
Personalized Knowledge Graph Summarization:
From the Cloud to Your Pocket

Tara Safavi
University of Michigan
Ann Arbor, MI, USA

tsafavi@umich.edu

Davide Mottin
Aarhus University
Aarhus, Denmark
davide@cs.au.dk

Caleb Belth
University of Michigan
Ann Arbor, MI, USA

cbelth@umich.edu

Emmanuel Müller
B-IT Center

Bonn, Germany
office-mueller@bit.uni-bonn.de

Lukas Faber
Google

Zurich, Switzerland
lukasjfaber@gmail.com

Danai Koutra
University of Michigan
Ann Arbor, MI, USA

dkoutra@umich.edu

Abstract—The increasing scale of encyclopedic knowledge
graphs (KGs) calls for summarization as a way to help users
efficiently access and distill world knowledge. Motivated by the
disparity between individuals’ limited information needs and the
massive scale of KGs, in this paper we propose a new problem
called personalized knowledge graph summarization. The goal is to
construct compact “personal summaries” of KGs containing only
the facts most relevant to individuals’ interests. Such summaries
can be stored and utilized on-device, allowing individuals private,
anytime access to the information that interests them most.

We formalize the problem as one of constructing a sparse
graph, or summary, that maximizes a user’s inferred “utility”
over a given KG, subject to a user- and device-specific constraint
on the summary’s size. To solve it, we propose GLIMPSE, a
summarization framework that provides theoretical guarantees
on the summary’s utility and is linear in the number of edges
in the KG. In an evaluation with real user queries to open-
source, encyclopedic KGs of up to one billion triples, we show
that GLIMPSE efficiently creates summaries that outperform
strong baselines by up to 19% in query answering F1 score.

I. INTRODUCTION

Encyclopedic knowledge graphs, which store facts about
the world by connecting entities via semantically meaningful
relations, have shown to be useful tools for AI tasks including
question answering, item recommendation, query expansion,
language modeling, and more [38], [40], [37], [9]. Modern
knowledge graphs (KGs) contain up to billions of entities and
relationships, and are continually being augmented with new
facts [26]. These increasingly large stores of world knowledge
necessitate summarization, which reduces large KGs to more
concise but still interpretable and query-able forms [22].

This paper proposes the new task of personalized knowl-
edge graph summarization, the goal of which is to find a
sparse summary of a large KG—in essence, a “mini-KG”—
containing the facts most relevant to each individual user’s
interests and queries. We motivate this task by studies in
information retrieval and human-computer interaction showing
that individuals have limited information capacity [34], [17].
In a KG setting, then, most individuals’ information needs will
likely cover only small portions of a given large KG [27]. We

Fig. 1: Personalized KG summarization for a user interested
in books and authors. Given seed information about the user’s
interests over G, GLIMPSE constructs an on-device personal
summary of G (i.e., a mini-KG) for anytime information access.

thus envision compact personal summaries containing user-
specific facts of interest being stored and accessed on devices
like smartphones, intelligent assistants, and in other scenarios
where resources are constrained (e.g., network bandwidth,
device disk space), an Internet connection is not available,
or the user desires privacy in querying. Figure 1 shows an
example for a user interested in books and authors. Her
personal summary allows for anytime user information access
while still supporting KG-powered tasks with high accuracy.

Present work. Our proposed approach to personalized KG
summarization, GLIMPSE or Graph-based Learning of Per-
sonal Summaries, consists of first inferring user preferences
over a given KG, then constructing the user’s personal sum-
mary from these preferences. For the first step, we assume the
user demonstrates her interests via her queries to the KG, and
use these queries as seeds from which we infer other entities
and relations of potential interest to the user. We formalize the
second step as an optimization problem in which we maximize
the summary’s inferred utility to the user, subject to a size
constraint corresponding roughly to device resources like disk
space. GLIMPSE relies on fast submodular maximization,
which to the best of our knowledge has not been used for
graph summarization before, to efficiently summarize KGs.

This paper makes the following contributions:

• Problem: We introduce, motivate, and mathematically for-
mulate the problem of personalized KG summarization.

• Framework: We propose GLIMPSE, a flexible summariza-
tion framework that combines strong theoretical guarantees
with the scalability necessary for large KGs.

• Evaluation: We analyze GLIMPSE in a direct query an-
swering task using real queries to KGs of up to one
billion triples. GLIMPSE personal summaries outperform
summaries created by strong baselines by up to 19% in
query answering F1 score across various simulated user
models. We demonstrate GLIMPSE’s consistency across
datasets, and provide in-depth analysis of our results.

II. RELATED WORK

Graph summarization and sampling. Graph summarization
techniques abstract large graphs into smaller ones according
to objectives like query efficiency, ease of visualization, and
pattern discovery [22], [30], [18], [16]. That said, existing
techniques for labeled graphs tend to follow a “one-size-fits-
all” approach [4], [32]. Such techniques construct summaries
by compressing all nodes into “supernodes”, with “super-
edges” connecting pairs of nodes across supernodes. By con-
trast, in our setting we assume that most facts in a KG are
irrelevant to a single user, so a personal summary need not
contain all of the KG. Moreover, grouping-based techniques
usually compare all nodes pairwise, leading to quadratic-time
algorithms that are too slow for our problem setting.

Some graph summarization techniques create summaries
preserving specific classes or types of subgraph queries (e.g.,
path or star queries), though again toward summarizing the
entire graph [6], [23]. A few recent approaches also consider
user- or task-specific input [1], [19], [15]. That said, no exist-
ing work handles the actual content of user queries. This calls
for new summarization approaches tailored to personalization,
as a personal summary cannot be the same for individuals with
different interests (as expressed by their past queries).

Because our proposed method selects a subset of edges from
G as the summary, graph sampling is also relevant. That said,
the goal of graph sampling is not to answer queries tailored to
user interests, but rather to preserve graph-specific properties
(centralities, motifs) in smaller, representative samples [20].

Knowledge graphs. The KG tasks most related to the present
work are fact contextualization and entity ranking or sum-
marization [5], [10], [13], [35], [9]. In these works, a single
entity or fact in the knowledge graph is given as input. The
output is a set of entities, entity attributes or features, and/or
facts that are deemed the most “informative” or “relevant” to
the input according to various heuristic criteria. Such methods
can be seen as complementary to our work. They usually rely
on either feature extraction or PageRank variants, and require
human assessment of solution quality and/or manually labeled
training data, which can be expensive to obtain. By contrast,
we evaluate our method with the accuracy of query answering

Fig. 2: Example of a query to the YAGO knowledge graph (§ IV-A)
and one answer, with corresponding natural language and query
graph representations.

on the summary. Importantly, we also handle arbitrary query
structures, rather than single entities or facts, as input.

Personalization. Identifying items of interest to users (web
pages, e-commerce products, movies, etc) is a major goal in
search and recommender systems. While it is common for
recommender systems to use auxiliary information extracted
from knowledge graphs toward better recommendations [40],
we are not aware of any work that identifies individuals’ facts
of interest—in other words, the facts themselves are being
recommended—in a KG. Furthermore, while there exists a vast
literature on personalized web search, such works tend to focus
on extracting or learning features of interest at the document
or user level [36], [2]. By contrast, we are mainly interested in
summary construction, so we leave the incorporation of more
complex user preference modeling to future work.

That said, many personalization approaches do rely on
graph-based methods. The most common approach, person-
alized PageRank (PPR) [14], returns a ranking of entities in
order of their “importance” or “relevance” to a given query.
We investigate this approach in our experiments.

III. METHODOLOGY

We begin this section with preliminaries. We then outline
how we infer user preferences and construct a personal sum-
mary from these preferences. Finally, we theoretically analyze
our approach. For reference, Table I gives our main symbols.

A. Preliminaries

A knowledge graph G = (E,R, T) consists of a set
of entities E, a set of relations R, and a set of triples
T ⊆ E × R × E1. A triple connecting entities ei, ej ∈ E
with relation rk ∈ R is denoted xijk = (ei, rk, ej). From
a natural language perspective, triples in a knowledge graph
are 〈subject, predicate, object〉 facts. From a graph-theoretical
perspective, triples are labeled edges connecting pairs of entity
nodes. In this work we assume each question to G is given in
query graph form (i.e., via semantic parsing [38]), as shown
in Figure 2. Each query graph GQ = (EQ, RQ, TQ), which
may be a subgraph of G or may contain elements not in G,
is directed, acyclic, and fully connected. One or more entities
in GQ are variable(s), as shown by the (?) node in Figure 2.
Each variable represents any entity in E. The entities e ∈ E
that replace variables during query answering by matching the

1Although KGs are in general incomplete, in the summary construction step
we assume a closed world (i.e., we add only existing triples to the summary).

TABLE I: Table of main symbols.

Symbol Meaning

G Knowledge graph G = (E,R, T) with entity set E, relation
set R, and triple set T

ei i-th entity in entity set E
rk k-th relation in relation set R

xijk Triple (ei, rk, ej) ∈ T with entities ei, ej ∈ E, relation rk
GQ Query graph GQ = (EQ, RQ, TQ) to G
Qu Query log Qu = (G1

Q, . . . , G
n
Q) of user u on G

Su Personal summary Su = (Eu, Ru, Tu) ⊆ G of user u
K Number of triples in personal summary Su

given query graph pattern are called the answers to the query
GQ. Finally, each user u is associated with a sequence of
queries, or query log Qu = (G1

Q, . . . , G
n
Q) to G.

Queries to G are answered via subgraph isomorphism,
which means we find a one-to-one mapping ψ between queried
entities EQ and knowledge graph entities E, if one exists,
such that for all triples (ei, rk, ej) ∈ TQ, there exists a
(ψ(ei), rk, ψ(ej)) ∈ T . While subgraph isomorphism is NP-
complete in general, most real queries to KGs are small (one
or two triples [3]), which makes the isomorphism feasible to
compute in practice. That said, another benefit of summariza-
tion is faster query answering, since a summary will contain
fewer entities/triples than the KG it summarizes.

B. Informal problem statement

Informally, the problem we address may be described as:
Given a knowledge graph G, a user u’s past queries to
G, and a user-specific resource (device or application)
constraint, efficiently infer a personal summary Su ⊆ G
under the given constraint that best captures the user’s
preferred facts in G, as expressed by her past queries.
In the following sections, we will formalize this problem by
defining a notion of a resource-constrained personal summary
drawn from a general model of user preferences2.

C. Inferring user preferences

GLIMPSE consists of two steps. First, we infer entities and
relations of potential interest to the user based on her historical
queries Qu. We then construct a summary by maximizing
a user-specific utility function drawn from these inferred
preferences. In this section, we address the first step.

We model user preferences over G by associating each
entity and triple with a probability of user u preferring them,
conditioned on u’s query history Qu. We capture preferences
for entities and triples separately because of the KG-specific
differences in meaning between the two. A user’s preference
for a single entity e indicates interest in a related group of facts
(i.e., any triple containing e or its neighbors), which loosely
corresponds to a “topic”3. By contrast, a user’s preference for a
triple xijk expresses an interest in a single unit of information.

2For privacy reasons, we model each user’s preferences individually, and
leave privacy-preserving collaborative approaches for future directions.

3For instance, the Freebase KG documentation explicitly refers to each
entity as a topic: https://developers.google.com/freebase/guide/basic concepts

Importantly, note that GLIMPSE is flexible enough to in-
corporate arbitrary modeling complexities or even explicit user
feedback (c.f. [9]). In this paper we focus on an unsupervised,
graph-structural user preference model that is highly efficient
to compute, but any approach that yields per-user probabilities
for both entities and triples in G can be used in its stead.

Entity preference. Let Pr(ei|Qu) be the user’s preference for
entity ei ∈ E. Since users often re-seek information [34], we
capture the user’s historical preference for ei in Pr(ei|Qu).
We also account for the local graph structure around ei: Since
queries come in the form of connected graphs (§ III-A),
answers to future queries involving ei must involve entities ej
directly connected to ei (i.e., neighbors of ei). More generally,
an interest in a single entity (e.g., Charles Dickens) may signal
interest in connected entities in the KG (e.g., Oliver Twist,
Great Expectations, England, etc).

Denoting the set of all neighbors of ei in G as N(ei) =
{ej |(ei, rk, ej) ∈ T}, we capture the user’s preference with

Pr(ei|Qu)∝
∑

GQ∈Qu

1EQ(ei)︸ ︷︷ ︸
historical pref.

+γ
∑

ej∈N(ei)

1EQ(ej)︸ ︷︷ ︸
graph structure

, (1)

where γ ∈ [0, 1] controls the influence of neighbors and 1X(x)
is the indicator function, equal to 1 iff x ∈ X and 0 otherwise.
We can generalize (1) to all entities in the KG: Let q ∈ R|E|
be the user’s seed query vector with qi = 1 if the user queried
the i-th entity in E and 0 otherwise, and M = γAD−1 ∈
R|E|×|E| be the normalized adjacency matrix of the KG. Then
(1) is equivalent to the first two terms of the random walk
power series expansion

u = q + Mq + M(Mq) + M(M(Mq)) + . . . , (2)

where u ∈ R|E| is the vector that contains user u’s preference
for all |E| entities. Note that (2) can be computed efficiently,
in time linear in the number of edges in the graph, via sparse
matrix-vector multiplications.

Extending (1) and (2) to neighbors of neighbors spreads user
preference from queried entities across paths in the KG, which
captures compositional facts centered around topic entities.
For example, users interested in Charles Dickens may also be
interested in the United Kingdom more generally. Spreading
preference across paths in the KG allows us to capture this
interest, since the entity Charles Dickens is connected to
the entity United Kingdom by the two-step path (Charles
Dickens, citizenOf, England) and (England, constituentOf,
United Kingdom). We investigate such paths further in § V.

Triple preference. To capture the user’s preference for triple
or fact xijk = (ei, rk, ej) ∈ T , we incorporate its entities
and relation. We follow the standard conditional independence
assumption in graph mining and KG learning (c.f. [8], [26]):

Pr(xijk|Qu) ∝ Pr(ei|Qu)Pr(rk|Qu)Pr(ej |Qu), (3)

We compute Pr(rk|Qu) as the proportion of queries in query
log Qu containing relation rk. As mentioned earlier, both

https://developers.google.com/freebase/guide/basic_concepts

Pr(ei|Qu) and Pr(rk|Qu) can modeled with more complex
relevance features, either extracted or learned. However, as
discussed in the next section, our focus is summary construc-
tion, so we leave more complex user modeling for future work.

D. Constructing the summary

The second step of our approach is to construct the personal
summary. Given the user preference model described in the
previous section, let Pr(Su|Qu) be our estimate of how well
a constructed summary Su = (Eu, Ru, Tu) captures the user’s
inferred preferences, conditioned on Qu:

Pr(Su|Qu) ∝
∏
e∈Eu

Pr(e|Qu)︸ ︷︷ ︸
“topic” pref.

∏
xijk∈Tu

Pr(xijk|Qu)︸ ︷︷ ︸
fact pref.

. (4)

Using the above as an objective function, we formalize the
optimization problem corresponding to summary construction:

Problem 1 (Personalized KG summarization). Given (1) a
knowledge graph G, (2) a user u and her query history Qu to
G, and (3) a number of triples K, find the personal summary
Su = (Eu, Ru, Tu) ⊆ G of K triples that maximizes the log-
likelihood of Pr(Su|Qu):

arg max
Su⊆G

log Pr(Su|Qu) s.t. |Tu| ≤ K. (5)

The constraint K roughly corresponds to a resource con-
straint like device disk space or latency requirements. For
example, say an offline KG-powered application has 10MB
of available storage on a user’s mobile device. Given a KG
of 10 million triples that requires 1GB of storage, a value of
K ≈ 100 000 might be appropriate. Overall, K is expected
to be relatively small, as most users’ information needs are
limited, and especially so on the mobile devices or applications
where we imagine personal summaries being used [34], [17],
[27]. We discuss K in more depth in § V.

A utility perspective. Exactly optimizing (5) would be com-
putationally infeasible, as solving it would require enumer-
ating all size-k subsets of the KG’s triple set T , leading to
a complexity of O

(|T |
K

)
. That said, instead of immediately

resorting to heuristics we reformulate (5) to lead to a tractable,
approximation with theoretical guarantees. The key intuition
is to restate the likelihood maximization problem in (5) as
a utility maximization problem, where the utility function to
be maximized is nonnegative. We exploit this nonnegativity
to show that our utility function is submodular (discussed in
the next section), which allows us to devise a near-optimal
approximation algorithm.

Define φ : (Su;Qu) → R+ as a function that captures the
“utility” of personal summary Su over a non-personalized
Sα that includes every entity and triple in the summary with
a constant, small uniform probability 0 < α� 1:

φ(Su;Qu) = log Pr(Su|Qu)− log Pr(Sα)

=
∑
e∈Eu

log
Pr(e|Qu)

α
+

∑
xijk∈Tu

log
Pr(xijk|Qu)

α
, (6)

where P (·|Qu) ≥ α > 0; in other words, α can be seen
as the smallest non-zero probability α = P (·|Qu). Note that
the summations above only include entities and triples with
P (·|Qu) > 0, since those with P (·|Qu) = 0 bring no extra
improvement to Su.

Given φ, we restate (5) as a utility maximization problem:

arg max
Su⊆G

φ(Su;Qu) s.t. |Tu| ≤ K. (7)

A near-optimal approximation. While (7) is close to (5),
we can show that the objective function in the former is
submodular, which will allow us to near-optimally approx-
imate the solution to (7). Intuitively, submodularity is a
“diminishing returns” property of set functions. Formally, for
set X and subsets A ⊆ B ⊆ X and element x ∈ X\B,
let ∆F (x|A) = F (A ∪ {x}) − F (A) be the marginal utility
gained in F by adding x to A. The function F is submodular
if ∆F (x|A) ≥ ∆F (x|B) everywhere, i.e., the marginal gain of
adding x to the result set diminishes as the result set grows.
Importantly, a greedy algorithm that chooses the item with
the highest marginal gain in iterations yields a solution that
is guaranteed to be within a ≥ (1 − 1

e) fraction away from
the (unknown) optimal solution’s value when maximizing a
nonnegative monotone submodular function under cardinality
constraints [25]. The practical implication can be seen as
similar to convexity in continuous optimization problems:
Under certain conditions, submodularity admits optimization
algorithms that yield solutions with theoretically guaranteed
bounds on optimality, rather than arbitrarily bad solutions.

The key to our solution is to view (E ∪R) as our “ground
set” of elements, and consider each triple xijk = (ei, rk, ej) ∈
T as a three-element “subset” of this ground set. From
this perspective, we can prove that the utility function φ is
submodular over the triples T of G. The important implication
is that continually choosing the triple with the highest
marginal utility ∆φ(xijk|Su, Qu), up to K triples, near-
optimally solves (7):

Theorem 1. Equation (7) has a (1− 1
e)-approximation.

Proof. Let S(1)
u ⊆ S

(2)
u ⊆ G be two personal summaries of

a knowledge graph G, and let triple xijk = (ei, rk, ej) ∈
G\S(2)

u . Consider that (1) if either (or both) entities ei or
ej are contained in S

(1)
u , by necessity those entities must

also be contained in S
(2)
u , since S

(1)
u ⊆ S

(2)
u . Conversely,

however, (2) if either (or both) ei or ej are not contained
in S

(1)
u , they may still be contained in S

(2)
u for the same

reason. Therefore, in case (1), when adding the triple xijk
to the smaller S(1)

u , any entity e not in S
(2)
u will result in a

marginal gain of at least ∆φ(xijk|S(1)
u , Qu) = log Pr(e|Qu)

α

more than the corresponding gain to S
(2)
u , since e is already

contained in S
(2)
u . In case (2), where the entities contained

within S
(1)
u and S

(2)
u are the same with respect to xijk,

the marginal gains ∆φ(xijk|S(1)
u , Qu) = ∆φ(xijk|S(2)

u , Qu).
Therefore, the function φ is submodular over the triples xijk
of the knowledge graph G, which means that optimizing (7)

Algorithm 1 The GLIMPSE framework. All OPT comments
refer to the optimizations discussed in § III-E.

Input: Knowledge graph G, user query log Qu, # triples K
Output: Personal summary Su ⊆ G with |Tu| ≤ K

1: Compute T∆6=0 with Pr(e|Qu), Pr(xijk|Qu) . § III-C, OPT1
2: Su ← ∅
3: while |Tu| ≤ K do
4: Sample set A of size |T∆6=0|

K
log 1

ε
from T∆6=0 . OPT2

5: Select x̃ijk ← arg maxxijk∈A ∆φ(xijk|Su;Qu) . OPT3
6: Add triple x̃ijk = (ei, rk, ej) to Su
7: return personal summary Su

by continually selecting the triple with the highest marginal
utility ∆φ(Su;Qu) results in a (1− 1

e) approximation of the
unknown optimal solution.

E. The GLIMPSE framework

The naive greedy algorithm discussed in the previous sec-
tion updates up to |T | marginal utilities of triples, and there
are up to K iterations, leading to O(K|T |) complexity. This is
too slow for KGs with |T | on the order of millions or billions.

Fast summary construction. We exploit special properties of
personalization and submodularity to construct a personal
summary in time linear in the number of triples |T | in
G, while retaining near-optimal approximation guarantees.
Our first optimization, OPT1, is specific to the domain of
personalization and relies on the intuition that most triples
in the original KG will be of no interest or relevance to
a single given user. Let T∆ 6=0 be the set of triples with
nonzero marginal utility for any given knowledge graph G
and corresponding Su:

T∆ 6=0 , {xijk ∈ G s.t. ∆φ(xijk|Su;Qu) 6= 0}. (8)

Now, we only need to update the marginal utilities of triples
in T∆6=0. This is because φ is submodular, so the triples that
start with zero marginal utility can never increase in value as
Su grows. In the experiments (§ V-C) we show that this op-
timization alone leads to a speedup of over thirteen thousand
times compared to a non-optimized version of GLIMPSE.

For OPT2, we extend [24]: Given a ground set of n triples,
we sample a set A of size n

K log 1
ε per iteration, 0 < ε � 1,

and update the marginal utilities for only the sampled triples,
then pick the highest-valued triple out of that sample. We
combine this with “lazy selection” (OPT3): In each iteration,
we take the top-valued item from the previous iteration and
recompute its marginal utility. If it remains top-ranked, we do
not need to recompute the marginal utility of other items, since
by submodularity those values cannot increase.

GLIMPSE overview and analysis. We outline the GLIMPSE
framework given in Algorithm 1. First, we compute the set of
nonzero-marginal utility triples T∆6=0 from all Pr(e|Qu) and
Pr(xijk|Qu) (§ III-C and OPT1). Then, in each iteration we
sample a set A of size |T

∆6=0|
K log 1

ε from the precomputed set
T∆6=0 (OPT2), and add the triple xijk of maximal marginal

utility from A to personal summary Su, using the lazy greedy
approach to select the highest-valued triple if possible (OPT3).
We continue until |Tu| = K.

Theorem 2. GLIMPSE is O(|T |).

Proof. The user preference inference step is linear in |T | using
sparse matrix-vector multiplication (Eq. (2)). Then, for the
summary construction step, GLIMPSE consists of K itera-
tions, each of which updates |T

∆6=0|
K log 1

ε marginal utilities of
sampled triples xijk ∈ A. Therefore, its runtime complexity is
O(|T | + K |T

∆6=0|
K log 1

ε) = O(|T | + log 1
ε |T

∆ 6=0|) = O(|T |),
since |T∆ 6=0| � |T | and log 1

ε is a constant.

Theorem 3. GLIMPSE constructs a summary that is a(
1− 1

e(1−ε)

)
-approximation to the (unknown) optimal personal

summary S∗u for 0 < ε� 1, in expectation.

Proof. As shown in [24], the expected marginal gain of OPT2
for a single triple xijk is at least

E[∆φ(xijk|Su;Qu)] =
1− ε
K

∑
xijk∈S∗u\Su

∆φ(xijk|Su;Qu), (9)

where S∗u is the (unknown) summary that optimally solves (7).
Now, a fact of submodularity, which was proven for φ in The-
orem 1, is that

∑
xijk∈S∗u\Su

∆φ(xijk|Su;Qu) ≥ φ(S∗u;Qu)−
φ(Su;Qu), because the sum of individual marginal utilities for
each triple must be greater than the total value of those triples
grouped as a set, due to diminishing returns. By consequence,
combining this fact with the result of (9),

E[∆φ(xijk|Su;Qu)] ≥ 1− ε
K

[
φ(S∗u;Qu)− φ(Su;Qu)

]
.

Using the above, it can be shown by induction on K that

E[φ(Su;Qu)] ≥ φ(S∗u;Qu)−
(
1− 1− ε

K

)K
φ(S∗u;Qu)

=
(
1− 1

e(1−ε)

)
φ(S∗u;Qu),

where the last line follows from ex ≥ (1 + x
n)n.

IV. DATA

In this section we describe the KGs and queries used in our
experiments, as well as the various user models we study.

A. Knowledge graphs

We use three large encyclopedic knowledge graphs in our
experiments: DBPedia 3.5.14, YAGO 35, and a subset of
Freebase6, all detailed in Table II. All three KGs contain
over ten million triples, spanning topics like music, movies,
sports, etc. We do not perform any extra preprocessing on the
RDF dumps. Following standard practice [21], we treat each
KG as bidirectional by including inverse relations.

4https://wiki.dbpedia.org/services-resources/datasets/data-set-35/
data-set-351

5https://old.datahub.io/dataset/yago
6https://developers.google.com/freebase/ – last available version

https://wiki.dbpedia.org/services-resources/datasets/data-set-35/data-set-351
https://wiki.dbpedia.org/services-resources/datasets/data-set-35/data-set-351
https://old.datahub.io/dataset/yago
https://developers.google.com/freebase/

TABLE II: Knowledge graphs used in our experiments.

Entities |E| # Relations |R| # Triples |T |

DBPedia 2 026 781 1 043 10 964 261
YAGO 5 155 416 72 19 635 755

Freebase 115 765 760 269 984 1 000 000 000

B. Queries

Real queries. The WebQuestionsSP dataset [39] provides
manually parsed mappings from natural language questions
to structured query graphs for several thousand simple real
questions to the Freebase knowledge graph. Each question
has a natural language representation and a corresponding
query graph representation. Each query graph consists of a
topic entity and a short path of predicates (an inferential
chain) leading from the topic to one or more answer entities,
with optional constraints to limit the number of intermediate
answers at any point along the inferential chain.

As our experiments model users querying KGs according to
topics of interest (discussed further in § IV-C), we manually
categorized 153 WebQuestionsSP queries into five high-
level topics according to what we observed in the dataset:
“history”, “travel”, “art”, “geography”, and “pop culture”.
To ensure consistency, we had three independent assessors
annotate each query with a single topic out of the five
choices. The inter-annotator agreement using Fleiss’ kappa [7],
which quantifies the degree of agreement over that expected
by chance, was 85.6% (“almost perfect” agreement). The
subset of WebQuestionsSP queries used in our experiments
consist of 1.07 triples each, on average.

Synthetic queries. We generate queries to DBPedia and
YAGO following standard procedure in KG query answering
evaluation tasks (c.f. [11], [12]). Following the structure of the
queries in WebQuestionsSP, we start with a topic entity ei,
a path length `, and a number of constraints c. We then follow
the procedure to generate a query GQ:

1) Follow a path without self-loops of ` steps starting from
entity ei by uniformly choosing the next entity ej to
visit, and add each encountered relation in the path to
the query’s relation set RQ.

2) After arriving at the query’s answers, add up to c
〈relation, argument〉 constraint pairs to RQ, EQ respec-
tively such that the answer set of GQ remains non-empty.

Since most real queries on KGs contain few triples [31],
[3], we limit ` ≤ 2 and c ≤ 4. The synthetic queries to
DBPedia/YAGO are more complex than those to Freebase,
consisting of 2.05 triples each on average.

C. User querying models

As we are not aware of any publicly available dataset with
individual users’ queries to KG, we resort to user simulation
with realistic assumptions. Since user behavior is a complex
matter, we simulate real behaviors reported in the information
retrieval literature and attempt to be consistent with related
works that simulate users [29], [6], [32]. We assume that each

user is interested in t topics. At any point in time, the user
may ask a query from any of their topics of interest, with a
small probability of asking “random” or “off-topic” queries.
Note that we define topics differently on Freebase versus
DBPedia/YAGO: For the latter, since we do not have high-
level conceptual topics, we randomly select a set of topic
entities (e.g., Charles Dickens, JK Rowling) from the given
KG, and generate queries of varying size and shape anchored
around each topic entity. This in effect models two kinds of
user behavior: High-level conceptual querying for Freebase,
and low-level structural querying for DBPedia and YAGO.

Given a number of topics t, a number of queries n, and a
random query probability p, we simulate a user’s query history
Qu as follows:

1) Uniformly sample a set of t topic entities in the case
of DBPedia/YAGO or high-level topic categorizations
(“art”, “history”, etc) in the case of Freebase.

2) Uniformly generate a multinomial distribution D speci-
fying the proportion of topics in the log.

3) For each topic, (a) if the KG is DBPedia or YAGO, select
a path length ` ∈ {1, 2} and randomly select a number of
constraints c ∈ 1 . . . 4, then generate a query GQ centered
around the current topic entity, following § IV-B. With
probability p, re-generate GQ with a randomly chosen
topic entity. (b) If the KG is Freebase, select a query
GQ categorized into the current topic. With probability
p, set GQ equal to a randomly chosen query from the
query database. (c) Add GQ to Qu.

Within this model we also simulate re-retrieval, a well-
documented phenomenon whereby users repeat queries [34],
[17]. We limit the percentage of query reuse in our user simu-
lations according to statistics reported in real log analyses [34],
from around 20% for the simulations with more topics to 50%
for the simulations with fewer topics.

V. EVALUATION

Our evaluation focuses on the following questions:
Q1 How well do GLIMPSE personal summaries answer user

queries under various conditions and constraints?
Q2 Can GLIMPSE handle large real knowledge graphs?
Q3 How do changes in parameters affect GLIMPSE?
We implemented all methods7 in Python3 on a single machine
with a 6-core 3.50GHz Intel Xeon CPU and 1TB of RAM.

A. Experimental setup

Baselines. As discussed in § II, there is no existing method
directly addressing our problem. As such, we modify existing
baselines from the literature and introduce a new one:
• PPR [14]: As discussed in § II, most graph-based personal-

ization methods rely on variants of personalized PageRank
(PPR) to find the entities most relevant to a set of queries.
To compare to this method, we perform random walks with
restart on the knowledge graph, varying the walk length

7 Code and data: https://github.com/tsafavi/glimpse-summary

https://github.com/tsafavi/glimpse-summary

TABLE III: GLIMPSE consistently outperforms competitors across the two user models defined in § V-B: Average F1 score for all
methods, knowledge graphs, and user querying models following the settings in § V-A. All averages are over 15 simulated users per
KG and querying model. Top performer per experiment in bold. In the GLIMPSE column, the value in parentheses denotes the
number of percentage points improvement over the best baseline. N: significant improvement by GLIMPSE over the best baseline
for a two-sided t-test at p < 0.01.

User model Dataset TCM CACHE PPR-1 PPR-2 PPR-5 PPR-10 GLIMPSE (+ improve.)

Few topics (t ∈ 2 . . . 5)
DBPedia 0.687± 0.09 0.684± 0.09 0.693± 0.09 0.846± 0.09 0.824± 0.09 0.819± 0.09 0.980± 0.02N (+0.134)
YAGO 0.539± 0.11 0.558± 0.10 0.549± 0.08 0.672± 0.08 0.659± 0.08 0.653± 0.08 0.814± 0.11N (+0.142)
Freebase 0.678± 0.06 0.707± 0.05 0.469± 0.05 0.486± 0.05 0.499± 0.04 0.499± 0.04 0.724± 0.06 (+0.017)

Many topics (t ∈ 5 . . . 10)
DBPedia 0.585± 0.08 0.603± 0.08 0.650± 0.08 0.782± 0.07 0.765± 0.08 0.764± 0.08 0.971± 0.03N (+0.189)
YAGO 0.526± 0.07 0.546± 0.07 0.552± 0.08 0.685± 0.07 0.673± 0.07 0.670± 0.07 0.768± 0.11N (+0.082)
Freebase 0.542± 0.07 0.577± 0.05 0.345± 0.05 0.339± 0.05 0.350± 0.05 0.354± 0.05 0.593± 0.06 (+0.016)

in {1, 2, 5, 10}, and take the subgraph of K edges (triples)
induced by the top-ranked entities as Su. The initial seed
PPR value of each entity in the KG is its query frequency
in the log Qu. In our tables and figures, PPR-n refers to
an n-step random walk. We implemented PPR using the
linear-time power method.

• TCM [33]: TCM is one of the only graph summarization
methods that is both fast enough to handle massive graphs
and flexible enough to be adapted to a (semi-)personalized
setting. Briefly, TCM is a sketching method that maps each
node in a given graph to a supernode via one or more
hash functions. To “personalize” this method, given a query
log Qu, we randomly hash only the entity IDs of entities
appearing in Qu, as well as neighbors of those entities. We
set the number of supernodes in the summary to K.

• CACHE: To further evaluate how GLIMPSE fares in
comparison with a frequency-based “caching” strategy, we
devised a method that sorts all entities in the user’s query
history Qu by their query frequency, then adds the neigh-
borhoods of entities in descending order of query frequency
to Su until |Tu| = K.

We also made a consistent effort to compare GLIMPSE to
non-personalized KG summarization methods [4], [32] with
the original implementations, but they failed to run on our
large-scale KGs (Table II), motivating our choice to take a
direction orthogonal to grouping-based summarization (§ II).

Evaluation metrics. We evaluate a personal summary Su with
the average F1 score of query answering on Su for a given log
Qu (see § III-A for algorithmic details on graph-based query
answering). For true positives TP , false positives FP , and
false negatives FN , the F1 score F1 = 2·P ·R/(P + R) is
defined as the harmonic mean of precision P = TP/(TP +
FP) and recall R = TP/(TP + FN). In our setting, TP is
the number of query answers in Su that are also in G, FP
is the number of query answers in Su that are not in G, and
FN is the number of query answers in G that are not in Su.

Settings. Unless otherwise stated, we use the following default
parameters. We set ε = 10−3 following our analysis in § V-D.
For all methods involving random walks, we set γ = 0.85
following [28]. We use the first 50% of queries from each
simulated user’s log to create the personal summary Su,
then compute the average F1 score of answering the held-
out queries on Su. In § V-B we use the first 100 million

triples of the Freebase RDF dump to make running multiple
simulations per method feasible. We use larger subsets of
Freebase, up to one billion triples, in other experiments.

B. Query answering on GLIMPSE summaries

We address question Q1 by exploring different models of
user interests. Each simulation consists of 15 users asking 200
queries. We end the section with an in-depth discussion.

Varying topical interests. Here we study how performance
changes with the number of topical interests per simulated
user. Table III displays F1 score averages and standard de-
viations for two aggregate user models: few topics, which
corresponds to 2-5 topics t of interest per user, and many
topics, which corresponds to 5-10 topics t of interest per user.
Here, all summaries have K equal to 10% of the number of
triples |T | of the original KG (we vary K separately in § V-B).

For each user model and dataset, we denote a significant
improvement by GLIMPSE over the best baseline for a two-
sided t-test at p < 0.01 with N. In the GLIMPSE column,
the value in parentheses denotes the number of percentage
points improvement of GLIMPSE over the best baseline. The
relatively high standard deviations are due to the randomness
in simulation, reflecting the variability of real users.

The findings per user model may be summarized as follows:
• Few topics (t ∈ 2 . . . 5): GLIMPSE outperforms the

strongest baselines by around 14% on DBPedia and YAGO,
and 2% on Freebase. GLIMPSE’s improvement over the
best baselines on DBPedia and YAGO are significant at
the p < 0.01 level. The PPR methods generally perform
second best after GLIMPSE, and specifically PPR-2, which
we analyze more in our discussion and § V-D. We find
that TCM’s performance is overall low due to the exis-
tence of “super-edges” between supernodes, which leads to
false positives in query answering. CACHE’s performance
depends on whether the user queries are simple and can
be answered within the neighborhoods of queried entities,
which is true only for the Freebase queries, hence its
stronger performance on this dataset.

• Many topics (t ∈ 5 . . . 10): Here it is expected that person-
alization methods should perform poorer, since query reuse
is lower and the simulated users’ information needs are less
focused. The bottom three rows of Table III show the aver-
age F1 scores for this model. Here, GLIMPSE outperforms
the strongest competitor by 19%, 8%, and 2% on DBPedia,

Fig. 3: Comparing GLIMPSE and its closest competitor PPR-2
by varying the number of topics of interest, averaged over 15
simulated users each. GLIMPSE consistently outperforms PPR-2
on DBPedia, significant at p < 0.01. It is also comparable to or
better than PPR-2 on YAGO for 10-15 topics.

YAGO, and Freebase, respectively. Interestingly, for both
user models PPR-2 usually substantially outperforms PPR-
1—by over 15% on DBPedia, for example—but adding
more steps to PPR exhibits a diminishing returns effect. We
believe that this is because most real queries to KGs contain
few triples, as demonstrated by the literature [31], [3]. We
study this effect further in § V-D.
Figure 3 compares the performance of GLIMPSE to its

closest competitor on DBPedia and YAGO, PPR-2, when the
number of topics is varied between 5 and 20. We find that
GLIMPSE consistently outperforms PPR-2 on DBPedia. The
same is true on YAGO for 5-10 topics. While GLIMPSE’s
performance slightly decreases on YAGO for 10 − 15 topics,
it still performs comparably with PPR-2. We discuss the
differences between DBPedia and YAGO and interpret these
findings further at the end of this section.

Varying the constraint K. As discussed in § III-D, the value
of K may depend on the user, the amount of device space, or
the application scenario. Here, we experiment with different
values of K, where we vary K as a percentage of the number
of triples |T | in the KG, to observe how the F1 score changes
with different levels of constraints. We show results in Figure 4
across user models for DBPedia and YAGO, using only PPR-
2 among the PPR methods since PPR-2 consistently performs
the best. As expected, across all methods, the query answering
F1 score increases with K, since a larger K means the
summary Su has more capacity for facts. That said, GLIMPSE
still performs well, for example at nearly 80% average F1
on DBPedia at just 0.1% of the number of triples |T |. For
reference, this corresponds to a GLIMPSE summary that uses
just 3.6 MB of memory, for a KG that originally uses around
2600 MB memory.

Discussion. While certain baselines can perform as well as
GLIMPSE under specific conditions, GLIMPSE is better at
generalizing across datasets and user models. For example, the
baseline CACHE performs relatively well on the Freebase
logs where the queries have on average around one triple, but
cannot handle the more complex queries to DBPedia and
YAGO. Another example is PPR-2, which is the closest com-
petitor to GLIMPSE on DBPedia and YAGO. PPR-2 performs
comparably to GLIMPSE on YAGO when the number of topics
t is high or the constraint K is tighter (Figures 3 and 4b).
We hypothesize that this is because YAGO has relatively few

(a) Few topics model

(b) Many topics model

Fig. 4: GLIMPSE consistently outperforms baselines across
constraints: Performance comparison varying K as a percentage
of the number of triples |T | in the original KG across user models.

relations and contains several extremely high-degree entities
to which many other entities are connected. For example,
most Person entities in YAGO are connected by the hasGender
relation to one of the Male or Female entities. PPR includes
all entities connected to these high-degree hubs, thereby an-
swering many queries connected to these hubs. However, not
all KGs have this structure: DBPedia, for example, does
not, and GLIMPSE consistently and significantly outperforms
PPR-2 here. Moreover, the generated queries to YAGO are less
complex than those on DBPedia due to the fact that YAGO
contains very few unique relations, and therefore each entity
in YAGO has fewer outgoing/incoming edges (Table II).

Importantly, GLIMPSE performs substantially better in par-
ticular over all PPR variants on the real Freebase queries,
whereas PPR is usually a stronger baseline on DBPedia and
YAGO. We believe this is due to important inherent properties
of KGs, which contain both low-level structure (entity-entity
links) and high-level concepts (subjective topics). Recall that
the Freebase queries were manually grouped by high-level
topic (§ IV-B). Therefore, two queries from the same user
in the same topic (e.g., “geography” or “history”) may not
be close distance-wise in the graph, which is the only type
of query similarity that PPR can capture. In fact, querying
behavior without structural coherence or locality in the KG can
be considered adversarial to personalization methods that only
extract paths or subgraphs. By contrast, because GLIMPSE
selects triples one at a time for the summary Su, it is more
robust. It includes different facts in the summary Su that
are not necessarily structurally close in the graph. Therefore,
GLIMPSE relies on but does not over-emphasize the graph’s
structure, and can handle both the lower-level structure and
the higher-level concepts over the KG.

C. Scalability of GLIMPSE

In this section, we address question Q2, which concerns the
scalability of GLIMPSE.

TABLE IV: Comparison of GLIMPSE runtime on a subset
of Freebase with and without the optimizations discussed in
§ III-E. Evidently, the optimizations are necessary for GLIMPSE
to be feasible on encyclopedic knowledge graphs.

GLIMPSE With OPT1 only With OPT2+3 only

Runtime (seconds) 2.11± 0.08 15487.93± 978.05 28980.46± 416.38

Relative to GLIMPSE 1× 7340× 13734×

Benefits of optimization. Here we compare GLIMPSE as it is
described in § III-E and Algorithm 1 to non-optimized versions
of GLIMPSE. In our first experiment, we only use OPT1,
the precomputation of T∆ 6=0. In the second experiment, we
only use OPT2 and OPT3, the random sampling of triples
and lazy updating of marginal values. These experiments were
all run on a relatively small subset (|T | = 1 000 000) of
the Freebase knowledge graph, averaged over 3 simulated
users asking 100 queries across two topics. We simulate fewer
users here because runtime varies very little from one user
to another. Table IV summarizes our results. Evidently, the
optimizations are necessary for GLIMPSE to be viable in the
real world. GLIMPSE with both optimizations takes only 2
seconds on average. By contrast, only using OPT1, GLIMPSE
takes on average 4.5 hours and is > 7 000× slower than the
fully optimized version of GLIMPSE. Only using OPT2 and
OPT3, GLIMPSE takes on average 8 hours and is > 13 000×
times slower than fully optimized GLIMPSE. In particular,
these results demonstrate that OPT1, our optimization tailored
to personalization, allows GLIMPSE to operate at scale.

Runtime. Figure 5 shows how summarizing KGs with
GLIMPSE scales for progressively larger subsets of
Freebase, each one an order of magnitude larger than the
previous, up to one billion triples. These values are averages
over three simulated users asking 100 queries each across
two topics. Our results confirm that GLIMPSE is indeed
practical on web-scale data. For instance, GLIMPSE takes
only two minutes on average for a 10 million-triple subset
of Freebase. Figure 6 compares the summarization runtime
of GLIMPSE, PPR-2, CACHE, and TCM, averaged over all
experiments in § V-B (as all PPR variants took around the
same amount of time, only PPR-2 is shown). From the figure
it can be seen that our versions of TCM and CACHE are
the fastest, sublinear in the number of triples in G, because
they only consider the queried entities and neighbors of those
queried entities. However, TCM and CACHE are usually
not competitive baselines. On the other hand, the stronger
performers PPR and GLIMPSE are linear in the number of
triples. While GLIMPSE is slightly slower than PPR due to the

Fig. 5: GLIMPSE scalability
(seconds) on Freebase.

Fig. 6: Summarization time
on all KGs.

(a) Varying the sampling parameter ε from OPT2.

(b) Varying the random walk length on GLIMPSE and PPR.

Fig. 7: Parameter analysis of GLIMPSE and competitors.

extra marginal value updates (§ III-E), the extra computation
pays off in accuracy, as demonstrated in § V-B.

D. Parameter analysis

Finally, we address question Q3: How do variations in
parameters affect GLIMPSE’s performance?

Sampling parameter ε. Here we study how varying the
sampling parameter ε, which in turn changes the expected
theoretical performance of GLIMPSE (Theorem 3), affects
query answering accuracy. Figure 7a shows the results on
DBPedia and YAGO for ε ∈ [10−4, 10−3, 10−2, 10−1, 0.5] for
both user querying models. We find that for very small values
of ε (10−2 or less) GLIMPSE performs well with fairly stable
results, although we observe slight variance and noise due to
the randomness of sampling. However, with a large value of
ε, the performance degrades rapidly and the results are less
stable, as evidenced by the large standard deviations in the
plot for ε = 0.5. This is to be expected. The larger the ε, the
smaller the sampled set, which makes it more likely for sub-
optimal triples to be chosen for Su. Therefore, we recommend
a value of ε = 10−2 or less for good performance.

Random walk length. Recall that in § III-C our user entity
preference model can be interpreted as a random walk with
restart controlled by restart parameter γ. In these final exper-
iments, we model the user’s preference distribution over G
with varying-length random walks, and compare these results
to our variants of PPR. Figure 7b shows that across all KGs,
GLIMPSE’s performance with random walks either plateaus
or else decreases, whereas PPR’s performance with longer
random walks increases from one to two, and then plateaus.
Thus, random walks on KGs longer than two steps appear to
result in diminishing returns. We believe these findings are
KG-specific, due to the unique structure of real queries to a
knowledge graph. Assuming that such queries are “localized”
in the graph and do not span more than a few triples, which has
been demonstrated in several analyses of real KG queries [31],
[3], longer walks may add more complexity than necessary.

VI. CONCLUSION

Motivated by the disparity between the massive scale of
encyclopedic knowledge graphs and the relatively limited
information needs of individuals, this paper proposes person-
alized knowledge graph summarization. Toward this goal we
devise GLIMPSE, and demonstrate its empirical and theo-
retical strengths. That said, there are many possibilities for
future work. For example, online (incremental) methods may
prove useful as facts are updated, KGs are augmented, and
user interests evolve. Future work could also make use of the
rich semantics provided by ontologies, as well as contextual
user cues (e.g., location, preferred language), as is common in
traditional ad-hoc web search [36]. As such, we believe our
work opens up many possibilities for emerging approaches to
accessing and managing world knowledge.

ACKNOWLEDGMENTS

The authors thank Edgar Meij for his helpful feedback.
This material is based upon work supported by the National
Science Foundation under Grant No. IIS 1845491, Army
Young Investigator Award No. W911NF1810397, an Adobe
Digital Experience award, an Amazon research faculty award,
and an NSF Graduate Research Fellowship. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect the views of the NSF or other funding parties.

REFERENCES

[1] Sorour E Amiri, Bijaya Adhikari, Aditya Bharadwaj, and B Aditya
Prakash. Netgist: Learning to generate task-based network summaries.
In ICDM, pages 857–862. IEEE, 2018.

[2] Paul N Bennett, Ryen W White, Wei Chu, Susan T Dumais, Peter Bailey,
Fedor Borisyuk, and Xiaoyuan Cui. Modeling the impact of short-and
long-term behavior on search personalization. In SIGIR, pages 185–194.
ACM, 2012.

[3] Angela Bonifati, Wim Martens, and Thomas Timm. An analytical study
of large sparql query logs. VLDB, 11(2):149–161, 2017.

[4] Šejla Čebirić, François Goasdoué, and Ioana Manolescu. Query-oriented
summarization of rdf graphs. VLDB, 8(12):2012–2015, 2015.

[5] Gong Cheng, Thanh Tran, and Yuzhong Qu. Relin: relatedness and
informativeness-based centrality for entity summarization. In ISWC,
pages 114–129. Springer, 2011.

[6] Wenfei Fan, Jianzhong Li, Xin Wang, and Yinghui Wu. Query preserv-
ing graph compression. In SIGMOD, pages 157–168. ACM, 2012.

[7] Joseph L Fleiss. Measuring nominal scale agreement among many raters.
Psychological bulletin, 76(5):378, 1971.

[8] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning
for networks. In KDD, pages 855–864. ACM, 2016.

[9] Yu Gu, Tianshuo Zhou, Gong Cheng, Ziyang Li, Jeff Z Pan, and
Yuzhong Qu. Relevance search over schema-rich knowledge graphs.
In WSDM, pages 114–122. ACM, 2019.

[10] Kalpa Gunaratna, Krishnaparasad Thirunarayan, and Amit Sheth. Faces:
diversity-aware entity summarization using incremental hierarchical con-
ceptual clustering. In AAAI, 2015.

[11] Kelvin Guu, John Miller, and Percy Liang. Traversing knowledge graphs
in vector space. In EMNLP, pages 318–327, 2015.

[12] Will Hamilton, Payal Bajaj, Marinka Zitnik, Dan Jurafsky, and Jure
Leskovec. Embedding logical queries on knowledge graphs. In NeurIPS,
pages 2030–2041, 2018.

[13] Faegheh Hasibi, Krisztian Balog, and Svein Erik Bratsberg. Dynamic
factual summaries for entity cards. In SIGIR, pages 773–782. ACM,
2017.

[14] Taher Haveliwala, Sepandar Kamvar, and Glen Jeh. An analytical
comparison of approaches to personalizing pagerank. Technical report,
Stanford, 2003.

[15] Di Jin and Danai Koutra. Exploratory analysis of graph data by
leveraging domain knowledge. In ICDM. IEEE, 2017.

[16] Di Jin, Ryan A. Rossi, Eunyee Koh, Sungchul Kim, Anup Rao, and
Danai Koutra. Latent network summarization: Bridging network em-
bedding and summarization. In KDD. ACM, 2019.

[17] Maryam Kamvar, Melanie Kellar, Rajan Patel, and Ya Xu. Computers
and iphones and mobile phones, oh my!: a logs-based comparison of
search users on different devices. In WWW, pages 801–810. ACM, 2009.

[18] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. VOG:
Summarizing and Understanding Large Graphs. In SDM, pages 91–99.
SIAM, 2014.

[19] K. Ashwin Kumar and Petros Efstathopoulos. Utility-driven graph
summarization. VLDB, 12(4):335–347, December 2018.

[20] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In
KDD, pages 631–636. ACM, 2006.

[21] Xi Victoria Lin, Richard Socher, and Caiming Xiong. Multi-hop
knowledge graph reasoning with reward shaping. In EMNLP, pages
3243–3253, 2018.

[22] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph
summarization methods and applications: A survey. ACM CSUR,
51(3):62, 2018.

[23] Antonio Maccioni and Daniel J Abadi. Scalable pattern matching over
compressed graphs via dedensification. In KDD, pages 1755–1764.
ACM, 2016.

[24] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi,
Jan Vondrák, and Andreas Krause. Lazier than lazy greedy. In AAAI,
pages 1812–1818, 2015.

[25] George L Nemhauser, Laurence A Wolsey, and Marshall L Fisher. An
analysis of approximations for maximizing submodular set functions—i.
Mathematical programming, 14(1):265–294, 1978.

[26] Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy
Gabrilovich. A review of relational machine learning for knowledge
graphs. Proceedings of the IEEE, 104(1):11–33, 2016.

[27] Natasha Noy, Yuqing Gao, Anshu Jain, Anant Narayanan, Alan Patter-
son, and Jamie Taylor. Industry-scale knowledge graphs: Lessons and
challenges. Commun. ACM, 62(8):36–43, July 2019.

[28] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999.

[29] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. Learning
diverse rankings with multi-armed bandits. In ICML, pages 784–791.
ACM, 2008.

[30] Matteo Riondato, David Garcı́a-Soriano, and Francesco Bonchi. Graph
summarization with quality guarantees. DMKD, 31(2):314–349, 2017.

[31] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser
Mehmood, and Axel-Cyrille Ngonga Ngomo. Lsq: the linked sparql
queries dataset. In ISWC, pages 261–269. Springer, 2015.

[32] Qi Song, Yinghui Wu, and Xin Luna Dong. Mining summaries for
knowledge graph search. In ICDM, pages 1215–1220. IEEE, 2016.

[33] Nan Tang, Qing Chen, and Prasenjit Mitra. Graph stream summarization:
From big bang to big crunch. In SIGMOD, pages 1481–1496. ACM,
2016.

[34] Jaime Teevan, Eytan Adar, Rosie Jones, and Michael AS Potts. In-
formation re-retrieval: repeat queries in yahoo’s logs. In SIGIR, pages
151–158. ACM, 2007.

[35] Nikos Voskarides, Edgar Meij, Ridho Reinanda, Abhinav Khaitan,
Miles Osborne, Giorgio Stefanoni, Prabhanjan Kambadur, and Maarten
de Rijke. Weakly-supervised contextualization of knowledge graph facts.
In SIGIR, pages 765–774. ACM, 2018.

[36] Ryen W White, Paul N Bennett, and Susan T Dumais. Predicting short-
term interests using activity-based search context. In CIKM, pages 1009–
1018. ACM, 2010.

[37] Chenyan Xiong and Jamie Callan. Query expansion with freebase. In
ICTIR, pages 111–120. ACM, 2015.

[38] Wen-tau Yih, Ming-Wei Chang, Xiaodong He, and Jianfeng Gao.
Semantic parsing via staged query graph generation: Question answering
with knowledge base. In ACL, volume 1, pages 1321–1331, 2015.

[39] Wen-tau Yih, Matthew Richardson, Chris Meek, Ming-Wei Chang, and
Jina Suh. The value of semantic parse labeling for knowledge base
question answering. In ACL, volume 2, pages 201–206, 2016.

[40] Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-
Ying Ma. Collaborative knowledge base embedding for recommender
systems. In KDD, pages 353–362. ACM, 2016.

	Introduction
	Related work
	Methodology
	Preliminaries
	Informal problem statement
	Inferring user preferences
	Constructing the summary
	The GLIMPSE framework

	Data
	Knowledge graphs
	Queries
	User querying models

	Evaluation
	Experimental setup
	Query answering on GLIMPSE summaries
	Scalability of GLIMPSE
	Parameter analysis

	Conclusion
	References

