, classification accuracy), parsimony, and
interpretability of our method; we summarize our work and point
out future directions in Sec. 5.

2 RELATED WORK

Our work is related to brain graph analysis and graph classification.
Table 1 presents a qualitative comparison of our approach to state-
of-the-art techniques that are used for classification of functional
brain graphs, or general graphs.
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Brain Graph Analysis. Brain graphs are simple models of the real
underlying connectome [32]. Recent studies have shown that both
structural and functional brain graphs demonstrate common topo-
logical properties, such as modularity, small-worldness, and hetero-
geneous degree distributions [4, 17]. Modularity indicates a high
level of neighborhood clustering [4, 25], which justifies our de-
sign for graph coarsening. The small-world organization of the
brain suggests efficient local information processing, together with
several long-distance connections responsible for global communi-
cation [3, 34, 38]. This further motivates our design choice to have
a graph convolutional layer after coarsening; coarsening captures
localized features, while the convolutional layer captures global
communication.

Graph Classification. We discuss two approaches for classification:
neural network- and kernel-based. In recent years, deep learning
methods [29, 43] have often been used to tackle graph-based prob-
lems. Those methods aim to generalize the traditional convolutional
neural networks (CNN) used in image classification. For example,
[10] defines the neighborhoods in the graph spectral domain and
uses Chebyshev polynomials as a basis to speed up the convolution
computation. A variant [14] of this approach solves the vanish-
ing/exploding gradient problem via a localized first-order approxi-
mation of the spectral graph convolutions. [45] proposes another
variant for general graph classification, which is shown to have a
close relationship to Weisfeiler-Lehman kernels. [44] introduces a
framework that jointly learns the pooling and node embeddings.
However, these deep models are hard to interpret and usually con-
tain a large number of parameters which result in slow training and
overfitting. More traditional approaches for graph classification
include graph similarity approaches based on different network
properties [16, 18] and graph kernels combined with kernelized clas-
sifiers (e.g. SVM). Kernel methods usually compute the similarity
between two networks based on substructures, such as walks [39],
shortest paths [2], graphlets [30], or other subgraphs [15]. [19]
proposes a valid assignment kernel that achieves state-of-the-art
graph classification accuracy. However, most graph kernels cannot
be applied to signed and weighted graphs that brain graphs belong
to, so they are inappropriate for brain graph classification.

Table 1: Qualitative comparison to related work.

Fast Parsimonious Interpretable

CNN [41], GraphCNN [10] X X X
GCN [14], DGCNN [45] 4 X X
Diffpool [44] v X inadequate
GroupINN v v v

3 PROPOSED ARCHITECTURE

In this section, we first analyze the challenges of fMRI data. Then
we give an overview of our proposed architecture and the design
details. We give the main symbols that are used throughout the
paper, and their definitions in Table 2.

3.1 Challenges

Handling fMRI data poses a series of challenges, which we aim to
address with the design of our approach, GroupINN.
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3.1.1 Noisy fMRI time series. The typical pipeline for handling
fMRI data involves transforming the imaging data into multi-dimen-
sional time series. For one subject, each time series represents the
average activation in one region of interest (ROI) over time. These
time series exhibit patterns that differ vastly across subjects [37],
and there is often no correspondence between timepoints in the
series obtained by different fMRI sessions. To alleviate these issues,
instead of operating on the fMRI time series, we represent each
subject’s data as a brain graph (Fig. 1), where physical ROIs are
represented as nodes and functional connections (i.e., time series
correlations) between them are represented as edges [4].

3.1.2  Noisy fMRI-based brain graphs. The brain graphs or correla-
tion matrices obtained from different sessions for the same subject
vary significantly (even in the same day), exhibiting less than 0.7
correlation. To reduce the variability, we propose a neural network-
based approach that performs classification based on coarsened
brain graphs instead of the (noisier) original graphs.

3.1.3  Small samples of high-dimensional data. Existing datasets
consist of a few hundred subjects, each of whom is represented by a
brain graph (correlation matrix) with entries in the order of 10* or
even 10° (assuming a few hundred or thousand ROIs / nodes [11]).
Under these conditions, neural network models face the challenge
of overfitting. To overcome this issue, we turn to dimensionality
reduction techniques. But instead of using unsupervised techniques
(e.g., PCA, autoencoders) which are decoupled from the end goal
(e.g., classification), our proposed method supervises the dimen-
sionality reduction process, and provides an end-to-end model.

3.1.4  Need for interpretability. In neuroscience, ability to explain
the results of a model is important for driving scientific discoveries,
such as the relation between brain activation and cognition. To-
wards that end, we bring the idea of graph clustering and random
walk on graphs into the design of the neural network: our design
allows us to inspect which connections between ROIs are indica-
tive to a specific phenotype, which may help answer important
questions in neuroscience.

3.2 Architecture Overview

Our neural network architecture is illustrated in Fig. 2a. It is formed
by three different types of layers: node grouping layer, graph con-
volutional layer and fully connected layer.

A node grouping layer is used for dimension reduction. In this
layer, the original graph G will be summarized into a supergraph
G*® where each supernode is a group of nodes in G [23]. The output
W? of this layer can be viewed as the weighted adjacency matrix
of the supergraph.

Graph convolutional layers are used to probe the graph struc-
ture. There are many variations [10, 14, 45] of how a graph convo-
lutional layer is designed. In this work, we design a new variation
so that it not only has better performance, but also can be explained
from the perspective of random walk with restart. Finally, the fully
connected layer is used for label prediction.

Different from prior graph classification works, we use two
branches in our architecture. This is because the correlation graph
is essentially a weighted signed network. We use one branch to
process the graph with only positive edges (G) and another branch
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Table 2: Major symbols and their definitions.

Symbol Definition

G=(V, &) graph G with node set V, edge set &

[V]=n number of nodes in G

w weighted adjacency matrix of G, with elements w;;
G=(V*s, &%)  supergraph with supernode set V*, superedge set &°

SN; supernode i in supergraph G*

WS weighted adjacency matrix of G*, with elements w};

S; importance score of node i learned in the node grouping layer
k number of groups

I; label of ith subject

+/— superscripts that denote the positive/negative branch

A characteristic matrix of graph G

P the common factor in matrix factorization

F nonnegative matrix with the node importance scores s; per group
Q weights that need to be learned in neural networks

Y; output of i*# layer

L losses

c(+) ¢ : ¥V — N* function mapping the node to its group

Ri functional subnetwork (e.g., dorsal attention) with |R; | nodes

Sgr importance score of functional subnetwork R
SRR cross-subnetwork importance score between R;, R;
g

to process the negative edges (Gy). In brain graphs, positive and
negative edges have different functional meanings. Without sepa-
rating them, the positive and negative edges will offset each other
during the group aggregation and graph convolution, resulting in
a drop in prediction accuracy (we elaborate more in § 4.6).

3.3 GroupINN Architecture

3.3.1 Node Grouping Layer. Intuition. As mentioned in Sec. 3.1.3
a layer for dimensionality reduction is needed. Recent findings
have shown that some ROIs are most related to cognition [5, 7],
suggesting that some edges are more indicative of predicting cog-
nitive performance. Therefore, the node grouping layer is designed
to “hide” the non-indicative (‘noisy’) edges by grouping them into
a cluster (supernode [23]), thus highlighting the indicative edges.
Figure 2b shows an example of how grouping is done conceptu-
ally. We note that our node grouping is different from traditional
clustering since it does not require that similar nodes are grouped
together. Instead, two nodes are assigned to different groups if their
connection is identified as important.

Design. Given a weighted graph G—in which edge (i, j) is associ-
ated with a weight w;;—, the nodes linked to the non-indicative
edges are grouped together and form a supernode. Groups do not
overlap. In Fig. 2b, there are three groups that form a supergraph
with three supernodes. For node i in graph G, an importance value
si € R* is assigned indicating how important node i is for the
prediction task. In the supergraph, the weight of the superedge is
computed as a weighted sum of cross-group edges. Formally, the
weight of the superedge w3 between supernode SN; and

SNi,SN,
supernode SN; is defined as:

)

w;Nl,SNz = St Wrk * Sk
teSN1,keSN,

To incorporate the grouping idea into the design of a neural
network, we need to represent it in a matrix form. Suppose we
are given an adjacency matrix W (size n X n) for graph G and
a nonnegative matrix F (size n X k), where n is the number of
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(a) Overview: the functional graph (correlation-based) is first split into positive and negative
networks, each coarsened by node grouping layer, convoluted by random-walk-based graph con-
volutional layer, flattened, concatenated and finally sent to the fully connected layer.

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

Graph

> Q&E S a
Weg
(<) wy () [ Ww: \G

Wse

Supergraph
Sy Wq5S, SgWgg'S,
SN, ==& gN, r=m== SN,
Ws = FTWF
1525354
FT= S5S657Ss
S9 S10 S11

(b) Example: In the node grouping layer
indicative edges are learned to be placed
across groups.

Figure 2: GroupINN Architecture

nodes and k is the number of desired groups. F;; satisfies: F;; =
si,iff i € SNj; Fij = 0, otherwise. Following this definition, F;;
can also be interpreted as the membership of the node i to the
supernode SNj;. This is a more general definition, even suitable for
overlapping clusters, and it requires F to be nonnegative. Note that
there can be some nodes which do not belong to any groups. Then
FTWF represents the weighted adjacency matrix of the supergraph
after grouping the nodes. If W* represents the output of the node
grouping layer, then we have: WS = FITWF. In Fig. 2b, we show
the matrix representation for the node grouping. Notice here, we
do not manually design the matrix F; instead, the neural network
learns F via back-propagation.

Connections to other work. As we show next, our formulation
is related to the unsupervised multi-graph clustering problem [35].

THEOREM 3.1 (RELATION TO MULTI-GRAPH CLUSTERING). Letw(m)
be the adjacency matrix of each input graph, A" be the correspond-
ing characteristic matrix (not necessarily diagonal) and P be the com-
mon factor to be learned. The grouping layer, defined by FTw(mF
with Iy regularization on F and supervision on the characteristic ma-
trices A™), learns the same clustering matrix as the multi-graph
clustering problem [35] that minimizes the following objective:

M
DA + ||P||%) @
m=1

where P is orthogonal (i.e, PTP = 1 and 1 is the identity matrix).

M
1 o
_ = (m) _ pa(m)pT)2 . &
G =5 > IWm —pAmRTE 1 2

m=1

ProOF. Given that P is orthogonal, Z = [|[W(™) — PA(mpPT| |2 =
[[PTW(mp — A(m)| |12: holds. For F = P, the factor PTW(™P is the
output of the grouping layer and term Z can be viewed as the I3 loss
when supervised on Al™ The term ||P| |% is the I regularization
on P. In this case, the expressions of the total loss of the neural
network and the multi-graph clustering are the same. O

The formulation of [35] is unsupervised so P will not change
with different prediction goals. Matrix P can be viewed as the matrix
learned by the grouping layer with supervision on characteristic
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matrices. In the context of other prediction goals, the grouping
layer can be easily incorporated and supervised on those goals.

3.3.2  Graph Convolutional Layer. Graph convolutional layers are
used to capture the structure of the supergraph. Moreover, they
do not require pre-ordering of the nodes and they can perform
nonlinear transformations in the neighborhood of spectral domain.
Many variations of graph convolutional layers have been proposed
to cater to different needs [10, 14, 45].

Intuition. As it is presented in the literature [20, 42], random walk
is a useful tool to sample graph structures. The scores obtained from
random walk with restart (RWR) can reveal a graph’s structure by
quantifying the similarities of other nodes to the selected nodes.
Given the teleport vector q (a set of seed nodes), the RWR scores are
given by (1 —¢)(I- cW)‘lq, where ¢ < 1is a constant and W is the
column normalized adjacency matrix. Since the largest eigenvalue
of ¢W is smaller than one, Taylor expansion can be applied here.

1-c)I-cW)lq=(1-c)I+cW+PW?+..)q (3
If the series is truncated to a finite sum of m terms, it represents
the influence of the seed nodes spread over m-hop neighbors. To
better capture the graph structure, different seed sets can be chosen
to characterize the graph structure with different hops of neigh-
borhoods. For the i-hop neighborhood, if m seed sets are selected
to probe the graph structure, and the corresponding matrix is Q;
(each column of Qi represents a seed set), the sketch matrix M of
the graph G can be written as:

M = (1-¢)(Qo + cWQ; + *W?Qz +....) (4)
Design. This expression can be modified to design a graph con-
volutional layer, which shares some similarities to the literature
[10, 14, 45]. Ignoring the constants and using the reduced adjacency
matrix W* to replace W, the output Y; of layer i can be computed

as a nonlinear function of the previous layer output Y;_;:

Y; = o(cW'Y;1Q; +1) (5)

where o is a nonlinear function. In this work, o represents ReLU.
If o is the identity function, then the output after stacking i layers
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is: Y; = I+ cW3Q; + c2(W*)2Q;Q;_1 + ..., which is analogous
to Eq. (4) truncated to i terms (where we omit the constants and
replace Q;Q;_1 ... Qi—j+1 with Q])

3.3.3  Constraints and Losses. We add several loss terms to regular-
ize the learning process. Some are added due to the requirement
for interpretability, while others are used to prevent overfitting. All
of them improve the performance, as we show empirically in § 4.6.

For the node grouping layer, the matrix F is nonnegative because
it represents the membership of a node to a group. However, in the
neural network, the trainable matrices can have negative values.
Thus, for the trainable real-valued matrix F, we represent as: F =
Relu (F), so the output of the node grouping layer becomes: W* =
Relu (F') W Relu (F) in the dimensionality reduction layer. This will
create a problem because for negative values initialized in the matrix
F, the gradients are 0 and they will not be updated later. To avoid
this problem, we penalize the sum of negative values in matrix
F, which can be expressed as: Lpeg reduce = sum(Relu(=F)). To
prevent overlapping of groups, orthogonal constraints are added (on
the nonnegative matrices) by penalizing the off-diagonal elements
of FTF: Loy = ||[FTF — diag(diag_part(FTF))||g. Here, diag_part(-)
extracts diagonal elements from a matrix and diag(-) builds a matrix
with the given diagonal elements. Furthermore, to balance the group
sizes (which helps with interpretability), we introduce the balance
loss: Lpalance = Var(diagfpart(FTF)), where Var(-) means variance.

Similarly, since Q; represents the selection of seed sets, posi-
tive values are more encouraged than the negative ones. A sim-
ilar loss to penalize negative values is applied here: Lpeg RWR =
Sum(Relu(—Q;)). At last, for the last dense layer with softmax as
activation, Ly loss is used to reduce overfitting.

3.3.4  Putting everything together. Allin all, the architecture (Fig. 2a)
consists of three kinds of layers and two branches. One branch pro-
cesses the positive graphs and the other processes the negative
ones. The input graph is the correlation matrix W. The first layer
is a dimensionality reduction layer and the output is a matrix W*
representing the supergraph. For the positive branch (using "+" as
superscript), we have W™ = Relu (F*T)W*Relu (F*). We have a
similar expression for negative branch (using "—" as superscript).
Following the dimensionality reduction layer, three graph convolu-
tional layers are used

Y, =1 and Y] =o(cW*' Y] ,Qf +1), (6)
Y; =1 and Y; =o(cW* Y, Q7 +1), i=1,23 (7)
At last, Y;r and Y; are concatenated, flattened and sent to the

fully connected layer (with softmax activation). The total loss is
expressed as follows:

i=123

_ @ 1@ (@) (i)
Ltotal - Lcrossientropy + Z (AothoLotho + AbalanceLbaIance)
i=t,—

®)

+ Aneg (LnengWR + Lnegireduce) + AdenseLZ

4 EXPERIMENTS

Through our empirical analysis we aim to answer five key questions:

Q1 How well does GroupINN perform in terms of accuracy

and training time when compared to neural network-based
models in brain graph classification tasks?
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Q2 How does GroupINN compare to the accuracy of non-neural-
network-based models in brain graph classification tasks?

Q3 Is GroupINN parsimonious? How many fewer parameters
does it require compared with other neural network-based
methods?

Q4 Are the results of GroupINN interpretable? How can it be
used to gain insights into the data?

Q5 How does positive and negative network splitting help in
terms of accuracy? How do different regularization terms
affect classification results?

First, we describe the data we used in our experiments, the base-
line methods, the metrics used for evaluation, and the experimental
setup. Then, we present our experimental results to answer our five
key questions.

4.1 Experimental Setup

4.1.1 Data. In our experiments, we use four labeled datasets from
Human Connectome Project 1200 release (HCPt) [36] to evaluate our
proposed framework and compare it to baseline approaches. A total
of 966 subjects had brain activity measured in fMRI session while
performing specific tasks designed to probe different aspects of
cognition. Voxel-level time series were spatially averaged according
to the parcellation in [26], resulting in 264 distinct ROIs with a time
series for each. The length of each time series depends on the
task being performed, ranging from 176 to 405 time points. The
four task-based datasets used in our experiments are: Emotion,
Gambling, Social, and Working Memory. Per subject we also have
a score called General Executive Factor (GenExec), a measure of
general intellectual ability that we use as the label to predict (see
Section 4.1.3).

Following the steps in Fig. 1 and Sec. 1, we transform the fMRI
time series data into functional graphs. Since each subject has two
trials per task, we follow a similar approach as in [33] to generate a
single connectome by averaging the correlation matrices generated
from the time series of each trial.

4.1.2 Baselines. Since Problem 1 is drawn from neuroscience, fMRI
data can be in the form of time series or functional graphs, and we
provide a neural network-based solution, we compare GroupINN
to representative methods from each research area:

(1) Flattened Correlation Matrix (FCM). In this approach, the
full correlation matrix is computed for all time series and its flat-
tened upper triangular matrix is taken as a feature vector. SVM
with radial basis function kernel is applied for classification.

(2) Flattened Partial Correlation Matrix (FPCM). This approach
is the same as above, but rather than full correlation we compute
partial correlation to regress out covariates.

(3) PCA. PCA with 100 components [31] is performed on the stacked
flattened correlation matrices for all subjects. SVM is then used
for classification.

(4) Autoregression (AR).In this approach, a k-order auto-regression
(AR) model is used to fit the time series of each ROI of every
subject. The corresponding k + 1 parameters of each ROI are
stacked to form a parameter matrix, and the flattened parameter
matrix is adopted as the feature vector of the subject. Here we
select k = 5 to ensure that the correlation values can fall into
the 99% confidence interval. The feature vectors for each subject
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are subjected to dimensionality reduction using PCA with 100
components before they are sent into the classifier.

(5) Weisfeiler-Lehman Optimal Assignment Kernel (WL_OA).

To apply WL_OA kernel [19] for classification, we first obtain
unweighted functional brain networks by thresholding the cor-
relations at 0.6 (based on the performance of validation set).
CNN. The architecture of our Convolutional Neural Network
models includes convolution layers (C), pooling layers (P) and a
fully connected layer (F); the activation function is ReLU. The
configuration of each layer follows the setting in [41]. We imple-
ment two CNN models as baselines: (6a) CNN_1 (1 convolution
layer, 87122K parameters): C-P-F-Softmax; and (6b) CNN_2 (2
convolution layers, 21844K parameters): C-P-C-P-F-Softmax.
(7) GCN. We concatenate the node features obtained from the
GCN [14] model and fed to a fully connected layer.
(8) Diffpool. For this hierarchical graph embedding approach [44],
we set the parameters based on the authors’ guidelines.

(6)

Recently more NN-based methods that apply to brain data have
been proposed [41] [40]. However, the code of these models is not
publicly available, and they require significant engineering which
is hard to reproduce fairly based solely on the papers.

4.1.3  Settings. The same 90% training/validation and 10% testing
split is used for all the experiments. The siblings in the HCP data
are assigned either to the training or the testing set (but not both).

The goal is to classify subjects with high or low executive func-
tion using the GenExec score. GenExec is based on overall accuracy
for three tasks: n-back working memory task, relational processing
task, and Penn Progressive Matrices task. We cast the problem as a
binary classification task by assigning the top quartile of subjects to
the ‘positive’ class, and the bottom quartile to the ‘negative’ class.

For neural network based methods, we further split a subset
(10%) from the training data as the validation set to select proper
hyper-parameters for evaluation. We train the model for 300 epochs.
After each epoch, we evaluate the model using the validation set,
and keep the model with the highest F1 score so far, while also
satisfying the restrictions that the difference between true positive
rate and true negative rate is smaller than 5%, requiring the classifier
to be unbiased. For the same method, we run three independent
training sessions, and report the average accuracy of the three
trained models on the test set and the total CPU time spent in the
training process. To ensure the comparability of the performance
of different methods, the same training, validation and testing split
is used in all experiments. For baseline experiments using SVM,
five-fold cross validation is used with grid search to determine best
hyperparameters.

4.1.4  Evaluation Metrics. To evaluate the prediction performance,
following [41], our evaluation metrics are classification accuracy
and runtime (total CPU time, including both user and system CPU
time). In addition, we use F1 score of the validation set to select our
models. To show that GroupINN is parsimonious, model sizes are
given for comparisons. To evaluate the interpretability of GroupINN,
we define the importance scores of inner- and across- subnetworks
to rank the most relevant subnetworks to GenExec scores. We
further compare the relevant regions found by different baselines,
and verify the quality based on the support from the literature.

777

KDD ’19, August 4-8, 2019, Anchorage, AK, USA

4.2 Q1: Performance Comparisons with Neural
network-based Models

In this experiment, we compare with different neural network-
based methods via accuracy and training time. Two variants of our
model are used: one is GroupINN, the other is GroupINN without
the orthogonality constraint. As we illustrated in Section 3.3.3, the
orthogonality constraint controls how much overlap is allowed be-
tween the groups found. Figure 3 shows the comparisons of predic-
tion accuracy vs training time over four different datasets: Emotion,
Gambling, Social and Working Memory. Speedup of GroupINN
over the baseline methods is also annotated in the plots. Ideally, the
best method lies in the top left corner of the plots.

In general, our methods (including two variants) achieve the best
accuracy in three out of four datasets, namely, Emotion, Gambling
and Social. In the dataset Working Memory, the difference of ac-
curacy between GroupINN and the best method CNN_1 is merely
around 1%. Notice that not all tasks are cognitive intensive and
closely related to GenExec score, which makes it harder to predict
in less relevant tasks. The most related task is Working Memory,
which is used to calculate the GenExec score. In this task, every
method (except for Diffpool) performs equally well. However, in
less relevant tasks, the advantages of our methods are revealed.

More importantly, our methods always take the least training
time among all the baseline methods. We achieve around 2.5x
speedup against GCN method, 3x speedup against Diffpool, 25X
speedup against one-layer CNN and 66X speedup against two-
layer CNN. This is due to our model having considerably fewer
parameters (§ 4.4).

4.3 Q2: Performance Comparison with
Non-neural-network-based Models

Figure 4 shows the comparison of prediction accuracy between
our methods and non-neural-network-based methods. In all the
datasets, either GroupINN or GroupINN without orthogonality per-
forms the best. Methods that try to utilize the temporal patterns do
not work well in general. AR models the temporal relationship of the
time series and the prediction accuracy is 15%-20% lower than ours.
In our experiments, we also tried other time-series-based methods,
such as LSTM, 1D CNN, but none of them produce satisfactory
results (less than 60% accuracy) that are close to graph-based meth-
ods. For the graph based methods, FPCM consistently performs
the worst, and even in the most related task, Working Memory, its
prediction accuracy is as low as 40%. This might result from the
noisy temporal patterns which produce false partial correlations.
On the other hand, a similar method, FCM, performs much better
than FPCM, but still worse than ours: 1%, 7%, 3%, 2% lower accu-
racy in Emotion, Gambling, Social and Working Memory tasks,
respectively. The state-of-the-art graph kernel, WL_OA, cannot
apply on signed and weighted graphs. Thus, for this approach we
first threshold the data to obtain unweighted graphs. The incurred
information loss from this process results in WL_OA achieving con-
sistently lower performance than GroupINN, PCA and FCM. PCA
gives comparable results in Social and Working Memory tasks, but
in the Emotion and Gambling tasks (where the related patterns are
not obvious) our methods outperform PCA by 5%. In Section 4.5,
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Figure 3: Training time (x axis) vs. accuracy (y axis) for GroupINN and other neural network-based models, with the speedup of GroupINN
annotated over the arrows. The most ideal points lie on the top left corner, corresponding to low runtime and high accuracy. Our proposed
GroupINN models are up to 69x faster at training than all the baseline methods, while achieving same or higher accuracy in a variety of
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Figure 4: Accuracy compared with non-neural-network-based mod-
els. Our models have better or comparable accuracy across all data.

Table 3: Number of parameters used in neural network based meth-
ods. GroupINN can use 15% or much less model parameters to
achieve comparable or better performance of the baseline methods.

Methods # parameters Normalized wrt GroupINN
CNN-1 87,121,602 30, 125.04%

CNN-2 21,844,152 7, 553.30X

GCN 19,874 6.87X

Diffpool 26,678 9.22X
GroupINN 2,892 1X

we will see that even in the less related tasks, our model can still
pick out the task positive functional subnetworks.

Allin all, if the data is directly related to the phenotype predicted
(Working Memory), the prediction accuracy of graph-based methods,
like PCA and FCM, is equal or lower than ours by a small margin
(around 1-2%). However, if the data is more complex and not directly
related to the phenotype (Emotion and Gambling), our methods
outperform them by more than 5%. This is understandable, because
neural networks are known for modeling complex relations.

4.4 Q3: Parsimony of GroupINN

So far we have seen that our models have better or comparable
accuracy to the baseline methods. In addition to that, compared to
neural network methods, GroupINN achieves significantly faster
training time, only 1.33 hours total CPU time on average for all
datasets. The speedup comes from the small number of model
parameters. Table 3 shows the parameters used in each neural
network-based model (first column) and we also show the ratio
compared to ours. We can see that even the fastest baseline GCN
uses about 7x more parameters than our methods. This explains
why other methods need at least 2.5X more training time than
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GroupINN. In most task based cases, GCN and Diffpool do not
perform as well as our GroupINN. CNN sometimes is comparable,
but uses many more parameters than ours (up to 30,125X more than
GroupINN), so it takes more than 65 times longer to train than our
methods. These observations indicate that GroupINN effectively
captures the main characteristics of the data.

4.5 Q4: Interpretability of GroupINN

Our method is interpretable and can reveal the subnetworks that
are most informative to the prediction goals. In this section, we
use 14 expertly-defined functional subnetworks and analyze them
along with the learned matrices F. We show how our method can
provide insights on the relation.

We use the learned matrices F obtained from each task. Though
the data is acquired when people are performing different tasks,
the prediction goal is the same: to predict the GenExec levels.

As illustrated in Fig. 2b, the cross edges are weighted and summed
up to form a superedge. For the edge with weight w; ;, it is multi-
plied by a factor s;s;. In this sense, s;s; can be viewed as an ampli-
fication factor of the edge (i, j). Given a subnetwork, we compute
the average amplification factor of an edge within it. Mathemati-
cally, for a given subnetwork (a node set R) and a group mapping
function (maps the node to the groups found in F), ¢ : N —» N, we
assign an importance score S to each subnetwork as:

2
IR[?

Sg = SiSj )
i,j€R and c(i)#c(j)

We then rank the subnetworks based on S score. Also, to explore
the important cross-subnetwork connections, we define a score, S¢,

between any functional subnetworks R; and Rj:

1

S = — 10
RiRe = R, [[R,| (a0)

SiSj
(i€Rq,jeRy or i€Ry, jeRy), c(i)#c(j)
We rank the combination of subnetworks based on the S¢ score.
We list the three most important subnetworks (with highest S
score) and cross-subnetwork combinations (with the highest S¢
score) in Table 4. We provide their visualizations in supplementary
material C. The results are based on F in the positive branch because
positive links are more related. For comparison, we also list the
important regions found by two baseline methods: For PCA, Sg is
defined as the average node weight of region R in the first principal
component. For Diffpool, we compute Sg via Eq. (9) for each subject
separately because the learned clustering differs per graph. We find
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Table 4: Tasks and the corresponding most important subnetworks and cross-subnetwork combinations (ordered by importance). GroupINN
is interpretable as it can find meaningful task-positive subnetworks (shown in black font, left part of the table). On the other hand, PCA
and Diffpool fail to discover them and rank as important other subnetworks (in gray font). Some of our findings about the cross-subnetwork
interactions (right part of the table) are supported by the literature and may be worth further investigation.

*Acronyms of brain subnetworks. AN: auditory; CBLN: cerebellar; CON: cingulo-opercular; DAN: dorsal attention; FPN: frontoparietal; MRN:
memory retrieval; SN: salience ; VAN: ventral attention ; VN: vision; SM.M: sensory/somatomotor mouth; SM.H: sensory/somatomotor hand.

Within subnetworks

Across subnetworks

Tasks
GroupINN PCA Diffpool GroupINN

Working Memory FPN SN (MRN, FPN)  (MRN, VN) (MRN, SN)

Gambling VAN DAN FPN (MRN,FPN)  (MRN,VN)  (SM.M, VN)

Emotion SN CON VAN (MRN,SN)  (VAN,SN)  (VAN, FPN)

Social FPN SN VAN DAN FPN (MRN,VN)  (VAN,VN)  (SM.M, SN)
the most important regions by ranking their average scores across Bwo_+-_split Moriginal lwo_orthogonality llwo_balance
all the subjects. [Dwo_nonnegativity [CJwo_I2 [Jwo_any_reg

80 :
Focusing on the within-network connections found by GroupINN,
salience (SN) and ventral attention (VAN) are seen in three out of S -
four tasks, fronto-parietal task control (FPN) is seen in two out 70 e 1
of four, cingulo-opercular task control (CON) and dorsal attention Kes
(DAN) are also present. SN, VAN, FPN, CON, and DAN comprise ma- Zeo
jor elements of the so-called task-positive network that are active §55
whenever a person performs a cognitively demanding task [7, 13]. <
It is not surprising that these networks are predictive of GenExec, 0
which represents ability to perform cognitively demanding tasks. 45
GroupINN successfully discovers all of them. On the other hand, 40 : e S :
. . eps Ei li ial Working M
PCA fails to discover any of the task-positive networks. Instead, motion ambling o orking Memory
Figure 5: Impact of adding each regularization term. Splitting the

PCA ‘picks’ noisy but strong signals that are related to motion,
vision and hearing. Similarly, Diffpool only finds two related re-
gions. The results suggest that GroupINN is interpretable and can
pinpoint the regions that relate to cognition during various tasks
more accurately than baseline approaches.

We further investigate the cross connections found by our method.

The cross connections between (memory retrieval < FPN) and
(memory retrieval < salience) are found to be highly predictive in
two of the four tasks. Many studies of task-specific functional acti-
vation have also shown strong integration of memory subnetworks
with other subnetworks in cognitively demanding tasks [5, 6, 8],
such as those represented by the GenExec measure. Our findings
suggest that the above-listed task-specific network integrations
may warrant further study in the context of executive function.

4.6 Q5: Impact of network splitting and
regularization terms

In this section, we explore the importance of the various design
choices for GroupINN. We first compare our full method with a
variant (wo_+-_split) in which the positive and negative networks
are not split, but are handled as a unified network. Figure 5 shows
the comparison. We observe that in three out of four cases, splitting
the network into positive and negative networks has higher accu-
racy than not splitting. Especially in the Gamb1ling dataset, splitting
achieves 12% higher accuracy.

Then, to show the impact of each regularization term, we per-
form experiments to compare the prediction accuracy when dif-
ferent regularization terms are not added. The different variants
are: not adding orthogonality loss Ly, (Wo_orthogonality), not
adding group balance loss Lp,jance (Wo_balance), not adding the
nonnegativity loss which consists of Lpeg reduce @nd Lneg RWR
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network into positive and negative ones, adding variance, non-
negativity constraints and 12 regularization are effective in improv-
ing accuracy.

(wo_nonnegativity), not adding L loss (wo_12) and not adding
any regularization (wo_any_reg). From Fig. 5, we can see that
adding balance and nonnegativity constraints are always helpful
as GroupINN wins all the cases over the variant (wo_balance) or
(wo_nonnegativity). This result is in line with our assumption
about grouping, since membership score should not be negative
and unbalanced group assignment should be avoided. Adding Ly
regularization also helps, as the accuracy is improved in the Social
and Working Memory datasets, but it does not improve much in the
Emotion and Gambling datasets. The influence of adding orthogo-
nality constraint is more complex: In the Emotion dataset, adding
orthogonality constraint has a slight accuracy decrease (0.7%), while
in the Gambling dataset a small accuracy boost (1.7%) is observed,;
In the Working Memory dataset there is a 7% accuracy drop, while
in the Social dataset, there is a 8% accuracy increase. We posit that
this complex behavior may be related to how brain regions interact
with each other in different tasks—the more overlapping the data,
the more ROIs are coordinating between different regions.

5 CONCLUSION

In this work, we introduce a novel neural network-based method,
GroupINN, for mining fMRI data. FMRI data is characterized by
large variations, both between subjects and within a single subject,
thus exhibiting a significant level of noise. Furthermore, only a
limited amount of data is accessible (e.g., few subjects) relative to
the dimensionality of the data. These challenges require a model
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with few parameters, as well as the capability of capturing non-
linearities. Prior works using linear models cannot capture com-
plex relationships between brain regions, while traditional neural
network-based methods often require numerous parameters and
lack interpretability. By introducing the idea of node grouping into
the design of the neural network and designing a random-walk-
based variant of graph convolutional layer, GroupINN requires up
to X69 times less training time than the baselines, achieves 85 — 99%
reduction in parameters, and shows consistently better or compara-
ble prediction accuracy. Moreover, our model can provide insights
into brain subnetworks that are relevant to the prediction goal,
providing interpretable results that are useful for neuroscientists.
For future work, combining temporal features into the current
architecture is an interesting direction.
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SUPPLEMENTARY MATERIAL ON REPRODUCIBILITY

A ENVIRONMENTS USED FOR THE
EXPERIMENTS

The experimental platform is implemented in Python 3; all neural
network models, including GroupINN, CNN and GCN, are imple-
mented using TensorFlow 1.8; some test scripts are written in bash.
Anaconda (version 5.1 or higher), TensorFlow (version 1.8 or higher),
GNU time and other standard Unix-style terminal tools are utilized
to run the experiments.

We use two machine in the experimental process. One machine is
equipped with GPU to accelerate training and evaluation process for
neural network-based methods, especially for CNN models, and it is
used in all experiments except for the experiment of measuring the
training time. The GPU should have at least 4 GB graphical memory
to ensure that it can host all CNN parameters in the memory, and
TensorFlow 1.8 with GPU support should be installed.

In experiment described in Section 4.2 about measuring and
comparing the training time for different neural network-based
methods, we test each methods on a machine without GPU. The
reasons for this choice are two folds: on one hand, we would like to
illustrate that GroupINN and GCN do not necessarily require GPU
to accelerate, since it only uses 1.33 hours in average total CPU
time for all datasets; on the other hand, when GPU acceleration is
not available, all computations will be performed by CPU, which
allows us to compare the computing resources needed for each
method by comparing their total CPU time directly. The hardware
configuration of the machine is shown in Table 5.

Table 5: Hardware configuration for the machine used in training
time measurement.

HW Category ‘ Specifications
CPU | 2 X Intel(R) Xeon(R) CPU E5-2697 v3 @ 2.60GHz
Memory | 1024 GB
GPU ‘ N/A

B DATA PREPARATION

As we have mentioned in Section 4.1, we use datasets from Human
Connectome Project 1200 release (HCPt) [36] to evaluate our pro-
posed framework and compare it to baseline approaches. We sort
the subjects by the strength of General Executive Factor (GenExec)

781

in descending order, and cast the problem as a binary classifica-
tion task by assigning the top quartile of subjects to the ‘positive’
class, and the bottom quartile to the ‘negative’ class. The top and
bottom quartile of subjects are the samples which are used in our
experiments.

Within the top and the bottom quartile, we follow the training
and testing split recommended in this dataset, since the recom-
mended split has been chosen to avoid siblings between the train-
ing and testing set. However, since the number of ‘positive’ and

‘negative’ samples are not balanced in the training set following
the recommended split, a stratified selection is made when select-

ing 10% validation set from the training data. Thus, the validation
set will have the same ratio of positive to negative samples as the
training set.

When generating each sample batch used for training, we ran-
domize the permutation and balance the number of positive and
negative samples of each batch to increase the convergence speed
and robustness of the training process:

(1) Each epoch begins with a sample pool consisting all samples

from the training set.

(2) Balancing the number of positive samples and negative sam-
ples in the sample pool: we randomly replicate some samples
in the smaller category to make the size of the smaller cate-
gory and the larger category equal in the pool.

(3) To form a batch of n samples with equal number of posi-
tive and negative samples, we randomly take n/2 positive
samples and n/2 negative samples respectively out of the
pool.

(4) Repeat the previous step, until the sample pool has less than
n samples. In this case, take all remaining samples in the
pool as the final batch of this epoch.

In our experiments we used batch size n = 16.

C VISUALIZATION OF IDENTIFIED
SUBNETWORKS

In Section 4.5 we discussed the interpretability of GroupINN and
contrasted it to baseline methods, such as PCA and Diffpool. Here
we visualize the results of Table 4. Specifically, Fig. 6, 7, 8 show the
top 3 important regions identified by GroupINN, PCA, and Diffpool,
respectively. Green represents the 1st important region, orange
represents the 2nd most important region, purple represents the
3rd most important region.
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(a) Working Memory: MRN, FPN, SN

(b) Gambling: VAN, VN, DAN
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(c) Emotion: SN, CON, VAN (d) Social: FPN, SN, VAN

Figure 6: Front, left and right views of the most important functional subnetworks identified by GroupINN during different tasks. Green color
for the top-1 identified region; orange for the top-2 region; and purple for the top-3 region.
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Figure 7: Front views of regions identified by PCA during different tasks. Green color for the top-1 identified region; orange for the top-2
region; and purple for the top-3 region.
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(c) Emotion: DMN, MRN, SM.M  (d) Social: DAN, SM.M, FPN

Figure 8: Front views of regions identified by Diffpool during different tasks. Green color for the top-1 identified region; orange for the top-2
region; and purple for the top-3 region.
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